1
|
Tao J, Zheng D, Tang Y, He H, Zhang Y, Yang Y, Dai L, Zha H, Sang Y, Nie Z. Polymer Ligands with Multi-Nitrogen Heterocyclic Carbenes for Enhanced Stability and Reactivity in Nanoparticle Surface Functionalization. Angew Chem Int Ed Engl 2025; 64:e202419640. [PMID: 39865453 DOI: 10.1002/anie.202419640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Nitrogen heterocyclic carbenes (NHCs) are emerging as effective substitutes for conventional thiol ligands in surface functionalization of nanoparticles (NPs), offering exceptional stability to NPs under harsh conditions. However, the highly reactive feature of NHCs limits their use in introducing chemically active groups onto the NP surface. Herein, we develop a general yet robust strategy for the efficient surface functionalization of NPs with copolymer ligands bearing various functional groups. The polymer ligands consist of a multiple NHCs block, utilized for surface binding on NPs, alongside a poly(reactive ester) block intended for incorporating functional groups. The multiple NHCs block enables NPs with excellent colloidal stability across a broader range of pH values (0-14), temperature variations (-78 °C-100 °C), and electrolyte concentrations (0-1000 mM). Through the in situ ammonolysis of the poly(reactive ester) block, various active functional groups can be individually or together introduced on the NP surface. We further demonstrate the chemical reactivity of these functionalized NPs, including addition polymerization, Diels-Alder and Schiff base reactions. This method is applicable to various types of NPs, including metal NPs, metal oxide NPs, and even upconversion NPs, thereby paving new pathways for the design and creation of nanoparticle-based functional materials.
Collapse
Affiliation(s)
- Jing Tao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Di Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yutian Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Huibin He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yanqiong Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Liwei Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Huaining Zha
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yutao Sang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, People's Republic of China
| |
Collapse
|
2
|
Yao YW, Tsai CH, Liu CY, Wang FY, Hsu SCN, Lin CC, Chen HT, Kao CL. A 11B-NMR Method for the In Situ Monitoring of the Formation of Dynamic Covalent Boronate Esters in Dendrimers. Polymers (Basel) 2024; 16:3258. [PMID: 39684003 DOI: 10.3390/polym16233258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The in situ monitoring of dynamic covalent macromolecular boronate esters represents a difficult task. In this report, we present an in situ method using fluoride coordination and 11B NMR spectroscopy to determine the amount of boronate esters in a mixture of boronic acids and cis-diols. With fluoride coordination, the boronic acid and boronate esters afforded trifluoroborate and fluoroboronate esters, giving identical resonances at 3 and 9 ppm in the 11B NMR spectra. The same titration did not alter the resonance of amine-coordinated boronate esters, which gave resonances of 14 ppm in the 11B NMR spectra. Therefore, boronic acids, boronate esters, and amine-coordinated boronate esters gave three identical resonances, and the ratio of each component was obtained by deconvolution for a further equilibrium analysis. This method monitored the conversion among three species in various conditions, including separation. Accordingly, boronate esters were more stable after precipitation than chromatography, in which 29% and 20% of boronate esters were lost after purification. This method was applied to study the reaction between the boronic acid-decorated defect lysine dendron (16) and dopamine. No boronic acid signal was observed after adding 1 equivalent of dopamine; no boronic acid signal was observed in the NMR spectrum. According to the spectrum, the product contains 65% boronate ester and 35% N-B-coordinated derivatives. This method helps identify the presence of the three intermediates and provides more insights into this reaction.
Collapse
Affiliation(s)
- Yi-Wen Yao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Hua Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Yi Liu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Fang-Yu Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chun-Cheng Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hui-Ting Chen
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
3
|
Jiang S, Li Q, Wu G, Mu X, Wang X, Wang Y, Wu Y, Wu J, Li Y. Advances in Label-Free Glucose Detection Using Self-Assembled Nanoparticles and Surface-Enhanced Raman Spectroscopy. Anal Chem 2024; 96:11533-11541. [PMID: 38973171 DOI: 10.1021/acs.analchem.4c02221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
In the landscape of biomolecular detection, surface-enhanced Raman spectroscopy (SERS) confronts notable obstacles, particularly in the label-free detection of biomolecules, with glucose and other sugars presenting a quintessential challenge. This study heralds the development of a pioneering SERS substrate, ingeniously engineered through the self-assembly of nanoparticles of diverse sizes (Ag1@Ag2NPs). This configuration strategically induces 'hot spots' within the interstices of nanoparticles, markedly amplifying the detection signal. Rigorous experimental investigations affirm the platform's rapidity, precision, and reproducibility, and the detection limit of this detection method is calculated to be 6.62 pM. Crucially, this methodology facilitates nondestructive glucose detection in simulated samples, including phosphate-buffered saline and urine. Integrating machine learning algorithms with simulated serum samples, the approach adeptly discriminates between hypoglycemic, normoglycemic, and hyperglycemic states. Moreover, the platform's versatility extends to the detection and differentiation of monosaccharides, disaccharides, and methylated glycosides, underscoring its universality and specificity. Comparative Raman spectroscopic analysis of various carbohydrate structures elucidates the unique SERS characteristics pertinent to these molecules. This research signifies a major advance in nonchemical, label-free glucose determination with enhanced sensitivity via SERS, laying a new foundation for its application in precision medicine and advancing structural analysis in the sugar domain.
Collapse
Affiliation(s)
- Shen Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Qiuyun Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Guangrun Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Xuming Mu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Xiaotong Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Yunpeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Yanli Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Jing Wu
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, PR China
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, 2125B, Aapistie 5A, 90220 Oulu, Finland
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| |
Collapse
|
4
|
Li D, Zhang Y, Sun F, Felidj N, Gagey-Eilstein N, Lamouri A, Hémadi M, Nizard P, Luo Y, Mangeney C. Dual-Probe SERS Nanosensor: A Promising Approach for Sensitive and Ratiometric Detection of Glucose in Clinical Settings. ACS APPLIED BIO MATERIALS 2024; 7:2254-2263. [PMID: 38568747 DOI: 10.1021/acsabm.3c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Diabetes is a major global health concern, with millions of annual deaths. Monitoring glucose levels is vital for clinical management, and urine samples offer a noninvasive alternative to blood samples. Optical techniques for urine glucose sensing have gained notable traction due to their cost-effectiveness and portability. Among these methods, surface-enhanced Raman spectroscopy (SERS) has attracted considerable attention thanks to its remarkable sensitivity and multiplexing capabilities. However, challenges remain in achieving reliable quantification through SERS. In this study, an alternative approach is proposed to enhance quantification involving the use of dual probes. Each probe is encoded with unique SERS signatures strategically positioned in the biologically silent region. One probe indicates the glucose presence, while the other acts as an internal reference for calibration. This setup enables ratiometric analysis of the SERS signal, directly correlating it with the glucose concentration. The fabrication of the sensor relies on the prefunctionalization of Fe sheets using an aryl diazonium salt bearing a -C≡CH group (internal reference), followed by the immobilization of Ag nanoparticles modified with an aryl diazonium salt bearing a -B(OH)2 group (for glucose capture). A secondary probe bearing a -B(OH)2 group on one side and a -C≡N group on the other side enables the ratiometric analysis by forming a sandwich-like structure in the presence of glucose (glucose indicator). Validation studies in aqueous solutions and artificial urine demonstrated the high spectral stability and the potential of this dual-probe nanosensor for sensitive glucose monitoring in clinical settings.
