1
|
Ghosh A, Enemark JH. The Enemark-Feltham formalism at 50: An interview with John Enemark and a personal reflection. J Inorg Biochem 2025; 269:112897. [PMID: 40117735 DOI: 10.1016/j.jinorgbio.2025.112897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
In an interview, one of us (JHE) recounts the state of NO chemistry around the middle of the twentieth century and the events that led to the development of Enemark and Feltham's {MNO}n notation. A personal perspective by one of us (AG) underscores the continued role of the notation as a source of electro-structural correlations. Interestingly, although recent ab initio calculations have on occasion resulted in somewhat different NO oxidation states relative to earlier, classic studies, the Enemark-Feltham notation remains as relevant as ever. Thus, for iron nitrosyls, there appears to be a one-to-one mapping between the Enemark-Feltham count and the NO oxidation state. Whether an analogous mapping exists for other transition metals has not been resolved at this point.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway.
| | - John H Enemark
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0041,USA.
| |
Collapse
|
2
|
Shiels D, Berlfein AC, Peluzo BMTC, Lopez LM, Mitchell AW, Brennessel WW, Zeller M, Crawley MR, Bart SC, Ruggiero MT, Matson EM. Probing the Framework Metal Dependent Properties of Actinide-Centered Polyoxoalkoxide Sandwich-Type Complexes. Inorg Chem 2025; 64:9180-9194. [PMID: 40304606 PMCID: PMC12076555 DOI: 10.1021/acs.inorgchem.5c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/03/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
Development of a simple and scalable synthesis of (TBA)3[W5O18MoNO] provides for the formation of the mixed-metal lacunary polyoxoalkoxide, (TBA)2[W4O13(OMe)4MoNO][Na(MeOH)]. This complex was used to synthesize a series of polyoxoalkoxide sandwich-type complexes with the general formula (TBA)2[M{W4O13(OMe)4MoNO}2], where M = Zr(IV), Hf(IV), Th(IV), U(IV), and Np(IV). Compared to the analogous all-molybdenum complexes, the series have drastically different optical and redox properties. The results indicate that framework metal substitution acts as a tool for "orbital engineering", with Density Functional Theory (DFT) calculations revealing that the major consequence of incorporation of tungsten into the complexes is localization of LUMO and LUMO+1 on the molybdenum centers remaining in the molecule. The change in the distribution of the frontier orbitals translates to discrepancies in the electronic properties of the series. Given the rarity of polyoxometalate complexes featuring a U(V) ion, one electron oxidation of (TBA)2[U(IV){W4O13(OMe)4MoNO}2] was pursued. Isolation of the corresponding U(V) centered sandwich-type complex is reported, only the second example of U(V)-polyoxometalate complex described to date.
Collapse
Affiliation(s)
- Dominic Shiels
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Adriana C. Berlfein
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | | | - Lauren M. Lopez
- H.
C. Brown Laboratory, James Tarpo, Jr. and Margaret Tarpo, Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew W. Mitchell
- H.
C. Brown Laboratory, James Tarpo, Jr. and Margaret Tarpo, Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - William W. Brennessel
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Matthias Zeller
- H.
C. Brown Laboratory, James Tarpo, Jr. and Margaret Tarpo, Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthew R. Crawley
- Department
of Chemistry, University at Buffalo, The
State University of New York, Buffalo, New York 14620, United States
| | - Suzanne C. Bart
- H.
C. Brown Laboratory, James Tarpo, Jr. and Margaret Tarpo, Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael T. Ruggiero
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ellen M. Matson
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
3
|
Kang J, Liao P, Xiang R, Liao W, Yang C, Wang S, Liu Q, Li G. Interfacial Asymmetrically Coordinated Zn-MOF for High-Efficiency Electrosynthetic Oxime. Angew Chem Int Ed Engl 2025; 64:e202419550. [PMID: 39981894 DOI: 10.1002/anie.202419550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Indexed: 02/22/2025]
Abstract
Oximes are important intermediates for various chemicals synthesis such as pharmaceuticals, among which one vital precursor for producing neurological disease, antimicrobial and anticancer agents is piperidone oxime (PDO). Compared with conventional thermocatalytic method, it's more attractive to synthesize PDO via green electrocatalytic technology especially utilizing waste nitrogen oxides gas as nitrogen source. However, there are great challenges in catalyst design for high-efficiency electrosynthetic oxime due to the low electron transport rate and multiple competing reactions. Herein, we propose an interfacial coordination strategy based on metal-organic frameworks (MOF) electrocatalyst for the first time to promote oxime electrosynthesis, by building Zn-O bridges between graphite felt (GF) and zeolitic imidazolate framework (ZIF-7/CGF). Specially, ZIF-7/CGF delivers a Faraday efficiency (FE) of 75.9 % with yield up to 73.1 % for 1-methyl-4-piperidone oxime, which is far superior to the catalyst without Zn-O bridges (a FE of 10.7 % and yield of 10.3 %). In-depth mechanism study shows that the introducing Zn-O bridges can promote the electron transfer and induce Zn sites transforming into distorted tetrahedron (Zn-N3O) coordination mode, which benefits for intermediates adsorption and conversion. The developed strategy presents wide universalities towards various oximes electrosynthesis and adapts to other MOF materials (ZIF-8, ZIF-4). This work provides new insights for electrosynthetic organic chemicals and upgrading nitrogen cycle through rational design surficial coordinated electrocatalysts.
