1
|
Nielsen VRM, Aalling-Frederiksen O, Jensen KMØ, Sørensen TJ. Exploring the Crystallization of Lanthanum(III) and Neodymium(III) Hydroxides from Solution. Inorg Chem 2025; 64:7286-7299. [PMID: 40192105 DOI: 10.1021/acs.inorgchem.4c04907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Understanding the mechanics of crystallization from solution is crucial for advancing material discovery and design. Studying these complex processes requires a combination of experimental techniques. Here, the crystallization of lanthanum(III)- and neodymium(III) hydroxides was studied with in situ and ex situ X-ray techniques in combination with pair distribution function analysis, scanning electron microscopy, light scattering, pH titrations, simulations, and optical spectroscopy. Starting from the Ln(III) aqua ions in nitric acid, the pH is increased to start the precipitation of hydroxides. In situ optical spectroscopy and potentiometry revealed that at pH = 6, an initial gel phase with a composition of [Ln(NO3)(OH)(H2O)z]OH was formed. At pH > 10, the nitrate ligands were replaced by hydroxides, resulting in gels with a composition of [Ln(OH)2(H2O)7]OH. Upon washing and dehydration, X-ray scattering and Rietveld analysis showed that the gels crystallize into Ln(OH)2(NO3)(H2O)z at pH < 10 and Ln(OH)3 at pH > 10. Ln(OH)3 was obtained at all pH values if hydrothermal treatment was performed prior to the dehydration. In situ total X-ray scattering and pair distribution function analysis was used to show that no crystallization occurs in solution and that the hydrothermal treatment removes water from the gel. The size and morphology of the isolated lanthanide(III) hydroxides were found to be dependent on the pH value, but our results showed that the gel structure is found in all cases, suggesting that crystallization occurs within gel particles and not in solution.
Collapse
Affiliation(s)
- Villads R M Nielsen
- Department of Chemistry and Nanoscience Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Olivia Aalling-Frederiksen
- Department of Chemistry and Nanoscience Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Kirsten M Ø Jensen
- Department of Chemistry and Nanoscience Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Thomas Just Sørensen
- Department of Chemistry and Nanoscience Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Zang S, Paul S, Leung CW, Chen MS, Hueckel T, Hocky GM, Sacanna S. Direct observation and control of non-classical crystallization pathways in binary colloidal systems. Nat Commun 2025; 16:3645. [PMID: 40240410 PMCID: PMC12003862 DOI: 10.1038/s41467-025-58959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Crystallization stands as a prime example of self-assembly. Elementary building blocks converge, seemingly adhering to an intricate blueprint, orchestrating order from chaos. While classical theories describe crystallization as a monomer-by-monomer addition, non-classical pathways introduce complexity. Using microscopic charged particles as monomers, we uncover the mechanisms governing the formation of ionic colloidal crystals. Our findings reveal a two-step process, wherein metastable amorphous blobs condense from the gas phase, before evolving into small binary crystals. These small crystals then grow into large faceted structures via three simultaneous processes: addition of free monomers from bulk, capture and absorption of surrounding blobs, and oriented attachment of other crystals. These complex crystallization pathways occur both in bulk and on surfaces across a range of particle sizes and interaction strengths, resulting in a diverse array of crystal types and morphologies. Harnessing our ability to tune the interaction potential through small changes in salt concentration, we developed a continuous dialysis approach that allows fine control over the interaction strength in both time and space. This method enables us to discover and characterize various crystal structures in a single experiment, including a previously unreported low-density hollow structure and the heteroepitaxial formation of composite crystal structures.
Collapse
Affiliation(s)
- Shihao Zang
- Department of Chemistry, New York University, New York, NY, USA
| | - Sanjib Paul
- Department of Chemistry, New York University, New York, NY, USA
| | - Cheuk W Leung
- Department of Chemistry, New York University, New York, NY, USA
| | - Michael S Chen
- Department of Chemistry, New York University, New York, NY, USA
- Simons Center for Computational Physical Chemistry, New York University, New York, NY, USA
| | - Theodore Hueckel
- Department of Chemistry, New York University, New York, NY, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Glen M Hocky
- Department of Chemistry, New York University, New York, NY, USA.
- Simons Center for Computational Physical Chemistry, New York University, New York, NY, USA.
| | - Stefano Sacanna
- Department of Chemistry, New York University, New York, NY, USA.
| |
Collapse
|
3
|
Wu J, Wang Q, Li Y, He Y. Imaging of coexisting classical and non-classical oriented attachment growth pathways in covalent organic framework microcrystals. Nat Commun 2025; 16:2727. [PMID: 40108177 PMCID: PMC11923072 DOI: 10.1038/s41467-025-58130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Three-dimensional covalent organic frameworks are promising multifunctional materials for applications in adsorption, separation, and catalysis. However, despite the continuous synthesis of an increasing number of three-dimensional covalent organic frameworks, little is known about the crystal growth pathways. Here, we report the real-time visual observation of the crystal growth process of COF-300 and LZU-79, two typical three-dimensional covalent organic frameworks, using in situ dark-field optical microscopy. Our dark-field optical microscopy imaging results reveal that two crystal-growth pathways are simultaneously operative during the liquid growth of COF-300 and LZU-79 microcrystals, including classical crystal growth modes and non-classical oriented attachment mechanisms. Specifically, detailed tracking of the trajectories between two rod-shaped single-crystal COF-300 pairs suggests that the oriented attachment process undergoes several distinct stages such as approach, alignment at (021) facets, tip-to-tip attachment, fusion, and shaping. Theoretical simulation results show that (021) facets of COF-300 microcrystals, which have a lower repulsive energy barrier due to steric solvation forces from intervening solvents, are energetically more favorable than (010) facets, inducing the oriented attachment between adjacent facets. This work enables a fundamental understanding of how three-dimensional covalent organic framework microcrystals grow dynamically, which can aid the further design of three-dimensional covalent organic frameworks with enhanced performances.
Collapse
Affiliation(s)
- Jinxiang Wu
- School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang, PR China
| | - Qianxi Wang
- School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang, PR China
| | - Yanhao Li
- School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang, PR China
| | - Yi He
- School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang, PR China.
| |
Collapse
|
4
|
Shen L, Dang M. Chiral Biomineral Structures: Synthesis and Inspiring Functional Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2402075. [PMID: 39981874 DOI: 10.1002/smll.202402075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 12/11/2024] [Indexed: 02/22/2025]
Abstract
Biominerals with complex hierarchical structures present important roles, such as defense, predation, or communication, which spurs the scientists to design biomimetic strategies and mimic this microstructure. This review mainly focuses on the synthesized strategies of chiral biominerals and the inspirations in the design of the functional materials. Additive-assisted and template-oriented strategies can control mineral growth through intermolecular interactions, which triggers the chirality transfer from the molecular level to the macroscopic scale. Gel-based limited space reduces the solute diffusion rate and prompts the chiral morphology or helical structure evolution. These strategies play a synergetic role in the mineralization process. This growth process is commonly dominated by the nonclassical routes, and understanding this evolved mechanism is significant for the materials synthesis. The superior performance of the chiral minerals provides sufficient inspiration for materials manufacturing. The twisted layered structure design enhances the rigidity and toughness significantly, which provides a new sight in the hard materials preparation. Chirality arrangement displays the optical characteristic, which is expected to be applied in the sensing. Finally, further directions from mechanisms, and design to production are given.
Collapse
Affiliation(s)
- Lixia Shen
- College of Environmental and Chemical Engineering, Shenyang Ligong University, Liaoning, 110159, P. R. China
| | - Mingyan Dang
- College of Environmental and Chemical Engineering, Shenyang Ligong University, Liaoning, 110159, P. R. China
| |
Collapse
|
5
|
Qie G, Liu R, Deng Q, Deng D, Zhai M, Liu W, Dai W, Han L, Zhu K. Generating Beta Zeolite Nanosheets of Intergrown Polymorph B and C Using Polycationic Structure-Directing Agent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411639. [PMID: 39865777 DOI: 10.1002/smll.202411639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/29/2024] [Indexed: 01/28/2025]
Abstract
Zeolitic nanosheets possess great potential in catalysis due to their enhanced transport property and accessibility toward bulky molecules compared to conventional micron- meter scale crystals. However, the generation of Beta zeolite nanosheets, which are crucial for industrial catalysis, is still challenging for its intergrowth nature. In this work, aluminosilicate Beta nanosheets of ca. 16 nm thick with house-of-cards architecture are generated using a special polycationic organic structure directing agent (OSDA), [-N+(CH3)2-C5H10-N+(CH3)2-C6H12-]n[Br-]2n, in greener hydroxide media. Transmission electron microscopy and electron tomography reconstruction revealed that the nanosheets are composed of unprecedented intergrowth of polymorphs B and polymorph C (i.e., BEC topology), possessing only straight micropore channels. 2D 29Si{1H} and 27Al{1H} heteronuclear correlation NMR spectra reveal that the framework Al atoms are mainly situated close to the ammonium moieties of the OSDA inside straight channels, owing to a strong OSDA-framework attraction. The selectivities of ethylene, propylene and catalyst lifetime have been promoted in n-heptane cracking, due to stronger acidity and enhanced diffusion property. Moreover, the architecture is robust toward deep dealumination and Ti- modification, allowing it to be a superior catalyst in cyclohexene epoxidation. The polycation OSDA design concept and the recipe for Beta nanosheets may find broader applications in catalysis.
Collapse
Affiliation(s)
- Guanyu Qie
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Runze Liu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Quanzheng Deng
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Donghao Deng
- Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai, 201208, P. R. China
| | - Miao Zhai
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Department of Food and Biochemical Engineering, Vocational College, Yantai, 264670, P. R. China
| | - Wei Liu
- Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai, 201208, P. R. China
| | - Weili Dai
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Kake Zhu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
6
|
Wu F, Fan L, Chen Y, Chen S, Shen J, Liu P. Crystallization of 2D TiO 2 Nanosheets via Oriented Attachment of 1D Coordination Polymer. NANO LETTERS 2025; 25:56-62. [PMID: 39423349 PMCID: PMC11719631 DOI: 10.1021/acs.nanolett.4c04084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Demystifying the molecular mechanism of growth is vital for the rational design, synthesis, and optimization of functional nanomaterials. Despite the promising perspectives and extensive efforts, the growth mechanism of atomically thin TiO2(B) nanosheets remains unclear, hence it is difficult to tune their band and surface structures. Herein, we report an oriented attachment-based crystallization mechanism of TiO2(B) nanosheets from a 1D titanium glycolate coordination polymer through hydrolysis and condensation. With time-tracking experiments, this 1D coordination polymer is found to be an intermediate in the synthesis of TiO2(B) nanosheets by using Ti alkoxides and chlorides as precursors, suggesting the universality of the 1D-to-2D growth mechanism. Such a side-to-side attachment pathway bridges the classical and nonclassical interpretations of crystallization, and meanwhile hints at the possibility of other 1D complexes as potential precursors for 2D materials.
