1
|
Renaudin X, Campalans A. Modulation of OGG1 enzymatic activities by small molecules, promising tools and current challenges. DNA Repair (Amst) 2025; 149:103827. [PMID: 40120404 DOI: 10.1016/j.dnarep.2025.103827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
Oxidative DNA damage, resulting from endogenous cellular processes and external sources plays a significant role in mutagenesis, cancer progression, and the pathogenesis of neurological disorders. Base Excision Repair (BER) is involved in the repair of base modifications such as oxidations or alkylations as well as single strand breaks. The DNA glycosylase OGG1, initiates the BER pathway by the recognition and excision of 8oxoG, the most common oxidative DNA lesion, in both nuclear and mitochondrial DNA. Beyond DNA repair, OGG1 modulates transcription, particularly pro-inflammatory genes, linking oxidative DNA damage to broader biological processes like inflammation and aging. In cancer therapy, BER inhibition has emerged as a promising strategy to enhance treatment efficacy. Targeting OGG1 sensitizes cells to chemotherapies, radiotherapies, and PARP inhibitors, presenting opportunities to overcome therapy resistance. Additionally, OGG1 activators hold potential in mitigating oxidative damage associated with aging and neurological disorders. This review presents the development of several inhibitors and activators of OGG1 and how they have contributed to advance our knowledge in the fundamental functions of OGG1. We also discuss the new opportunities they provide for clinical applications in treating cancer, inflammation and neurological disorders. Finally, we also highlight the challenges in targeting OGG1, particularly regarding the off-target effects recently reported for some inhibitors and how we can overcome these limitations.
Collapse
Affiliation(s)
- Xavier Renaudin
- Université Paris-Saclay, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses F-92260, France; Université Paris Cité, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses F-92260, France
| | - Anna Campalans
- Université Paris-Saclay, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses F-92260, France; Université Paris Cité, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses F-92260, France.
| |
Collapse
|
2
|
Zhang X, Leng J, Lv L, Song D, Lv X. Advances in the mechanistic understanding, biological consequences, and measurement of DNA adducts induced by tobacco smoke and e-cigarette aerosol: A review. Int J Biol Macromol 2025; 306:141574. [PMID: 40023427 DOI: 10.1016/j.ijbiomac.2025.141574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Components in tobacco smoke and electronic cigarette (e-cigarette) aerosol form adducts with DNA, which can cause DNA mutations and affect repair of DNA damage. Numerous studies have shown a strong association between inhaled smoke and lung cancer. The presence of DNA adducts can indicate chemical components of smoke. Therefore, DNA adducts are significant biomarkers of tobacco exposure that might predict lung disease status and serve as precursors to lung cancer, since they trigger DNA mutations and impair biological processes such as DNA replication and transcription. To date, no systematic review has compared tobacco smoke and e-cigarette aerosol in terms of the fate of DNA adducts. We reviewed recent studies comparing the formation of DNA adducts on exposure to components from conventional cigarette smoke versus e-cigarette aerosol. The aims of the review were threefold: (1) to summarize components of tobacco smoke and e-cigarette aerosol in relation to mechanisms for the formation of DNA adducts; (2) to highlight the biological consequences of exposure to tobacco smoke and e-cigarette aerosol; and (3) to summarize advances in understanding of the primary detection methods of DNA adducts in tobacco exposure studies. The findings of this review should benefit environmental toxicology studies of tobacco exposure.
Collapse
Affiliation(s)
- Xinyun Zhang
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jiapeng Leng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Ling Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Danjun Song
- First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Xiaodong Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
3
|
Bai D, Cao Z, Attada N, Song J, Zhu C. Single-cell parallel analysis of DNA damage and transcriptome reveals selective genome vulnerability. Nat Methods 2025; 22:962-972. [PMID: 40128288 DOI: 10.1038/s41592-025-02632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/18/2025] [Indexed: 03/26/2025]
Abstract
Maintenance of genome integrity is paramount to molecular programs in multicellular organisms. Throughout the lifespan, various endogenous and environmental factors pose persistent threats to the genome, which can result in DNA damage. Understanding the functional consequences of DNA damage requires investigating their preferred genomic distributions and influences on gene regulatory programs. However, such analysis is hindered by both the complex cell-type compositions within organs and the high background levels due to the stochasticity of damage formation. To address these challenges, we developed Paired-Damage-seq for joint analysis of oxidative and single-stranded DNA damage with gene expression in single cells. We applied this approach to cultured HeLa cells and the mouse brain as a proof of concept. Our results indicated the associations between damage formation and epigenetic changes. The distribution of oxidative DNA damage hotspots exhibits cell-type-specific patterns; this selective genome vulnerability, in turn, can predict cell types and dysregulated molecular programs that contribute to disease risks.
Collapse
Affiliation(s)
| | - Zhenkun Cao
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Jinghui Song
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chenxu Zhu
- New York Genome Center, New York, NY, USA.
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Do QT, Tzeng SF, Wang CY, Wu CH, Kafeenah H, Chen SH. Genome-wide mapping and quantification of DNA damage induced by catechol estrogens using Click-Probe-Seq and LC-MS 2. Commun Biol 2025; 8:357. [PMID: 40069327 PMCID: PMC11897211 DOI: 10.1038/s42003-025-07657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/03/2025] [Indexed: 03/15/2025] Open
Abstract
Genotoxic estrogen metabolites generate various DNA lesions; however, their target genes and carcinogenic mechanisms remain unexplored. Here, genome-wide sequencing using click probe enrichment coupled with liquid chromatography-tandem mass spectrometry (Click-Probe-Seq/LC-MS2) is developed to identify damaged genes and characterize the released and stable adducts induced by 4-hydroxy-17β-estradiol (4OHE2) in MCF-7 cell chromatin. The data reveal that guanine nucleobases in the GC-rich transcription-relevant domain are the main target sites. Moreover, the damage abundance positively correlates with DNase hypersensitive sites, suggesting that 4OHE2 preferentially attacks accessible chromatin regions beyond the estrogen receptor (ER) binding sites. Cell-based studies indicate that accumulated 4OHE2 suppresses gene transcription, causes ineffective damage repair, and decreases cell viability, differing from the uncontrolled cell growth caused by extensive ER signaling. The Click-Probe-Seq/LC-MS2 approach reveals the first chromatin damage map induced by an endogenous metabolite, exposing a previously unexplored landscape in cancer research that is applicable to other genotoxic species.
Collapse
Affiliation(s)
- Quynh-Trang Do
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yen Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Hsing Wu
- Institute of Gerontology, National Cheng Kung University, Tainan, Taiwan
| | - Husam Kafeenah
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Zheng X, Kong W, Dai X, You C. YBX1 Modulates 8-Oxoguanine Recognition and Repair in DNA. ACS Chem Biol 2025; 20:529-536. [PMID: 39903676 DOI: 10.1021/acschembio.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
8-Oxoguanine (8-oxoG) is not only a biomarker of oxidative DNA damage but also an epigenetic-like regulator in mammalian cells. The identification and characterization of 8-oxoG-binding proteins would be crucial for further understanding the biological consequences of 8-oxoG. Here, we identified human Y-box-binding protein 1 (YBX1) as a novel binding protein for 8-oxoG modification in DNA by using a quantitative proteomic approach. Moreover, we found that the deficiency of YBX1 can substantially decrease the cellular sensitivity to oxidative stress and facilitate the repair of 8-oxoG embedded in DNA. These findings provided new insight into the biological significance of the functional interplay between YBX1 and 8-oxoG modification in DNA.
Collapse
Affiliation(s)
- Xiaofang Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, PR China
| | - Weiheng Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiaoxia Dai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Changjun You
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Zewail-Foote M, del Mundo IMA, Klattenhoff AW, Vasquez KM. Oxidative damage within alternative DNA structures results in aberrant mutagenic processing. Nucleic Acids Res 2025; 53:gkaf066. [PMID: 39950343 PMCID: PMC11826088 DOI: 10.1093/nar/gkaf066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/17/2025] Open
Abstract
Genetic instability is a hallmark of cancer, and mutation hotspots in human cancer genomes co-localize with alternative DNA structure-forming sequences (e.g. H-DNA), implicating them in cancer etiology. H-DNA has been shown to stimulate genetic instability in mammals. Here, we demonstrate a new paradigm of genetic instability, where a cancer-associated H-DNA-forming sequence accumulates more oxidative lesions than B-DNA under conditions of oxidative stress (OS), often found in tumor microenvironments. We show that OS results in destabilization of the H-DNA structure and attenuates the fold increase in H-DNA-induced mutations over control B-DNA in mammalian cells. Furthermore, the mutation spectra revealed that the damaged H-DNA-containing region was processed differently compared to H-DNA in the absence of oxidative damage in mammalian cells. The oxidatively modified H-DNA elicits differential recruitment of DNA repair proteins from both the base excision repair and nucleotide excision repair mechanisms. Altogether, these results suggest a new model of genetic instability whereby H-DNA-forming regions are hotspots for DNA damage in oxidative microenvironments, resulting in its altered mutagenic processing. Our findings provide valuable insights into the role of OS in DNA structure-induced genetic instability and may establish H-DNA-forming sequences as promising genomic biomarkers and potential therapeutic targets for genetic diseases.
Collapse
Affiliation(s)
- Maha Zewail-Foote
- Department of Chemistry and Biochemistry, Southwestern University, 1001 E University Ave, Georgetown, TX 78626, United States
| | - Imee M A del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, United States
| | - Alex W Klattenhoff
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, United States
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, United States
| |
Collapse
|
7
|
Obermann T, Sakshaug T, Kanagaraj VV, Abentung A, Sousa MMLD, Hagen L, Sarno A, Bjørås M, Scheffler K. Genomic 8-oxoguanine modulates gene transcription independent of its repair by DNA glycosylases OGG1 and MUTYH. Redox Biol 2025; 79:103461. [PMID: 39662289 PMCID: PMC11697278 DOI: 10.1016/j.redox.2024.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024] Open
Abstract
8-oxo-7,8-dihydroguanine (OG) is one of the most abundant oxidative lesions in the genome and is associated with genome instability. Its mutagenic potential is counteracted by a concerted action of 8-oxoguanine DNA glycosylase (OGG1) and mutY homolog DNA glycosylase (MUTYH). It has been suggested that OG and its repair has epigenetic-like properties and mediates transcription, but genome-wide evidence of this interdependence is lacking. Here, we applied an improved OG-sequencing approach reducing artificial background oxidation and RNA-sequencing to correlate genome-wide distribution of OG with gene transcription in OGG1 and/or MUTYH-deficient cells. Our data identified moderate enrichment of OG in the genome that is mainly dependent on the genomic context and not affected by DNA glycosylase-initiated repair. Interestingly, no association was found between genomic OG deposition and gene expression changes upon loss of OGG1 and MUTYH. Regardless of DNA glycosylase activity, OG in promoter regions correlated with expression of genes related to metabolic processes and damage response pathways indicating that OG functions as a cellular stress sensor to regulate transcription. Our work provides novel insights into the mechanism underlying transcriptional regulation by OG and DNA glycosylases OGG1 and MUTYH and suggests that oxidative DNA damage accumulation and its repair utilize different pathways.