Collapse
Affiliation(s)
- Jiawei Kang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Peisen Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Runan Xiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wenpei Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chenyu Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Shihan Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Guangqin Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Phung QM, Nam HN, Austen V, Yanai T, Ghosh A. NO Oxidation States in Nonheme Iron Nitrosyls: A DMRG-CASSCF Study of {FeNO} 6-10 Complexes. Inorg Chem 2025; 64:1702-1710. [PMID: 39847479 PMCID: PMC11795527 DOI: 10.1021/acs.inorgchem.4c03845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Building upon an earlier study of heme-nitrosyl complexes (Inorg. Chem. 2023, 62, 20496-20505), we examined a wide range of nonheme {FeNO}6-10 complexes (the superscript represents the Enemark-Feltham count) and two dinitrosyl iron complexes using DMRG-CASSCF calculations. Analysis of the wave functions in terms of resonance forms with different [π*(NO)]i occupancies (where i = 0-4 for mononitrosyl complexes) identified the dominant electronic configurations of {FeNO}6 and {FeNO}7 complexes as FeIII-NO0 and FeII-NO0, respectively, mirroring our previous findings on heme-nitrosyl complexes. A trigonal-bipyramidal S = 1 {FeNO}8 complex with an equatorial triscarbene ligand set appears best described as a resonance hybrid of FeI-NO0 and FeII-NO-. Reduction to the corresponding S = 1/2 {FeNO}9 state was found to involve both the metal and the NO, leading to an essentially FeI-NO- complex. Further reduction to the {FeNO}10 state was found to be primarily metal-centered, leading to a predominantly Fe0-NO- configuration. Based on the weights wi of the [π*(NO)]i resonance forms, an overall DMRG-CASSCF-based π*(NO) occupation number could be derived, which was found to exhibit a linear correlation with both the NO bond distance and NO stretching frequency, allowing a readout of the NO oxidation state from the NO bond distance.
Collapse
Affiliation(s)
- Quan Manh Phung
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Ho Ngoc Nam
- Department
of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Vic Austen
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takeshi Yanai
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Abhik Ghosh
- Department
of Chemistry, UiT The Arctic University
of Norway, N-9037 Tromso̷, Norway
| |
Collapse
|
5
|
Kunert R, Martelino D, Mahato S, Hein NM, Pulfer J, Philouze C, Jarjayes O, Thomas F, Storr T. Investigating the formation of metal nitride complexes employing a tetradentate bis-carbene bis-phenolate ligand. Dalton Trans 2025; 54:616-630. [PMID: 39560135 DOI: 10.1039/d4dt01765j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The synthesis of MnV and CrV nitride complexes of a pro-radical tetradentate bis-phenol bis-N-heterocyclic carbene ligand H2LC2O2 was investigated. Employing either azide photolysis of the MnIII precursor complex MnLC2O2(N3) or a nitride exchange reaction between MnLC2O2(Br) and the nitride exchange reagent Mnsalen(N) failed to provide a useful route to the target nitride MnLC2O2(N). Experimental results support initial formation of the target nitride MnLC2O2(N), however, the nitride rapidly inserts into a Mn-CNHC bond. A second insertion reaction results in the isolation of the doubly inserted ligand product [H2LC2O2(N)]+ in good yield. In contrast, the Cr analogue CrLC2O2(N) was readily prepared and characterized by a number of experimental methods, including X-ray crystallography. Theoretical calculations predict a lower transition state energy for nitride insertion into the M-CNHC bond for Mn in comparison to Cr, and in addition the N-inserted product is stabilized for Mn while destabilized for Cr. Natural bond order (NBO) analysis predicts that the major bonding interaction (π MN → σ* M-CNHC) promotes nucleophilic attack of the nitride on the carbene as the major reaction pathway. Finally, one-electron oxidation of CrLC2O2(N) affords a relatively stable cation that is characterized by experimental and theoretical analysis to be a metal-oxidized d0 CrVI species.
Collapse
Affiliation(s)
- Romain Kunert
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
- Univ. Grenoble Alpes, CNRS, DCM, F-38000, Grenoble, France.
| | - Diego Martelino
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Samyadeb Mahato
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Nicholas M Hein
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Jason Pulfer
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | | | | | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM, F-38000, Grenoble, France.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
6
|
Steube J, Fritsch L, Kruse A, Bokareva OS, Demeshko S, Elgabarty H, Schoch R, Alaraby M, Egold H, Bracht B, Schmitz L, Hohloch S, Kühne TD, Meyer F, Kühn O, Lochbrunner S, Bauer M. Isostructural Series of a Cyclometalated Iron Complex in Three Oxidation States. Inorg Chem 2024; 63:16964-16980. [PMID: 39222251 DOI: 10.1021/acs.inorgchem.4c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An isostructural series of FeII, FeIII, and FeIV complexes [Fe(ImP)2]0/+/2+ utilizing the ImP 1,1'-(1,3-phenylene)bis(3-methyl-1-imidazol-2-ylidene) ligand, combining N-heterocyclic carbenes and cyclometalating functions, is presented. The strong donor motif stabilizes the high-valent FeIV oxidation state yet keeps the FeII oxidation state accessible from the parent FeIII compound. Chemical oxidation of [Fe(ImP)2]+ yields stable [FeIV(ImP)2]2+. In contrast, [FeII(ImP)2]0, obtained by reduction, is highly sensitive toward oxygen. Exhaustive ground state characterization by single-crystal X-ray diffraction, 1H NMR, Mössbauer spectroscopy, temperature-dependent magnetic measurements, a combination of X-ray absorption near edge structure and valence-to-core, as well as core-to-core X-ray emission spectroscopy, complemented by detailed density functional theory (DFT) analysis, reveals that the three complexes [Fe(ImP)2]0/+/2+ can be unequivocally attributed to low-spin d6, d5, and d4 complexes. The excited state landscape of the FeII and FeIV complexes is characterized by short-lived 3MLCT and 3LMCT states, with lifetimes of 5.1 and 1.4 ps, respectively. In the FeII-compound, an energetically low-lying MC state leads to fast deactivation of the MLCT state. The distorted square-pyramidal state, where one carbene is dissociated, can not only relax into the ground state, but also into a singlet dissociated state. Its formation was investigated with time-dependent optical spectroscopy, while insights into its structure were gained by NMR spectroscopy.