Collapse
Affiliation(s)
- Fan Wu
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, People’s
Republic of China
| | - Lijing Fan
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, People’s
Republic of China
| | - Yanxin Chen
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, People’s
Republic of China
| | - Shaohua Chen
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, People’s
Republic of China
| | - Jieyi Shen
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, People’s
Republic of China
| | - Pengxin Liu
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, People’s
Republic of China
- Shanghai
Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| |
Collapse
|
7
|
Luo N, Lu BQ, Deng YW, Zeng H, Zhang Y, Zhan JY, Xu XC, Cao GZ, Wen J, Zhang Z, Feng XP, Jiang X, Chen F, Chen X. The glycerol stabilized calcium phosphate cluster for rapid remineralization of tooth enamel by a water-triggered transformation. Nat Commun 2025; 16:58. [PMID: 39746946 PMCID: PMC11695679 DOI: 10.1038/s41467-024-54785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
Remineralization is a common strategy for the repair of early demineralized tooth enamels, but the harsh dynamic oral environment often hampers its efficacy. Rapid remineralization is expected to address this challenge, however, the stabilizers of remineralization materials often resist their transformation required for repair. Here, by dissolving the ions of calcium and phosphate in glycerol-dominant solvents, we obtain the calcium phosphate clusters (1-2 nm), which are stabilized by glycerol (with high viscosity and affinity to clusters), but can perform a fast enamel repair via the water-triggered transformation in both static and dynamic environments. Upon the in vitro and in vivo (female Sprague-Dawley rats) studies, the clusters swiftly enter the nano-/micro-sized enamel defect sites, then form a compact hydroxyapatite repair layer within a short time (30 min, much faster than the conventional materials), and significantly recovers mechanical properties. This material is promising for large-scale preparation and applications in dental remineralization.
Collapse
Affiliation(s)
- Nan Luo
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Bing-Qiang Lu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China.
| | - Yu-Wei Deng
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, PR China
| | - Hua Zeng
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Yu Zhang
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Jing-Yu Zhan
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Xiao-Chen Xu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Gui-Zhi Cao
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Jin Wen
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, PR China
| | - Zhiyuan Zhang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xi-Ping Feng
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Xinquan Jiang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, PR China
| | - Feng Chen
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, PR China.
| | - Xi Chen
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China.
- National Center for Stomatology, Shanghai, PR China.
- National Clinical Research Center for Oral Diseases, Shanghai, PR China.
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China.
| |
Collapse
|
8
|
Bose P, Srikrishnarka P, Paatelainen M, Nonappa, Kini AR, Som A, Pradeep T. Nanocluster reaction-driven in situ transformation of colloidal nanoparticles to mesostructures. NANOSCALE 2025; 17:803-812. [PMID: 39377419 DOI: 10.1039/d4nr02820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Atomically precise noble metal nanoclusters (NCs) are molecular materials known for their precise composition, electronic structure, and unique optical properties, exhibiting chemical reactivity. Herein, we demonstrated a simple one-pot method for fabricating self-assembled Ag-Au bimetallic mesostructures using a reaction between 2-phenylethanethiol (PET)-protected atomically precise gold NCs and colloidal silver nanoparticles (Ag NPs) in a tunable reaction microenvironment. The reaction carried out in toluene at 45 °C with constant stirring at 250 revolutions per minute (RPM) yielded a thermally stable, micron-sized cuboidal mesocrystals of self-assembled AgAu@PET nanocrystals. However, the reaction in dichloromethane at room temperature with constant stirring at 250 RPM resulted in a self-assembled mesostructure of randomly close-packed AgAu@PET NPs. Using a host of experimental techniques, including optical and electron microscopy, optical absorption spectroscopy, and light scattering, we studied the nucleation and growth processes. Our findings highlight a strategy to utilize precision and plasmonic NP chemistry in tailored microenvironments, leading to customizable bimetallic hybrid three-dimensional nanomaterials with potential applications.
Collapse
Affiliation(s)
- Paulami Bose
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Pillalamarri Srikrishnarka
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Matias Paatelainen
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Amoghavarsha Ramachandra Kini
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Anirban Som
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
9
|
Elizebath D, Sharma S, Varughese S, Ramachandran CN, Praveen VK. Monomers Versus Prenucleation Clusters En Route to Polymorphism of Supramolecular Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405305. [PMID: 39491528 DOI: 10.1002/smll.202405305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/04/2024] [Indexed: 11/05/2024]
Abstract
Polymorphism in supramolecular polymers is strongly correlated with the polymerization pathways underlying their formation. To effectively control emerging polymorphs, a comprehensive understanding of nucleation pathways and mechanisms is essential. Herein, a coronene-dipeptide conjugate (Cr-o-FFOEt) is introduced and its self-assembly into two different stable 1D supramolecular polymorphs (Agg 1 and 2f) is observed in the same solvent composition (water/THF, 7:3 v/v) and same concentration at room temperature, following two competitive self-assembly pathways. The difference in the mode of solvent addition triggers the two self-assembly pathways. Furthermore, the isolated intermediate Agg 2i is found to transform into Agg 1 or Agg 2f under controlled experimental conditions. The supramolecular aggregates of Cr-o-FFOEt are thoroughly examined with the help of optical, chiroptical, and morphological techniques to understand the subtle difference in choosing the self-assembling pathways. The studies reveal that the nanotube formation of Agg 1 follows a classical nucleation-elongation supramolecular polymerization mechanism (involving monomers). In contrast, the helical fibers of Agg 2f are formed by the involvement of preorganized oligomers (nonclassical process). The observation highlights the underappreciated role of prenucleation clusters in pathway complexity and polymorphism of supramolecular 1D polymers.
Collapse
Affiliation(s)
- Drishya Elizebath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjay Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sunil Varughese
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C N Ramachandran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vakayil K Praveen
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
10
|
DiCecco L, Tang T, Sone ED, Grandfield K. Exploring Biomineralization Processes Using In Situ Liquid Transmission Electron Microscopy: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407539. [PMID: 39523734 PMCID: PMC11735904 DOI: 10.1002/smll.202407539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Liquid transmission electron microscopy (TEM) is a newly established technique broadly used to study reactions in situ. Since its emergence, complex and multifaceted biomineralization processes have been revealed with real-time resolution, where classical and non-classical mineralization pathways have been dynamically observed primarily for Ca and Fe-based mineral systems in situ. For years, classical crystallization pathways have dominated theories on biomineralization progression despite observations of non-traditional routes involving precursor phases using traditional- and cryo-TEM. The new dynamic lens provided by liquid TEM is a key correlate to techniques limited to time-stamped, static observations - helping shift paradigms in biomineralization toward non-classical theories with dynamic mechanistic visualization. Liquid TEM provides new insights into fundamental biomineralization processes and essential physiological and pathological processes for a wide range of organisms. This review critically reviews a summary of recent in situ liquid TEM research related to the biomineralization field. Key liquid TEM preparation and imaging parameters are provided as a foundation for researchers while technical challenges are discussed. In future, the expansion of liquid TEM research in the biomineralization field will lead to transformative discoveries, providing complementary dynamic insights into biological systems.
Collapse
Affiliation(s)
- Liza‐Anastasia DiCecco
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- Department of Biomedical EngineeringPennsylvania State UniversityUniversity ParkPA16802USA
| | - Tengteng Tang
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- Center for Applied Biomechanics and Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleVA22911USA
| | - Eli D. Sone
- Institute of Biomedical EngineeringUniversity of TorontoTorontoONM5S 3G9Canada
- Materials Science and EngineeringUniversity of TorontoTorontoONM5S 3E4Canada
- Faculty of DentistryUniversity of TorontoTorontoONM5G 1G6Canada
| | - Kathryn Grandfield
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
| |
Collapse
|
11
|
Chan RR, Pietryga J, Landy KM, Gibson KJ, Mirkin CA. Microcrystal Growth Pathways Investigated with Machine Learning Segmentation and Classification in Scanning Electron Microscopy. ACS NANO 2024. [PMID: 39561324 DOI: 10.1021/acsnano.4c08955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Advances in electron microscopy have revolutionized material characterization on the nano- and microscales, providing important insights into local ordering, structure, and size and quality distributions. While shape and size can be rigorously quantified through microscopy, it is often limited to local structure analysis and fails to describe bulk sample quality. Herein, a flexible machine learning (ML) tool is described that can segment and classify faceted crystals in scanning electron microscopy (SEM) micrographs to determine sample quality through the crystal size and product distribution. As a case study, this tool was applied to investigate crystal growth pathways (classical nucleation and growth compared to nonclassical growth) in DNA-mediated nanoparticle assembly through size and product (single crystal, fused crystal, or noncrystal) distribution of samples containing over 13000 colloidal crystal products. Strong DNA bond strengths (controlled by DNA sequence) lead to fast nucleation that exhausts the monomer concentration, resulting in smaller colloidal crystals. Alternatively, increased thermal energy and crystallization time lead to nonclassical crystallization pathways (coalescence) that result in larger colloidal crystals. This tool is useful since experimental conditions can now be deliberately identified to control colloidal crystal size and size distribution, important considerations for researchers interested in designing and synthesizing colloidal crystal metamaterials.
Collapse
Affiliation(s)
- Rachel R Chan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jacob Pietryga
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Kaitlin M Landy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kyle J Gibson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| |
Collapse
|
12
|
Elizebath D, Vedhanarayanan B, Raj A, Sudarsanakumar C, Lin TW, Praveen VK. Liquid-Liquid Phase Separation Mediated Formation of Chiral 2D Crystalline Nanosheets of a Co-Assembled System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403438. [PMID: 38978442 DOI: 10.1002/smll.202403438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Indexed: 07/10/2024]
Abstract
The role of macromolecule-macromolecule and macromolecule-H2O interactions and the resulting perturbation of the H-bonded network of H2O in the liquid-liquid phase separation (LLPS) process of biopolymers are well-known. However, the potential of the hydrated state of supramolecular structures (non-covalent analogs of macromolecules) of synthetic molecules is not widely recognized for playing a similar role in the LLPS process. Herein, LLPS occurred during the co-assembly of hydrated supramolecular vesicles (bolaamphiphile, BA1) with a net positive charge (zeta potential, ζ = +60 ± 2 mV) and a dianionic chiral molecule (disodium l-[+]-tartrate) is reported. As inferred from cryo-transmission electron microscopy (TEM), the LLPS-formed droplets serve as the nucleation precursors, dictating the structure and properties of the co-assembly. The co-assembled structure formed by LLPS effectively integrates the counter anion's asymmetry, resulting in the formation of ultrathin free-standing, chiral 2D crystalline sheets. The significance of the hydrated state of supramolecular structures in influencing LLPS is unraveled through studies extended to a less hydrated supramolecular structure of a comparable system (BA2). The role of LLPS in modulating the hydrophobic interaction in water paves the way for the creation of advanced functional materials in an aqueous environment.
Collapse
Affiliation(s)
- Drishya Elizebath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Balaraman Vedhanarayanan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Department of Chemistry, Tunghai University, No.1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 40704, Taiwan
| | - Aparna Raj
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - C Sudarsanakumar
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No.1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 40704, Taiwan
| | - Vakayil K Praveen
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
13
|
Wang S, Tran TH, Jia J, Feng Y. A non-classical synthetic strategy for organic mesocrystals. Front Chem 2024; 12:1454650. [PMID: 39351213 PMCID: PMC11439792 DOI: 10.3389/fchem.2024.1454650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Mesocrystals are ordered nanoparticle superstructures, often with internal porosity, which receive much recent research interest in catalysis, energy storage, sensors, and biomedicine area. Understanding the mechanism of synthetic routes is essential for precise control of size and structure that affect the function of mesocrystals. The classical synthetic strategy of mesocrystal was formed via self-assembly of nanoparticles with a faceted inorganic core but a denser (or thicker) shell of organic molecules. However, the potential materials and synthetic handles still need to be explored to meet new applications. In this work, we develop a non-classical synthetic strategy for organic molecules, such as tetrakis (4-hydroxyphenyl) ethylene (TPE-4OH), tetrakis (4-bromophenyl) ethylene (TPE-4Br), and benzopinacole, to produce mesocrystals with composed of microrod arrays via co-solvent-induced crystal transformation. The aligned nanorods are grown epitaxially onto organic microplates, directed by small lattice mismatch between plates and rods. Thus, the present work offers general synthetic handle for establishing well-organized organic mesocrystals.