Collapse
Affiliation(s)
- Tobias Obermann
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Teri Sakshaug
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Vishnu Vignesh Kanagaraj
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Andreas Abentung
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, 7006, Trondheim, Norway
| | - Mirta Mittelstedt Leal de Sousa
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Proteomics and Modomics Experimental Core (PROMEC), NTNU and the Central Norway Regional Health Authority, N-7491, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Proteomics and Modomics Experimental Core (PROMEC), NTNU and the Central Norway Regional Health Authority, N-7491, Trondheim, Norway
| | - Antonio Sarno
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway; Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway
| | - Katja Scheffler
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, 7006, Trondheim, Norway.
| |
Collapse
|
8
|
Detinis Zur T, Margalit S, Jeffet J, Grunwald A, Fishman S, Tulpová Z, Michaeli Y, Deek J, Ebenstein Y. Single-molecule toxicogenomics: Optical genome mapping of DNA-damage in nanochannel arrays. DNA Repair (Amst) 2025; 146:103808. [PMID: 39813882 DOI: 10.1016/j.dnarep.2025.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Quantitative genomic mapping of DNA damage may provide insights into the underlying mechanisms of damage and repair. Sequencing based approaches are bound to the limitations of PCR amplification bias and read length which hamper both the accurate quantitation of damage events and the ability to map them to structurally complex genomic regions. Optical Genome mapping in arrays of parallel nanochannels allows physical extension and genetic profiling of millions of long genomic DNA fragments, and has matured to clinical utility for characterization of complex structural aberrations in cancer genomes. Here we present a new mapping modality, Repair-Assisted Damage Detection - Optical Genome Mapping (RADD-OGM), a method for single-molecule level mapping of DNA damage on a genome-wide scale. Leveraging ultra-long reads to assemble the complex structure of a sarcoma cell-line genome, we mapped the genomic distribution of oxidative DNA damage, identifying regions more susceptible to DNA oxidation. We also investigated DNA repair by allowing cells to repair chemically induced DNA damage, pinpointing locations of concentrated repair activity, and highlighting variations in repair efficiency. Our results showcase the potential of the method for toxicogenomic studies, mapping the effect of DNA damaging agents such as drugs and radiation, as well as following specific DNA repair pathways by selective induction of DNA damage. The facile integration with optical genome mapping enables performing such analyses even in highly rearranged genomes such as those common in many cancers, a challenging task for sequencing-based approaches.
Collapse
Affiliation(s)
- Tahir Detinis Zur
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sapir Margalit
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jonathan Jeffet
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Assaf Grunwald
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sivan Fishman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zuzana Tulpová
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Yael Michaeli
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jasline Deek
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Ebenstein
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Biomedical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
9
|
Dong JH, Shen XY, Chen YN, Liu Y, Xue CY, Zhang RH, Liu YH, Zhou YL, Zhang XX. Glycosylase Pretreatment with Chemical Labeling-Assisted HPLC-MS/MS: An Ultrasensitive and Reliable Strategy for Quantification of 8-Oxo-7,8-dihydro-2'-deoxyguanosine in Genomic DNA. Anal Chem 2025; 97:365-372. [PMID: 39707940 DOI: 10.1021/acs.analchem.4c04339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanosine (dOG), the dominant oxidative product of 2'-deoxyguanosine (dG) under high levels of reactive oxygen species, usually serves as a biomarker for oxidative stress and a risk assessment factor for various diseases. Due to the extremely low abundance of dOG and the susceptibility of dOG detection to the interference of spurious oxidation, research on related biological processes is limited by insufficient sensitivity and specificity. In this work, an ultrasensitive and reliable approach for genome-wide dOG quantification was developed through chemical labeling-assisted high-performance liquid chromatography-tandem mass spectrometry with the introduction of glycosylase pretreatment. Upon derivatization by a novel labeling reagent rhodamine B ethylenediamine, the detection sensitivity of dOG was enhanced by 100-fold, and the detection limit was as low as 25 amol, which was superior to those of reported mass spectrometry-based methods. Potassium ferricyanide, as a single-electron oxidant, was shown to possess strong selectivity for dOG versus dG, improving the labeling specificity and reducing the interference from dG. The spurious oxidation during sample pretreatment was systematically explored and minimized, and a control assay of glycosylase pretreatment was proposed to further improve the quantitative accuracy of dOG. Precise quantification of endogenous dOG in different cells was achieved with less than 500 ng of genomic DNA. This method was successfully applied to the assessment of the overall level of oxidative damage under the treatment of glycosylase inhibitors, potentially contributing to the exploration of the complex role of dOG in physiological status and disease phenotype.
Collapse
Affiliation(s)
- Jia-Hui Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Xu-Yang Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu-Nan Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Global Manufacturing Business Unit, WuXi Biologics, Wuxi 214091, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chen-Yu Xue
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100191, China
| | - Run-Hong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ya-Hong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Delint-Ramirez I, Madabhushi R. DNA damage and its links to neuronal aging and degeneration. Neuron 2025; 113:7-28. [PMID: 39788088 PMCID: PMC11832075 DOI: 10.1016/j.neuron.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/07/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
DNA damage is a major risk factor for the decline of neuronal functions with age and in neurodegenerative diseases. While how DNA damage causes neurodegeneration is still being investigated, innovations over the past decade have provided significant insights into this issue. Breakthroughs in next-generation sequencing methods have begun to reveal the characteristics of neuronal DNA damage hotspots and the causes of DNA damage. Chromosome conformation capture-based approaches have shown that, while DNA damage and the ensuing cellular response alter chromatin topology, chromatin organization at damage sites also affects DNA repair outcomes in neurons. Additionally, neuronal activity results in the formation of programmed DNA breaks, which could burden DNA repair mechanisms and promote neuronal dysfunction. Finally, emerging evidence implicates DNA damage-induced inflammation as an important contributor to the age-related decline in neuronal functions. Together, these discoveries have ushered in a new understanding of the significance of genome maintenance for neuronal function.
Collapse
Affiliation(s)
- Ilse Delint-Ramirez
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ram Madabhushi
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Boysen G, Alexandrov L, Rahbari R, Nookaew I, Ussery D, Chao MR, Hu CW, Cooke M. Investigating the origins of the mutational signatures in cancer. Nucleic Acids Res 2025; 53:gkae1303. [PMID: 39778866 PMCID: PMC11707540 DOI: 10.1093/nar/gkae1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025] Open
Abstract
Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.e. the DNA adductome) and their diverse positions within the genome. Thus far, this limitation has prevented researchers from precisely linking exposures to DNA adducts and DNA adducts to subsequent mutational outcomes. Indeed, many common mutations observed in human cancers appear to originate from error-prone endogenous processes. Consequently, it remains unclear whether these mutations result from exposure-induced DNA adducts, or arise indirectly from endogenous processes or are a combination of both. In this review, we summarize approaches that aim to bridge our understanding of the mechanism by which exposure leads to DNA damage and then to mutation and highlight some of the remaining challenges and shortcomings to fully supporting this paradigm. We emphasize the need to integrate cellular DNA adductomics, long read-based mapping, single-molecule duplex sequencing of native DNA molecules and advanced computational analysis. This proposed holistic approach aims to unveil the causal connections between key DNA modifications and the mutational landscape, whether they originate from external exposures, internal processes or a combination of both, thereby addressing key questions in cancer biology.
Collapse
Affiliation(s)
- Gunnar Boysen
- Department of Environmental Health Science, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
- The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Raheleh Rahbari
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Intawat Nookaew
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Dave Ussery
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 4202 E. Fowler Avenue, Tampa, FL 33612, USA
| |
Collapse
|
12
|
Savitskaya VY, Novoselov KA, Dolinnaya NG, Monakhova MV, Snyga VG, Diatlova EA, Peskovatskova ES, Golyshev VM, Kitaeva MI, Eroshenko DA, Zvereva MI, Zharkov DO, Kubareva EA. Position-Dependent Effects of AP Sites Within an hTERT Promoter G-Quadruplex Scaffold on Quadruplex Stability and Repair Activity of the APE1 Enzyme. Int J Mol Sci 2025; 26:337. [PMID: 39796192 PMCID: PMC11720163 DOI: 10.3390/ijms26010337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1). Although AP sites' repair in regular B-DNA has been studied extensively, their processing in G-quadruplexes (G4s) has received much less attention. Here, we used the hTERT promoter region that is capable of forming three stacked parallel G4s to understand how AP sites can influence higher-order quadruplex folding and stability and how a G4 affects the efficiency of human APE1-mediated AP site processing. We designed a series of synthetic single- and double-stranded DNA constructs of varying lengths containing a stable AP site analog in both G- and C-rich strands at positions corresponding to somatic driver mutations. Using circular dichroism, we studied the effect of the AP site on hTERT G4 structure and stability. Bio-layer interferometry and gel-based approaches were employed to characterize APE1 binding to the designed DNA substrates and AP site processing. It was shown that (i) an AP site leads to G4 destabilization, which depends on the lesion location in the G4 scaffold; (ii) APE1 binds tightly to hTERT G4 structure but exhibits greatly reduced cleavage activity at AP sites embedded in the quadruplex; and (iii) a clear correlation was revealed between AP site-induced hTERT G4 destabilization and APE1 activity. We can hypothesize that reduced repair of AP sites in the hTERT G4 is one of the reasons for the high mutation rate in this promoter region.