Collapse
Affiliation(s)
- Jakob Steube
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Lorena Fritsch
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Ayla Kruse
- Department of Life, Light, and Matter, University of Rostock, 18051 Rostock, Germany
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Olga S Bokareva
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Hossam Elgabarty
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
- Institute for Theoretical Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Roland Schoch
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Mohammad Alaraby
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
- Institute for Theoretical Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Hans Egold
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Bastian Bracht
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Lennart Schmitz
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Stephan Hohloch
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Thomas D Kühne
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
- Institute for Theoretical Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Oliver Kühn
- Department of Life, Light, and Matter, University of Rostock, 18051 Rostock, Germany
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Stefan Lochbrunner
- Department of Life, Light, and Matter, University of Rostock, 18051 Rostock, Germany
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Matthias Bauer
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| |
Collapse
|
7
|
Gravogl L, Keilwerth M, Körber E, Heinemann FW, Meyer K. From d 8 to d 1: Iron(0) and Iron(I) Complexes Complete the Series of Eight Fe Oxidation States within the TIMMN Mes Ligand Framework. Inorg Chem 2024; 63:15888-15905. [PMID: 39145894 DOI: 10.1021/acs.inorgchem.4c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Reduction of the ferrous precursor [(TIMMNMes)Fe(Cl)]+ (1) (TIMMNMes = tris-[(3-mesitylimidazol-2-ylidene)methyl]amine) to the low-valent iron(0) complex [(TIMMNMes)Fe(CO)3] (2) is presented, where the tris(N-heterocyclic carbene) (NHC) ligand framework remains intact, yet the coordination mode changed from 3-fold to 2-fold coordination of the carbene arms. Further, the corresponding iron(I) complexes [(TIMMNMes)Fe(L)]+ (L = free site, η1-N2, CO, py) (3) are synthesized and fully characterized. Complexes 1-3 demonstrate the notable steric and electronic flexibility of the TIMMNMes ligand framework by variation of the Fe-N anchor and Fe-carbene distances and the variable size of the axial cavity occupation. This is further underpinned by the oxidation of 3-N2 in a reaction with benzophenone to yield the corresponding, charge-separated iron(II) radical complex [(TIMMNMes)Fe(OCPh2)]+ (4). We found rather surprising similarities in the reactivity behavior when going to low- or high-valent oxidation states of the central iron ion. This is demonstrated by the closely related reactivity of 3-N2, where H atom abstraction with TEMPO triggers the formation of the metallacycle [(TIMMNMes*)Fe(py)]+ (5), and the reactivity of the highly unstable Fe(VII) nitride complex [(TIMMNMes)Fe(N)(F)]3+ to give the metallacyclic Fe(V) imido complex [(TIMMNMesN)Fe(NMes)(MeCN)]3+ (6) upon warming. Thus, the employed tris(carbene) chelate is not only capable of stabilizing the superoxidized Fe(VI) and Fe(VII) nitrides but equally supports the iron center in its low oxidation states 0 and +1. Isolation and characterization of these zero- and monovalent iron complexes demonstrate the extraordinary capability of the tris(carbene) chelate TIMMN to support iron in eight different oxidation states within the very same ligand platform.
Collapse
Affiliation(s)
- Lisa Gravogl
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Eva Körber
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Karmakar S, Patra S, Pramanik K, Adhikary A, Dey A, Majumdar A. Reactivity of Thiolate and Hydrosulfide with a Mononuclear {FeNO} 7 Complex Featuring a Very High N-O Stretching Frequency. Inorg Chem 2024; 63:8537-8555. [PMID: 38679874 DOI: 10.1021/acs.inorgchem.3c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Synthesis, characterization, electronic structure, and redox reactions of a mononuclear {FeNO}7 complex with a very high N-O stretching frequency in solution are presented. Nitrosylation of [(LKP)Fe(DMF)]2+ (1) (LKP = tris((1-methyl-4,5-diphenyl-1H-imidazol-2-yl)methyl)amine) produced a five-coordinate {FeNO}7 complex, [(LKP)Fe(NO)]2+ (2). While complex 2 could accommodate an additional water molecule to generate a six-coordinate {FeNO}7 complex, [(LKP)Fe(NO)(H2O)]2+ (3), the coordinated H2O in 3 dissociates to generate 2 in solution. The molecular structure of 2 features a nearly linear Fe-N-O unit with an Fe-N distance of 1.744(4) Å, N-O distance of 1.162(5) Å, and
Collapse
Affiliation(s)
- Soumik Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Koushik Pramanik
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Amit Adhikary
- Department of Chemistry, Technology Campus, University of Calcutta, JD Block, Sector III, Salt Lake, Kolkata 700098, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
9
|
Keilwerth M, Mao W, Malischewski M, Jannuzzi SAV, Breitwieser K, Heinemann FW, Scheurer A, DeBeer S, Munz D, Bill E, Meyer K. The synthesis and characterization of an iron(VII) nitrido complex. Nat Chem 2024; 16:514-520. [PMID: 38291260 PMCID: PMC10997499 DOI: 10.1038/s41557-023-01418-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024]
Abstract
Complexes of iron in high oxidation states are captivating research subjects due to their pivotal role as active intermediates in numerous catalytic processes. Structural and spectroscopic studies of well-defined model complexes often provide evidence of these intermediates. In addition to the fundamental molecular and electronic structure insights gained by these complexes, their reactivity also affects our understanding of catalytic reaction mechanisms for small molecule and bond-activation chemistry. Here, we report the synthesis, structural and spectroscopic characterization of a stable, octahedral Fe(VI) nitrido complex and an authenticated, unique Fe(VII) species, prepared by one-electron oxidation. The super-oxidized Fe(VII) nitride rearranges to an Fe(V) imide through an intramolecular amination mechanism and ligand exchange, which is characterized spectroscopically and computationally. This enables combined reactivity and stability studies on a single molecular system of a rare high-valent complex redox pair. Quantum chemical calculations complement the spectroscopic parameters and provide evidence for a diamagnetic (S = 0) d 2 Fe(VI) and a genuine S = 1/2, d 1 Fe(VII) configuration of these super-oxidized nitrido complexes.