Collapse
Affiliation(s)
- Shaoyan Wang
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics Chinese Academy of Sciences (SICCAS), Shanghai, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Thu Ha Tran
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jia Jia
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing, China
| | - Yuhua Feng
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing, China
| |
Collapse
|
14
|
Paul S, Gayen K, Cantavella PG, Escuder B, Singh N. Complex Pathways Drive Pluripotent Fmoc-Leucine Self-Assemblies. Angew Chem Int Ed Engl 2024; 63:e202406220. [PMID: 38825832 DOI: 10.1002/anie.202406220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Nature uses complex self-assembly pathways to access distinct functional non-equilibrium self-assemblies. This remarkable ability to steer same set of biomolecules into different self-assembly states is done by avoiding thermodynamic pit. In synthetic systems, on demand control over 'Pathway Complexity' to access self-assemblies different from equilibrium structures remains challenging. Here we show versatile non-equilibrium assemblies of the same monomer via alternate assembly pathways. The assemblies nucleate using non-classical or classical nucleation routes into distinct metastable (transient hydrogels), kinetic (stable hydrogels) and thermodynamic structures [(poly)-crystals and 2D sheets]. Initial chemical and thermal inputs force the monomers to follow different assembly pathways and form soft-materials with distinct molecular arrangements than at equilibrium. In many cases, equilibrium structures act as thermodynamic sink which consume monomers from metastable structures giving transiently formed materials. This dynamics can be tuned chemically or thermally to slow down the dissolution of transient hydrogel, or skip the intermediate hydrogel altogether to reach final equilibrium assemblies. If required this metastable state can be kinetically trapped to give strong hydrogel stable over days. This method to control different self-assembly states can find potential use in similar biomimetic systems to access new materials for various applications.
Collapse
Affiliation(s)
- Subir Paul
- Institute of Advanced Materials, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Castelló, Spain
| | - Kousik Gayen
- Institute of Advanced Materials, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Castelló, Spain
| | - Pau Gil Cantavella
- Institute of Advanced Materials, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Castelló, Spain
| | - Beatriu Escuder
- Institute of Advanced Materials, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Castelló, Spain
| | - Nishant Singh
- Institute of Advanced Materials, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Castelló, Spain
| |
Collapse
|
15
|
Lu Y, Yi L, Fu Z, Xie J, Cheng Q, Fu Z, Zou Z. Nonclassical crystallization of goethite nanorods in limpet teeth by self-assembly of silica-rich nanoparticles reveals structure-mechanical property relations. J Colloid Interface Sci 2024; 669:64-74. [PMID: 38705113 DOI: 10.1016/j.jcis.2024.04.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
The intricate organization of goethite nanorods within a silica-rich matrix makes limpet teeth the strongest known natural material. However, the mineralization pathway of goethite in organisms under ambient conditions remains elusive. Here, by investigating the multi-level structure of limpet teeth at different growth stages, it is revealed that the growth of goethite crystals proceeds by the attachment of amorphous nanoparticles, a nonclassical crystallization pathway widely observed during the formation of calcium-based biominerals. Importantly, these nanoparticles contain a high amount of silica, which is gradually expelled during the growth of goethite. Moreover, in mature teeth of limpet, the content of silica correlates with the size of goethite crystals, where smaller goethite crystals are densely packed in the leading part with higher content of silica. Correspondingly, the leading part exhibits higher hardness and elastic modulus. Thus, this study not only reveals the nonclassical crystallization pathway of goethite nanorods in limpet teeth, but also highlights the critical roles of silica in controlling the hierarchical structure and the mechanical properties of limpet teeth, thus providing inspirations for fabricating biomimetic materials with excellent properties.
Collapse
Affiliation(s)
- Yan Lu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Luyao Yi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zeyao Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jingjing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zhengyi Fu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhaoyong Zou
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
16
|
Shaw EV, Chester AM, Robertson GP, Castillo-Blas C, Bennett TD. Synthetic and analytical considerations for the preparation of amorphous metal-organic frameworks. Chem Sci 2024; 15:10689-10712. [PMID: 39027308 PMCID: PMC11253190 DOI: 10.1039/d4sc01433b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Metal-organic frameworks (MOFs) are hybrid porous materials presenting several tuneable properties, allowing them to be utilised for a wide range of applications. To date, focus has been on the preparation of novel crystalline MOFs for specific applications. Recently, interest in amorphous MOFs (aMOFs), defined by their lack of correlated long-range order, is growing. This is due to their potential favourable properties compared to their crystalline equivalents, including increased defect concentration, improved processability and gas separation ability. Direct synthesis of these disordered materials presents an alternative method of preparation to post-synthetic amorphisation of a crystalline framework, potentially allowing for the preparation of aMOFs with varying compositions and structures, and very different properties to crystalline MOFs. This perspective summarises current literature on directly synthesised aMOFs, and proposes methods that could be utilised to modify existing syntheses for crystalline MOFs to form their amorphous counterparts. It outlines parameters that could discourage the ordering of crystalline MOFs, before examining the potential properties that could emerge. Methodologies of structural characterisation are discussed, in addition to the necessary analyses required to define a topologically amorphous structure.
Collapse
Affiliation(s)
- Emily V Shaw
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Ashleigh M Chester
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Georgina P Robertson
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Celia Castillo-Blas
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Thomas D Bennett
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| |
Collapse
|
17
|
Bi S, Ye J, Tian P, Ning G. Insight from Boric Acid into Bioskeleton Formation: Inscribed Circle Effect on the Edge-Base Plate Growth. Inorg Chem 2024; 63:12740-12751. [PMID: 38941498 DOI: 10.1021/acs.inorgchem.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Complex morphologies in nature often arise from the assembly of elemental building blocks, leading to diverse and intricate structures. Understanding the mechanisms that govern the formation of these complex morphologies remains a significant challenge. In particular, the edge-base plate growth of biogenic crystals plays a crucial role in directing the development of intricate bioskeleton morphologies. However, the factors and regulatory processes that govern edge-base plate growth remain insufficiently understood. Inspired by biological skeletons and based on the soluble property of boric acid (BA) in both water and alcohols, we obtained a series of novel BA morphologies, including coccolith, and anemone biological skeletons. Here, we unveil the "inscribed circle effect", a concise mathematical model that reveals the underlying causative factors and regulatory mechanisms driving edge-base plate growth. Our findings illuminate how variations in solvent environments can exert control over the edge-base plate growth pathways, thereby resulting in the formation of diverse and complex morphologies. This understanding holds significant potential for guiding the chemical synthesis of bioskeleton materials.
Collapse
Affiliation(s)
- Shengnan Bi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Peng Tian
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
18
|
Ruiz-Agudo C, Cölfen H. Exploring the Potential of Nonclassical Crystallization Pathways to Advance Cementitious Materials. Chem Rev 2024; 124:7538-7618. [PMID: 38874016 PMCID: PMC11212030 DOI: 10.1021/acs.chemrev.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Understanding the crystallization of cement-binding phases, from basic units to macroscopic structures, can enhance cement performance, reduce clinker use, and lower CO2 emissions in the construction sector. This review examines the crystallization pathways of C-S-H (the main phase in PC cement) and other alternative binding phases, particularly as cement formulations evolve toward increasing SCMs and alternative binders as clinker replacements. We adopt a nonclassical crystallization perspective, which recognizes the existence of critical intermediate steps between ions in solution and the final crystalline phases, such as solute ion associates, dense liquid phases, amorphous intermediates, and nanoparticles. These multistep pathways uncover innovative strategies for controlling the crystallization of binding phases through additive use, potentially leading to highly optimized cement matrices. An outstanding example of additive-controlled crystallization in cementitious materials is the synthetically produced mesocrystalline C-S-H, renowned for its remarkable flexural strength. This highly ordered microstructure, which intercalates soft matter between inorganic and brittle C-S-H, was obtained by controlling the assembly of individual C-S-H subunits. While large-scale production of cementitious materials by a bottom-up self-assembly method is not yet feasible, the fundamental insights into the crystallization mechanism of cement binding phases presented here provide a foundation for developing advanced cement-based materials.
Collapse
Affiliation(s)
- Cristina Ruiz-Agudo
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
19
|
Kharbot B, Askar H, Gruber D, Paris S. Biomimetic Remineralization of Artificial Caries Lesions with a Calcium Coacervate, Its Components and Self-Assembling Peptide P 11-4 In Vitro. Bioengineering (Basel) 2024; 11:465. [PMID: 38790332 PMCID: PMC11117797 DOI: 10.3390/bioengineering11050465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The application of calcium coacervates (CCs) may hold promise for dental hard tissue remineralization. The aim of this study was to evaluate the effect of the infiltration of artificial enamel lesions with a CC and its single components including polyacrylic acid (PAA) compared to that of the self-assembling peptide P11-4 in a pH-cycling (pHC) model. Enamel specimens were prepared from bovine incisors, partly varnished, and stored in demineralizing solution (DS; pH 4.95; 17 d) to create two enamel lesions per sample. The specimens were randomly allocated to six groups (n = 15). While one lesion per specimen served as the no-treatment control (NTC), another lesion (treatment, T) was etched (H3PO4, 5 s), air-dried and subsequently infiltrated for 10 min with either a CC (10 mg/mL PAA, 50 mM CaCl2 (Ca) and 1 M K2HPO4 (PO4)) (groups CC and CC + DS) or its components PAA, Ca or PO4. As a commercial control, the self-assembling peptide P11-4 (CurodontTM Repair, Credentis, Switzerland) was tested. The specimens were cut perpendicularly to the lesions, with half serving as the baseline (BL) while the other half was exposed to either a demineralization solution for 20 d (pH 4.95; group CC + DS) or pHC for 28 d (pH 4.95, 3 h; pH 7, 21 h; all five of the other groups). The difference in integrated mineral loss between the lesions at BL and after the DS or pHC, respectively, was analyzed using transversal microradiography (ΔΔZ = ΔZpHC - ΔZbaseline). Compared to the NTC, the mineral gain in the T group was significantly higher in the CC + DS, CC and PAA (p < 0.05, Wilcoxon). In all of the other groups, no significant differences between treated and untreated lesions were detected (p > 0.05). Infiltration with the CC and PAA resulted in a consistent mineral gain throughout the lesion body. The CC as well as its component PAA alone promoted the remineralization of artificial caries lesions in the tested pHC model. Infiltration with PAA further resulted in mineral gain in deeper areas of the lesion body.
Collapse
Affiliation(s)
- Basel Kharbot
- Department of Operative, Preventive and Pediatric Dentistry, Charité—Universitätsmedizin Berlin, 14917 Berlin, Germany
| | - Haitham Askar
- Department of Operative, Preventive and Pediatric Dentistry, Charité—Universitätsmedizin Berlin, 14917 Berlin, Germany
| | - Dominik Gruber
- Physical Chemistry, Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Sebastian Paris
- Department of Operative, Preventive and Pediatric Dentistry, Charité—Universitätsmedizin Berlin, 14917 Berlin, Germany
| |
Collapse
|
20
|
Yan Y, Wang J, Lu X, Yuan W, Zhang X. Nucleation-Supersaturation Dual-Drive Crystallization Strategy Enables Efficient Protein Crystallization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307924. [PMID: 38072771 DOI: 10.1002/smll.202307924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/30/2023] [Indexed: 12/21/2023]
Abstract
A rational crystallization strategy is essential to obtain high-quality protein crystals, yet the established methods suffer from different limitations arising from the single regulation on either nucleation or supersaturation. Herein, a nucleation-supersaturation dual-driven crystallization (DDC) strategy that realizes synergistic regulation of heterogeneous nucleation sites and solution supersaturation based on dual surface and confinement effects for efficient protein crystallization is reported. This strategy relies on a p(PEGDA-co-DMAA) hydrogel template with pre-filled NaCl under designed concentrations. Once dropping hen egg white lysozyme (HEWL) protein solution on the hydrogel, the wrinkled surface provides numerous nucleation sites, while the internal structure regulates the solution supersaturation in the crystallization region through diffusion. Finally, DDC strategy can create high-quality HEWL crystals with large sizes (100-300 µm), well-defined morphologies (hexagon and tetragon), and a significantly accelerated nucleation time (9-12 times faster than that achieved using the conventional hanging drop method). It also performs well at wider protein concentrations (10-50 mg mL-1) and categories (e.g., achieving fast crystallization and large-size crystals of trypsin), therefore demonstrating clear advantages and great potential for efficiently fabricating protein crystals desirable for diverse applications.