Collapse
Affiliation(s)
- Viktoriia Yu. Savitskaya
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Kirill A. Novoselov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Mayya V. Monakhova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Viktoriia G. Snyga
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Evgeniia A. Diatlova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
| | - Elizaveta S. Peskovatskova
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Victor M. Golyshev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
| | - Mariia I. Kitaeva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Daria A. Eroshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maria I. Zvereva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Dmitry O. Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena A. Kubareva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
13
|
Fleming AM, Burrows CJ. Why the ROS matters: One-electron oxidants focus DNA damage and repair on G-quadruplexes for gene regulation. DNA Repair (Amst) 2025; 145:103789. [PMID: 39580976 PMCID: PMC11757056 DOI: 10.1016/j.dnarep.2024.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Hydrogen peroxide is a precursor to reactive oxygen species (ROS) in cells because of its high reactivity with iron(II) carbonate complexes formed in the labile iron pool due to a high concentration of intracellular bicarbonate (25-100 mM). This chemistry leads to the formation of carbonate radical anion rather than hydroxyl radical, and unlike the latter ROS, CO3•- is a milder one-electron oxidant with high specificity for guanine oxidation in DNA and RNA. In addition to metabolism, another major source of DNA oxidation is inflammation which generates peroxynitrite, another precursor to CO3•- via reaction with dissolved CO2. The identity of the ROS is important because not all radicals react with DNA in the same way. Whereas hydroxyl radical forms adducts at all four bases and reacts with multiple positions on ribose leading to base loss and strand breaks, carbonate radical anion is focused on guanosine oxidation to yield 8-oxo-7,8-dihydroguanosine in nucleic acids and the nucleotide pool, a modification that can function epigenetically in the context of a G-quadruplex. DNA sequences of multiple adjacent guanines, as found in G-quadruplex-forming sequences of gene promoters, are particularly susceptible to oxidative damage, and the focusing of CO3•- chemistry on these sites can lead to a transcriptional response during base excision repair. In this pathway, AP-endonuclease 1 plays a key role in accelerating G-quadruplex folding as well as recruiting activating transcription factors to impact gene expression.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, United States.
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, United States.
| |
Collapse
|
14
|
Wang J, Li C, Han J, Xue Y, Zheng X, Wang R, Radak Z, Nakabeppu Y, Boldogh I, Ba X. Reassessing the roles of oxidative DNA base lesion 8-oxoGua and repair enzyme OGG1 in tumorigenesis. J Biomed Sci 2025; 32:1. [PMID: 39741341 DOI: 10.1186/s12929-024-01093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/08/2024] [Indexed: 01/02/2025] Open
Abstract
ROS cause multiple forms of DNA damage, and among them, 8-oxoguanine (8-oxoGua), an oxidized product of guanine, is one of the most abundant. If left unrepaired, 8-oxoGua may pair with A instead of C, leading to a mutation of G: C to T: A during DNA replication. 8-Oxoguanine DNA glycosylase 1 (OGG1) is a tailored repair enzyme that recognizes 8-oxoGua in DNA duplex and initiates the base excision repair (BER) pathway to remove the lesion and ensure the fidelity of the genome. The accumulation of genomic 8-oxoGua and the dysfunction of OGG1 is readily linked to mutagenesis, and subsequently aging-related diseases and tumorigenesis; however, the direct experimental evidence has long been lacking. Recently, a series of studies have shown that guanine oxidation in the genome has a conservative bias, with the tendency to occur in the regulatory regions, thus, 8-oxoGua is not only a lesion to be repaired, but also an epigenetic modification. In this regard, OGG1 is a specific reader of this base modification. Substrate recognition and/or excision by OGG1 can cause DNA conformation changes, affect chromatin modifications, thereby modulating the transcription of genes involved in a variety of cellular processes, including inflammation, cell proliferation, differentiation, and apoptosis. Thus, in addition to the potential mutagenicity, 8-oxoGua may contribute to tumor development and progression through the altered gene expression stemming from its epigenetic effects.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Chunshuang Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Jinling Han
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yaoyao Xue
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Xu Zheng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Ruoxi Wang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, 1123, Hungary
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
15
|
Pfeifer GP, Jin SG. Methods and applications of genome-wide profiling of DNA damage and rare mutations. Nat Rev Genet 2024; 25:846-863. [PMID: 38918545 PMCID: PMC11563917 DOI: 10.1038/s41576-024-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
DNA damage is a threat to genome integrity and can be a cause of many human diseases, owing to either changes in the chemical structure of DNA or conversion of the damage into a mutation, that is, a permanent change in DNA sequence. Determining the exact positions of DNA damage and ensuing mutations in the genome are important for identifying mechanisms of disease aetiology when characteristic mutations are prevalent and probably causative in a particular disease. However, this approach is challenging particularly when levels of DNA damage are low, for example, as a result of chronic exposure to environmental agents or certain endogenous processes, such as the generation of reactive oxygen species. Over the past few years, a comprehensive toolbox of genome-wide methods has been developed for the detection of DNA damage and rare mutations at single-nucleotide resolution in mammalian cells. Here, we review and compare these methods, describe their current applications and discuss future research questions that can now be addressed.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
16
|
Wang H, Tie W, Zhu W, Wang S, Zhang R, Duan J, Ye B, Zhu A, Li L. Recognition and Sequencing of Mutagenic DNA Adduct at Single-Base Resolution Through Unnatural Base Pair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404622. [PMID: 39225557 PMCID: PMC11515917 DOI: 10.1002/advs.202404622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
DNA lesions are linked to cancer, aging, and various diseases. The recognition and sequencing of special DNA lesions are of great interest but highly challenging. In this paper, an unnatural-base-pair-promoting method for sequencing highly mutagenic ethenodeoxycytidine (εC) DNA lesions that occurred frequently is developed. First, a promising unnatural base pair of dεC-dNaM to recognize εC lesions is identified, and then a conversion PCR is developed to site-precise transfer dεC-dNaM to dTPT3-dNaM for convenient Sanger sequencing. The low sequence dependence of this method and its capacity for the enrichment of dεC in the abundance of as low as 1.6 × 10-6 nucleotides is also validated. Importantly, the current method can be smoothly applied for recognition, amplification, enrichment, and sequencing of the real biological samples in which εC lesions are generated in vitro or in vivo, thus offering the first sequencing methodology of εC lesions at single-base resolution. Owing to its simple operations and no destruction of inherent structures of DNA, the unnatural-base-pair strategy may provide a new platform to produce general tools for the sequencing of DNA lesions that are hardly sequenced by traditional strategies.
Collapse
Affiliation(s)
- Honglei Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
| | - Wenchao Tie
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
| | - Wuyuan Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
| | - Shuyuan Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
| | - Ruzhen Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
| | - Jianlin Duan
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
| | - Bingyu Ye
- State Key Laboratory of Antiviral Drug and Pingyuan LabHenan Normal UniversityXinxiangHenan453007China
| | - Anlian Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
| | - Lingjun Li
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
- State Key Laboratory of Antiviral Drug and Pingyuan LabHenan Normal UniversityXinxiangHenan453007China
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationHenan Normal UniversityXinxiangHenan453007China
| |
Collapse
|
17
|
Saczuk K, Dudek M, Matczyszyn K, Deiana M. Advancements in molecular disassembly of optical probes: a paradigm shift in sensing, bioimaging, and therapeutics. NANOSCALE HORIZONS 2024; 9:1390-1416. [PMID: 38963132 DOI: 10.1039/d4nh00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The majority of self-assembled fluorescent dyes suffer from aggregation-caused quenching (ACQ), which detrimentally affects their diagnostic and therapeutic effectiveness. While aggregation-induced emission (AIE) active dyes offer a promising solution to overcome this limitation, they may face significant challenges as the intracellular environment often prevents aggregation, leading to disassembly and posing challenges for AIE fluorogens. Recent progress in signal amplification through the disassembly of ACQ dyes has opened new avenues for creating ultrasensitive optical sensors and enhancing phototherapeutic outcomes. These advances are well-aligned with cutting-edge technologies such as single-molecule microscopy and targeted molecular therapies. This work explores the concept of disaggregation-induced emission (DIE), showcasing the revolutionary capabilities of DIE-based dyes from their design to their application in sensing, bioimaging, disease monitoring, and treatment in both cellular and animal models. Our objective is to provide an in-depth comparison of aggregation versus disaggregation mechanisms, aiming to stimulate further advancements in the design and utilization of ACQ fluorescent dyes through DIE technology. This initiative is poised to catalyze scientific progress across a broad spectrum of disciplines.
Collapse
Affiliation(s)
- Karolina Saczuk
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| | - Marta Dudek
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Marco Deiana
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
18
|
Kong W, Zhao Y, Dai X, You C. Methodologies for the detection and sequencing of the epigenetic-like oxidative DNA modification, 8-oxo-7,8-dihydroguanine. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108516. [PMID: 39486616 DOI: 10.1016/j.mrrev.2024.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
The human genome is constantly threatened by endogenous and environmental DNA damaging agents that can induce a variety of chemically modified DNA lesions including 8-oxo-7,8-dihydroguanine (OG). Increasing evidence has indicated that OG is not only a biomarker for oxidative DNA damage but also a novel epigenetic-like modification involved in regulation of gene expression in mammalian cells. Here we summarize the recent progress in OG research focusing on the following points: (i) the mechanism of OG production in organisms and its biological consequences in cells, (ii) the accurate identification of OG in low-abundance genomes and complex biological backgrounds, (iii) the development of OG sequencing methods. These studies will be helpful for further understanding of the molecular mechanisms of OG-induced mutagenesis and its potential roles in human development and diseases such as cancer.
Collapse
Affiliation(s)
- Weiheng Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yingqi Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaoxia Dai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Changjun You
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
19
|
Knutson SD, Buksh BF, Huth SW, Morgan DC, MacMillan DWC. Current advances in photocatalytic proximity labeling. Cell Chem Biol 2024; 31:1145-1161. [PMID: 38663396 PMCID: PMC11193652 DOI: 10.1016/j.chembiol.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 03/29/2024] [Indexed: 06/23/2024]
Abstract
Understanding the intricate network of biomolecular interactions that govern cellular processes is a fundamental pursuit in biology. Over the past decade, photocatalytic proximity labeling has emerged as one of the most powerful and versatile techniques for studying these interactions as well as uncovering subcellular trafficking patterns, drug mechanisms of action, and basic cellular physiology. In this article, we review the basic principles, methodologies, and applications of photocatalytic proximity labeling as well as examine its modern development into currently available platforms. We also discuss recent key studies that have successfully leveraged these technologies and importantly highlight current challenges faced by the field. Together, this review seeks to underscore the potential of photocatalysis in proximity labeling for enhancing our understanding of cell biology while also providing perspective on technological advances needed for future discovery.