Collapse
Affiliation(s)
- Martin Keilwerth
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Erlangen, Germany
| | - Weiqing Mao
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Erlangen, Germany
| | - Moritz Malischewski
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Inorganic Chemistry, Berlin, Germany
| | - Sergio A V Jannuzzi
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Kevin Breitwieser
- Saarland University, Inorganic Chemistry, Coordination Chemistry, Saarbrücken, Germany
| | - Frank W Heinemann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Erlangen, Germany
| | - Andreas Scheurer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Erlangen, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
| | - Dominik Munz
- Saarland University, Inorganic Chemistry, Coordination Chemistry, Saarbrücken, Germany.
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Karsten Meyer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Erlangen, Germany.
| |
Collapse
|
10
|
Scott JS, Schneider JE, Tewelde EG, Gardner JG, Anferov SW, Filatov AS, Anderson JS. Combining Donor Strength and Oxidative Stability in Scorpionates: A Strongly Donating Fluorinated Mesoionic Tris(imidazol-5-ylidene)borate Ligand. Inorg Chem 2023; 62:21224-21232. [PMID: 38051936 DOI: 10.1021/acs.inorgchem.3c03251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Strongly donating scorpionate ligands support the study of high-valent transition metal chemistry; however, their use is frequently limited by oxidative degradation. To address this concern, we report the synthesis of a tris(imidazol-5-ylidene)borate ligand featuring trifluoromethyl groups surrounding its coordination pocket. This ligand represents the first example of a chelating poly(imidazol-5-ylidene) mesoionic carbene ligand, a scaffold that is expected to be extremely donating. The {NiNO}10 complex of this ligand, as well as that of a previously reported strongly donating tris(imidazol-2-ylidene)borate, has been synthesized and characterized. This new ligand's strong donor properties, as measured by the υNO of its {NiNO}10 complex and natural bonding orbital second-order perturbative energy analysis, are at par with those of the well-studied alkyl-substituted tris(imidazol-2-ylidene)borates, which are known to effectively stabilize high-valent intermediates. The good donor properties of this ligand, despite the electron-withdrawing trifluoromethyl substituents, arise from the strongly donating imidazol-5-ylidene mesoionic carbene arms. These donor properties, when combined with the robustness of trifluoromethyl groups toward oxidative decomposition, suggest this ligand scaffold will be a useful platform in the study of oxidizing high-valent transition-metal species.
Collapse
Affiliation(s)
- Joseph S Scott
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph E Schneider
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Eyob G Tewelde
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Joel G Gardner
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W Anferov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Phung QM, Nam HN, Ghosh A. Local Oxidation States in {FeNO} 6-8 Porphyrins: Insights from DMRG/CASSCF-CASPT2 Calculations. Inorg Chem 2023. [PMID: 38010736 DOI: 10.1021/acs.inorgchem.3c03689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A first DMRG/CASSCF-CASPT2 study of a series of paradigmatic {FeNO}6, {FeNO}7, and {FeNO}8 heme-nitrosyl complexes has led to substantial new insight as well as uncovered key shortcomings of the DFT approach. By virtue of its balanced treatment of static and dynamic correlation, the calculations have provided some of the most authoritative information available to date on the energetics of low- versus high-spin states of different classes of heme-nitrosyl complexes. Thus, the calculations indicate low doublet-quartet gaps of 1-4 kcal/mol for {FeNO}7 complexes and high singlet-triplet gaps of ≳20 kcal/mol for both {FeNO}6 and {FeNO}8 complexes. In contrast, DFT calculations yield widely divergent spin state gaps as a function of the exchange-correlation functional. DMRG-CASSCF calculations also help calibrate DFT spin densities for {FeNO}7 complexes, pointing to those obtained from classic pure functionals as the most accurate. The general picture appears to be that nearly all the spin density of Fe[P](NO) is localized on the Fe, while the axial ligand imidazole (ImH) in Fe[P](NO)(ImH) pushes a part of the spin density onto the NO moiety. An analysis of the DMRG-CASSCF wave function in terms of localized orbitals and of the resulting configuration state functions in terms of resonance forms with varying NO(π*) occupancies has allowed us to address the longstanding question of local oxidation states in heme-nitrosyl complexes. The analysis indicates NO(neutral) resonance forms [i.e., Fe(II)-NO0 and Fe(III)-NO0] as the major contributors to both {FeNO}6 and {FeNO}7 complexes. This finding is at variance with the common formulation of {FeNO}6 hemes as Fe(II)-NO+ species but is consonant with an Fe L-edge XAS analysis by Solomon and co-workers. For the {FeNO}8 complex {Fe[P](NO)}-, our analysis suggests a resonance hybrid description: Fe(I)-NO0 ↔ Fe(II)-NO-, in agreement with earlier DFT studies. Vibrational analyses of the compounds studied indicate an imperfect but fair correlation between the NO stretching frequency and NO(π*) occupancy, highlighting the usefulness of vibrational data as a preliminary indicator of the NO oxidation state.