Collapse
Affiliation(s)
- Yizhen Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuechun Lu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiangyang Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
21
|
Feng C, Lu BQ, Fan Y, Ni H, Zhao Y, Tan S, Zhou Z, Liu L, Hachtel JA, Kepaptsoglou D, Wu B, Gebauer D, He S, Chen F. Amorphous 1-D nanowires of calcium phosphate/pyrophosphate: A demonstration of oriented self-growth of amorphous minerals. J Colloid Interface Sci 2024; 657:960-970. [PMID: 38096779 DOI: 10.1016/j.jcis.2023.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
Amorphous inorganic solids are traditionally isotropic, thus, it is believed that they only grow in a non-preferential way without the assistance of regulators, leading to the morphologies of nanospheres or irregular aggregates of nanoparticles. However, in the presence of (ortho)phosphate (Pi) and pyrophosphate ions (PPi) which have synergistic roles in biomineralization, the highly elongated amorphous nanowires (denoted ACPPNs) form in a regulator-free aqueous solution (without templates, additives, organics, etc). Based on thorough characterization and tracking of the formation process (e.g., Cryo-TEM, spherical aberration correction high resolution TEM, solid state NMR, high energy resolution monochromated STEM-EELS), the microstructure and its preferential growth behavior are elucidated. In ACPPNs, amorphous calcium orthophosphate and amorphous calcium pyrophosphate are distributed at separated but close sites. The ACPPNs grow via either the preferential attachment of ∼2 nm nanoclusters in a 1-dimension way, or the transformation of bigger nanoparticles, indicating an inherent driving force-governed process. We propose that the anisotropy of ACPPNs microstructure, which is corroborated experimentally, causes their oriented growth. This study proves that, unlike the conventional view, amorphous minerals can form via oriented growth without external regulation, demonstrating a novel insight into the structures and growth behaviors of amorphous minerals.
Collapse
Affiliation(s)
- Chaobo Feng
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Bing-Qiang Lu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China.
| | - Yunshan Fan
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Haijian Ni
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Yunfei Zhao
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Shuo Tan
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Zhi Zhou
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Lijia Liu
- Department of Chemistry, University of Western Ontario, London, ON N6A5B7, Canada
| | - Jordan A Hachtel
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Demie Kepaptsoglou
- SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury WA4 4AD, UK; Department of Physics, University of York, York YO10 5DD, UK
| | - Baohu Wu
- Forschungszentrum Jülich GmbH, JCNS-4, JCNS at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, D-30167 Hanover, Germany
| | - Shisheng He
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China.
| | - Feng Chen
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001 PR China.
| |
Collapse
|
22
|
Kharbot B, Bulgun N, Cölfen H, Paris S. Effect of calcium-coacervate infiltration of artificial enamel caries lesions in de- and remineralizing conditions. J Dent 2024; 142:104838. [PMID: 38211686 DOI: 10.1016/j.jdent.2024.104838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVES Calcium-coacervate emulsions (CC) might be considered as mineral precursors to foster remineralization of carious dental hard tissues. This study analyzed the instant effect of repeated infiltration of artificial caries lesions with a CC emulsion as well as the effects of subsequent exposure of CC-infiltrated lesions to demineralizing and remineralizing environments. METHODS Bovine enamel specimens were partly covered with varnish to leave three exposed windows. Artificial enamel caries lesions were created (pH 4.95, 17d). Baseline controls (BL) were obtained by preparing a thin section of each specimen. Specimens were allocated to five groups. In three groups lesions were etched with 37 % phosphoric acid gel, infiltrated with dipotassium hydrogen phosphate and subsequently with a calcium coacervate emulsion, prepared by mixing CaCl2 ⋅ 2H2O with polyacrylic acid sodium salt (PAA-Na). Subsequently, the infiltration effect was either analyzed immediately (Inf.) or after exposition to either de- (Inf.+DS) or remineralizing solution (Inf.+RS) for 10 or 20 days, respectively. In two control groups specimens were exposed to either DS or RS, respectively without prior CC infiltration. Integrated mineral loss [ΔZ(vol%×µm)] was analyzed using transverse microradiography (TMR). RESULTS Infiltration of enamel caries lesions with coacervate solution resulted in only subtle immediate mineral gain even if repeated. When exposed to demineralizing conditions, infiltrated lesions showed significantly less mineral loss compared to untreated controls (p < 0.05; Kruskal Wallis) and exhibited characteristic mineral depositions within the lesion body. CONCLUSIONS While immediate mineral gain by infiltration was only modest, the CC-emulsion might be able to prevent demineralization in acidic conditions. CLINICAL SIGNIFICANCE Calcium coacervates might act protective against further demineralization when infiltrated into enamel caries lesions.
Collapse
Affiliation(s)
- Basel Kharbot
- Department of Operative, Preventive and Pediatric Dentistry, Center for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Aßmannshauser Str. 4-6, Berlin 14197, Germany.
| | - Neziha Bulgun
- Department of Operative, Preventive and Pediatric Dentistry, Center for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Aßmannshauser Str. 4-6, Berlin 14197, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Sebastian Paris
- Department of Operative, Preventive and Pediatric Dentistry, Center for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Aßmannshauser Str. 4-6, Berlin 14197, Germany
| |
Collapse
|
23
|
Ukleev V, Khassanov A, Snigireva I, Konovalov O, Vorobiev A. Mesoscale self-organization of polydisperse magnetic nanoparticles at the water surface. J Chem Phys 2024; 160:074703. [PMID: 38364006 DOI: 10.1063/5.0190550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/24/2024] [Indexed: 02/18/2024] Open
Abstract
In this study, we investigated the self-ordering process in Langmuir films of polydisperse iron oxide nanoparticles on a water surface, employing in situ x-ray scattering, surface pressure-area isotherm analysis, and Brewster angle microscopy. X-ray reflectometry confirmed the formation of a monolayer, while grazing incidence small-angle x-ray scattering revealed short-range lateral correlations with a characteristic length equal to the mean particle size. Remarkably, our findings indicated that at zero surface pressure, the particles organized into submicrometer clusters, merging upon compression to form a homogeneous layer. These layers were subsequently transferred to a solid substrate using the Langmuir-Schaefer technique and further characterized via scanning electron microscopy and polarized neutron reflectometry. Notably, our measurements revealed a second characteristic length in the lateral correlations, orders of magnitude longer than the mean particle diameter, with polydisperse particles forming circular clusters densely packed in a hexagonal lattice. Furthermore, our evidence suggests that the lattice constant of this mesocrystal depends on the characteristics of the particle size distribution, specifically the mean particle size and the width of the size distribution. In addition, we observed internal size separation within these clusters, where larger particles were positioned closer to the center of the cluster. Finally, polarized neutron reflectometry measurements provided valuable insights into the magnetization profile across the layer.
Collapse
Affiliation(s)
- Victor Ukleev
- Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Artoem Khassanov
- Institute of Polymer Materials of the Department of Materials Science Friedrich-Alexander University Erlangen-Nürnberg Martensstrasse 7, D-91058 Erlangen, Germany
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, CS40220, F-38043 Grenoble CEDEX 9, France
| | - Irina Snigireva
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, CS40220, F-38043 Grenoble CEDEX 9, France
| | - Oleg Konovalov
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, CS40220, F-38043 Grenoble CEDEX 9, France
| | - Alexei Vorobiev
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, CS40220, F-38043 Grenoble CEDEX 9, France
- Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
| |
Collapse
|
24
|
Elizebath D, Lim JH, Nishiyama Y, Vedhanarayanan B, Saeki A, Ogawa Y, Praveen VK. Nonclassical Crystal Growth of Supramolecular Polymers in Aqueous Medium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306175. [PMID: 37771173 DOI: 10.1002/smll.202306175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/08/2023] [Indexed: 09/30/2023]
Abstract
A mechanistic understanding of the principles governing the hierarchical organization of supramolecular polymers offers a paradigm for tailoring synthetic molecular architectures at the nano to micrometric scales. Herein, the unconventional crystal growth mechanism of a supramolecular polymer of superbenzene(coronene)-diphenylalanine conjugate (Cr-FFOEt ) is demonstrated. 3D electron diffraction (3D ED), a technique underexplored in supramolecular chemistry, is effectively utilized to gain a molecular-level understanding of the gradual growth of the initially formed poorly crystalline hairy, fibril-like supramolecular polymers into the ribbon-like crystallites. The further evolution of these nanosized flat ribbons into microcrystals by oriented attachment and lateral fusion is probed by time-resolved microscopy and electron diffraction. The gradual morphological and structural changes reveal the nonclassical crystal growth pathway, where the balance of strong and weak intermolecular interactions led to a structure beyond the nanoscale. The role of distinct π-stacking and H-bonding interactions that drive the nonclassical crystallization process of Cr-FFOEt supramolecular polymers is analyzed in comparison to analogous molecules, Py-FFOEt and Cr-FF forming helical and twisted fibers, respectively. Furthermore, the Cr-FFOEt crystals formed through nonclassical crystallization are found to improve the functional properties.
Collapse
Affiliation(s)
- Drishya Elizebath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jia Hui Lim
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, 38000, France
| | | | - Balaraman Vedhanarayanan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yu Ogawa
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, 38000, France
| | - Vakayil K Praveen
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
25
|
Molnár Z, Pekker P, Rečnik A, Pósfai M. Formation and properties of spindle-shaped aragonite mesocrystals from Mg-bearing solutions. NANOSCALE 2024; 16:2012-2021. [PMID: 38194258 DOI: 10.1039/d3nr04672a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The formation of aragonite under ambient conditions is typically linked to Mg-rich aqueous environments. The grains that form in such environments show peculiar properties such as aggregate-like appearance and mesocrystalline character. We tested the effect of dissolved Mg2+ ions on the formation of aragonite mesocrystals by synthesizing aragonite with an automatic titrator at constant pH and at different dissolved Mg : Ca ratios, and by studying the properties of the precipitated material with various scanning transmission electron microscopy (STEM) techniques. At all studied Mg : Ca ratios the firstly condensed carbonate phase was Mg-bearing amorphous calcium carbonate (Mg-ACC) that transformed into aragonite during the synthesis experiments. The aragonite grains had typically aggregate-like appearance and spindle shapes, with the external morphologies of the spindles unaffected by variation in solution chemistry. The alignment of the nanocrystals within the aggregates was crystallographically highly coherent, the [001] directions of nanocrystals showing only a small misorientation with respect to one another; however, both parallel and twin assembly of neighbouring crystals occurred. An increase in the dissolved Mg concentration decreased the crystallographic coherence between the aragonite nanocrystals, suggesting an important role of Mg2+ ions in the assembly of aragonite spindles. Whereas the mesoscale-ordered arrangement of nanocrystals implies a particle-mediated assembly, the observed differences in particle size and composition between the amorphous precursor and the crystalline end-product suggest that the crystallization includes at least partial dissolution and re-precipitation. These findings provide insight into the formation of aragonite and could contribute to the understanding of important aspects of the formation of mesocrystals and hierarchically structured biogenic minerals.