Collapse
Affiliation(s)
- Steve D Knutson
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Sean W Huth
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Danielle C Morgan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
20
|
Chen S, Lai W, Wang H. Recent advances in high-performance liquid chromatography tandem mass spectrometry techniques for analysis of DNA damage and epigenetic modifications. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503755. [PMID: 38821674 DOI: 10.1016/j.mrgentox.2024.503755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 06/02/2024]
Abstract
Environmental exposure would cause DNA damage and epigenetic modification changes, potentially resulting in physiological dysfunction, thereby triggering diseases and even cancer. DNA damage and epigenetic modifications are thus promising biomarkers for environmental exposures and disease states. Benefiting from its high sensitivity and accuracy, high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) is considered the "gold standard technique" for investigating epigenetic DNA modifications. This review summarizes the recent advancements of UHPLC-MS/MS-based technologies for DNA damage and epigenetic modifications analysis, mainly focusing on the innovative methods developed for UHPLC-MS/MS-related pretreatment technologies containing efficient genomic DNA digestion and effective removal of the inorganic salt matrix, and the new strategies for improving detection sensitivity of liquid chromatography-mass spectrometry. Moreover, we also summarized the novel hyphenated techniques of the advanced UHPLC-MS/MS coupled with other separation and analysis methods for the measurement of DNA damage and epigenetic modification changes in special regions and fragments of chromosomes.
Collapse
Affiliation(s)
- Shaokun Chen
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiyi Lai
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
21
|
Fleming AM, Guerra Castañaza Jenkins BL, Buck BA, Burrows CJ. DNA Damage Accelerates G-Quadruplex Folding in a Duplex-G-Quadruplex-Duplex Context. J Am Chem Soc 2024; 146. [PMID: 38602473 PMCID: PMC11046481 DOI: 10.1021/jacs.4c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Molecular details for the impact of DNA damage on folding of potential G-quadruplex sequences (PQSs) to noncanonical DNA structures involved in gene regulation are poorly understood. Here, the effects of DNA base damage and strand breaks on PQS folding kinetics were studied in the context of the VEGF promoter sequence embedded between two DNA duplex anchors, termed a duplex-G-quadruplex-duplex (DGD) motif. This DGD scaffold imposes constraints on the PQS folding process that more closely mimic those found in genomic DNA. Folding kinetics were monitored by circular dichroism (CD) to find folding half-lives ranging from 2 s to 12 min depending on the DNA damage type and sequence position. The presence of Mg2+ ions and G-quadruplex (G4)-binding protein APE1 facilitated the folding reactions. A strand break placing all four G runs required for G4 formation on one side of the break accelerated the folding rate by >150-fold compared to the undamaged sequence. Combined 1D 1H NMR and CD analyses confirmed that isothermal folding of the VEGF-DGD constructs yielded spectral signatures that suggest the formation of G4 motifs and demonstrated a folding dependency on the nature and location of DNA damage. Importantly, the PQS folding half-lives measured are relevant to replication, transcription, and DNA repair time frames.
Collapse
Affiliation(s)
- Aaron M. Fleming
- Department of Chemistry, University
of Utah, 315 South 1400 East, Salt
Lake City, Utah 84112-0850, United States
| | | | - Bethany A. Buck
- Department of Chemistry, University
of Utah, 315 South 1400 East, Salt
Lake City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University
of Utah, 315 South 1400 East, Salt
Lake City, Utah 84112-0850, United States
| |
Collapse
|
22
|
Zhao NN, Wang Q, Yang DM, Li DL, Han Y, Zhao S, Zou X, Zhang CY. Elongation and Ligation-Mediated Differential Coding for Label-Free and Locus-Specific Analysis of 8-Oxo-7,8-dihydroguanine in DNA. Anal Chem 2024; 96:5323-5330. [PMID: 38501982 DOI: 10.1021/acs.analchem.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Oxidative DNA damage is closely associated with the occurrence of numerous human diseases and cancers. 8-Oxo-7,8-dihydroguanine (8-oxoG) is the most prevalent form of DNA damage, and it has become not only an oxidative stress biomarker but also a new epigenetic-like biomarker. However, few approaches are available for the locus-specific detection of 8-oxoG because of the low abundance of 8-oxoG damage in DNA and the limited sensitivity of existing assays. Herein, we demonstrate the elongation and ligation-mediated differential coding for label-free and locus-specific analysis of 8-oxoG in DNA. This assay is very simple without the involvement of any specific labeled probes, complicated steps, and large sample consumption. The utilization of Bsu DNA polymerase can specifically initiate a single-base extension reaction to incorporate dATP into the opposite position of 8-oxoG, endowing this assay with excellent selectivity. The introduction of cascade amplification reaction significantly enhances the sensitivity. The proposed method can monitor 8-oxoG with a limit of detection of 8.21 × 10-19 M (0.82 aM), and it can identify as low as 0.001% 8-oxoG damage from a complex mixture with excessive undamaged DNAs. This method can be further applied to measure 8-oxoG levels in the genomic DNA of human cells under diverse oxidative stress, holding prospect potential in the dynamic monitoring of critical 8-oxoG sites, early clinical diagnosis, and gene damage-related biomedical research.
Collapse
Affiliation(s)
- Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Dong-Ming Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
23
|
Drake DM, Afsharian K, Or B, Shapiro AM, Lai ML, Miller L, Wells PG. BRCA1 protein dose-dependent risk for embryonic oxidative DNA damage, embryopathies and neurodevelopmental disorders with and without ethanol exposure. Redox Biol 2024; 70:103070. [PMID: 38359745 PMCID: PMC10877410 DOI: 10.1016/j.redox.2024.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Although widely known as a tumor suppressor, the breast cancer 1 susceptibility protein (BRCA1) is also important in development, where it regulates fetal DNA repair pathways that protect against DNA damage caused by physiological and drug-enhanced levels of reactive oxygen species (ROS). We previously showed that conditional heterozygous (+/-) knockout (cKO) mouse embryos with a minor 28% BRCA1 deficiency developed normally in culture, but when exposed to the ROS-initiating drug, alcohol (ethanol, EtOH), exhibited embryopathies not evident in wild-type (+/+) littermates. Herein, we characterized a directBrca1 +/- knockout (KO) model with a 2-fold greater (58%) reduction in BRCA1 protein vs. the cKO model. We also characterized and compared learning & memory deficits in both the cKO and KO models. Even saline-exposed Brca1 +/- vs. +/+ KO progeny exhibited enhanced oxidative DNA damage and embryopathies in embryo culture and learning & memory deficits in females in vivo, which were not observed in the cKO model, revealing the potential pathogenicity of physiological ROS levels. The embryopathic EtOH concentration for cultured direct KO embryos was half that for cKO embryos, and EtOH affected Brca1 +/+ embryos only in the direct KO model. The spectrum and severity of EtOH embryopathies in culture were greater in both Brca1 +/- vs. +/+ embryos, and direct KO vs. cKO +/- embryos. Motor coordination deficits were evident in both male and female Brca1 +/- KO progeny exposed in utero to EtOH. The results in our direct KO model with a greater BRCA1 deficiency vs. cKO mice provide the first evidence for BRCA1 protein dose-dependent susceptibility to developmental disorders caused by physiological and drug-enhanced oxidative stress.
Collapse
Affiliation(s)
- Danielle M Drake
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Kian Afsharian
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Or
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aaron M Shapiro
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Michelle L Lai
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lutfiya Miller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Wells
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Abugable AA, Antar S, El-Khamisy SF. Chromosomal single-strand break repair and neurological disease: Implications on transcription and emerging genomic tools. DNA Repair (Amst) 2024; 135:103629. [PMID: 38266593 DOI: 10.1016/j.dnarep.2024.103629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Cells are constantly exposed to various sources of DNA damage that pose a threat to their genomic integrity. One of the most common types of DNA breaks are single-strand breaks (SSBs). Mutations in the repair proteins that are important for repairing SSBs have been reported in several neurological disorders. While several tools have been utilised to investigate SSBs in cells, it was only through recent advances in genomics that we are now beginning to understand the architecture of the non-random distribution of SSBs and their impact on key cellular processes such as transcription and epigenetic remodelling. Here, we discuss our current understanding of the genome-wide distribution of SSBs, their link to neurological disorders and summarise recent technologies to investigate SSBs at the genomic level.
Collapse
Affiliation(s)
- Arwa A Abugable
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK
| | - Sarah Antar
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Sherif F El-Khamisy
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK; Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
25
|
Xu Q, del Mundo IMA, Zewail-Foote M, Luke BT, Vasquez KM, Kowalski J. MoCoLo: a testing framework for motif co-localization. Brief Bioinform 2024; 25:bbae019. [PMID: 38521050 PMCID: PMC10960634 DOI: 10.1093/bib/bbae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/25/2024] Open
Abstract
Sequence-level data offers insights into biological processes through the interaction of two or more genomic features from the same or different molecular data types. Within motifs, this interaction is often explored via the co-occurrence of feature genomic tracks using fixed-segments or analytical tests that respectively require window size determination and risk of false positives from over-simplified models. Moreover, methods for robustly examining the co-localization of genomic features, and thereby understanding their spatial interaction, have been elusive. We present a new analytical method for examining feature interaction by introducing the notion of reciprocal co-occurrence, define statistics to estimate it and hypotheses to test for it. Our approach leverages conditional motif co-occurrence events between features to infer their co-localization. Using reverse conditional probabilities and introducing a novel simulation approach that retains motif properties (e.g. length, guanine-content), our method further accounts for potential confounders in testing. As a proof-of-concept, motif co-localization (MoCoLo) confirmed the co-occurrence of histone markers in a breast cancer cell line. As a novel analysis, MoCoLo identified significant co-localization of oxidative DNA damage within non-B DNA-forming regions that significantly differed between non-B DNA structures. Altogether, these findings demonstrate the potential utility of MoCoLo for testing spatial interactions between genomic features via their co-localization.