Collapse
Affiliation(s)
- Da Li
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006 Paris, France
| | - Yang Zhang
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006 Paris, France
| | - Fan Sun
- PSL Université, Chimie Paris Tech, IRCP, CNRS, F-75005 Paris, France
| | - Nordin Felidj
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | | | | | - Miryana Hémadi
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Philippe Nizard
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006 Paris, France
| | - Yun Luo
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006 Paris, France
| | - Claire Mangeney
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006 Paris, France
| |
Collapse
|
5
|
Wang X, Wang Z, Xiao M, Li Z, Zhu Z. Advances in biomedical systems based on microneedles: design, fabrication, and application. Biomater Sci 2024; 12:530-563. [PMID: 37971423 DOI: 10.1039/d3bm01551c] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Wearable devices have become prevalent in biomedical studies due to their convenient portability and potential utility in biomarker monitoring for healthcare. Accessing interstitial fluid (ISF) across the skin barrier, microneedle (MN) is a promising minimally invasive wearable technology for transdermal sensing and drug delivery. MN has the potential to overcome the limitations of conventional transdermal drug administration, making it another prospective mode of drug delivery after oral and injectable. Subsequently, combining MN with multiple sensing approaches has led to its extensive application to detect biomarkers in ISF. In this context, employing MN platforms and control schemes to merge diagnostic and therapeutic capabilities into theranostic systems will facilitate on-demand therapy and point-of-care diagnostics, paving the way for future MN technologies. A comprehensive analysis of the growing advances of microneedles in biomedical systems is presented in this review to summarize the latest studies for academics in the field and to offer for reference the issues that need to be addressed in MN application for healthcare. Covering an array of novel studies, we discuss the following main topics: classification of microneedles in the biomedical field, considerations of MN design, current applications of microneedles in diagnosis and therapy, and the regulatory landscape and prospects of microneedles for biomedical applications. This review sheds light on the significance of microneedle-based innovations, presenting an analysis of their potential implications and contributions to the community of wearable healthcare technologies. The review provides a comprehensive understanding of the field's current state and potential, making it a valuable resource for academics and clinicians seeking to harness the full potential of MN applications.
Collapse
Affiliation(s)
- Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
6
|
Chen T, Jiang H, Xie K, Xia H. A Small Highly Sensitive Glucose Sensor Based on a Glucose Oxidase-Modified U-Shaped Microfiber. SENSORS (BASEL, SWITZERLAND) 2024; 24:684. [PMID: 38276375 PMCID: PMC10820248 DOI: 10.3390/s24020684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
Diabetes patients need to monitor blood glucose all year round. In this article, a novel scheme is proposed for blood glucose detection. The proposed sensor is based on a U-shaped microfiber prepared using hydrogen-oxygen flame-heating technology, and then 3-aminopropyltriethoxysilane (APTES) and glucose oxidase (GOD) are successively coated on the surface of the U-shaped microfiber via a coating technique. The glucose reacts with the GOD of the sensor surface to produce gluconic acid, which changes the effective refractive index and then shifts the interference wavelength. The structure and morphology of the sensor were characterized via scanning electron microscope (SEM) and confocal laser microscopy (CLM). The experimental results show that the sensitivity of the sensor is as high as 5.73 nm/(mg/mL). Compared with the glucose sensor composed of the same material, the sensitivity of the sensor increased by 329%. The proposed sensor has a broad application prospect in blood glucose detection of diabetic patients due to the advantages of miniaturization, high sensitivity, and good stability.
Collapse
Affiliation(s)
- Tingkuo Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Haiming Jiang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Kang Xie
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Hongyan Xia
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| |
Collapse
|
7
|
Wang L, Chang M, Ma P, Chen H, Ma S, Chen N, Zhang X. Self-assembly of Au nanocubes for ultrasensitive detection of Alzheimer's disease biomarkers by SERS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6385-6393. [PMID: 37968999 DOI: 10.1039/d3ay01667f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Since presently Alzheimer's disease (AD) is incurable, early diagnosis of AD is crucial. Aβ 1-42 and tau-441 proteins are promising core biomarkers for early diagnosis and early therapeutic intervention in AD. Here we constructed a surface-enhanced Raman spectroscopy (SERS) biosensor for highly sensitive quantitative detection of Aβ 1-42 and tau proteins by preparing gold nanocube (AuNC) superlattices through evaporation self-assembly. The results showed that the method has a wide response range (0.1-10 000 ng mL-1 and 0.01-1000 ng mL-1, respectively) and high sensitivity. The detection limits of Aβ1-42 and tau protein were 0.0416 ng mL-1 and 0.0087 ng mL-1, respectively. In addition, the method was able to rapidly and simultaneously detect the two biomarkers in serum, which showed the feasibility of the method in complex biological environments. The detection of Aβ 1-42 and tau protein has great potential for the accurate prediction and early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Luyao Wang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Min Chang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Pei Ma
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Chen
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shaojun Ma
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Chen
- School of Electrical Engineering, Nantong University, Nantong 226019, China
| | - Xuedian Zhang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
8
|
Zhang T, Lu R, Wang G, Sun X, Li J, Mizaikoff B. Glucose sandwich assay based on surface-enhanced Raman spectroscopy. Analyst 2023; 148:4310-4317. [PMID: 37470091 DOI: 10.1039/d3an00481c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
A facile and sensitive glucose sandwich assay using surface-enhanced Raman scattering (SERS) has been developed. Glucose was captured by 3-aminopheyonyl boronic acid (APBA) modified Ag nanoparticles decorated onto a polyamide surface. Then, Ag nanoparticles modified with 3-amino-6-ethynylpicolinonitrile (AEPO) and APBA were used as SERS tags. APBA forms specific cis-diol compounds with glucose molecules avoiding interference by other saccharides and biomolecules in urine enabling its selective detection. As the actual Raman reporter, AEPO exhibited a distinctive SERS peak in the Raman silent region, thus increasing the sensitivity of the glucose detection to 10-11 M. Additionally, the developed SERS assay was reusable, and its applicability in artificial urine samples demonstrated future clinical utility confirming the potential of this innovative technology as a diagnostic tool for glucose sensing.
Collapse
Affiliation(s)
- Tingting Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| | - Rui Lu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| | - Gongying Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein Allee 11, 89081 Ulm, Germany
- Hahn-Schickard, Ulm Sedanstrasse 14, 89077 Ulm, Germany.
| |
Collapse
|
9
|
Dos Santos DP, Sena MM, Almeida MR, Mazali IO, Olivieri AC, Villa JEL. Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: principles, progress, and trends. Anal Bioanal Chem 2023; 415:3945-3966. [PMID: 36864313 PMCID: PMC9981450 DOI: 10.1007/s00216-023-04620-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has gained increasing attention because it provides rich chemical information and high sensitivity, being applicable in many scientific fields including medical diagnosis, forensic analysis, food control, and microbiology. Although SERS is often limited by the lack of selectivity in the analysis of samples with complex matrices, the use of multivariate statistics and mathematical tools has been demonstrated to be an efficient strategy to circumvent this issue. Importantly, since the rapid development of artificial intelligence has been promoting the implementation of a wide variety of advanced multivariate methods in SERS, a discussion about the extent of their synergy and possible standardization becomes necessary. This critical review comprises the principles, advantages, and limitations of coupling SERS with chemometrics and machine learning for both qualitative and quantitative analytical applications. Recent advances and trends in combining SERS with uncommonly used but powerful data analysis tools are also discussed. Finally, a section on benchmarking and tips for selecting the suitable chemometric/machine learning method is included. We believe this will help to move SERS from an alternative detection strategy to a general analytical technique for real-life applications.
Collapse
Affiliation(s)
- Diego P Dos Santos
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Marcelo M Sena
- Departamento de Química, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCT Bio), Campinas, SP, 13083-970, Brazil
| | - Mariana R Almeida
- Departamento de Química, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Italo O Mazali
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Alejandro C Olivieri
- Departamento de Química Analítica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Instituto de Química Rosario (IQUIR-CONICET), Suipacha 531, 2000, Rosario, Argentina
| | - Javier E L Villa
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
10
|
Nan K, Jiang YN, Li M, Wang B. Recent Progress in Diboronic-Acid-Based Glucose Sensors. BIOSENSORS 2023; 13:618. [PMID: 37366983 DOI: 10.3390/bios13060618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Non-enzymatic sensors with the capability of long-term stability and low cost are promising in glucose monitoring applications. Boronic acid (BA) derivatives offer a reversible and covalent binding mechanism for glucose recognition, which enables continuous glucose monitoring and responsive insulin release. To improve selectivity to glucose, a diboronic acid (DBA) structure design has been explored and has become a hot research topic for real-time glucose sensing in recent decades. This paper reviews the glucose recognition mechanism of boronic acids and discusses different glucose sensing strategies based on DBA-derivatives-based sensors reported in the past 10 years. The tunable pKa, electron-withdrawing properties, and modifiable group of phenylboronic acids were explored to develop various sensing strategies, including optical, electrochemical, and other methods. However, compared to the numerous monoboronic acid molecules and methods developed for glucose monitoring, the diversity of DBA molecules and applied sensing strategies remains limited. The challenges and opportunities are also highlighted for the future of glucose sensing strategies, which need to consider practicability, advanced medical equipment fitment, patient compliance, as well as better selectivity and tolerance to interferences.