Collapse
Affiliation(s)
- Zsombor Molnár
- University of Pannonia, Research Institute of Biomolecular and Chemical Engineering, Nanolab, Egyetem st. 10, 8200, Veszprém, Hungary.
- HUN-REN-PE Environmental Mineralogy Research Group, Egyetem st. 10, 8200, Veszprém, Hungary
| | - Péter Pekker
- University of Pannonia, Research Institute of Biomolecular and Chemical Engineering, Nanolab, Egyetem st. 10, 8200, Veszprém, Hungary.
| | - Aleksander Rečnik
- Jožef Stefan Institute, Department of Nanostructured Materials, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Mihály Pósfai
- University of Pannonia, Research Institute of Biomolecular and Chemical Engineering, Nanolab, Egyetem st. 10, 8200, Veszprém, Hungary.
- HUN-REN-PE Environmental Mineralogy Research Group, Egyetem st. 10, 8200, Veszprém, Hungary
| |
Collapse
|
26
|
Abstract
Oriented attachment (OA), that is, the coalescence of crystals through attachment on coaligned crystal faces, is a nonclassical crystal growth process. Before attachment, a mesocrystal consisting of coaligned parallel crystals but with liquid separating them was observed. Fundamental questions such as why OA is kinetically favored and whether a mesocrystal stage is a prerequisite for OA are raised. Through combining brute-force molecular dynamics simulations and path samplings based on extensive umbrella simulations, we address these questions with a case study on the OA of a mica nanocrystal onto a mica crystal substrate in water. Brute-force simulations show that if two mica crystals are attached but largely misaligned, coalignment hardly appears. Thus, if OA is possible, then coalignment must appear before the attachment between crystals. Electrophoresis of the nanocrystal toward the substrate surface is spontaneous, but mesocrystal formation is occasional, also shown by brute-force simulations. Free energies along different pathways show that OA is spontaneous and kinetically favored over non-OA, and a mesocrystal formation is just a bifurcation in the pathway. OA is through a pathway in which the nanocrystal is tilted with respect to the substrate. Part of the nanocrystal is attached to the substrate first, and then, OA is gradually completed. Once a mesocrystal is occasionally formed, then a jump event is needed for the nanocrystal to get back to the OA pathway. The sampling technique here can hopefully guide the design of nanostructured materials facilitated by OA.
Collapse
Affiliation(s)
- Meng Chen
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yuhang Li
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxi Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Gindele MB, Vinod-Kumar S, Rochau J, Boemke D, Groß E, Redrouthu VS, Gebauer D, Mathies G. Colloidal pathways of amorphous calcium carbonate formation lead to distinct water environments and conductivity. Nat Commun 2024; 15:80. [PMID: 38167336 PMCID: PMC10761707 DOI: 10.1038/s41467-023-44381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
CaCO3 is the most abundant biomineral and a major constituent of incrustations arising from water hardness. Polycarboxylates play key roles in controlling mineralization. Herein, we present an analytical and spectroscopic study of polycarboxylate-stabilized amorphous CaCO3 (ACC) and its formation via a dense liquid precursor phase (DLP). Polycarboxylates facilitate pronounced, kinetic bicarbonate entrapment in the DLP. Since bicarbonate is destabilized in the solid state, DLP dehydration towards solid ACC necessitates the formation of locally calcium deficient sites, thereby inhibiting nucleation. Magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy of poly-aspartate-stabilized ACC reveals the presence of two distinct environments. The first contains immobile calcium and carbonate ions and structural water molecules, undergoing restricted, anisotropic motion. In the second environment, water molecules undergo slow, but isotropic motion. Indeed, conductive atomic force microscopy (C-AFM) reveals that ACC conducts electrical current, strongly suggesting that the mobile environment pervades the bulk of ACC, with dissolved hydroxide ions constituting the charge carriers. We propose that the distinct environments arise from colloidally stabilized interfaces of DLP nanodroplets, consistent with the pre-nucleation cluster (PNC) pathway.
Collapse
Affiliation(s)
- Maxim B Gindele
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Sanjay Vinod-Kumar
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany
| | - Johannes Rochau
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Daniel Boemke
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Eduard Groß
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | | | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany.
| | - Guinevere Mathies
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany.
| |
Collapse
|
28
|
Linares-Moreau M, Brandner LA, Velásquez-Hernández MDJ, Fonseca J, Benseghir Y, Chin JM, Maspoch D, Doonan C, Falcaro P. Fabrication of Oriented Polycrystalline MOF Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309645. [PMID: 38018327 DOI: 10.1002/adma.202309645] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Indexed: 11/30/2023]
Abstract
The field of metal-organic frameworks (MOFs) has progressed beyond the design and exploration of powdery and single-crystalline materials. A current challenge is the fabrication of organized superstructures that can harness the directional properties of the individual constituent MOF crystals. To date, the progress in the fabrication methods of polycrystalline MOF superstructures has led to close-packed structures with defined crystalline orientation. By controlling the crystalline orientation, the MOF pore channels of the constituent crystals can be aligned along specific directions: these systems possess anisotropic properties including enhanced diffusion along specific directions, preferential orientation of guest species, and protection of functional guests. In this perspective, we discuss the current status of MOF research in the fabrication of oriented polycrystalline superstructures focusing on the specific crystalline directions of orientation. Three methods are examined in detail: the assembly from colloidal MOF solutions, the use of external fields for the alignment of MOF particles, and the heteroepitaxial ceramic-to-MOF growth. This perspective aims at promoting the progress of this field of research and inspiring the development of new protocols for the preparation of MOF systems with oriented pore channels, to enable advanced MOF-based devices with anisotropic properties.
Collapse
Affiliation(s)
- Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Lea A Brandner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | | | - Javier Fonseca
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Youven Benseghir
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna, A-1090, Austria
| | - Jia Min Chin
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna, A-1090, Austria
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Christian Doonan
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| |
Collapse
|
29
|
Kurtyka N, van Devener B, Chung BW, McDonald LW. In Situ Liquid Cell Transmission Electron Microscopy Study of Studtite Particle Formation and Growth via Electron Beam Radiolysis. ACS OMEGA 2023; 8:48336-48343. [PMID: 38144047 PMCID: PMC10733958 DOI: 10.1021/acsomega.3c07743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023]
Abstract
This study presents in situ observations of studtite (UO2O2(H2O)2·2H2O) crystal growth utilizing liquid phase transmission electron microscopy (LP-TEM). Studtite was precipitated from a uranyl nitrate hexahydrate solution using hydrogen peroxide formed by the radiolysis of water in the TEM electron beam. The hydrogen peroxide (H2O2) concentration, directly controlled by the electron beam current, was varied to create local environments of low and high concentrations to compare the impact of the supersaturation ratio on the nucleation and growth mechanisms of studtite particles. The subsequent growth mechanisms were observed in real time by TEM and scanning TEM imaging. After the initial precipitation reaction, a post-mortem TEM analysis was performed on the samples to obtain high-resolution TEM images and selected area electron diffraction patterns to investigate crystallinity as well as energy-dispersive X-ray spectroscopy spectra to ensure that studtite was produced. The results reveal that studtite particles form through various mechanisms based on the concentration ratio of uranyl to H2O2 and that studtite is initially produced through an amorphous intermediary prior to formation of the crystalline material commonly reported in the literature.
Collapse
Affiliation(s)
- Nick Kurtyka
- Department
of Nuclear Engineering, University of Utah, 110 Central Campus Dr., Suite 2000, Salt Lake City, Utah 84112, United States
| | - Brian van Devener
- Electron
Microscopy and Surface Analysis Laboratory, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Brandon W. Chung
- Lawrence
Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, United States
| | - Luther W. McDonald
- Department
of Nuclear Engineering, University of Utah, 110 Central Campus Dr., Suite 2000, Salt Lake City, Utah 84112, United States
| |
Collapse
|
30
|
Roger K, Shcherbakova N, Raynal L. Nanoprecipitation through solvent-shifting using rapid mixing: Dispelling the Ouzo boundary to reach large solute concentrations. J Colloid Interface Sci 2023; 650:2049-2055. [PMID: 37557025 DOI: 10.1016/j.jcis.2023.07.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
HYPOTHESIS The addition of a non-solvent to a solute in good solvent solution leads to nanoprecipitation, which is the spontaneous formation of nanodomains. Yet, increasing solute concentration usually leads to the formation of macrodomains that quickly separate into a bulk phase, which is a severe process limitation. The corresponding concentration threshold, often termed as the Ouzo boundary, remains a mystery that could find its origin in the complex interplay between nanoprecipitation and mixing. EXPERIMENTS We performed a systematic investigation of nanoprecipitation thermodynamics and kinetics as well as its interplay with mixing hydrodynamics for the hexadecane-acetone-water system, in the presence of the non-ionic C16EO8 surfactant. The binodal curve and its underlying tie-lines were obtained using Raman spectroscopy, allowing the computation of the spinodal curve. Kinetics were probed using a continuous flow setup that combines two sequential rapid mixers. The impact of mixing efficiency was probed systematically by varying the oil concentration for respectively slow and rapid mixing, while the uncoupling from mixing and nanoprecipitation was quantified by modifying systematically the flow rate in a continuous flow approach. FINDINGS We elucidate the nature of the Ouzo boundary that marks the maximal solute concentration leading to nanoobjects. Rather than a thermodynamic boundary, as evidenced by its uncorrelation to the spinodal curve, it results from the coupling of nanoprecipitation and mixing when both processes occur within the same time range, leading to heterogeneous conditions and the escape of some objects to the macroscale. Increasing the solute concentration speeds up nanoprecipitation and thus requires increasingly faster mixing times to uncouple both processes. Accordingly, if the mixing efficiency is large enough, it is possible to dispel the Ouzo boundary and reach very large solute concentrations. Implementing rapid mixing strategies in continuous flow approaches is thus the solution to overcome the most stringent condition of nanoprecipitation and open the way to scale-up, while also providing efficient means to probe its fast mechanism. Overall, the simultaneous control of hydrodynamics and physical chemistry is thus key to boost up the Ouzo effect.
Collapse
Affiliation(s)
- Kevin Roger
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, 31432, France.
| | - Nataliya Shcherbakova
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, 31432, France
| | - Lison Raynal
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, 31432, France
| |
Collapse
|
31
|
Aloisio L, Moschetta M, Boschi A, Fleitas AG, Zangoli M, Venturino I, Vurro V, Magni A, Mazzaro R, Morandi V, Candini A, D'Andrea C, Paternò GM, Gazzano M, Lanzani G, Di Maria F. Insight on the Intracellular Supramolecular Assembly of DTTO: A Peculiar Example of Cell-Driven Polymorphism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302756. [PMID: 37364565 DOI: 10.1002/adma.202302756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/07/2023] [Indexed: 06/28/2023]
Abstract
The assembly of supramolecular structures within living systems is an innovative approach for introducing artificial constructs and developing biomaterials capable of influencing and/or regulating the biological responses of living organisms. By integrating chemical, photophysical, morphological, and structural characterizations, it is shown that the cell-driven assembly of 2,6-diphenyl-3,5-dimethyl-dithieno[3,2-b:2',3'-d]thiophene-4,4-dioxide (DTTO) molecules into fibers results in the formation of a "biologically assisted" polymorphic form, hence the term bio-polymorph. Indeed, X-ray diffraction reveals that cell-grown DTTO fibers present a unique molecular packing leading to specific morphological, optical, and electrical properties. Monitoring the process of fiber formation in cells with time-resolved photoluminescence, it is established that cellular machinery is necessary for fiber production and a non-classical nucleation mechanism for their growth is postulated. These biomaterials may have disruptive applications in the stimulation and sense of living cells, but more crucially, the study of their genesis and properties broadens the understanding of life beyond the native components of cells.