Collapse
Affiliation(s)
- Qi Xu
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Imee M A del Mundo
- Dell Pediatric Research Institute, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, 78723, USA
| | - Maha Zewail-Foote
- Department of Chemistry and Biochemistry, Southwestern University, Georgetown, TX, 78626, USA
| | - Brian T Luke
- Bioinformatics and Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21701, USA
| | - Karen M Vasquez
- Dell Pediatric Research Institute, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, 78723, USA
| | - Jeanne Kowalski
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
26
|
Fleming AM, Jenkins BLGC, Buck BA, Burrows CJ. DNA Damage Accelerates G-Quadruplex Folding in a Duplex-G-Quadruplex-Duplex Context. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576387. [PMID: 38293204 PMCID: PMC10827223 DOI: 10.1101/2024.01.20.576387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Molecular details for DNA damage impact on the folding of potential G-quadruplex sequences (PQS) to non-canonical DNA structures that are involved in gene regulation are poorly understood. Here, the effects of DNA base damage and strand breaks on PQS folding kinetics were studied in the context of the VEGF promoter sequence embedded between two DNA duplex anchors, referred to as a duplex-G-quadruplex-duplex (DGD) motif. This DGD scaffold imposes constraints on the PQS folding process that more closely mimic those found in genomic DNA. Folding kinetics were monitored by circular dichroism (CD) to find folding half-lives ranging from 2 s to 12 min depending on the DNA damage type and sequence position. The presence of Mg2+ ions and the G-quadruplex (G4)-binding protein APE1 facilitated the folding reactions. A strand break placing all four G runs required for G4 formation on one side of the break accelerated the folding rate by >150-fold compared to the undamaged sequence. Combined 1D 1H-NMR and CD analyses confirmed that isothermal folding of the VEGF-DGD constructs yielded spectral signatures that suggest formation of G4 motifs, and demonstrated a folding dependency with the nature and location of DNA damage. Importantly, the PQS folding half-lives measured are relevant to replication, transcription, and DNA repair time frames.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850 United States
| | | | - Bethany A Buck
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850 United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850 United States
| |
Collapse
|
27
|
Dong JH, Zhang RH, Zhao LL, Xue CY, Pan HY, Zhong XY, Zhou YL, Zhang XX. Identification and Quantification of Locus-Specific 8-Oxo-7,8-dihydroguanine in DNA at Ultrahigh Resolution Based on G-Triplex-Assisted Rolling Circle Amplification. Anal Chem 2024; 96:437-445. [PMID: 38150621 DOI: 10.1021/acs.analchem.3c04498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Damage of reactive oxygen species to various molecules such as DNA has been related to many chronic and degenerative human diseases, aging, and even cancer. 8-Oxo-7,8-dihydroguanine (OG), the most significant oxidation product of guanine (G), has become a biomarker of oxidative stress as well as gene regulation. The positive effect of OG in activating transcription and the negative effect in inducing mutation are a double-edged sword; thus, site-specific quantification is helpful to quickly reveal the functional mechanism of OG at hotspots. Due to the possible biological effects of OG at extremely low abundance in the genome, the monitoring of OG is vulnerable to signal interference from a large amount of G. Herein, based on rolling circle amplification-induced G-triplex formation and Thioflavin T fluorescence enhancement, an ultrasensitive strategy for locus-specific OG quantification was constructed. Owing to the difference in the hydrogen-bonding pattern between OG and G, the nonspecific background signal of G sites was completely suppressed through enzymatic ligation of DNA probes and the triggered specificity of rolling circle amplification. After the signal amplification strategy was optimized, the high detection sensitivity of OG sites with an ultralow detection limit of 0.18 amol was achieved. Under the interference of G sites, as little as 0.05% of OG-containing DNA was first distinguished. This method was further used for qualitative and quantitative monitoring of locus-specific OG in genomic DNA under oxidative stress and identification of key OG sites with biological function.
Collapse
Affiliation(s)
- Jia-Hui Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Run-Hong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ling-Li Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chen-Yu Xue
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100191, China
| | - Hui-Yu Pan
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin-Ying Zhong
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai 201203, China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Liang Y, Yuan Q, Zheng Q, Mei Z, Song Y, Yan H, Yang J, Wu S, Yuan J, Wu W. DNA Damage Atlas: an atlas of DNA damage and repair. Nucleic Acids Res 2024; 52:D1218-D1226. [PMID: 37831087 PMCID: PMC10767978 DOI: 10.1093/nar/gkad845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
DNA damage and its improper repair are the major source of genomic alterations responsible for many human diseases, particularly cancer. To aid researchers in understanding the underlying mechanisms of genome instability, a number of genome-wide profiling approaches have been developed to monitor DNA damage and repair events. The rapid accumulation of published datasets underscores the critical necessity of a comprehensive database to curate sequencing data on DNA damage and repair intermediates. Here, we present DNA Damage Atlas (DDA, http://www.bioinformaticspa.com/DDA/), the first large-scale repository of DNA damage and repair information. Currently, DDA comprises 6,030 samples from 262 datasets by 59 technologies, covering 16 species, 10 types of damage and 135 treatments. Data collected in DDA was processed through a standardized workflow, including quality checks, hotspots identification and a series of feature characterization for the hotspots. Notably, DDA encompasses analyses of highly repetitive regions, ribosomal DNA and telomere. DDA offers a user-friendly interface that facilitates browsing, searching, genome browser visualization, hotspots comparison and data downloading, enabling convenient and thorough exploration for datasets of interest. In summary, DDA will stand as a valuable resource for research in genome instability and its association with diseases.
Collapse
Affiliation(s)
- Yu Liang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qingqing Yuan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qijie Zheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Zilv Mei
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yawei Song
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Huan Yan
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Yang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Shuheng Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Jiao Yuan
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Wei Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| |
Collapse
|
29
|
Burroughs MR, Sweet PJ, Contreras LM. Optimized chemical labeling method for isolation of 8-oxoG-modified RNA, ChLoRox-Seq, identifies mRNAs enriched in oxidation and transcriptome-wide distribution biases of oxidation events post environmental stress. RNA Biol 2024; 21:132-148. [PMID: 39559912 PMCID: PMC11581162 DOI: 10.1080/15476286.2024.2427903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
Bulk increases in nucleobase oxidation, most commonly manifesting as the guanine (G) nucleobase modification 8-oxo-7,8-dihydroguanine (8-oxoG), have been linked to several disease pathologies. Elucidating the effects of RNA oxidation on cellular homoeostasis is limited by a lack of effective tools for detecting specific regions modified with 8-oxoG. Building on a previously published method for studying 8-oxoG in DNA, we developed ChLoRox-Seq, which works by covalently functionalizing 8-oxoG sites in RNA with biotin. Importantly, this method enables antibody-free enrichment of 8-oxoG-containing RNA fragments for Next Generation Sequencing-based detection of modified regions transcriptome-wide. We demonstrate the high specificity of ChLoRox-Seq for functionalizing 8-oxoG over unmodified nucleobases in RNA and benchmark this specificity to a commonly used antibody-based approach. Key advantages of ChLoRox-Seq include: (1) heightened resolution of RNA oxidation regions (e.g. exon-level) and (2) lower experimental costs. By applying ChLoRox-Seq to mRNA extracted from human lung epithelial cells (BEAS-2B) after exposure to environmentally relevant stress, we observe that 8-oxoG modifications tend to cluster in regions that are G-rich and within mRNA transcripts possessing longer 5' UTR and CDS regions. These findings provide new insight into the complex mechanisms that bias the accumulation of RNA oxidation across the transcriptome. Notably, our analysis suggests the possibility that most mRNA oxidation events are probabilistically driven and that mRNAs that possess more favourable intrinsic properties are prone to incur oxidation events at elevated rates. ChLoRox-Seq can be readily applied in future studies to identify regions of elevated RNA oxidation in any cellular model of interest.
Collapse
Affiliation(s)
- Matthew R. Burroughs
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Philip J. Sweet
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
30
|
Vlahopoulos S, Pan L, Varisli L, Dancik GM, Karantanos T, Boldogh I. OGG1 as an Epigenetic Reader Affects NFκB: What This Means for Cancer. Cancers (Basel) 2023; 16:148. [PMID: 38201575 PMCID: PMC10778025 DOI: 10.3390/cancers16010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
8-oxoguanine glycosylase 1 (OGG1), which was initially identified as the enzyme that catalyzes the first step in the DNA base excision repair pathway, is now also recognized as a modulator of gene expression. What is important for cancer is that OGG1 acts as a modulator of NFκB-driven gene expression. Specifically, oxidant stress in the cell transiently halts enzymatic activity of substrate-bound OGG1. The stalled OGG1 facilitates DNA binding of transactivators, such as NFκB to their cognate sites, enabling the expression of cytokines and chemokines, with ensuing recruitment of inflammatory cells. Recently, we highlighted chief aspects of OGG1 involvement in regulation of gene expression, which hold significance in lung cancer development. However, OGG1 has also been implicated in the molecular underpinning of acute myeloid leukemia. This review analyzes and discusses how these cells adapt through redox-modulated intricate connections, via interaction of OGG1 with NFκB, which provides malignant cells with alternative molecular pathways to transform their microenvironment, enabling adjustment, promoting cell proliferation, metastasis, and evading killing by therapeutic agents.
Collapse
Affiliation(s)
- Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| | - Lang Pan
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555, USA;
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Garrett M. Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA;
| | - Theodoros Karantanos
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Istvan Boldogh
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555, USA;
| |
Collapse
|
31
|
Fleming AM, Omaga CA, Burrows CJ. NEIL3 promoter G-quadruplex with oxidatively modified bases shows magnesium-dependent folding that stalls polymerase bypass. Biochimie 2023; 214:156-166. [PMID: 37437684 PMCID: PMC10592359 DOI: 10.1016/j.biochi.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Oxidative stress unleashes reactive species capable of oxidizing 2'-deoxyguanosine (G) nucleotides in G-rich sequences of the genome, such as the potential G-quadruplex forming sequencing (PQS) in the NEIL3 gene promoter. Oxidative modification of G yields 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG) that can be further oxidized to hydantoin products. Herein, OG was synthesized into the NEIL3 PQS that was allowed to fold to a G-quadruplex (G4) in K+ ion solutions with varying amounts of Mg2+ in the physiological range. The Mg2+ dependency in the oxidatively modified NEIL3 G4 to stall a replicative DNA polymerase was evaluated. The polymerase was found to stall at the G4 or OG, as well as continue to full-length extension with dependency on the location of the modification and the concentration of Mg2+. To provide some clarity on these findings, OG or the hydantoins were synthesized in model NEIL3 G4 folding sequences at the positions of the polymerase study. The model G4 sequences were allowed to fold in K+ ion solutions with varying levels of Mg2+ to identify how the presence of the divalent metal impacted G4 folding depending on the location of the modification. The presence of Mg2+ either caused the transition of the NEIL3 G4 folds from an antiparallel to parallel orientation of the strands or had no impact. Structural models are proposed to understand the findings using the literature as a guide. The biological significance of the results is discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-0850, USA
| | - Carla A Omaga
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-0850, USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-0850, USA.