Collapse
Affiliation(s)
- Ke Nan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu-Na Jiang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Meng Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Bing Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
- International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| |
Collapse
|
11
|
Wang F, Zhang J, Zhang M, Xu C, Cheng S, Wang Q, Zhang F, He X, He P. A multi-calibration potentiometric sensing array based on diboronic acid-PtAu/CNTs nanozyme for home monitoring of urine glucose. Anal Chim Acta 2022; 1237:340598. [DOI: 10.1016/j.aca.2022.340598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/27/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022]
|
12
|
Zhang Y, Xue C, Xu Y, Cui S, Ganeev AA, Kistenev YV, Gubal A, Chuchina V, Jin H, Cui D. Metal-organic frameworks based surface-enhanced Raman spectroscopy technique for ultra-sensitive biomedical trace detection. NANO RESEARCH 2022; 16:2968-2979. [PMID: 36090613 PMCID: PMC9440655 DOI: 10.1007/s12274-022-4914-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 05/28/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted widespread interest due to their unique and unprecedented advantages in microstructures and properties. Besides, surface-enhanced Raman scattering (SERS) technology has also rapidly developed into a powerful fingerprint spectroscopic technique that can provide rapid, non-invasive, non-destructive, and ultra-sensitive detection, even down to single molecular level. Consequently, a considerable amount of researchers combined MOFs with the SERS technique to further improve the sensing performance and broaden the applications of SERS substrates. Herein, representative synthesis strategies of MOFs to fabricate SERS-active substrates are summarized and their applications in ultra-sensitive biomedical trace detection are also reviewed. Besides, relative barriers, advantages, disadvantages, future trends, and prospects are particularly discussed to give guidance to relevant researchers.
Collapse
Affiliation(s)
- Yuna Zhang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Cuili Xue
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yuli Xu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shengsheng Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Alexander A. Ganeev
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Yury V. Kistenev
- Tomsk State University, Lenina Av. 36, Tomsk, Tomsk, 634050 Russia
| | - Anna Gubal
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Victoria Chuchina
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Han Jin
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241 China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241 China
| |
Collapse
|
13
|
Occurrence, analysis and removal of pesticides, hormones, pharmaceuticals, and other contaminants in soil and water streams for the past two decades: a review. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Sun X. Glucose detection through surface-enhanced Raman spectroscopy: A review. Anal Chim Acta 2022; 1206:339226. [PMID: 35473867 DOI: 10.1016/j.aca.2021.339226] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Glucose detection is of vital importance to diabetes diagnosis and treatment. Optical approaches in glucose sensing have received much attention in recent years due to the relatively low cost, portable, and mini-invasive or non-invasive potentials. Surface enhanced Raman spectroscopy (SERS) endows the benefits of extremely high sensitivity because of enhanced signals and specificity due to the fingerprint of molecules of interest. However, the direct detection of glucose through SERS was challenging because of poor adsorption of glucose on bare metals and low cross section of glucose. In order to address these challenges, several approaches were proposed and utilized for glucose detection through SERS. This review article mainly focuses on the development of surface enhanced Raman scattering based glucose sensors in recent 10 years. The sensing mechanisms, rational design and sensing properties to glucose are reviewed. Two strategies are summarized as intrinsic sensing and extrinsic sensing. Four general categories for glucose sensing through SERS are discussed including SERS active platform, partition layer functionalized surface, boronic acid based sensors, and enzymatic reaction based biosensors. Finally, the challenges and outlook for SERS based glucose sensors are also presented.
Collapse
Affiliation(s)
- Xiangcheng Sun
- Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States.
| |
Collapse
|
15
|
Anh NH, Doan MQ, Dinh NX, Huy TQ, Tri DQ, Ngoc Loan LT, Van Hao B, Le AT. Gold nanoparticle-based optical nanosensors for food and health safety monitoring: recent advances and future perspectives. RSC Adv 2022; 12:10950-10988. [PMID: 35425077 PMCID: PMC8988175 DOI: 10.1039/d1ra08311b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Modern society has been facing serious health-related problems including food safety, diseases and illness. Hence, it is urgent to develop analysis methods for the detection and control of food contaminants, disease biomarkers and pathogens. As the traditional instrumental methods have several disadvantages, including being time consuming, and having high cost and laborious procedures, optical nanosensors have emerged as promising alternative or complementary approaches to those traditional ones. With the advantages of simple preparation, high surface-to-volume ratio, excellent biocompatibility, and especially, unique optical properties, gold nanoparticles (AuNPs) have been demonstrated as excellent transducers for optical sensing systems. Herein, we provide an overview of the synthesis of AuNPs and their excellent optical properties that are ideal for the development of optical nanosensors based on local surface plasmon resonance (LSPR), colorimetry, fluorescence resonance energy transfer (FRET), and surface-enhanced Raman scattering (SERS) phenomena. We also review the sensing strategies and their mechanisms, as well as summarizing the recent advances in the monitoring of food contaminants, disease biomarkers and pathogens using developed AuNP-based optical nanosensors in the past seven years (2015-now). Furthermore, trends and challenges in the application of these nanosensors in the determination of those analytes are discussed to suggest possible directions for future developments.
Collapse
Affiliation(s)
- Nguyen Ha Anh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Mai Quan Doan
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Ngo Xuan Dinh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Tran Quang Huy
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Electric and Electronics, Phenikaa University Hanoi 12116 Vietnam
| | - Doan Quang Tri
- Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST) 1st Dai Co Viet Road Hanoi Vietnam
| | - Le Thi Ngoc Loan
- Faculty of Natural Sciences, Quy Nhon University Quy Nhon 55113 Vietnam
| | - Bui Van Hao
- Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116
| |
Collapse
|
16
|
Diboronic acid assisted labeling and separation for highly efficient analysis of saccharides. J Chromatogr A 2022; 1667:462908. [DOI: 10.1016/j.chroma.2022.462908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/24/2022]
|
17
|
Chung M, Skinner WH, Robert C, Campbell CJ, Rossi RM, Koutsos V, Radacsi N. Fabrication of a Wearable Flexible Sweat pH Sensor Based on SERS-Active Au/TPU Electrospun Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51504-51518. [PMID: 34672514 DOI: 10.1021/acsami.1c15238] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Development of wearable sensing platforms is essential for the advancement of continuous health monitoring and point-of-care testing. Eccrine sweat pH is an analyte that can be noninvasively measured and used to diagnose and aid in monitoring a wide range of physiological conditions. Surface-enhanced Raman scattering (SERS) offers a rapid, optical technique for fingerprinting of biomarkers present in sweat. In this paper, a mechanically flexible, nanofibrous, SERS-active substrate was fabricated by a combination of electrospinning of thermoplastic polyurethane (TPU) and Au sputter coating. This substrate was then investigated for suitability toward wearable sweat pH sensing after functionalization with two commonly used pH-responsive molecules, 4-mercaptobenzoic acid (4-MBA), and 4-mercaptopyridine (4-MPy). The developed SERS pH sensor was found to have good resolution (0.14 pH units for 4-MBA; 0.51 pH units for 4-MPy), with only 1 μL of sweat required for a measurement, and displayed no statistically significant difference in performance after 35 days (p = 0.361). Additionally, the Au/TPU nanofibrous SERS pH sensors showed fast sweat-absorbing ability as well as good repeatability and reversibility. The proposed methodology offers a facile route for the fabrication of SERS substrates which could also be used to measure a wide range of health biomarkers beyond sweat pH.