Collapse
Affiliation(s)
- Quan Manh Phung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Ho Ngoc Nam
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Abhik Ghosh
- Department of Chemistry, UiT the Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
12
|
Park J, Kim J, Jeong GY, Kim Y, Lee E. Uncovering Nitrosyl Reactivity at N-Heterocyclic Carbene Center. Angew Chem Int Ed Engl 2023:e202314978. [PMID: 37917039 DOI: 10.1002/anie.202314978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
N-heterocyclic carbenes (NHCs) have garnered much attention due to their unique properties, such as strong σ-donating and π-accepting abilities, as well as their transition-metal-like reactivity toward small molecules. In 2015, we discovered that NHCs can react with nitric oxide (NO) gas to form radical adducts that resemble transition metal nitrosyl complexes. To elucidate the analogy between NHC and transition metal NO adducts, here we have undertaken a systematic investigation of the electron- and proton-transfer chemistry of [NHC-NO]⋅ (N-heterocyclic carbene nitric oxide radical) compounds. We have accessed a suite of compounds, comprised of [NHC-NO]+ , [NHC-NO]- , [NHC-NOH]0 , and [NHC-NHOH]+ species. In particular, [NHC-NO]- was isolated as potassium and lithium ion adducts. Most interestingly, a monomeric potassium [NHC-NO]- compound was isolated with the assistance of 18-crown-6, which is the first instance of a monomeric alkali N-oxyl compound to the best of our knowledge. Our results demonstrate that [NHC-NO]⋅ exhibits redox behavior broadly similar to metal nitrosyl complexes, which opens up more possibilities for utilizing NHCs to build on the known reactivity of metal complexes.
Collapse
Affiliation(s)
- Junbeom Park
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jaelim Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Gu Yoon Jeong
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Youngsuk Kim
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
13
|
Coates MR, Banerjee A, Odelius M. Simulations of the Aqueous "Brown-Ring" Complex Reveal Fluctuations in Electronic Character. Inorg Chem 2023; 62:16854-16866. [PMID: 37782031 PMCID: PMC10583216 DOI: 10.1021/acs.inorgchem.3c02320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Indexed: 10/03/2023]
Abstract
Ab initio molecular dynamics (AIMD) simulations of the aqueous [Fe(H2O)5(NO)]2+ "brown-ring" complex in different spin states, in combination with multiconfigurational quantum chemical calculations, show a structural dependence on the electronic character of the complex. Sampling in the quartet and sextet ground states show that the multiplicity is correlated with the Fe-N distance. This provides a motivation for a rigid Fe-N scan in the isolated "brown-ring" complex to investigate how the multiconfigurational wave function and the electron density change around the FeNO moiety. Our results show that subtle changes in the Fe-N distance produce a large response in the electronic configurations underlying the quartet wave function. However, while changes in spin density and potential energy are pronounced, variations in charge are negligible. These trends within the FeNO moiety are preserved in structural sampling of the AIMD simulations, despite distortions present in other degrees of freedom in the bulk solution.
Collapse
Affiliation(s)
- Michael R. Coates
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
| | - Ambar Banerjee
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Michael Odelius
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
14
|
Xiong J, Liu Q, Lavina B, Hu MY, Zhao J, Alp EE, Deng L, Ye S, Guo Y. Spin polarization assisted facile C-H activation by an S = 1 iron(iv)-bisimido complex: a comprehensive spectroscopic and theoretical investigation. Chem Sci 2023; 14:2808-2820. [PMID: 36937578 PMCID: PMC10016330 DOI: 10.1039/d2sc06273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
High valent iron terminal imido species (Fe[double bond, length as m-dash]NR) have been shown to be key reactive intermediates in C-H functionalization. However, the detailed structure-reactivity relationship in Fe[double bond, length as m-dash]NR species derived from studies of structurally well-characterized high-valent Fe[double bond, length as m-dash]NR complexes are still scarce, and the impact of imido N-substituents (electron-donating vs. electron-withdrawing) on their electronic structures and reactivities has not been thoroughly explored. In this study, we report spectroscopic and computational studies on a rare S = 1 iron(iv)-bisimido complex featuring trifluoromethyl groups on the imido N-substituents, [(IPr)Fe(NC(CF3)2Ph)2] (2), and two closely related S = 0 congeners bearing alkyl and aryl substituents, [(IPr)Fe(NC(CMe3)2Ph)2] (3) and [(IPr)Fe(NDipp)2] (1), respectively. Compared with 1 and 3, 2 exhibits a decreased Fe[double bond, length as m-dash]NR bond covalency due to the electron-withdrawing and the steric effect of the N-substituents, which further leads to a pseudo doubly degenerate ground electronic structure and spin polarization induced β spin density on the imido nitrogens. This unique electronic structure, which differs from those of the well-studied Fe(iv)-oxido complexes and many previously reported Fe(iv)-imido complexes, provides both kinetic and thermodynamic advantages for facile C-H activation, compared to the S = 0 counterparts.
Collapse
Affiliation(s)
- Jin Xiong
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Qing Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Barbara Lavina
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
- Center for Advanced Radiation Sources, University of Chicago Chicago Illinois 60439 USA
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Esen E Alp
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| |
Collapse
|
15
|
Chen H, Lee G, Chien S, Lee C. Light‐induced
NO
release from iron‐nitrosyl‐thiolato complex: The role of noncovalent thiol/thioether. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Huai‐Cheng Chen
- Department of Applied Science National Taitung University Taitung Taiwan
| | - Gene‐Hsiang Lee
- Instrumentation Center National Taiwan University Taipei Taiwan
| | - Su‐Ying Chien
- Instrumentation Center National Taiwan University Taipei Taiwan
| | - Chien‐Ming Lee
- Department of Applied Science National Taitung University Taitung Taiwan
| |
Collapse
|
16
|
McWilliams SF, Mercado BQ, MacLeod KC, Fataftah MS, Tarrago M, Wang X, Bill E, Ye S, Holland PL. Dynamic effects on ligand field from rapid hydride motion in an iron(ii) dimer with an S = 3 ground state. Chem Sci 2023; 14:2303-2312. [PMID: 36873832 PMCID: PMC9977447 DOI: 10.1039/d2sc06412j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Hydride complexes are important in catalysis and in iron-sulfur enzymes like nitrogenase, but the impact of hydride mobility on local iron spin states has been underexplored. We describe studies of a dimeric diiron(ii) hydride complex using X-ray and neutron crystallography, Mössbauer spectroscopy, magnetism, DFT, and ab initio calculations, which give insight into the dynamics and the electronic structure brought about by the hydrides. The two iron sites in the dimer have differing square-planar (intermediate-spin) and tetrahedral (high-spin) iron geometries, which are distinguished only by the hydride positions. These are strongly coupled to give an S total = 3 ground state with substantial magnetic anisotropy, and the merits of both localized and delocalized spin models are discussed. The dynamic nature of the sites is dependent on crystal packing, as shown by changes during a phase transformation that occurs near 160 K. The change in dynamics of the hydride motion leads to insight into its influence on the electronic structure. The accumulated data indicate that the two sites can trade geometries by rotating the hydrides, at a rate that is rapid above the phase transition temperature but slow below it. This small movement of the hydrides causes large changes in the ligand field because they are strong-field ligands. This suggests that hydrides could be useful in catalysis not only due to their reactivity, but also due to their ability to rapidly modulate the local electronic structure and spin states at metal sites.