| |
Collapse
|
32
|
Li X, Zang N, Zhang N, Pang L, Lv L, Meng X, Lv X, Leng J. DNA damage resulting from human endocrine disrupting chemical exposure: Genotoxicity, detection and dietary phytochemical intervention. CHEMOSPHERE 2023; 338:139522. [PMID: 37478996 DOI: 10.1016/j.chemosphere.2023.139522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
In recent years, exposure to endocrine disrupting chemicals (EDCs) has posed an increasing threat to human health. EDCs are major risk factors in the occurrence and development of many diseases. Continuous DNA damage triggers severe pathogenic consequences, such as cancer. Beyond their effects on the endocrine system, EDCs genotoxicity is also worthy of attention, owing to the high accessibility and bioavailability of EDCs. This review investigates and summarizes nearly a decade of DNA damage studies on EDC exposure, including DNA damage mechanisms, detection methods, population marker analysis, and the application of dietary phytochemicals. The aims of this review are (1) to systematically summarize the genotoxic effects of environmental EDCs (2) to comprehensively summarize cutting-edge measurement methods, thus providing analytical solutions for studies on EDC exposure; and (3) to highlight critical data on the detoxification and repair effects of dietary phytochemicals. Dietary phytochemicals decrease genotoxicity by playing a major role in the detoxification system, and show potential therapeutic effects on human diseases caused by EDC exposure. This review may support research on environmental toxicology and alternative chemo-prevention for human EDC exposure.
Collapse
Affiliation(s)
- Xiaoqing Li
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Ningzi Zang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Nan Zhang
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Lijian Pang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Ling Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiansheng Meng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiaodong Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Jiapeng Leng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
33
|
Bhatia S, Bodenstein D, Cheng AP, Wells PG. Altered Epigenetic Marks and Gene Expression in Fetal Brain, and Postnatal Behavioural Disorders, Following Prenatal Exposure of Ogg1 Knockout Mice to Saline or Ethanol. Cells 2023; 12:2308. [PMID: 37759530 PMCID: PMC10527575 DOI: 10.3390/cells12182308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Oxoguanine glycosylase 1 (OGG1) is widely known to repair the reactive oxygen species (ROS)-initiated DNA lesion 8-oxoguanine (8-oxoG), and more recently was shown to act as an epigenetic modifier. We have previously shown that saline-exposed Ogg1 -/- knockout progeny exhibited learning and memory deficits, which were enhanced by in utero exposure to a single low dose of ethanol (EtOH) in both Ogg1 +/+ and -/- progeny, but more so in Ogg1 -/- progeny. Herein, OGG1-deficient progeny exposed in utero to a single low dose of EtOH or its saline vehicle exhibited OGG1- and/or EtOH-dependent alterations in global histone methylation and acetylation, DNA methylation and gene expression (Tet1 (Tet Methylcytosine Dioxygenase 1), Nlgn3 (Neuroligin 3), Hdac2 (Histone Deacetylase 2), Reln (Reelin) and Esr1 (Estrogen Receptor 1)) in fetal brains, and behavioural changes in open field activity, social interaction and ultrasonic vocalization, but not prepulse inhibition. OGG1- and EtOH-dependent changes in Esr1 and Esr2 mRNA and protein levels were sex-dependent, as was the association of Esr1 gene expression with gene activation mark histone H3 lysine 4 trimethylation (H3K4me3) and gene repression mark histone H3 lysine 27 trimethylation (H3K27me3) measured via ChIP-qPCR. The OGG1-dependent changes in global epigenetic marks and gene/protein expression in fetal brains, and postnatal behavioural changes, observed in both saline- and EtOH-exposed progeny, suggest the involvement of epigenetic mechanisms in developmental disorders mediated by 8-oxoG and/or OGG1. Epigenetic effects of OGG1 may be involved in ESR1-mediated gene regulation, which may be altered by physiological and EtOH-enhanced levels of ROS formation, possibly contributing to sex-dependent developmental disorders observed in Ogg1 knockout mice. The OGG1- and EtOH-dependent associations provide a basis for more comprehensive mechanistic studies to determine the causal involvement of oxidative DNA damage and epigenetic changes in ROS-mediated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shama Bhatia
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (S.B.); (A.P.C.)
- Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - David Bodenstein
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Ashley P. Cheng
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (S.B.); (A.P.C.)
- Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Peter G. Wells
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (S.B.); (A.P.C.)
- Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| |
Collapse
|
34
|
Liu C, Le BH, Xu W, Yang CH, Chen YH, Zhao L. Dual chemical labeling enables nucleotide-resolution mapping of DNA abasic sites and common alkylation damage in human mitochondrial DNA. Nucleic Acids Res 2023; 51:e73. [PMID: 37293974 PMCID: PMC10359467 DOI: 10.1093/nar/gkad502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Mitochondrial DNA (mtDNA) modifications play an emerging role in innate immunity and inflammatory diseases. Nonetheless, relatively little is known regarding the locations of mtDNA modifications. Such information is critically important for deciphering their roles in mtDNA instability, mtDNA-mediated immune and inflammatory responses, and mitochondrial disorders. The affinity probe-based enrichment of lesion-containing DNA represents a key strategy for sequencing DNA modifications. Existing methods are limited in the enrichment specificity of abasic (AP) sites, a prevalent DNA modification and repair intermediate. Herein, we devise a novel approach, termed dual chemical labeling-assisted sequencing (DCL-seq), for mapping AP sites. DCL-seq features two designer compounds for enriching and mapping AP sites specifically at single-nucleotide resolution. For proof of principle, we mapped AP sites in mtDNA from HeLa cells under different biological conditions. The resulting AP site maps coincide with mtDNA regions with low TFAM (mitochondrial transcription factor A) coverage and with potential G-quadruplex-forming sequences. In addition, we demonstrated the broader applicability of the method in sequencing other DNA modifications in mtDNA, such as N7-methyl-2'-deoxyguanosine and N3-methyl-2'-deoxyadenosine, when coupled with a lesion-specific repair enzyme. Together, DCL-seq holds the promise to sequence multiple DNA modifications in various biological samples.
Collapse
Affiliation(s)
- Chaoxing Liu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Brandon H Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Wenyan Xu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Ching-Hsin Yang
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Yu Hsuan Chen
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
35
|
Xiao S, Fleming AM, Burrows CJ. Sequencing for oxidative DNA damage at single-nucleotide resolution with click-code-seq v2.0. Chem Commun (Camb) 2023; 59:8997-9000. [PMID: 37401666 PMCID: PMC10909242 DOI: 10.1039/d3cc02699j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Oxidative damage to DNA nucleotides has many cellular outcomes that could be aided by the development of sequencing methods. Herein, the previously reported click-code-seq method for sequencing a single damage type is redeveloped to enable the sequencing of many damage types by making simple changes to the protocol (i.e., click-code-seq v2.0).
Collapse
Affiliation(s)
- Songjun Xiao
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA.
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA.
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA.
| |
Collapse
|
36
|
Xiao Y, Yi H, Zhu J, Chen S, Wang G, Liao Y, Lei Y, Chen L, Zhang X, Ye F. Evaluation of DNA adduct damage using G-quadruplex-based DNAzyme. Bioact Mater 2023; 23:45-52. [PMID: 36406255 PMCID: PMC9650010 DOI: 10.1016/j.bioactmat.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/15/2022] [Accepted: 10/02/2022] [Indexed: 11/11/2022] Open
Abstract
Toxicity assessment is a major problem in pharmaceutical candidates and industry chemicals development. However, due to the lack of practical analytical methods for DNA adduct analysis, the safety evaluation of drug and industry chemicals was severely limited. Here, we develop a DNAzyme-based method to detect DNA adduct damage for toxicity assessment of drugs and chemicals. Among 18 structural variants of G4 DNAzyme, EA2 DNAzyme exhibits an obvious DNA damaging effect of styrene oxide (SO) due to its unstable structure. The covalent binding of SO to DNAzyme disrupts the Hoogsteen hydrogen bonding sites of G-plane guanines and affects the formation of the G4 quadruplex. DNA damage chemicals reduce the peroxidase activity of the G4 DNAzyme to monitor the DNA adduct damage by disrupting the structural integrity of the G4 DNAzyme. Our method for genotoxic assessment of pharmaceutical candidates and industrial chemicals can elucidate the complex chemical pathways leading to toxicity, predict toxic effects of chemicals, and evaluate possible risks to human health.
Collapse
Affiliation(s)
- Yi Xiao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Haomin Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Jingzhi Zhu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Suhua Chen
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Guofang Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yilong Liao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yuanyuan Lei
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Liyin Chen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Fangfu Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
37
|
Howpay Manage SA, Zhu J, Fleming AM, Burrows CJ. Promoters vs. telomeres: AP-endonuclease 1 interactions with abasic sites in G-quadruplex folds depend on topology. RSC Chem Biol 2023; 4:261-270. [PMID: 37034403 PMCID: PMC10074553 DOI: 10.1039/d2cb00233g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The DNA repair endonuclease APE1 is responsible for the cleavage of abasic sites (AP) in DNA as well as binding AP in promoter G-quadruplex (G4) folds in some genes to regulate transcription. The present studies focused on the topological properties of AP-bearing G4 folds and how they impact APE1 interaction. The human telomere sequence with a tetrahydrofuran model (F) of an AP was folded in K+- or Na+-containing buffers to adopt hybrid- or basket-folds, respectively. Endonuclease and binding assays were performed with APE1 and the G4 substrates, and the data were compared to prior work with parallel-stranded VEGF and NEIL3 promoter G4s to identify topological differences. The APE1-catalyzed endonuclease assays led to the conclusion that telomere G4 folds were slightly better substrates than the promoter G4s, but the yields were all low compared to duplex DNA. In the binding assays, G4 topological differences were observed in which APE1 bound telomere G4s with dissociation constants similar to single-stranded DNA, and promoter G4s were bound with nearly ten-fold lower values similar to duplex DNA. An in-cellulo assay with the telomere G4 in a model promoter bearing a lesion failed to regulate transcription. These data support a hypothesis that G4 topology in gene promoters is a critical feature that APE1 recognizes for gene regulation.