Collapse
Affiliation(s)
- Michael Chung
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King's Buildings, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - William H Skinner
- EaStCHEM School of Chemistry, The University of Edinburgh, King's Buildings, Edinburgh EH9 3FJ, United Kingdom
| | - Colin Robert
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King's Buildings, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
| | - Colin J Campbell
- EaStCHEM School of Chemistry, The University of Edinburgh, King's Buildings, Edinburgh EH9 3FJ, United Kingdom
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Vasileios Koutsos
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King's Buildings, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King's Buildings, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
| |
Collapse
|
18
|
Kotturi D, Paterson S, McShane M. Comparison of SERS pH probe responses after microencapsulation within hydrogel matrices. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210153R. [PMID: 34519190 PMCID: PMC8435981 DOI: 10.1117/1.jbo.26.9.097001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Personalized medicine requires the tracking of an individual's metabolite levels over time to detect anomalies and evaluate the body's response to medications. Implanted sensors offer effective means to continuously monitor specific metabolite levels, provided they are accurate, stable over long time periods, and do no harm. AIM Four types of hydrogel embedded with pH-sensitive sensors were evaluated for their accuracy, sensitivity, reversibility, longevity, dynamic response, and consistency in static versus dynamic conditions and long-term storage. APPROACH Raman spectroscopy was first used to calibrate the intensity of pH-sensitive peaks of the Raman-active hydrogel sensors in a static pH environment. The dynamic response was then assessed for hydrogels exposed to changing pH conditions within a flow cell. Finally, the static pH response after 5 months of storage was determined. RESULTS All four types of hydrogels allowed the surface-enhanced Raman spectroscopy (SERS) sensors to respond to the pH level of the local environment without introducing interfering signals, resulting in consistent calibration curves. When the pH level changed, the probes in the gels were slow to reach steady-state, requiring several hours, and response times were found to vary among hydrogels. Only one type, poly(2-hydroxyethyl methacrylate) (pHEMA), lasted five months without significant degradation of dynamic range. CONCLUSIONS While all hydrogels appear to be viable candidates as biocompatible hosts for the SERS sensing chemistry, pHEMA was found to be most functionally stable over the long interval tested. Poly(ethylene glycol) hydrogels exhibit the most rapid response to changing pH. Since these two gel types are covalently cross-linked and do not generally degrade, they both offer advantages over sodium alginate for use as implants.
Collapse
Affiliation(s)
- Dayle Kotturi
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Sureyya Paterson
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Mike McShane
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- Texas A&M University, Department of Materials Science and Engineering, College Station, Texas, United States
| |
Collapse
|
19
|
Makvandi P, Jamaledin R, Chen G, Baghbantaraghdari Z, Zare EN, Di Natale C, Onesto V, Vecchione R, Lee J, Tay FR, Netti P, Mattoli V, Jaklenec A, Gu Z, Langer R. Stimuli-responsive transdermal microneedle patches. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 47:206-222. [PMID: 36338772 PMCID: PMC9635273 DOI: 10.1016/j.mattod.2021.03.012] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microneedle (MN) patches consisting of miniature needles have emerged as a promising tool to perforate the stratum corneum and translocate biomolecules into the dermis in a minimally invasive manner. Stimuli-responsive MN patches represent emerging drug delivery systems that release cargos on-demand as a response to internal or external triggers. In this review, a variety of stimuli-responsive MN patches for controlled drug release are introduced, covering the mechanisms of action toward different indications. Future opportunities and challenges with respect to clinical translation are also discussed.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Guojun Chen
- Department of Bioengineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Biomedical Engineering, and the Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Zahra Baghbantaraghdari
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | | | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Jesse Lee
- Department of Biomedical Engineering, and the Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Franklin R. Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Paolo Netti
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhen Gu
- Department of Bioengineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095, United States
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
20
|
Gao XD, Du XZ, Shi YP. A Bisboronic Acid Sensor for Ultra-High Selective Glucose Assay by 19F NMR Spectroscopy. Anal Chem 2021; 93:7220-7225. [PMID: 33939406 DOI: 10.1021/acs.analchem.1c00262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucose is a significant analyte both in biology and biomedical science, it is of great importance to selectively detect glucose both in body fluids and complex mixture. In this study, a simple 19F NMR based sensor was synthesized easily, which exhibited a high selectivity and robust anti-interference ability toward glucose detection both in a mixture containing up to 10 saccharides and human urine samples without any pretreatment. Combined with this sensor system, glucose could be well detected in human urine samples and the limit of detection was 0.41 mM by using a 400 MHz NMR spectrometer with 128 scans (ca. 4 min). This method had a potential for specific detection of glucose in complex mixture and diagnosis of diabetes mellitus related diseases in body fluid.
Collapse
Affiliation(s)
- Xu-Dong Gao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China.,CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Xin-Zhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| |
Collapse
|
21
|
Jarosinski MA, Dhayalan B, Rege N, Chatterjee D, Weiss MA. 'Smart' insulin-delivery technologies and intrinsic glucose-responsive insulin analogues. Diabetologia 2021; 64:1016-1029. [PMID: 33710398 PMCID: PMC8158166 DOI: 10.1007/s00125-021-05422-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Insulin replacement therapy for diabetes mellitus seeks to minimise excursions in blood glucose concentration above or below the therapeutic range (hyper- or hypoglycaemia). To mitigate acute and chronic risks of such excursions, glucose-responsive insulin-delivery technologies have long been sought for clinical application in type 1 and long-standing type 2 diabetes mellitus. Such 'smart' systems or insulin analogues seek to provide hormonal activity proportional to blood glucose levels without external monitoring. This review highlights three broad strategies to co-optimise mean glycaemic control and time in range: (1) coupling of continuous glucose monitoring (CGM) to delivery devices (algorithm-based 'closed-loop' systems); (2) glucose-responsive polymer encapsulation of insulin; and (3) mechanism-based hormone modifications. Innovations span control algorithms for CGM-based insulin-delivery systems, glucose-responsive polymer matrices, bio-inspired design based on insulin's conformational switch mechanism upon insulin receptor engagement, and glucose-responsive modifications of new insulin analogues. In each case, innovations in insulin chemistry and formulation may enhance clinical outcomes. Prospects are discussed for intrinsic glucose-responsive insulin analogues containing a reversible switch (regulating bioavailability or conformation) that can be activated by glucose at high concentrations.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nischay Rege
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
22
|
N-Heterocyclic carbenes as “smart” gold nanoparticle stabilizers: State-of-the art and perspectives for biomedical applications. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Chen Y, Xie T, Ye M, Lai Q, Wang Y, Xu Y, Chen W, Zheng W, Feng S, Huang Y. Combination of pathological and spectroscopic characterization to promote diagnosis of retinal pigment epithelium-Bruch's membrane complex in a diabetic rat model. BIOMEDICAL OPTICS EXPRESS 2021; 12:2221-2235. [PMID: 33996225 PMCID: PMC8086466 DOI: 10.1364/boe.419716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 05/04/2023]
Abstract
Diabetic retinopathy (DR) is a common condition of diabetes, and approaches to detecting early DR using the unique characteristics of the retinal pigment epithelium-Bruch's membrane complex (RBC) have increasingly attracted attention. A diabetic model was established in Sprague-Dawley rats via streptozocin (STZ) injection for 1 (DM1) and 6 months (DM6), confirmed by weekly blood glucose measurement. Serum and retinal tissue-based advanced glycation endproducts (AGE) levels significantly elevated in diabetic rats, and RBC was evaluated by transmission electron microscopy and Raman spectroscopy. The results showed that whole Raman spectra and all marked band intensities could respectively achieve almost equal and accurate discrimination of all animal groups, along with the determination of important molecules from the band data. Further quantitative analyses indicated series of metabolic disturbance due to hyperglycemia were involved while the body self-regulation mechanism still played a role with different effects during the disease progression. Given this, Raman spectroscopy can reliably distinguish the early characterization of DR in addition to providing intrinsic key molecules that is sensitive to identify the early disease progression.
Collapse
Affiliation(s)
- Yang Chen
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou 350004, China
| | - Ting Xie
- Department of Ophthalmology & Optometry, Fujian Medical University, Fuzhou 350004, China
| | - Minlu Ye
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou 350004, China
| | - Qiaoling Lai
- Department of Ophthalmology & Optometry, Fujian Medical University, Fuzhou 350004, China
| | - Yuting Wang
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou 350004, China
| | - Yunchao Xu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Wenyi Chen
- Department of Ophthalmology & Optometry, Fujian Medical University, Fuzhou 350004, China
| | - Weidong Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Shangyuan Feng
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Yan Huang
- Department of Ophthalmology & Optometry, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
24
|
Lin D, Yang SW, Hsieh CL, Hsu KJ, Gong T, Wu Q, Qiu S, Feng S, Kong KV. Tandem Quantification of Multiple Carbohydrates in Saliva Using Surface-Enhanced Raman Spectroscopy. ACS Sens 2021; 6:1240-1247. [PMID: 33560111 DOI: 10.1021/acssensors.0c02533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The detection of carbohydrates in human body fluids is critical for disease diagnosis and healthy monitoring. Despite recent advances in glucose sensing, multiplex detection of different carbohydrates within a single assay that is capable of efficiently providing richer health information remains challenging. Herein, we report a versatile surface-enhanced Raman spectroscopy-based platform for the quantitative detection of monosaccharides (glucose, fructose, and galactose) in one test using a displace-and-trap mechanism. Moreover, due to the use of multiple optical interference-free (1800-2200 cm-1) signal-independent Raman probes, the detection range of this platform (0.125-7 mg/dL) perfectly covers physiological concentrations, enabling the quantitative detection of glucose and galactose in clinical human saliva samples. This work provides a noninvasive and high-efficiency potential tool for the screening of clinical diabetes and other carbohydrate-related diseases.