Collapse
Affiliation(s)
- Ludovico Aloisio
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Matteo Moschetta
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Alex Boschi
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza S. Silvestro 12, Pisa, 56127, Italy
| | - Ariel García Fleitas
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Mattia Zangoli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| | - Ilaria Venturino
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Vito Vurro
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Arianna Magni
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Raffaello Mazzaro
- Dipartimento di Fisica e Astronomia "Augusto Righi", Università di Bologna, Via C. Berti Pichat 6/2, Bologna, 40127, Italy
| | - Vittorio Morandi
- Institute for Microelectronics and Microsystems (IMM), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, 40129, Italy
| | - Andrea Candini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| | - Cosimo D'Andrea
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Giuseppe Maria Paternò
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Massimo Gazzano
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| | - Guglielmo Lanzani
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Francesca Di Maria
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| |
Collapse
|
32
|
Zschiesche H, Soroka IL, Jonsson M, Tarakina NV. Non-classical crystallization of CeO 2 by means of in situ electron microscopy. NANOSCALE 2023; 15:14595-14605. [PMID: 37610726 PMCID: PMC10500627 DOI: 10.1039/d3nr02400h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
During in situ liquid-phase electron microscopy (LP-EM) observations, the application of different irradiation dose rates may considerably alter the chemistry of the studied solution and influence processes, in particular growth pathways. While many processes have been studied using LP-EM in the last decade, the extent of the influence of the electron beam is not always understood and comparisons with corresponding bulk experiments are lacking. Here, we employ the radiolytic oxidation of Ce3+ in aqueous solution as a model reaction for the in situ LP-EM study of the formation of CeO2 particles. We compare our findings to the results from our previous study where a larger volume of Ce3+ precursor solution was subjected to γ-irradiation. We systematically analyze the effects of the applied irradiation dose rates and the induced diffusion of Ce ions on the growth mechanisms and the morphology of ceria particles. Our results show that an eight orders of magnitude higher dose rate applied during homogeneous electron-radiation in LP-EM compared to the dose rate using gamma-radiation does not affect the CeO2 particle growth pathway despite the significant higher Ce3+ to Ce4+ oxidation rate. Moreover, in both cases highly ordered structures (mesocrystals) are formed. This finding is explained by the stepwise formation of ceria particles via an intermediate phase, a signature of non-classical crystallization. Furthermore, when irradiation is applied locally using LP scanning transmission electron microscopy (LP-STEM), the higher conversion rate induces Ce-ion concentration gradients affecting the CeO2 growth. The appearance of branched morphologies is associated with the change to diffusion limited growth.
Collapse
Affiliation(s)
- Hannes Zschiesche
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Potsdam, Germany.
| | - Inna L Soroka
- Applied Physical Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mats Jonsson
- Applied Physical Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Nadezda V Tarakina
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Potsdam, Germany.
| |
Collapse
|
33
|
Nogueira JA, Batista BC, Cooper MA, Steinbock O. Nonclassical Crystallization Causes Dendritic and Band-Like Microscale Patterns in Inorganic Precipitates. Angew Chem Int Ed Engl 2023; 62:e202306885. [PMID: 37463849 DOI: 10.1002/anie.202306885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
The self-organization of complex solids can create patterns extending hierarchically from the atomic to the macroscopic scale. A frequently studied model is the chemical garden system which consists of life-like precipitate shapes. In this study, we examine the thin walls of chemical gardens using microfluidic devices that yield linear Ni(OH)2 precipitate membranes. We observe distinct light-scattering patterns within the compositionally pure membranes, including disorganized spots, dendrites, and parallel bands. The bands are tilted with respect to the membrane axis and their spacing (20-100 μm) increases with increasing flow rates. Scanning electron microscopy reveals that the bands consist of submicron particles embedded in a denser material and these particles are also found in the reactant stream. We propose that dendrites and bands arise from the attachment of solution-borne nanoparticles. The bands are generated by particle-aggregation zones moving upstream along the slowly advancing membrane surface. The speed of the aggregation zones is proportional to the band distance and defines the system's dispersion relation. This speed-wavelength dependence and the flow-opposing motion of the aggregation zones are likely caused by low particle concentrations in the wake of the zones that only slowly recover due to Brownian motion and particle nucleation.
Collapse
Affiliation(s)
- Jéssica A Nogueira
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Bruno C Batista
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Maggie A Cooper
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
34
|
Chen Z, Fan Q, Zhou J, Wang X, Huang M, Jiang H, Cölfen H. Toward Understanding the Formation Mechanism and OER Catalytic Mechanism of Hydroxides by In Situ and Operando Techniques. Angew Chem Int Ed Engl 2023:e202309293. [PMID: 37650657 DOI: 10.1002/anie.202309293] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Developing efficient and affordable electrocatalysts for the sluggish oxygen evolution reaction (OER) remains a significant barrier that needs to be overcome for the practical applications of hydrogen production via water electrolysis, transforming CO2 to value-added chemicals, and metal-air batteries. Recently, hydroxides have shown promise as electrocatalysts for OER. In situ or operando techniques are particularly indispensable for monitoring the key intermediates together with understanding the reaction process, which is extremely important for revealing the formation/OER catalytic mechanism of hydroxides and preparing cost-effective electrocatalysts for OER. However, there is a lack of comprehensive discussion on the current status and challenges of studying these mechanisms using in situ or operando techniques, which hinders our ability to identify and address the obstacles present in this field. This review offers an overview of in situ or operando techniques, outlining their capabilities, advantages, and disadvantages. Recent findings related to the formation mechanism and OER catalytic mechanism of hydroxides revealed by in situ or operando techniques are also discussed in detail. Additionally, some current challenges in this field are concluded and appropriate solution strategies are provided.
Collapse
Affiliation(s)
- Zongkun Chen
- University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Current address: Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der, Ruhr, Germany
| | - Qiqi Fan
- University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Jian Zhou
- University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Xingkun Wang
- Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, P. R. China
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, P. R. China
| | - Heqing Jiang
- Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, P. R. China
| | - Helmut Cölfen
- University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
35
|
Zhang B, Zhu Y, Shi S, Li Y, Luo Y, Huang Z, Xiao W, Wang S, Zhang P, Shu Y, Chen C. Embedding Hierarchical Pores by Mechanochemistry in Carbonates with Superior Chemoselective Catalysis and Stability. Inorg Chem 2023; 62:12920-12930. [PMID: 37523448 DOI: 10.1021/acs.inorgchem.3c01648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Hierarchical porosity of carbonates can facilitate their performance in massive applications as compared to their corresponding bulk samples. Traditional solution-based precipitation is typically utilized to fabricate porous carbonates. However, this tactic is generally employed under humid conditions, which demand soluble metal precursors, solvents, and extended dry periods. A salt-assisted mechanochemistry is exploited in contemporary work to settle the shortcomings. Enlighted by solid-state technology, this approach eliminates the utilization of solvents, and the process of ball milling can create pores in 5 min. A range of highly porous carbonates and their derivatives are acquired, with several materials surpassing recording surface areas (e.g., H-CaCO3: 108 m2/g, SrCO3: 125 m2/g, BaCO3: 172 m2/g, Pd/H-CaCO3 catalyst: 101 m2/g). The results display that Pd/H-CaCO3 shows superior catalytic efficiency in the synthesis of aniline (turnover frequency [TON] = 1.33 × 104/h-1, yield ≥ 99%, and recycle stability: 11 cycles) and dye degradation. Combining mechanochemistry and salt-assisted tactic provides a facile and efficient pathway for processing porous materials.
Collapse
Affiliation(s)
- Bingzhen Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yahui Zhu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shunli Shi
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Ying Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yanping Luo
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Zhixin Huang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Weiming Xiao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Pengfei Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuan Shu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
36
|
Lambora S, Bhardwaj A. Morphology Transition with Temperature and its Effect on Optical Properties of Colloidal MoS 2 Nanostructures. ACS OMEGA 2023; 8:27725-27731. [PMID: 37546589 PMCID: PMC10398838 DOI: 10.1021/acsomega.3c03478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Morphology plays a crucial role in determining the chemical and optical properties of nanomaterials due to confinement effects. We report the morphology transition of colloidal molybdenum disulfide (MoS2) nanostructures, synthesized by a one-pot heat-up method, from a mix of quantum dots (QDs) and nanosheets to predominantly nanorods by varying the synthesis reaction temperature from 90 to 160 °C. The stoichiometry and composition of the synthesized QDs, nanosheets, and nanorods were quantified to be MoS2 using energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy analyses. A nanostructure morphology transition due to variation in the reaction temperature resulted in a photoluminescence quantum yield enhancement from 0 to 4.4% on increasing the temperature from 90 to 120 °C. On further increase in the temperature to 160 °C, a decrease in the quantum yield to 3.06% is observed. Red-shifts of ≈18 and ≈140 nm in the emission maxima and absorption edge, respectively, are observed for the synthesized nanostructures with an increase in the reaction temperature from 90 to 160 °C. The change in the quantum yield is attributed to the change in shape and hence confinement of charge carriers. To the best of our knowledge, microscopic analysis of variation in shape and optical properties of colloidal MoS2 nanostructures with temperature, explained by a nonclassical growth mechanism is presented here for the first time.
Collapse
|
37
|
Ma H, Kang S, Lee S, Park G, Bae Y, Park G, Kim J, Li S, Baek H, Kim H, Yu JS, Lee H, Park J, Yang J. Moisture-Induced Degradation of Quantum-Sized Semiconductor Nanocrystals through Amorphous Intermediates. ACS NANO 2023. [PMID: 37399231 DOI: 10.1021/acsnano.3c03103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Elucidating the water-induced degradation mechanism of quantum-sized semiconductor nanocrystals is an important prerequisite for their practical application because they are vulnerable to moisture compared to their bulk counterparts. In-situ liquid-phase transmission electron microscopy is a desired method for studying nanocrystal degradation, and it has recently gained technical advancement. Herein, the moisture-induced degradation of semiconductor nanocrystals is investigated using graphene double-liquid-layer cells that can control the initiation of reactions. Crystalline and noncrystalline domains of quantum-sized CdS nanorods are clearly distinguished during their decomposition with atomic-scale imaging capability of the developed liquid cells. The results reveal that the decomposition process is mediated by the involvement of the amorphous-phase formation, which is different from conventional nanocrystal etching. The reaction can proceed without the electron beam, suggesting that the amorphous-phase-mediated decomposition is induced by water. Our study discloses unexplored aspects of moisture-induced deformation pathways of semiconductor nanocrystals, involving amorphous intermediates.