Collapse
Affiliation(s)
| | - Judy Zhu
- Department of Chemistry, University of Utah 315 S. 1400 E. Salt Lake City UT 84112-0850 USA
| | - Aaron M Fleming
- Department of Chemistry, University of Utah 315 S. 1400 E. Salt Lake City UT 84112-0850 USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah 315 S. 1400 E. Salt Lake City UT 84112-0850 USA
| |
Collapse
|
38
|
Burden F, Ellis PI, Farré M. A shared 'vulnerability code' underpins varying sources of DNA damage throughout paternal germline transmission in mouse. Nucleic Acids Res 2023; 51:2319-2332. [PMID: 36806949 PMCID: PMC10018361 DOI: 10.1093/nar/gkad089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
During mammalian spermatogenesis, the paternal genome is extensively remodelled via replacement of histones with protamines forming the highly compact mature sperm nucleus. Compaction occurs in post-meiotic spermatids and is accompanied by extensive double strand break (DSB) formation. We investigate the epigenomic and genomic context of mouse spermatid DSBs, identifying primary sequence motifs, secondary DNA structures and chromatin contexts associated with this damage. Consistent with previously published results we find spermatid DSBs positively associated with short tandem repeats and LINE elements. We further show spermatid DSBs preferentially occur in association with (CA)n, (NA)n and (RY)n repeats, in predicted Z-DNA, are not associated with G-quadruplexes, are preferentially found in regions of low histone mark coverage and engage the remodelling/NHEJ factor BRD4. Locations incurring DSBs in spermatids also show distinct epigenetic profiles throughout later developmental stages: regions retaining histones in mature sperm, regions susceptible to oxidative damage in mature sperm, and fragile two-cell like embryonic stem cell regions bound by ZSCAN4 all co-localise with spermatid DSBs and with each other. Our results point to a common 'vulnerability code' unifying several types of DNA damage occurring on the paternal genome during reproduction, potentially underpinned by torsional changes during sperm chromatin remodelling.
Collapse
Affiliation(s)
| | - Peter J I Ellis
- To whom correspondence should be addressed. Tel: +44 1227 823526;
| | - Marta Farré
- Correspondence may also be addressed to Marta Farré. Tel: +44 1227 823697;
| |
Collapse
|
39
|
Pan L, Hao W, Xue Y, Wang K, Zheng X, Luo J, Ba X, Xiang Y, Qin X, Bergwik J, Tanner L, Egesten A, Brasier AR, Boldogh I. 8-Oxoguanine targeted by 8-oxoguanine DNA glycosylase 1 (OGG1) is central to fibrogenic gene activation upon lung injury. Nucleic Acids Res 2023; 51:1087-1102. [PMID: 36651270 PMCID: PMC9943661 DOI: 10.1093/nar/gkac1241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
Reactive oxygen species (ROS) are implicated in epithelial cell-state transition and deposition of extracellular matrix upon airway injury. Of the many cellular targets of ROS, oxidative DNA modification is a major driving signal. However, the role of oxidative DNA damage in modulation profibrotic processes has not been fully delineated. Herein, we report that oxidative DNA base lesions, 8-oxoG, complexed with 8-oxoguanine DNA glycosylase 1 (OGG1) functions as a pioneer factor, contributing to transcriptional reprogramming within airway epithelial cells. We show that TGFβ1-induced ROS increased 8-oxoG levels in open chromatin, dynamically reconfigure the chromatin state. OGG1 complexed with 8-oxoG recruits transcription factors, including phosphorylated SMAD3, to pro-fibrotic gene promoters thereby facilitating gene activation. Moreover, 8-oxoG levels are elevated in lungs of mice subjected to TGFβ1-induced injury. Pharmacologic targeting of OGG1 with the selective small molecule inhibitor of 8-oxoG binding, TH5487, abrogates fibrotic gene expression and remodeling in this model. Collectively, our study implicates that 8-oxoG substrate-specific binding by OGG1 is a central modulator of transcriptional regulation in response to tissue repair.
Collapse
Affiliation(s)
- Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wenjing Hao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100871, China
| | - Yaoyao Xue
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ke Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xu Zheng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jixian Luo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xueqing Ba
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410000, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410000, China
| | - Jesper Bergwik
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84 Lund, Sweden
| | - Lloyd Tanner
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84 Lund, Sweden
| | - Arne Egesten
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84 Lund, Sweden
| | - Allan R Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI 53705, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
40
|
Tanner L, Single AB, Bhongir RKV, Heusel M, Mohanty T, Karlsson CAQ, Pan L, Clausson CM, Bergwik J, Wang K, Andersson CK, Oommen RM, Erjefält JS, Malmström J, Wallner O, Boldogh I, Helleday T, Kalderén C, Egesten A. Small-molecule-mediated OGG1 inhibition attenuates pulmonary inflammation and lung fibrosis in a murine lung fibrosis model. Nat Commun 2023; 14:643. [PMID: 36746968 PMCID: PMC9902543 DOI: 10.1038/s41467-023-36314-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Interstitial lung diseases such as idiopathic pulmonary fibrosis (IPF) are caused by persistent micro-injuries to alveolar epithelial tissues accompanied by aberrant repair processes. IPF is currently treated with pirfenidone and nintedanib, compounds which slow the rate of disease progression but fail to target underlying pathophysiological mechanisms. The DNA repair protein 8-oxoguanine DNA glycosylase-1 (OGG1) has significant roles in the modulation of inflammation and metabolic syndromes. Currently, no pharmaceutical solutions targeting OGG1 have been utilized in the treatment of IPF. In this study we show Ogg1-targeting siRNA mitigates bleomycin-induced pulmonary fibrosis in male mice, highlighting OGG1 as a tractable target in lung fibrosis. The small molecule OGG1 inhibitor, TH5487, decreases myofibroblast transition and associated pro-fibrotic gene expressions in fibroblast cells. In addition, TH5487 decreases levels of pro-inflammatory mediators, inflammatory cell infiltration, and lung remodeling in a murine model of bleomycin-induced pulmonary fibrosis conducted in male C57BL6/J mice. OGG1 and SMAD7 interact to induce fibroblast proliferation and differentiation and display roles in fibrotic murine and IPF patient lung tissue. Taken together, these data suggest that TH5487 is a potentially clinically relevant treatment for IPF but further study in human trials is required.
Collapse
Affiliation(s)
- L Tanner
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden.
| | - A B Single
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden
| | - R K V Bhongir
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden
| | - M Heusel
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - T Mohanty
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - C A Q Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - L Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - C-M Clausson
- Division of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - J Bergwik
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden
| | - K Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - C K Andersson
- Respiratory Cell Biology, Department of Experimental Medical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - R M Oommen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - J S Erjefält
- Division of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - J Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - O Wallner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - I Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - T Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Oxcia AB, Norrbackagatan 70C, SE-113 34, Stockholm, Sweden
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - C Kalderén
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Oxcia AB, Norrbackagatan 70C, SE-113 34, Stockholm, Sweden
| | - A Egesten
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden
| |
Collapse
|
41
|
Zhou X, Gao S, Yue M, Zhu S, Liu Q, Zhao XE. Recent advances in analytical methods of oxidative stress biomarkers induced by environmental pollutant exposure. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116978] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
42
|
Gorini F, Ambrosio S, Lania L, Majello B, Amente S. The Intertwined Role of 8-oxodG and G4 in Transcription Regulation. Int J Mol Sci 2023; 24:ijms24032031. [PMID: 36768357 PMCID: PMC9916577 DOI: 10.3390/ijms24032031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
The guanine base in nucleic acids is, among the other bases, the most susceptible to being converted into 8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) when exposed to reactive oxygen species. In double-helix DNA, 8-oxodG can pair with adenine; hence, it may cause a G > T (C > A) mutation; it is frequently referred to as a form of DNA damage and promptly corrected by DNA repair mechanisms. Moreover, 8-oxodG has recently been redefined as an epigenetic factor that impacts transcriptional regulatory elements and other epigenetic modifications. It has been proposed that 8-oxodG exerts epigenetic control through interplay with the G-quadruplex (G4), a non-canonical DNA structure, in transcription regulatory regions. In this review, we focused on the epigenetic roles of 8-oxodG and the G4 and explored their interplay at the genomic level.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Susanna Ambrosio
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Luigi Lania
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Barbara Majello
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
43
|
Pan L, Xue Y, Wang K, Zheng X, Boldogh I. Detection of Oxidatively Modified Base Lesion(s) in Defined DNA Sequences by FLARE Quantitative PCR. Methods Mol Biol 2023; 2701:115-134. [PMID: 37574478 DOI: 10.1007/978-1-0716-3373-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Assessment of DNA base and strand damage can be determined using a quantitative PCR assay that is based on the concept that damage blocks the progression of a thermostable polymerase thus resulting in decreased amplification. However, some of the mutagenic DNA base lesions cause little or no distortion in Watson-Crick base pairing. One of the most abundant such lesion is 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo(d)Gua), although it affects the thermodynamic stability of the DNA, duplex 8-oxo(d)Gua does not inhibit DNA synthesis or arrest most of DNA or RNA polymerases during replication and transcription. When unrepaired, it is a pre-mutagenic base as it pairs with adenine in anti-syn conformation. Recent studies considered 8-oxo(d)Gua as an epigenetic-like mark and along with 8-oxoguanine DNA glycosylase1 (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1) has roles in gene expression via nucleating transcription factor's promoter occupancy. Here, we introduce its identification through fragment length analysis with repair enzyme (FLARE)-coupled quantitative (q)-PCR. One of the strengths of the assay is that 8-oxo(d)Gua can be identified within short stretches of nuclear and mitochondrial DNA in ng quantities. Bellow we describe the benefits and limits of using FLARE qPCR to assess DNA damage in mammalian cells and provide a detailed protocol of the assay.