Collapse
Affiliation(s)
- Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Digital Fujian Internet-of-Things Laboratory of Environment Monitoring, Fujian Normal University, Fuzhou 350007, China
| | - Shang-Wei Yang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chang-Lin Hsieh
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Keng-Jia Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tianxun Gong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiong Wu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Digital Fujian Internet-of-Things Laboratory of Environment Monitoring, Fujian Normal University, Fuzhou 350007, China
| | - Sufang Qiu
- Department of Radiation Oncology, Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou 350014, China
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Digital Fujian Internet-of-Things Laboratory of Environment Monitoring, Fujian Normal University, Fuzhou 350007, China
| | - Kien Voon Kong
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
25
|
Yu Z, Jiang N, Kazarian SG, Tasoglu S, Yetisen AK. Optical sensors for continuous glucose monitoring. ACTA ACUST UNITED AC 2021. [DOI: 10.1088/2516-1091/abe6f8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Nie D, Zhang Z, Guo D, Tang Y, Hu X, Huang Q, Zhao Z, Han Z. A flexible assay strategy for non-glucose targets based on sulfhydryl-terminated liposomes combined with personal glucometer. Biosens Bioelectron 2021; 175:112884. [PMID: 33358056 DOI: 10.1016/j.bios.2020.112884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 12/11/2020] [Indexed: 11/19/2022]
Abstract
The personal glucose meter (PGM) is one of the most successful point-of-care (POC) testing devices. It is simple, robust and inexpensive, but cannot be easily adapted to analytes other than glucose. We report a novel chemical conjugation-based assay strategy, using rational design of chemically-derivatized glucose-encapsulating liposomes, to repurpose a PGM, taking an important mycotoxin patulin as the model analyte. Sulfhydryl (-SH) was proposed for the first time as a specific functional group for efficient recognition of patulin. Multifunctional sulfhydryl-terminated glucose-encapsulating liposomes (G-LIP-SH) were synthesized in a simple, single step, which efficiently captured patulin by covalent bonding, and interacted strongly with NH2-Au@Fe3O4 nanoparticles. Magnetic removal of nanoparticles efficiently and selectively separated patulin-derivatized from un-derivatized G-LIP-SH, permitting the latter to be lysed and the released glucose measured by PGM. The PGM signal was inversely proportional to the patulin concentration, over the range of 0.1-50 ng mL-1 (R2 = 0.995) with a detection limit of 0.05 ng mL-1 (S/N = 3). This approach overcame interference from endogenous glucose, other mycotoxins and metal ions, allowing the analysis of a wide range of sample matrices and showed high specificity, acceptable reproducibility, good accuracy and optimal applicability. Other derivatization chemistries will enable this approach to be adapted to analytes with a wide range of chemical structures, to facilitate development of rapid, portable, user-friendly and cost-effective assays applicable to diverse analytes and sample matrices.
Collapse
Affiliation(s)
- Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Zhiqi Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Dakai Guo
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Yupeng Tang
- Department of Applied Chemistry, Yuncheng University, 1155, Fudan West Street, Yuncheng, 44000, China
| | - Xiuli Hu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China.
| |
Collapse
|
27
|
Yang C, Gao N, Liu Y, Zhao H, Jing J, Zhang X. A silicon nanoparticle-based nanoprobe for ratiometric fluorescence and visual detection of glucose. NEW J CHEM 2021. [DOI: 10.1039/d1nj03826e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We synthesized SiNPs by a one-step method and established, for the first time, a novel SiNP-based nanoprobe (denoted as SiNPs/OPD/HRP/GOx) for ratiometric fluorescence and visual detection of glucose in serum samples.
Collapse
Affiliation(s)
- Chunlei Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Na Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yazhou Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hengzhi Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jing Jing
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
28
|
Das SK, Bhattacharya TS, Ghosh M, Chowdhury J. Probing blood plasma samples for the detection of diabetes using SERS aided by PCA and LDA multivariate data analyses. NEW J CHEM 2021. [DOI: 10.1039/d0nj04508j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fabrication of a SERS-active substrate using Langmuir–Blodgett and self-assembly techniques for the detection of diabetes from blood plasma samples.
Collapse
Affiliation(s)
- Sumit Kumar Das
- Department of Physics, Jadavpur University
- Kolkata 700032
- India
- Department of Physics, Government General Degree College at Tehatta
- Nadia 741160
| | | | - Manash Ghosh
- Department of Spectroscopy, Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | | |
Collapse
|
29
|
Jing Y, Wang R, Wang Q, Xiang Z, Li Z, Gu H, Wang X. An overview of surface-enhanced Raman scattering substrates by pulsed laser deposition technique: fundamentals and applications. ADVANCED COMPOSITES AND HYBRID MATERIALS 2021; 4:885-905. [PMID: 34485823 PMCID: PMC8409082 DOI: 10.1007/s42114-021-00330-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 05/03/2023]
Abstract
Metallic nanoparticles (NPs), as an efficient substrate for surface-enhanced Raman scattering (SERS), attract much interests because of their various shapes and sizes. The appropriate size and morphology of metallic NPs are critical to serve as the substrate for achieving an efficient SERS. Pulsed laser deposition (PLD) is one of the feasible physical methods employed to synthesize metallic NPs with controllable sizes and surface characteristics. It has been recognized to be a successful tool for the deposition of SERS substrates due to its good controllability and high reproducibility in the manufacture of metallic NPs. This review provides an overview about the recent advances for the preparation of SERS substrates by PLD technique. The influences of parameters on the sizes and morphologies of metallic NPs during the deposition processes in PLD technique including laser output parameters, gas medium, liquid medium, substrate temperature, and properties of 3D substrate are presented. The applications of SERS substrates produced by PLD in the environmental monitoring and biomedical analysis are summarized. This knowledge could serve as a guideline for the researchers in exploring further applications of PLD technique in the production of SERS substrate.
Collapse
Affiliation(s)
- Yuting Jing
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Ruijing Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Qunlong Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Zheyuan Xiang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Zhengxin Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Hongbo Gu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Xuefeng Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| |
Collapse
|
30
|
Abstract
An overview of noteworthy new methods of biomarker determination based on surface-enhanced Raman scattering (SERS) is presented. Biomarkers can be used to identify the occurrence and development of diseases, which furthers the understanding of biological processes in the body. Accurate detection of a disease-specific biomarker is helpful for the identification, early diagnosis and prevention of a disease and for monitoring during treatment. The search for and discovery of valuable biomarkers have become important research hotspots. Different diseases have different biomarkers, some of which are involved in metabolic processes. Therefore, the fingerprint characteristics and band intensities in SERS spectra have been used to identify metabolites and analyze markers. As a promising technique, SERS has been widely used for the quantitative and qualitative determination of different types of biomarkers for different diseases. SERS techniques provide new technologies for the diagnosis of disease-related markers and determining the basis for clinical treatment. Herein, several SERS-based methods with excellent sensitivity and selectivity for the determination of biomarkers for tumors, viruses, Alzheimer’s disease, cardiac muscle tissue injury, and cell activity are highlighted.