Collapse
Affiliation(s)
- Hyeonjong Ma
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Sungsu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seunghan Lee
- Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Gisang Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Yuna Bae
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyuri Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jihoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Shi Li
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hayeon Baek
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeongseung Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jong-Sung Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hoonkyung Lee
- Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
38
|
Kapuria N, Nan B, Adegoke TE, Bangert U, Cabot A, Singh S, Ryan KM. Colloidal Synthesis of Multinary Alkali-Metal Chalcogenides Containing Bi and Sb: An Emerging Class of I-V-VI 2 Nanocrystals with Tunable Composition and Interesting Properties. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:4810-4820. [PMID: 37396682 PMCID: PMC10308588 DOI: 10.1021/acs.chemmater.3c00673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Indexed: 07/04/2023]
Abstract
The growth mechanism and synthetic controls for colloidal multinary metal chalcogenide nanocrystals (NCs) involving alkali metals and the pnictogen metals Sb and Bi are unknown. Sb and Bi are prone to form metallic nanocrystals that stay as impurities in the final product. Herein, we synthesize colloidal NaBi1-xSbxSe2-ySy NCs using amine-thiol-Se chemistry. We find that ternary NaBiSe2 NCs initiate with Bi0 nuclei and an amorphous intermediate nanoparticle formation that gradually transforms into NaBiSe2 upon Se addition. Furthermore, we extend our methods to substitute Sb in place of Bi and S in place of Se. Our findings show the initial quasi-cubic morphology transforms into a spherical shape upon increased Sb substitution, and the S incorporation promotes elongation along the <111> direction. We further investigate the thermoelectric transport properties of the Sb-substituted material displaying very low thermal conductivity and n-type transport behavior. Notably, the NaBi0.75Sb0.25Se2 material exhibits an ultralow thermal conductivity of 0.25 W·m-1·K-1 at 596 K with an average thermal conductivity of 0.35 W·m-1·K-1 between 358 and 596 K and a ZTmax of 0.24.
Collapse
Affiliation(s)
- Nilotpal Kapuria
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Bingfei Nan
- Catalonia
Institute for Energy Research -IREC, 08930 Barcelona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Temilade Esther Adegoke
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Ursel Bangert
- Department
of Physics and Energy and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Andreu Cabot
- Catalonia
Institute for Energy Research -IREC, 08930 Barcelona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Shalini Singh
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Kevin M. Ryan
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| |
Collapse
|
39
|
Korede V, Nagalingam N, Penha FM, van der Linden N, Padding JT, Hartkamp R, Eral HB. A Review of Laser-Induced Crystallization from Solution. CRYSTAL GROWTH & DESIGN 2023; 23:3873-3916. [PMID: 37159656 PMCID: PMC10161235 DOI: 10.1021/acs.cgd.2c01526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Indexed: 05/11/2023]
Abstract
Crystallization abounds in nature and industrial practice. A plethora of indispensable products ranging from agrochemicals and pharmaceuticals to battery materials are produced in crystalline form in industrial practice. Yet, our control over the crystallization process across scales, from molecular to macroscopic, is far from complete. This bottleneck not only hinders our ability to engineer the properties of crystalline products essential for maintaining our quality of life but also hampers progress toward a sustainable circular economy in resource recovery. In recent years, approaches leveraging light fields have emerged as promising alternatives to manipulate crystallization. In this review article, we classify laser-induced crystallization approaches where light-material interactions are utilized to influence crystallization phenomena according to proposed underlying mechanisms and experimental setups. We discuss nonphotochemical laser-induced nucleation, high-intensity laser-induced nucleation, laser trapping-induced crystallization, and indirect methods in detail. Throughout the review, we highlight connections among these separately evolving subfields to encourage the interdisciplinary exchange of ideas.
Collapse
Affiliation(s)
- Vikram Korede
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Nagaraj Nagalingam
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Frederico Marques Penha
- Department
of Chemical Engineering, KTH Royal Institute
of Technology, Teknikringen
42, 114-28 Stockholm, Sweden
| | - Noah van der Linden
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Johan T. Padding
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Remco Hartkamp
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Huseyin Burak Eral
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
40
|
Sasaki M, Hashimoto S, Iso Y, Oaki Y, Isobe T, Imai H. Enhanced and stabilized photoluminescence of perovskite cesium lead bromide nanocubes through ordered assemblies. NANOSCALE ADVANCES 2023; 5:2553-2557. [PMID: 37143814 PMCID: PMC10153085 DOI: 10.1039/d2na00784c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023]
Abstract
This work clarified the effects of self-assembly of perovskite cesium lead bromide (CsPbBr3) nanocubes (NCs) covered with didodecyldimethyl ammonium bromide (DDAB) on photoluminescence (PL) properties. Although the PL intensity of isolated NCs was weakened in the solid state even under inert conditions, the quantum yield of PL (PLQY) and the photostability of DDAB-covered NCs were drastically improved by the formation of two-dimensional (2D) ordered arrays on a substrate. The PLQY of the 2D arrays increased to ca. 60% by initial excitation illumination at 468 nm and was maintained for over 4000 h. The improved PL properties are attributable to the fixation of the surface ligand around the NCs in the specific ordered arrays.
Collapse
Affiliation(s)
- Moeka Sasaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Shota Hashimoto
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Yoshiki Iso
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Tetsuhiko Isobe
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
41
|
Fu J, He Z, Schott E, Fei H, Tu M, Wu YN. Sequential Sol-Gel Self-Assembly and Nonclassical Gel-Crystal Transformation of the Metal-Organic Framework Gel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206718. [PMID: 36737849 DOI: 10.1002/smll.202206718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/05/2023] [Indexed: 05/04/2023]
Abstract
Metal-organic framework (MOF) gel, an emerging subtype of MOF structure, is unique in formation and function; however, its evolutionary process remains elusive. Here, the evolution of a model gel-based MOF, UiO-66(Zr) gel, is explored by demonstrating its sequential sol-gel self-assembly and nonclassical gel-crystal transformation. The control of the sol-gel process enables the observation and characterization of structures in each assembly stage (phase-separation, polycondensation, and hindered-crystallization) and facilitates the preparation of hierarchical materials with giant mesopores. The gelation mechanism is tentatively attributed to the formation of zirconium oligomers. By further utilizing the pre-synthesized gel, the nonclassical gel-crystal transformation is achieved by the modulation in an unconventional manner, which sheds light on crystal intermediates and distinct crystallization motions ("growth and splitting" and "aggregation and fusion"). The overall sol-gel and gel-crystal evolutions of UiO-66(Zr) enrich self-assembly and crystallization domains, inspire the design of functional structures, and demand more in-depth research on the intermediates in the future.
Collapse
Affiliation(s)
- Jiarui Fu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Ziyan He
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Eduardo Schott
- Department of Inorganic Chemistry of the Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Min Tu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
42
|
Multimodal imaging of cubic Cu 2O@Au nanocage formation via galvanic replacement using X-ray ptychography and nano diffraction. Sci Rep 2023; 13:318. [PMID: 36609430 PMCID: PMC9823101 DOI: 10.1038/s41598-022-26877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Being able to observe the formation of multi-material nanostructures in situ, simultaneously from a morphological and crystallographic perspective, is a challenging task. Yet, this is essential for the fabrication of nanomaterials with well-controlled composition exposing the most active crystallographic surfaces, as required for highly active catalysts in energy applications. To demonstrate how X-ray ptychography can be combined with scanning nanoprobe diffraction to realize multimodal imaging, we study growing Cu2O nanocubes and their transformation into Au nanocages. During the growth of nanocubes at a temperature of 138 °C, we measure the crystal structure of an individual nanoparticle and determine the presence of (100) crystallographic facets at its surface. We subsequently visualize the transformation of Cu2O into Au nanocages by galvanic replacement. The nanocubes interior homogeneously dissolves while smaller Au particles grow on their surface and later coalesce to form porous nanocages. We finally determine the amount of radiation damage making use of the quantitative phase images. We find that both the total surface dose as well as the dose rate imparted by the X-ray beam trigger additional deposition of Au onto the nanocages. Our multimodal approach can benefit in-solution imaging of multi-material nanostructures in many related fields.
Collapse
|
43
|
Mani R, Peltonen L, Strachan CJ, Karppinen M, Louhi-Kultanen M. Nonclassical Crystallization and Core-Shell Structure Formation of Ibuprofen from Binary Solvent Solutions. CRYSTAL GROWTH & DESIGN 2023; 23:236-245. [PMID: 36624777 PMCID: PMC9817074 DOI: 10.1021/acs.cgd.2c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Liquid-liquidphase separation (LLPS) or dense liquid intermediates during the crystallization of pharmaceutical molecules is common; however, their role in alternative nucleation mechanisms is less understood. Herein, we report the formation of a dense liquid intermediate followed by a core-shell structure of ibuprofen crystals via nonclassical crystallization. The Raman and SAXS results of the dense phase uncover the molecular structural ordering and its role in nucleation. In addition to the dimer formation of ibuprofen, which is commonly observed in the solution phase, methyl group vibrations in the Raman spectra show intermolecular interactions similar to those in the solid phase. The SAXS data validate the cluster size differences in the supersaturated solution and dense phase. The focused-ion beam cut image shows the attachment of nanoparticles, and we proposed a possible mechanism for the transformation from the dense phase into a core-shell structure. The unstable phase or polycrystalline core and its subsequent dissolution from inside to outside or recrystallization by reversed crystal growth produces the core-shell structure. The LLPS intermediate followed by the core-shell structure and its dissolution enhancement unfold a new perspective of ibuprofen crystallization.
Collapse
Affiliation(s)
- Rajaboopathi Mani
- Department
of Chemical and Metallurgical Engineering, Aalto University, FI-00076 Aalto (Espoo), Finland
- Department
of Physics & Nanotechnology, SRM Institute
of Science & Technology, Kattankulathur 603203, Tamilnadu, India
| | - Leena Peltonen
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, 00014 Helsinki, Finland
| | - Clare J. Strachan
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, 00014 Helsinki, Finland
| | - Maarit Karppinen
- Department
of Chemistry and Materials Science, Aalto
University, FI-00076 Aalto (Espoo), Finland
| | - Marjatta Louhi-Kultanen
- Department
of Chemical and Metallurgical Engineering, Aalto University, FI-00076 Aalto (Espoo), Finland
| |
Collapse
|
44
|
Bertuit E, Menguy N, Wilhelm C, Rollet AL, Abou-Hassan A. Angular orientation between the cores of iron oxide nanoclusters controls their magneto-optical properties and magnetic heating functions. Commun Chem 2022; 5:164. [PMID: 36698002 PMCID: PMC9814453 DOI: 10.1038/s42004-022-00787-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Oriented attachment of nanobricks into hierarchical multi-scale structures such as inorganic nanoclusters is one of the crystallization mechanisms that has revolutionized the field of nano and materials science. Herein, we show that the mosaicity, which measures the misalignment of crystal plane orientation between the nanobricks, governs their magneto-optical properties as well as the magnetic heating functions of iron oxide nanoclusters. Thanks to high-temperature and time-resolved millifluidic, we were able to isolate and characterize (structure, properties, function) the different intermediates involved in the diverse steps of the nanocluster's formation, to propose a detailed dynamical mechanism of their formation and establish a clear correlation between changes in mosaicity at the nanoscale and their resulting physical properties. Finally, we demonstrate that their magneto-optical properties can be described using simple molecular theories.