Collapse
Affiliation(s)
- Lang Pan
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Yaoyao Xue
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ke Wang
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Xu Zheng
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Istvan Boldogh
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
44
|
Gorini F, Scala G, Ambrosio S, Majello B, Amente S. OxiDIP-Seq for Genome-wide Mapping of Damaged DNA Containing 8-Oxo-2'-Deoxyguanosine. Bio Protoc 2022; 12:e4540. [PMID: 36505028 PMCID: PMC9711933 DOI: 10.21769/bioprotoc.4540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022] Open
Abstract
8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) is considered to be a premutagenic DNA lesion generated by 2'-deoxyguanosine (dG) oxidation due to reactive oxygen species (ROS). In recent years, the 8-oxodG distribution in human, mouse, and yeast genomes has been underlined using various next-generation sequencing (NGS)-based strategies. The present study reports the OxiDIP-Seq protocol, which combines specific 8-oxodG immuno-precipitation of single-stranded DNA with NGS, and the pipeline analysis that allows the genome-wide 8-oxodG distribution in mammalian cells. The development of this OxiDIP-Seq method increases knowledge on the oxidative DNA damage/repair field, providing a high-resolution map of 8-oxodG in human cells.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples ‘Federico II’, Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples ‘Federico II’, Naples, Italy
| | - Susanna Ambrosio
- Department of Biology, University of Naples ‘Federico II’, Naples, Italy
| | - Barbara Majello
- Department of Biology, University of Naples ‘Federico II’, Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples ‘Federico II’, Naples, Italy
,
*For correspondence:
| |
Collapse
|
45
|
Hahm JY, Park J, Jang ES, Chi SW. 8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. Exp Mol Med 2022; 54:1626-1642. [PMID: 36266447 PMCID: PMC9636213 DOI: 10.1038/s12276-022-00822-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 12/29/2022] Open
Abstract
In pathophysiology, reactive oxygen species control diverse cellular phenotypes by oxidizing biomolecules. Among these, the guanine base in nucleic acids is the most vulnerable to producing 8-oxoguanine, which can pair with adenine. Because of this feature, 8-oxoguanine in DNA (8-oxo-dG) induces a G > T (C > A) mutation in cancers, which can be deleterious and thus actively repaired by DNA repair pathways. 8-Oxoguanine in RNA (o8G) causes problems in aberrant quality and translational fidelity, thereby it is subjected to the RNA decay pathway. In addition to oxidative damage, 8-oxo-dG serves as an epigenetic modification that affects transcriptional regulatory elements and other epigenetic modifications. With the ability of o8G•A in base pairing, o8G alters structural and functional RNA-RNA interactions, enabling redirection of posttranscriptional regulation. Here, we address the production, regulation, and function of 8-oxo-dG and o8G under oxidative stress. Primarily, we focus on the epigenetic and epitranscriptional roles of 8-oxoguanine, which highlights the significance of oxidative modification in redox-mediated control of gene expression.
Collapse
Affiliation(s)
- Ja Young Hahm
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Jongyeun Park
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Eun-Sook Jang
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Sung Wook Chi
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02481 Republic of Korea
| |
Collapse
|
46
|
Abstract
DNA damage by chemicals, radiation, or oxidative stress leads to a mutational spectrum, which is complex because it is determined in part by lesion structure, the DNA sequence context of the lesion, lesion repair kinetics, and the type of cells in which the lesion is replicated. Accumulation of mutations may give rise to genetic diseases such as cancer and therefore understanding the process underlying mutagenesis is of immense importance to preserve human health. Chemical or physical agents that cause cancer often leave their mutational fingerprints, which can be used to back-calculate the molecular events that led to disease. To make a clear link between DNA lesion structure and the mutations a given lesion induces, the field of single-lesion mutagenesis was developed. In the last three decades this area of research has seen much growth in several directions, which we attempt to describe in this Perspective.
Collapse
Affiliation(s)
- Ashis K Basu
- Department of Chemistry, The University of Connecticut Storrs, Storrs, Connecticut 06269, United States
| | - John M Essigmann
- Departments of Chemistry, Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
47
|
Lodato MA, Ziegenfuss JS. The two faces of DNA oxidation in genomic and functional mosaicism during aging in human neurons. FRONTIERS IN AGING 2022; 3:991460. [PMID: 36313183 PMCID: PMC9596766 DOI: 10.3389/fragi.2022.991460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
Maintaining genomic integrity in post-mitotic neurons in the human brain is paramount because these cells must survive for an individual's entire lifespan. Due to life-long synaptic plasticity and electrochemical transmission between cells, the brain engages in an exceptionally high level of mitochondrial metabolic activity. This activity results in the generation of reactive oxygen species with 8-oxo-7,8-dihydroguanine (8-oxoG) being one of the most prevalent oxidation products in the cell. 8-oxoG is important for the maintenance and transfer of genetic information into proper gene expression: a low basal level of 8-oxoG plays an important role in epigenetic modulation of neurodevelopment and synaptic plasticity, while a dysregulated increase in 8-oxoG damages the genome leading to somatic mutations and transcription errors. The slow yet persistent accumulation of DNA damage in the background of increasing cellular 8-oxoG is associated with normal aging as well as neurological disorders such as Alzheimer's disease and Parkinson's disease. This review explores the current understanding of how 8-oxoG plays a role in brain function and genomic instability, highlighting new methods being used to advance pathological hallmarks that differentiate normal healthy aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Michael A. Lodato
- University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | |
Collapse
|
48
|
Yu T, Slone J, Liu W, Barnes R, Opresko PL, Wark L, Mai S, Horvath S, Huang T. Premature aging is associated with higher levels of 8-oxoguanine and increased DNA damage in the Polg mutator mouse. Aging Cell 2022; 21:e13669. [PMID: 35993394 PMCID: PMC9470903 DOI: 10.1111/acel.13669] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 01/24/2023] Open
Abstract
Mitochondrial dysfunction plays an important role in the aging process. However, the mechanism by which this dysfunction causes aging is not fully understood. The accumulation of mutations in the mitochondrial genome (or "mtDNA") has been proposed as a contributor. One compelling piece of evidence in support of this hypothesis comes from the PolgD257A/D257A mutator mouse (Polgmut/mut ). These mice express an error-prone mitochondrial DNA polymerase that results in the accumulation of mtDNA mutations, accelerated aging, and premature death. In this paper, we have used the Polgmut/mut model to investigate whether the age-related biological effects observed in these mice are triggered by oxidative damage to the DNA that compromises the integrity of the genome. Our results show that mutator mouse has significantly higher levels of 8-oxoguanine (8-oxoGua) that are correlated with increased nuclear DNA (nDNA) strand breakage and oxidative nDNA damage, shorter average telomere length, and reduced mtDNA integrity. Based on these results, we propose a model whereby the increased level of reactive oxygen species (ROS) associated with the accumulation of mtDNA mutations in Polgmut/mut mice results in higher levels of 8-oxoGua, which in turn lead to compromised DNA integrity and accelerated aging via increased DNA fragmentation and telomere shortening. These results suggest that mitochondrial play a central role in aging and may guide future research to develop potential therapeutics for mitigating aging process.
Collapse
Affiliation(s)
- Tenghui Yu
- Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA,Human Aging Research Institute, School of Life ScienceNanchang UniversityNanchangChina,Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Jesse Slone
- Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA,Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Wensheng Liu
- Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA
| | - Ryan Barnes
- Department of Environmental and Occupational HealthUniversity of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | - Patricia L. Opresko
- Department of Environmental and Occupational HealthUniversity of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | - Landon Wark
- CancerCare Manitoba Research Institute, The Genomic Center for Cancer Research & DiagnosisUniversity of ManitobaWinnipegManitobaCanada
| | - Sabine Mai
- CancerCare Manitoba Research Institute, The Genomic Center for Cancer Research & DiagnosisUniversity of ManitobaWinnipegManitobaCanada
| | - Steve Horvath
- Human Genetics, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Taosheng Huang
- Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA,Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| |
Collapse
|
49
|
Miyahara R, Taniguchi Y. Selective Unnatural Base Pairing and Recognition of 2-Hydroxy-2'-deoxyadenosine in DNA Using Pseudo-dC Derivatives. J Am Chem Soc 2022; 144:16150-16156. [PMID: 36001794 DOI: 10.1021/jacs.2c07000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of unnatural base pairs within duplex DNA would facilitate DNA nanotechnology and biotechnology. Iso-2'-deoxyguanosine (iso-dG) forms base pairs with iso-2'-deoxycytidine, and its use as an unnatural base pair was investigated. Iso-dG is one of the tautomers of 2-hydroxy-2'-deoxyadenosine (2-OH-dA), known as an oxidatively damaged nucleobase, and its selective recognition in DNA plays an important role in the diagnosis and pathogenesis of disease. Therefore, we focused on pseudo-dC (ψdC) as a suitable molecule that recognizes 2-OH-dA in DNA. Since 2-OH-dA shows tautomeric structures in DNA, we designed and used ψdC, which also has a tautomeric structure. We successfully synthesized a ψdC phosphoramidite compound for the synthesis of oligonucleotides (ODNs) as well as its triphosphate derivative (ψdCTP). Tm measurements revealed that ODNs including ψdC showed stable base pair formation with ODNs having 2-OH-dA. In contrast, low Tm values were observed for other bases (dG, dA, dC, and T). The results obtained for the single-nucleotide primer extension reaction revealed that ψdCTP was incorporated into the complementary position of 2-OH-dA in template DNA with high selectivity. In addition, the primer elongation reaction was confirmed to proceed in the presence of dNTPs. The present study reports an artificial nucleic acid that selectively and stably forms unnatural base pairs with 2-OH-dA in DNA.
Collapse
Affiliation(s)
- Ryo Miyahara
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
50
|
Danforth JM, Provencher L, Goodarzi AA. Chromatin and the Cellular Response to Particle Radiation-Induced Oxidative and Clustered DNA Damage. Front Cell Dev Biol 2022; 10:910440. [PMID: 35912116 PMCID: PMC9326100 DOI: 10.3389/fcell.2022.910440] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Exposure to environmental ionizing radiation is prevalent, with greatest lifetime doses typically from high Linear Energy Transfer (high-LET) alpha particles via the radioactive decay of radon gas in indoor air. Particle radiation is highly genotoxic, inducing DNA damage including oxidative base lesions and DNA double strand breaks. Due to the ionization density of high-LET radiation, the consequent damage is highly clustered wherein ≥2 distinct DNA lesions occur within 1–2 helical turns of one another. These multiply-damaged sites are difficult for eukaryotic cells to resolve either quickly or accurately, resulting in the persistence of DNA damage and/or the accumulation of mutations at a greater rate per absorbed dose, relative to lower LET radiation types. The proximity of the same and different types of DNA lesions to one another is challenging for DNA repair processes, with diverse pathways often confounding or interplaying with one another in complex ways. In this context, understanding the state of the higher order chromatin compaction and arrangements is essential, as it influences the density of damage produced by high-LET radiation and regulates the recruitment and activity of DNA repair factors. This review will summarize the latest research exploring the processes by which clustered DNA damage sites are induced, detected, and repaired in the context of chromatin.
Collapse
|