Collapse
|
31
|
Wang M, Wang X, Feng S, He D, Jiang P. Amorphous Ni-P nanoparticles anchoring on nickel foam as an efficient integrated anode for glucose sensing and oxygen evolution. NANOTECHNOLOGY 2020; 31:455503. [PMID: 32736370 DOI: 10.1088/1361-6528/abab30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ever-growing efforts have been devoted to developing cost-effective and earth-abundant electrocatalysts with high-performance in biosensing and energy energy conversion. In this work, amorphous nickel-phosphorus (Ni-P) nanoparticles anchoring on Ni foam (Ni-P/NF) were prepared through a facile electroless deposition approach. The morphology and composition were characterized by scanning electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy. As an integrated anode, Ni-P/NF exhibits high performance towards glucose electrochemical sensing, with a high sensitivity of 13.89 mA mM-1 cm-2, a low detection limit of 1 µM, a wide detection ranges from 2 µM to 0.54 mM, and a quick response (<10 s), as well as good selectivity and reliability for real sample analysis in human serum. In addition to electrocatalytic glucose oxidation, Ni-P/NF shows remarkable catalytic activity towards oxygen evolution reaction (OER) in alkaline solution and it only needs an overpotential of 360 mV to afford 50 mA cm-2. Moreover, Ni-P/NF shows excellent durability under alkaline OER condition. All these results demonstrate Ni-P/NF as highly efficient integrated anode in both biosensing and energy conversion.
Collapse
Affiliation(s)
- Mingzhu Wang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
Zhao Q, Zhang H, Fu H, Wei Y, Cai W. Raman reporter-assisted Au nanorod arrays SERS nanoprobe for ultrasensitive detection of mercuric ion (Hg 2+) with superior anti-interference performances. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122890. [PMID: 32497859 DOI: 10.1016/j.jhazmat.2020.122890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Ultra sensitive detection of mercuric ion (Hg2+) with superior anti-interference capability from natural water is of great significance for food safety, environmental protection, and human health. We herein develop Au ordered nanorod arrays (Au NRAs) as surface-enhanced Raman scattering (SERS) substrates to construct SERS-active and signal-reproducible sensing platforms modified with 4-mercaptophenylboronic acid (4-MBA) as multifunctional SERS reporters. The aqueous Hg2+ can be efficiently trapped by 4-MBA through electrophilic substitution reactions and precisely appraise its concentration based on the collective spectral changes of reporters including peak disappearance, emergence, and Raman shift. Based on this, the optical nanoprobe shows an ultrahigh detection sensitivity of 0.1 nM for Hg2+, which is two orders of magnitude lower than the U.S.A. environmental protection agency (EPA)-required maximum level of drinkable water. It also offers both an exceptional Hg2+ discrimination against other metal ions as well as organic ligands and perfect feasibilities of detecting solutions with ultra-wide pH ranges from 1.0-14.0 at varying temperatures. Moreover, the nanoprobe demonstrates an ability to identify different chemical forms of mercury and has a high repeatability, accuracy and reliability to meet the practical detection requirements in natural environments.
Collapse
Affiliation(s)
- Qian Zhao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Hongwen Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China.
| | - Hao Fu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Yi Wei
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
33
|
Liu SH, Wen BY, Lin JS, Yang ZW, Luo SY, Li JF. Rapid and Quantitative Detection of Aflatoxin B 1 in Grain by Portable Raman Spectrometer. APPLIED SPECTROSCOPY 2020; 74:1365-1373. [PMID: 32748642 DOI: 10.1177/0003702820951891] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many foodstuffs are extremely susceptible to contamination with aflatoxins, in which aflatoxin B1 is highly toxic and carcinogenic. Therefore, it is crucial to develop a rapid and effective analytical method for detecting and monitoring aflatoxin B1 in food. Herein, a surface-enhanced Raman spectroscopic (SERS) method combined with QuEChERS (quick, easy, cheap-effective, rugged, safe) sample pretreatment technique was used to detect aflatoxin B1. Sample preparation was optimized into a one-step extraction method using an Au nanoparticle-based solution (Au sol) as the SERS detection substrate. An affordable portable Raman spectrometer was then used for rapid, label-free, quantitative detection of aflatoxin B1 levels in foodstuffs. This method showed a good linear log relationship between the Raman signal intensity of aflatoxin B1 in the 1-1000 µg L-1 concentration range with a limit of detection of 0.85 µg kg-1 and a correlation coefficient of 0.9836. Rapid aflatoxin B1 detection times of ∼10 min for wheat, corn, and protein feed powder samples were also achieved. This method has high sensitivity, strong specificity, excellent stability, is simple to use, economical, and is suitable for on-site detection, with good prospects for practical application in the field of food safety.
Collapse
Affiliation(s)
- Sheng-Hong Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, 12466Xiamen University, Xiamen, China
| | - Bao-Ying Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, 12466Xiamen University, Xiamen, China
| | - Jia-Sheng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, 12466Xiamen University, Xiamen, China
| | - Zhen-Wei Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, 12466Xiamen University, Xiamen, China
| | - Shi-Yi Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, 12466Xiamen University, Xiamen, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, 12466Xiamen University, Xiamen, China
| |
Collapse
|
34
|
SERS-based immunoassay for monitoring cortisol-related disorders. Biosens Bioelectron 2020; 165:112418. [DOI: 10.1016/j.bios.2020.112418] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022]
|
35
|
“Signal-on” SERS sensing platform for highly sensitive and selective Pb2+ detection based on catalytic hairpin assembly. Anal Chim Acta 2020; 1127:106-113. [DOI: 10.1016/j.aca.2020.06.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 01/12/2023]
|
36
|
Ju J, Hsieh CM, Tian Y, Kang J, Chia R, Chang H, Bai Y, Xu C, Wang X, Liu Q. Surface Enhanced Raman Spectroscopy Based Biosensor with a Microneedle Array for Minimally Invasive In Vivo Glucose Measurements. ACS Sens 2020; 5:1777-1785. [PMID: 32426978 DOI: 10.1021/acssensors.0c00444] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To monitor blood glucose levels reliably, diabetic patients usually have to undergo frequent fingerstick tests to draw out fresh blood, which is painful and inconvenient with the potential risk of cross contamination especially when the lancet is reused or not properly sterilized. This work reports a novel surface-enhanced Raman spectroscopy (SERS) sensor for the in situ intradermal detection of glucose based on a low-cost poly(methyl methacrylate) microneedle (PMMA MN) array. After incorporating 1-decanethiol (1-DT) onto the silver-coated array surface, the sensor was calibrated in the range of 0-20 mM in skin phantoms then tested for the in vivo quantification of glucose in a mouse model of streptozocin (STZ)-induced type I diabetes. The results showed that the functional poly(methyl methacrylate) microneedle (F-PMMA MN) array was able to directly measure glucose in the interstitial fluid (ISF) in a few minutes and retain its structural integrity without swelling. The Clarke error grid analysis of measured data indicated that 93% of the data points lie in zones A and B. Moreover, the MN array exhibited minimal invasiveness to the skin as the skin recovered well without any noticeable adverse reaction in 10 min after measurements. With further improvement and proper validation, this polymeric MN array-based SERS biosensor has the potential to be used in painless glucose monitoring of diabetic patients in the future.
Collapse
Affiliation(s)
- Jian Ju
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United State
| | - Chao-Mao Hsieh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Yao Tian
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
- Apple South Asia Pte Ltd., 7 Ang Mo Kio Street 64, Singapore 569086, Singapore
| | - Jian Kang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Ruining Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Hao Chang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Yanru Bai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Xiaomeng Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology & Research, 61 Biopolis Drive, Proteos, Singapore 138673
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Singapore Eye Research Institute, The Academia, 20 College Road Discovery Tower Level 6, Singapore 169856
| | - Quan Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| |
Collapse
|
37
|
Jia S, Bandyopadhyay A, Kumar H, Zhang J, Wang W, Zhai T, Shenoy VB, Lou J. Biomolecular sensing by surface-enhanced Raman scattering of monolayer Janus transition metal dichalcogenide. NANOSCALE 2020; 12:10723-10729. [PMID: 32386399 DOI: 10.1039/d0nr00300j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we demonstrate that monolayer Janus MoSSe is an effective and universal platform for enhancing Raman signal and detecting biomolecules for the first time. The out-of-plane dipoles in monolayer Janus MoSSe redistribute charges of adsorbed biomolecules, polarize biomolecules and enhance their Raman vibrational intensity. The estimated Raman enhancement factor is higher than 105, which is comparable with the highest reported enhancement factor for 2D substrates. The C-C stretching Raman peak around 1360 cm-1 is used to indicate the glucose concentration, and its peak-integrated intensity increases linearly with the glucose concentration in the range of 1-10 mM. DFT calculations also confirm that charge redistribution in glucose induced by dipole interactions can enhance Raman intensity significantly when glucose molecules are adsorbed onto monolayer Janus MoSSe.