Collapse
Affiliation(s)
- Enzo Bertuit
- grid.462844.80000 0001 2308 1657Sorbonne Université, UMR CNRS 8234, PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
| | - Nicolas Menguy
- grid.462844.80000 0001 2308 1657Sorbonne Université, UMR 7590 CNRS—Sorbonne Université—IRD-MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Case 115, 4 Place Jussieu, 75252 Cedex 5 Paris, France
| | - Claire Wilhelm
- grid.418596.70000 0004 0639 6384PSL Research University—Sorbonne Université—CNRS, UMR168, Laboratoire Physico Chimie Curie, Institut Curie, 75005 Paris, France
| | - Anne-Laure Rollet
- grid.462844.80000 0001 2308 1657Sorbonne Université, UMR CNRS 8234, PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
| | - Ali Abou-Hassan
- grid.462844.80000 0001 2308 1657Sorbonne Université, UMR CNRS 8234, PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France ,grid.440891.00000 0001 1931 4817Institut Universitaire de France (IUF), 75231 Cedex 05 Paris, France
| |
Collapse
|
45
|
Afshani J, Perez Mellor A, Bürgi T, Hagemann H. Crystallization of SrAl 12O 19 Nanocrystals from Amorphous Submicrometer Particles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:19336-19345. [PMID: 36425001 PMCID: PMC9677969 DOI: 10.1021/acs.jpcc.2c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Advanced instrumentation and modern analysis tools such as transmission electron microscopy (TEM) have led to phenomenal progress in understanding crystallization, in particular from solution, which is a prerequisite for the design-based preparation of a target crystal. Nevertheless, little has been understood about the crystallization pathway under high-temperature annealing (HTA) conditions. Metal oxide crystals are prominent materials that are usually obtained via HTA. Despite the widespread application of hydro-/solvothermal methods on the laboratory scale, HTA is the preferred method in many industries for the mass production of metal oxide crystals. However, poor control over the morphology and grain sizes of these crystals under extreme HTA conditions limits their applications. Here, applying ex-situ TEM, the transformation of a single amorphous spherical submicrometer precursor particle of SrAl12O19 (SA6) at 1150 °C toward a nanosized thermodynamically favored hexagonal crystal is explored. It is illustrated in real space, step by step, how both kinetic and thermodynamic factors contribute to this faceting and morphology evolution. These results demonstrate a nonclassical nucleation and growth process consisting of densification, crystallite domain formation, oriented attachment, surface nucleation, 2-dimensional (2D) growth, and surface diffusion of the atoms to eventually result in the formation of a hexagonal platelet crystal. The TEM images further delineate a parent crystal driving the crystal lattice and morphological orientation of a network of interconnected platelets.
Collapse
Affiliation(s)
- Jafar Afshani
- Département de Chimie Physique, Université de Genève, Quai Ernest-Ansermet 30, Genève1211, Switzerland
| | - Ariel Perez Mellor
- Département de Chimie Physique, Université de Genève, Quai Ernest-Ansermet 30, Genève1211, Switzerland
| | - Thomas Bürgi
- Département de Chimie Physique, Université de Genève, Quai Ernest-Ansermet 30, Genève1211, Switzerland
| | - Hans Hagemann
- Département de Chimie Physique, Université de Genève, Quai Ernest-Ansermet 30, Genève1211, Switzerland
| |
Collapse
|
46
|
Zhang J, Bai R, Zhou Y, Chen Z, Zhang P, Li J, Yu J. Impact of a polymer modifier on directing the non-classical crystallization pathway of TS-1 zeolite: accelerating nucleation and enriching active sites. Chem Sci 2022; 13:13006-13014. [PMID: 36425513 PMCID: PMC9667963 DOI: 10.1039/d2sc04544c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/29/2022] [Indexed: 03/09/2024] Open
Abstract
The crystallization process directly affects the physicochemical properties and active centers of zeolites; however, controllable tuning of the zeolite crystallization process remains a challenge. Herein, we utilized a polymer (polyacrylamide, PAM) to control the precursor structure evolution of TS-1 zeolite through a two-step crystallization process, so that the crystallization path was switched from a classical to a non-classical mechanism, which greatly accelerated nucleation and enriched active Ti sites. The TS-1 crystallization process was investigated by means of various advanced characterization techniques. It was found that specific interactions between PAM and Si/Ti species promoted the assembly of colloidal precursors containing ordered structural fragments and stabilized Ti species in the precursors, leading to a 1.5-fold shortened crystallization time and enriched Ti content in TS-1 (Si/Ti = 29). The PAM-regulated TS-1 zeolite exhibited enhanced catalytic performance in oxidative reactions compared to conventional samples.
Collapse
Affiliation(s)
- Jiani Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Risheng Bai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Yida Zhou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Ziyi Chen
- Department of Chemistry, Dalhousie University Halifax Nova Scotia B4H4R2 Canada
| | - Peng Zhang
- Department of Chemistry, Dalhousie University Halifax Nova Scotia B4H4R2 Canada
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
47
|
Chen PZ, Skirzynska A, Yuan T, Voznyy O, Gu FX. Asymmetric Interfacet Adatom Migration as a Mode of Anisotropic Nanocrystal Growth. J Am Chem Soc 2022; 144:19417-19429. [PMID: 36226909 DOI: 10.1021/jacs.2c07423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crystals are known to grow nonclassically or via four classical modes (the layer-by-layer, dislocation-driven, dendritic, and normal modes, which generally involve minimal interfacet surface diffusion). The field of nanoscience considers this framework to interpret how nanocrystals grow; yet, the growth of many anisotropic nanocrystals remains enigmatic, suggesting that the framework may be incomplete. Here, we study the solution-phase growth of pentatwinned Au nanorods without Br, Ag, or surfactants. Lower supersaturation conditions favored anisotropic growth, which appeared at variance with the known modes. Temporal electron microscopy revealed kinetically limited adatom funneling, as adatoms diffused asymmetrically along the vicinal facets (situated inbetween the {100} side-facets and {111} end-facets) of our nanorods. These vicinal facets were perpetuated throughout the synthesis and, especially at lower supersaturation, facilitated {100}-to-vicinal-to-{111} adatom diffusion. We derived a growth model from classical theory in view of our findings, which showed that our experimental growth kinetics were consistent with nanorods growing via two modes simultaneously: radial growth occurred via the layer-by-layer mode on {100} side-facets, whereas the asymmetric interfacet diffusion of adatoms to {111} end-facets mediated longitudinal growth. Thus, shape anisotropy was not driven by modulating the relative rates of monomer deposition on different facets, as conventionally thought, but rather by modulating the relative rates of monomer integration via interfacet diffusion. This work shows how controlling supersaturation, a thermodynamic parameter, can uncover distinct kinetic phenomena on nanocrystals, such as asymmetric interfacet surface diffusion and a fundamental growth mode for which monomer deposition and integration occur on different facets.
Collapse
Affiliation(s)
- Paul Z Chen
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ONM5S3E5, Canada
| | - Arianna Skirzynska
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ONM5S3E5, Canada
| | - Tiange Yuan
- Department of Physical & Environmental Sciences, Department of Chemistry, University of Toronto, Scarborough, ONM1C1A4, Canada
| | - Oleksandr Voznyy
- Department of Physical & Environmental Sciences, Department of Chemistry, University of Toronto, Scarborough, ONM1C1A4, Canada
| | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ONM5S3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S3G9, Canada
| |
Collapse
|
48
|
Tang S, Ke X, Wang H, Xie J, Yang J, Luo J, Li J. Biomineralization-Inspired Intermediate Precursor for the Controllable Gelation of Polyphenol-Macromolecule Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44890-44901. [PMID: 36136038 DOI: 10.1021/acsami.2c15068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogels composed of polyphenols and various macromolecules have been widely reported to have the advantage of facile preparation, mainly through the formation of hydrogen bonds. However, the traditional preparation method involves the direct mixing of polyphenols and macromolecules, which generally occurs too quickly and uncontrollably, and results in poor homogeneity, injectability, and shape designability. Here, inspired by the intermediate precursor during biomineralization, to facilitate transformation in a controllable way, we propose a novel and universal internal gelation method that creates an intermediate precursor by controlling the pH value to manipulate the elimination and generation of hydrogen bonds between a polyphenol and macromolecules. The precursor strategy greatly improves the homogeneity, injectability, and shape designability of the hydrogel while also achieving a controllable gelation process, and the gelation time can be accurately adjusted. The hydrogels prepared with this method exhibited superior capability to seal leaks, provided complete wound coverage, and showed the potential to be a shape-designable wearable strain sensor. Our study opens up a new way to construct and apply polyphenol-macromolecule hydrogels in a more controllable manner.
Collapse
Affiliation(s)
- Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
49
|
Mao LB, Meng YF, Meng XS, Yang B, Yang YL, Lu YJ, Yang ZY, Shang LM, Yu SH. Matrix-Directed Mineralization for Bulk Structural Materials. J Am Chem Soc 2022; 144:18175-18194. [PMID: 36162119 DOI: 10.1021/jacs.2c07296] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mineral-based bulk structural materials (MBSMs) are known for their long history and extensive range of usage. The inherent brittleness of minerals poses a major problem to the performance of MBSMs. To overcome this problem, design principles have been extracted from natural biominerals, in which the extraordinary mechanical performance is achieved via the hierarchical organization of minerals and organics. Nevertheless, precise and efficient fabrication of MBSMs with bioinspired hierarchical structures under mild conditions has long been a big challenge. This Perspective provides a panoramic view of an emerging fabrication strategy, matrix-directed mineralization, which imitates the in vivo growth of some biominerals. The advantages of the strategy are revealed by comparatively analyzing the conventional fabrication techniques of artificial hierarchically structured MBSMs and the biomineral growth processes. By introducing recent advances, we demonstrate that this strategy can be used to fabricate artificial MBSMs with hierarchical structures. Particular attention is paid to the mass transport and the precursors that are involved in the mineralization process. We hope this Perspective can provide some inspiring viewpoints on the importance of biomimetic mineralization in material fabrication and thereby spur the biomimetic fabrication of high-performance MBSMs.
Collapse
Affiliation(s)
- Li-Bo Mao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Feng Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Sen Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bo Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Lu Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Jie Lu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Yuan Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li-Mei Shang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
50
|
Grote L, Seyrich M, Döhrmann R, Harouna-Mayer SY, Mancini F, Kaziukenas E, Fernandez-Cuesta I, A Zito C, Vasylieva O, Wittwer F, Odstrčzil M, Mogos N, Landmann M, Schroer CG, Koziej D. Imaging Cu 2O nanocube hollowing in solution by quantitative in situ X-ray ptychography. Nat Commun 2022; 13:4971. [PMID: 36038564 PMCID: PMC9424245 DOI: 10.1038/s41467-022-32373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding morphological changes of nanoparticles in solution is essential to tailor the functionality of devices used in energy generation and storage. However, we lack experimental methods that can visualize these processes in solution, or in electrolyte, and provide three-dimensional information. Here, we show how X-ray ptychography enables in situ nano-imaging of the formation and hollowing of nanoparticles in solution at 155 °C. We simultaneously image the growth of about 100 nanocubes with a spatial resolution of 66 nm. The quantitative phase images give access to the third dimension, allowing to additionally study particle thickness. We reveal that the substrate hinders their out-of-plane growth, thus the nanocubes are in fact nanocuboids. Moreover, we observe that the reduction of Cu2O to Cu triggers the hollowing of the nanocuboids. We critically assess the interaction of X-rays with the liquid sample. Our method enables detailed in-solution imaging for a wide range of reaction conditions.
Collapse
Affiliation(s)
- Lukas Grote
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Martin Seyrich
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Ralph Döhrmann
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Sani Y Harouna-Mayer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Federica Mancini
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018, Faenza (RA), Italy
| | - Emilis Kaziukenas
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK
| | - Irene Fernandez-Cuesta
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Cecilia A Zito
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- São Paulo State University UNESP, Rua Cristóvão Colombo, 2265, 15054000, São José do Rio Preto, Brazil
| | - Olga Vasylieva
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Felix Wittwer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Michal Odstrčzil
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
- Carl Zeiss SMT, Carl-Zeiss-Straße 22, 73447, Oberkochen, Germany
| | - Natnael Mogos
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Mirko Landmann
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Christian G Schroer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Helmholtz Imaging Platform, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Dorota Koziej
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany.
| |
Collapse
|