Collapse
Affiliation(s)
| | | | - K Cory MacLeod
- Department of Chemistry, Yale University New Haven Connecticut USA
| | - Majed S Fataftah
- Department of Chemistry, Yale University New Haven Connecticut USA
| | - Maxime Tarrago
- Max Planck Institute for Chemical Energy Conversion Mülheim an der Ruhr Germany
| | - Xiaoping Wang
- Neutron Sciences Directorate, Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion Mülheim an der Ruhr Germany
| | - Shengfa Ye
- Max Planck Institute for Chemical Energy Conversion Mülheim an der Ruhr Germany
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| | | |
Collapse
|
17
|
Pattanayak S, Loewen ND, Berben LA. Using Substituted [Fe 4N(CO) 12] - as a Platform To Probe the Effect of Cation and Lewis Acid Location on Redox Potential. Inorg Chem 2023; 62:1919-1925. [PMID: 36006454 DOI: 10.1021/acs.inorgchem.2c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The impact of cationic and Lewis acidic functional groups installed in the primary or secondary coordination sphere (PCS or SCS) of an (electro)catalyst is known to vary depending on the precise positioning of those groups. However, it is difficult to systematically probe the effect of that position. In this report, we probe the effect of the functional group position and identity on the observed reduction potentials (Ep,c) using substituted iron clusters, [Fe4N(CO)11R]n, where R = NO+, PPh2-CH2CH2-9BBN, (MePTA+)2, (MePTA+)4, and H+ and n = 0, -1, +1, or +3 (9-BBN is 9-borabicyclo(3.3.1)nonane; MePTA+ is 1-methyl-1-azonia-3,5-diaza-7-phosphaadamantane). The cationic NO+ and H+ ligands cause anodic shifts of 700 and 320 mV, respectively, in Ep,c relative to unsubstituted [Fe4N(CO)12]-. Infrared absorption band data, νCO, suggests that some of the 700 mV shift by NO+ results from electronic changes to the cluster core. This contrasts with the effects of cationic MePTA+ and H+ which cause primarily electrostatic effects on Ep,c. Lewis acidic 9-BBN in the SCS had almost no effect on Ep,c.
Collapse
Affiliation(s)
- Santanu Pattanayak
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Natalia D Loewen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Louise A Berben
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
18
|
Keilwerth M, Mao W, Jannuzzi SAV, Grunwald L, Heinemann FW, Scheurer A, Sutter J, DeBeer S, Munz D, Meyer K. From Divalent to Pentavalent Iron Imido Complexes and an Fe(V) Nitride via N-C Bond Cleavage. J Am Chem Soc 2023; 145:873-887. [PMID: 36583993 DOI: 10.1021/jacs.2c09072] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As key intermediates in metal-catalyzed nitrogen-transfer chemistry, terminal imido complexes of iron have attracted significant attention for a long time. In search of versatile model compounds, the recently developed second-generation N-anchored tris-NHC chelating ligand tris-[2-(3-mesityl-imidazole-2-ylidene)-methyl]amine (TIMMNMes) was utilized to synthesize and compare two series of mid- to high-valent iron alkyl imido complexes, including a reactive Fe(V) adamantyl imido intermediate en route to an isolable Fe(V) nitrido complex. The chemistry toward the iron adamantyl imides was achieved by reacting the Fe(I) precursor [(TIMMNMes)FeI(N2)]+ (1) with 1-adamantyl azide to yield the corresponding trivalent iron imide. Stepwise chemical reduction and oxidation lead to the isostructural series of low-spin [(TIMMNMes)Fe(NAd)]0,1+,2+,3+ (2Ad-5Ad) in oxidation states II to V. The Fe(V) imide [(TIMMNMes)Fe(NAd)]3+ (5Ad) is unstable under ambient conditions and converts to the air-stable nitride [(TIMMNMes)FeV(N)]2+ (6) via N-C bond cleavage. The stability of the pentavalent imide can be increased by derivatizing the nitride [(TIMMNMes)FeIV(N)]+ (7) with an ethyl group using the triethyloxonium salt Et3OPF6. This gives access to the analogous series of ethyl imides [(TIMMNMes)Fe(NEt)]0,1+,2+,3+ (2Et-5Et), including the stable Fe(V) ethyl imide. Iron imido complexes exist in a manifold of different electronic structures, ultimately controlling their diverse reactivities. Accordingly, these complexes were characterized by single-crystal X-ray diffraction analyses, SQUID magnetization, and electrochemical methods, as well as 57Fe Mössbauer, IR vibrational, UV/vis electronic absorption, multinuclear NMR, X-band EPR, and X-ray absorption spectroscopy. Our studies are complemented with quantum chemical calculations, thus providing further insight into the electronic structures of all complexes.