Collapse
Affiliation(s)
- Shuai Jia
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Park HJ, Cho S, Kim M, Jung YS. Carboxylic Acid-Functionalized, Graphitic Layer-Coated Three-Dimensional SERS Substrate for Label-Free Analysis of Alzheimer's Disease Biomarkers. NANO LETTERS 2020; 20:2576-2584. [PMID: 32207951 DOI: 10.1021/acs.nanolett.0c00048] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS)-based protein analysis is a promising alternative to existing early stage diagnoses. However, SERS research conducted thus far accompanies challenges such as nonuniformity of plasmonic nanostructures, irregular coating of analytes, and denaturation of proteins, which seriously limit the practicability of suggested approaches. Here, we introduce a carboxylic acid-functionalized and graphitic nanolayer-coated three-dimensional SERS substrate (CGSS) fabricated by sequential nanotransfer printing. The substrate consists of well-defined, uniform gold nanowire arrays for effective Raman signal enhancement and a strong protein-immobilization layer. With an enhancement factor (EF) of 5.5 × 105, on par with the highest ever reported values, the CGSS allows the detection of protein conformational changes and the determination of protein concentration via Raman measurements. Exploiting the CGSS, we successfully measured the SERS spectra of Alzheimer's biomarkers, tau protein and amyloid β, based on which secondary structural changes were analyzed quantitatively.
Collapse
Affiliation(s)
- Hyung Joon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Pico Foundry Inc., 193 Munji-ro, Yuseong-gu, Daejeon 34051, Republic of Korea
| | - Seunghee Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Minjoon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Pico Foundry Inc., 193 Munji-ro, Yuseong-gu, Daejeon 34051, Republic of Korea
| |
Collapse
|
39
|
DeJesus JF, Sherman LM, Yohannan DJ, Becca JC, Strausser SL, Karger LFP, Jensen L, Jenkins DM, Camden JP. A Benchtop Method for Appending Protic Functional Groups to N‐Heterocyclic Carbene Protected Gold Nanoparticles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Joseph F. DeJesus
- Department of ChemistryUniversity of Tennessee Knoxville TN 37996 USA
| | - Lindy M. Sherman
- Department of Chemistry and BiochemistryUniversity of Notre Dame South Bend IN 46556 USA
| | - Darius J. Yohannan
- Department of Chemistry and BiochemistryUniversity of Notre Dame South Bend IN 46556 USA
| | - Jeffrey C. Becca
- Department of ChemistryThe Pennsylvania State University University Park PA 16802 USA
| | | | - Leonhard F. P. Karger
- Department of Chemistry and BiochemistryUniversity of Notre Dame South Bend IN 46556 USA
| | - Lasse Jensen
- Department of ChemistryThe Pennsylvania State University University Park PA 16802 USA
| | - David M. Jenkins
- Department of ChemistryUniversity of Tennessee Knoxville TN 37996 USA
| | - Jon P. Camden
- Department of Chemistry and BiochemistryUniversity of Notre Dame South Bend IN 46556 USA
| |
Collapse
|
40
|
DeJesus JF, Sherman LM, Yohannan DJ, Becca JC, Strausser SL, Karger LFP, Jensen L, Jenkins DM, Camden JP. A Benchtop Method for Appending Protic Functional Groups to N-Heterocyclic Carbene Protected Gold Nanoparticles. Angew Chem Int Ed Engl 2020; 59:7585-7590. [PMID: 32092219 DOI: 10.1002/anie.202001440] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 12/29/2022]
Abstract
The remarkable resilience of N-heterocyclic carbene (NHC) gold bonds has quickly made NHCs the ligand of choice when functionalizing gold surfaces. Despite rapid progress using deposition from free or CO2 -protected NHCs, synthetic challenges hinder the functionalization of NHC surfaces with protic functional groups, such as alcohols and amines, particularly on larger nanoparticles. Here, we synthesize NHC-functionalized gold surfaces from gold(I) NHC complexes and aqueous nanoparticles without the need for additional reagents, enabling otherwise difficult functional groups to be appended to the carbene. The resilience of the NHC-Au bond allows for multi-step post-synthetic modification. Beginning with the nitro-NHC, we form an amine-NHC terminated surface, which further undergoes amide coupling with carboxylic acids. The simplicity of this approach, its compatibility with aqueous nanoparticle solutions, and its ability to yield protic functionality, greatly expands the potential of NHC-functionalized noble metal surfaces.
Collapse
Affiliation(s)
- Joseph F DeJesus
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Lindy M Sherman
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, 46556, USA
| | - Darius J Yohannan
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, 46556, USA
| | - Jeffrey C Becca
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Shelby L Strausser
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Leonhard F P Karger
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, 46556, USA
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, 46556, USA
| |
Collapse
|
41
|
Zhao S, Shi C, Hu H, Li Z, Xiao G, Yang Q, Sun P, Cheng L, Niu W, Bi J, Yue Z. ISFET and Dex-AgNPs based portable sensor for reusable and real-time determinations of concanavalin A and glucose on smartphone. Biosens Bioelectron 2020; 151:111962. [PMID: 31999575 DOI: 10.1016/j.bios.2019.111962] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
In this paper, a portable real-time sensing device was built for Concanavalin A (Con A) and glucose detection using a smartphone. The ion-sensitive field-effect transistor (ISFET) functioning at a low working point was selected as a small-size, low-power transducer, and dextran-capped silver nanoparticles (Dex-AgNPs) served as sensitive nanoprobes on the ISFET gate. Using the affinity between Con A and carbohydrates, Con A can be captured, and thus directly detected by the ISFET/Dex-AgNPs unit; then glucose can be determined indirectly by removing Con A from the ISFET/Dex-AgNPs/Con A unit via competition with dextran. The mechanism of this competition does less harm to the sensor, allows the reusability of the sensing device, and overcomes the Debye screening of the FET device in saline solutions. Powered by a button cell, the handheld device attains excellent Con A (0.16 ng mL-1) and glucose (10 nM) detection limit, and can practically be used for at least 20 days.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Cong Shi
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Hongyang Hu
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China; Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 10010, PR China
| | - Zhengping Li
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Gang Xiao
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Qiaochun Yang
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Peng Sun
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Linyang Cheng
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Wencheng Niu
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Jinshun Bi
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 10010, PR China.
| | - Zhao Yue
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China; Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin, 300350, PR China.
| |
Collapse
|
42
|
Bian Z, Liu A, Li Y, Fang G, Yao Q, Zhang G, Wu Z. Boronic acid sensors with double recognition sites: a review. Analyst 2020; 145:719-744. [PMID: 31829324 DOI: 10.1039/c9an00741e] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Boronic acids reversibly and covalently bind to Lewis bases and polyols, which facilitated the development of a large number of chemical sensors to recognize carbohydrates, catecholamines, ions, hydrogen peroxide, and so on. However, as the binding mechanism of boronic acids and analytes is not very clear, it is still a challenge to discover sensors with high affinity and selectivity. In this review, boronic acid sensors with two recognition sites, including diboronic acid sensors, and monoboronic acid sensors having another group or binding moiety, are summarized. Owing to double recognition sites working synergistically, the binding affinity and selectivity of sensors can be improved significantly. This review may help researchers to sort out the binding rules and develop ideal boronic acid-based sensors.
Collapse
Affiliation(s)
- Zhancun Bian
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Villa JEL, Afonso MAS, Dos Santos DP, Mercadal PA, Coronado EA, Poppi RJ. Colloidal gold clusters formation and chemometrics for direct SERS determination of bioanalytes in complex media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117380. [PMID: 31344581 DOI: 10.1016/j.saa.2019.117380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 05/27/2023]
Abstract
In this work, we report the sensitive and selective sensing of the purine bases adenine and guanine in urine matrix by using surface-enhanced Raman spectroscopy (SERS) and a colloidal SERS substrate. To identify suitable conditions for quantitative analysis, the pH dependence of spectra of adenine, guanine, urine simulant and their mixtures was studied on gold nanoparticles suspension. Interestingly, although the urine matrix promotes the analytes signal suppression and overlapping bands, it can also cause an improvement in repeatability of the SERS measurements. This effect was associated to the relatively controlled formation of small-sized gold clusters and it was investigated both experimentally and theoretically. Furthermore, a correlation constrained multivariate curve resolution-alternating least squares (MCR-ALS) method was developed to resolve overlapping SERS bands and to quantify physiologically relevant (micromolar) concentrations of the bioanalytes. The performance of the proposed MCR-ALS approach (assessed in terms of figures of merit) was similar to that obtained by using partial least squares regression, but with the additional advantage of retrieving valuable spectral information. Therefore, this method can be used for improving selectivity of colloidal clusters in qualitative and quantitative SERS analysis of complex media, avoiding the need for tedious nanoparticle-surface modification or preliminary chromatographic separation.
Collapse
Affiliation(s)
- Javier E L Villa
- Departamento de Química Analítica, Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, CEP 13081-970, São Paulo, Brazil; Departamento de Química Analítica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, CEP 14800-060, São Paulo, Brazil.
| | - Marco A S Afonso
- Departamento de Química Analítica, Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, CEP 13081-970, São Paulo, Brazil
| | - Diego P Dos Santos
- Departamento de Química Analítica, Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, CEP 13081-970, São Paulo, Brazil
| | - Pablo A Mercadal
- INFIQC-CONICET, Centro Láser de Ciencias Moleculares, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Eduardo A Coronado
- INFIQC-CONICET, Centro Láser de Ciencias Moleculares, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ronei J Poppi
- Departamento de Química Analítica, Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, CEP 13081-970, São Paulo, Brazil
| |
Collapse
|
44
|
Munir S, Hussain S, Park SY. Patterned Photonic Array Based on an Intertwined Polymer Network Functionalized with a Nonenzymatic Moiety for the Visual Detection of Glucose. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37434-37441. [PMID: 31544450 DOI: 10.1021/acsami.9b10316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A patterned photonic array chip based on an intertwined polymer network (IPN) is proposed for the visual detection of glucose. The IPN networks are composed of photonic and poly(acrylic acid) (PAA) networks. Aminophenylboronic acid, as a nonenzymatic glucose-responsive moiety that can covalently bond to glucose at alkaline pH, forming tetragonal complexes, is immobilized in the PAA network; in hydrogels, this bonding generates Donnan osmotic pressure, resulting in a volumetric increase of the photonic IPN and reflected color change. The photonic band gap wavelength linearly increases with the glucose concentration (in the 1-12 mM range), with a limit of detection of 0.35 mM. The dots of the photonic IPN array respond independently, with high sensitivity and stability, to glucose via color changes; different glucose levels, from hypo- to hyperglycemia, can be visually detected in this way. Serum samples spiked with different glucose concentrations were tested for practical evaluation of the chip. The proposed chip could be utilized as a new biosensor platform for cost-effective and easy visual detection in remote areas, without the need of advanced instruments or technology.
Collapse
Affiliation(s)
- Sundas Munir
- School of Applied Chemical Engineering, Polymeric Nano Materials Laboratory , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Saddam Hussain
- School of Applied Chemical Engineering, Polymeric Nano Materials Laboratory , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Soo-Young Park
- School of Applied Chemical Engineering, Polymeric Nano Materials Laboratory , Kyungpook National University , Daegu 41566 , Republic of Korea
| |
Collapse
|
45
|
Zhang Q, Luan J, Fu L, Wu S, Tang Y, Ji X, Wang H. The Three‐Dimensional Dendrite‐Free Zinc Anode on a Copper Mesh with a Zinc‐Oriented Polyacrylamide Electrolyte Additive. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907830] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qi Zhang
- Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Jingyi Luan
- Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Liang Fu
- Collaborative Innovation Center for Green Development in Wuling Mountain Areas Yangtze Normal University Fuling 408100 China
| | - Shengan Wu
- Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Yougen Tang
- Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Xiaobo Ji
- Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Haiyan Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| |
Collapse
|
46
|
The Three‐Dimensional Dendrite‐Free Zinc Anode on a Copper Mesh with a Zinc‐Oriented Polyacrylamide Electrolyte Additive. Angew Chem Int Ed Engl 2019; 58:15841-15847. [DOI: 10.1002/anie.201907830] [Citation(s) in RCA: 366] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 11/07/2022]
|
47
|
Wang B, Chou K, Queenan BN, Pennathur S, Bazan GC. Molecular Design of a New Diboronic Acid for the Electrohydrodynamic Monitoring of Glucose. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bing Wang
- Center for Polymers and Organic SolidsDepartment of Chemistry and BiochemistryUniversity of California Santa Barbara CA 93106 USA
| | - Kuang‐Hua Chou
- Department of Mechanical EngineeringUniversity of California Santa Barbara CA 93106 USA
| | - Bridget N. Queenan
- Department of Mechanical EngineeringUniversity of California Santa Barbara CA 93106 USA
- Quantitative BiologyHarvard University Cambridge MA 02138 USA
| | - Sumita Pennathur
- Department of Mechanical EngineeringUniversity of California Santa Barbara CA 93106 USA
| | - Guillermo C. Bazan
- Center for Polymers and Organic SolidsDepartment of Chemistry and BiochemistryUniversity of California Santa Barbara CA 93106 USA
| |
Collapse
|
48
|
Wang B, Chou KH, Queenan BN, Pennathur S, Bazan GC. Molecular Design of a New Diboronic Acid for the Electrohydrodynamic Monitoring of Glucose. Angew Chem Int Ed Engl 2019; 58:10612-10615. [PMID: 31168957 DOI: 10.1002/anie.201904595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/19/2019] [Indexed: 02/01/2023]
Abstract
A new dicationic diboronic acid structure, DBA2+, was designed to exhibit good affinity (Kd ≈1 mm) and selectivity toward glucose. Binding of DBA2+ to glucose changes the pKa of DBA2+ from 9.4 to 6.3, enabling opportunities for detection of glucose at physiological pH. Proton release from DBA2+ is firmly related to glucose concentrations within the physiologically relevant range (0-30 mm), as verified by conductimetric monitoring. Negligible interference from other sugars (for example, maltose, fructose, sucrose, lactose, and galactose) was observed. These results demonstrate the potential of DBA2+ for selective, quantitative glucose sensing. The nonenzymatic strategy based on electrohydrodynamic effects may enable the development of stable, accurate, and continuous glucose monitoring platforms.
Collapse
Affiliation(s)
- Bing Wang
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Kuang-Hua Chou
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Bridget N Queenan
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, 93106, USA.,Quantitative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Sumita Pennathur
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
49
|
Yuan A, Wu X, Li X, Hao C, Xu C, Kuang H. Au@gap@AuAg Nanorod Side-by-Side Assemblies for Ultrasensitive SERS Detection of Mercury and its Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901958. [PMID: 31106526 DOI: 10.1002/smll.201901958] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/02/2019] [Indexed: 05/21/2023]
Abstract
As one of the most toxic heavy metal elements, mercury ion (Hg2+ ) and its methylated product, methylmercury (MeHg) can pose a threat to human health and the environment. Herein, a novel Raman biosensor with cascade sensitivity is developed for Hg2+ detection through Au@gap@AuAg nanorod side-by-side assemblies. Due to the strong electromagnetic coupling from the assemblies and core-shell structure, the Raman sensor possesses high sensitivity with the limit of detection (LOD) of 0.001 ng mL-1 , which is about one order lower than traditional atomic fluorescence spectrometer (AFS) methods. Moreover, the fabricated biosensor is used to measure residual mercury levels in tissues and eggs of hens fed high-mercury diets, and the results show total mercury in collected egg yolks is 20 times higher than whites. Furthermore, the form of mercury in the eggs is also analyzed by high-performance liquid chromatography coupled with AFS, and, unexpectedly, the methylated product MeHg tends to only be found in egg whites. These interesting differences may indicate a new research direction for the toxicity of mercury in living organisms, and the developed ultrasensitive Surface Enhanced Raman Scattering (SERS) method could pave a broad way for the application of biosensors in Hg detection.
Collapse
Affiliation(s)
- Aimeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Changlong Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
50
|
Ma H, Tang X, Liu Y, Han XX, He C, Lu H, Zhao B. Surface-Enhanced Raman Scattering for Direct Protein Function Investigation: Controlled Immobilization and Orientation. Anal Chem 2019; 91:8767-8771. [DOI: 10.1021/acs.analchem.9b01956] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hao Ma
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Xiaofan Tang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Yawen Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Chengyan He
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P. R. China
| | - Hui Lu
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, P. R. China
| |
Collapse
|