Collapse
Affiliation(s)
- Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Weiqing Mao
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Sergio A V Jannuzzi
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Liam Grunwald
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany.,Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zürich, 8093 Zürich, Switzerland
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Andreas Scheurer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Jörg Sutter
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Serena DeBeer
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Dominik Munz
- Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
19
|
Kim Y, Sridharan A, Suess DLM. The Elusive Mononitrosylated [Fe 4 S 4 ] Cluster in Three Redox States. Angew Chem Int Ed Engl 2022; 61:e202213032. [PMID: 36194444 PMCID: PMC9669169 DOI: 10.1002/anie.202213032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Indexed: 11/06/2022]
Abstract
Iron-sulfur clusters are well-established targets in biological nitric oxide (NO) chemistry, but the key intermediate in these processes-a mononitrosylated [Fe4 S4 ] cluster-has not been fully characterized in a protein or a synthetic model thereof. Here, we report the synthesis of a three-member redox series of isostructural mononitrosylated [Fe4 S4 ] clusters. Mononitrosylation was achieved by binding NO to a 3 : 1 site-differentiated [Fe4 S4 ]+ cluster; subsequent oxidation and reduction afforded the other members of the series. All three clusters feature a local high-spin Fe3+ center antiferromagnetically coupled to 3 [NO]- . The observation of an anionic NO ligand suggests that NO binding is accompanied by formal electron transfer from the cluster to NO. Preliminary reactivity studies with the monocationic cluster demonstrate that exposure to excess NO degrades the cluster, supporting the intermediacy of mononitrosylated intermediates in NO sensing/signaling.
Collapse
Affiliation(s)
- Youngsuk Kim
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA 02139USA
- Department of ChemistryPusan National UniversityBusan46241Republic of Korea
| | - Arun Sridharan
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA 02139USA
| | - Daniel L. M. Suess
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA 02139USA
| |
Collapse
|
20
|
Chiang CK, Liu YC, Chu KT, Chen JT, Tsai CY, Lee GH, Chiang MH, Lee CM. Stable Bimetallic Fe II/{Fe(NO) 2} 9 Moiety Derived from Reductive Transformations of a Diferrous-dinitrosyl Species. Inorg Chem 2022; 61:16325-16332. [PMID: 36198195 DOI: 10.1021/acs.inorgchem.2c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A dimeric dithiolate-bridged species, [Fe(NO)(PS2)]2 (1) containing two {FeNO}7 units, can be isolated by treating [Fe(CO)2(NO)2] with PS2H2 (PS2H2 = bis(2-dimercaptophenyl)phenylphosphine). Crystallographic studies reveal the syn-configuration of NO units and the bridging thiolates in the butterfly shape of the 2Fe2S core. Addition of PPh3 to the solution of dinuclear 1 leads to the formation of mononuclear {FeNO}7 [Fe(NO)(PS2)(PPh3)] (2) that shows electrochemical responses similar to those of 1. One-electron reduction of 1 with Cp*2Co or KC8 results in the isolation of thiolate-bridged bimetallic DNIC, [(PS2)Fe(μ-PS2)Fe(NO)2]- ([3]-), confirmed by several spectroscopies including single-crystal X-ray diffraction studies. The bimetallic DNIC [3]- is a rare example obtained from the one-electron reduction of a dinuclear Fe-NO {FeNO}7 model complex. With the assistance of redox behaviors of 2, electrochemical studies imply that the reduction of 1 leads to the formation of a mononuclear {FeNO}8 [Fe(NO)(PS2)(THF)]- intermediate, which involves disproportionation or NO- transfer to yield [3]-. Based on IR data and magnetic properties, the electronic structure of [3]- can be described as a FeII/{Fe(NO)2}9 state. Isolation of the {Fe(NO)2}9 moiety coordinated by the Fe ancillary complex lends strong support to the NO scrambling behavior in the effectiveness of the activity of flavodiiron nitric oxide reductases (FNORs).
Collapse
Affiliation(s)
- Chuan-Kuei Chiang
- Department of Applied Science, National Taitung University, Taitung950, Taiwan.,Institute of Chemistry, Academia Sinica, Taipei115, Taiwan
| | - Yu-Chiao Liu
- Institute of Chemistry, Academia Sinica, Taipei115, Taiwan
| | - Kai-Ti Chu
- Institute of Chemistry, Academia Sinica, Taipei115, Taiwan
| | - Jing-Ting Chen
- Institute of Chemistry, Academia Sinica, Taipei115, Taiwan
| | - Cheng-Yeh Tsai
- Institute of Chemistry, Academia Sinica, Taipei115, Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University, Taipei106, Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, Taipei115, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung807, Taiwan
| | - Chien-Ming Lee
- Department of Applied Science, National Taitung University, Taitung950, Taiwan
| |
Collapse
|
21
|
Dong HT, Camarena S, Sil D, Lengel MO, Zhao J, Hu MY, Alp EE, Krebs C, Lehnert N. What Is the Right Level of Activation of a High-Spin {FeNO} 7 Complex to Enable Direct N-N Coupling? Mechanistic Insight into Flavodiiron NO Reductases. J Am Chem Soc 2022; 144:16395-16409. [PMID: 36040133 DOI: 10.1021/jacs.2c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flavodiiron nitric oxide reductases (FNORs), found in pathogenic bacteria, are capable of reducing nitric oxide (NO) to nitrous oxide (N2O) to detoxify NO released by the human immune system. Previously, we reported the first FNOR model system that mediates direct NO reduction (Dong, H. T.; J. Am. Chem. Soc. 2018, 140, 13429-13440), but no intermediate of the reaction could be characterized. Here, we present a new set of model complexes that, depending on the ligand substitution, can either mediate direct NO reduction or stabilize a highly activated high-spin (hs) {FeNO}7 complex, the first intermediate of the reaction. The precursors, [{FeII(MPA-(RPhO)2)}2] (1, R = H and 2, R = tBu, Me), were prepared first and fully characterized. Complex 1 (without steric protection) directly reduces NO to N2O almost quantitatively, which constitutes only the second example of this reaction in model systems. Contrarily, the reaction of sterically protected 2 with NO forms the stable mononitrosyl complex 3, which shows one of the lowest N-O stretching frequencies (1689 cm-1) observed so far for a mononuclear hs-{FeNO}7 complex. This study confirms that an N-O stretch ≤1700 cm-1 represents the appropriate level of activation of the FeNO unit to enable direct NO reduction. The higher activation level of these hs-{FeNO}7 complexes required for NO reduction compared to those formed in FNORs emphasizes the importance of hydrogen bonding residues in the active sites of FNORs to activate the bound NO ligands for direct N-N coupling and N2O formation. The implications of these results for FNORs are further discussed.
Collapse
Affiliation(s)
| | | | - Debangsu Sil
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | - Jiyong Zhao
- Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, Illinois 60439, United States
| | - Michael Y Hu
- Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, Illinois 60439, United States
| | - E Ercan Alp
- Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, Illinois 60439, United States
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | |
Collapse
|
22
|
Rall JM, Schorpp M, Keilwerth M, Mayländer M, Friedmann C, Daub M, Richert S, Meyer K, Krossing I. Synthesis and Characterization of Stable Iron Pentacarbonyl Radical Cation Salts. Angew Chem Int Ed Engl 2022; 61:e202204080. [PMID: 35543697 PMCID: PMC9401057 DOI: 10.1002/anie.202204080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/09/2022]
Abstract
The open-shell iron pentacarbonyl cation [Fe(CO)5 ].+ was isolated by deelectronation, i.e., the single-electron oxidation of the parent neutral Fe(CO)5 using [phenazineF ].+ as the [Al(ORF )4 ]- and [F-{Al(ORF )3 }2 ]- salt (RF =C(CF3 )3 ; phenazineF =perfluoro-5,10-bis(perfluorophenyl)-5,10-dihydrophenazine). [Fe(CO)5 ].+ [Al(ORF )4 ]- was fully characterized (scXRD analysis, IR, NMR, EPR, 57 Fe spectroscopy, CV and SQUID magnetization study) and, apart from being a compound of fundamental interest, may serve as a precursor for low-valent iron coordination chemistry.
Collapse
Affiliation(s)
- Jan M. Rall
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF)Albert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Marcel Schorpp
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF)Albert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Martin Keilwerth
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department für Chemie und PharmazieAnorganische ChemieEgerlandstrasse 191059ErlangenGermany
| | - Maximilian Mayländer
- Institut für Physikalische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Christian Friedmann
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF)Albert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Michael Daub
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF)Albert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Sabine Richert
- Institut für Physikalische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Karsten Meyer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department für Chemie und PharmazieAnorganische ChemieEgerlandstrasse 191059ErlangenGermany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF)Albert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| |
Collapse
|
23
|
Thionitrite (SNO
−
) and Perthionitrite (SSNO
−
) are Simple Synthons for Nitrosylated Iron Sulfur Clusters. Angew Chem Int Ed Engl 2022; 61:e202204570. [PMID: 35580198 PMCID: PMC9296607 DOI: 10.1002/anie.202204570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/07/2022]
Abstract
S/N crosstalk species derived from the interconnected reactivity of H2 S and NO facilitate the transport of reactive sulfur and nitrogen species in signaling, transport, and regulatory processes. We report here that simple Fe2+ ions, such as those that are bioavailable in the labile iron pool (LIP), react with thionitrite (SNO- ) and perthionitrite (SSNO- ) to yield the dinitrosyl iron complex [Fe(NO)2 (S5 )]- . In the reaction of FeCl2 with SNO- we were able to isolate the unstable intermediate hydrosulfido mononitrosyl iron complex [FeCl2 (NO)(SH)]- , which was characterized by X-ray crystallography. We also show that [Fe(NO)2 (S5 )]- is a simple synthon for nitrosylated Fe-S clusters via its reduction with PPh3 to yield Roussin's Red Salt ([Fe2 S2 (NO)4 ]2- ), which highlights the role of S/N crosstalk species in the assembly of fundamental Fe-S motifs.
Collapse
|
24
|
Quiroz M, Lockart MM, Saber MR, Vali SW, Elrod LC, Pierce BS, Hall MB, Darensbourg MY. Cooperative redox and spin activity from three redox congeners of sulfur-bridged iron nitrosyl and nickel dithiolene complexes. Proc Natl Acad Sci U S A 2022; 119:e2201240119. [PMID: 35696567 PMCID: PMC9233302 DOI: 10.1073/pnas.2201240119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
The synthesis of sulfur-bridged Fe-Ni heterobimetallics was inspired by Nature's strategies to "trick" abundant first row transition metals into enabling 2-electron processes: redox-active ligands (including pendant iron-sulfur clusters) and proximal metals. Our design to have redox-active ligands on each metal, NO on iron and dithiolene on nickel, resulted in the observation of unexpectedly intricate physical properties. The metallodithiolate, (NO)Fe(N2S2), reacts with a labile ligand derivative of [NiII(S2C2Ph2)]0, NiDT, yielding the expected S-bridged neutral adduct, FeNi, containing a doublet {Fe(NO)}7. Good reversibility of two redox events of FeNi led to isolation of reduced and oxidized congeners. Characterization by various spectroscopies and single-crystal X-ray diffraction concluded that reduction of the FeNi parent yielded [FeNi]-, a rare example of a high-spin {Fe(NO)}8, described as linear FeII(NO-). Mössbauer data is diagnostic for the redox change at the {Fe(NO)}7/8 site. Oxidation of FeNi generated the 2[FeNi]+⇌[Fe2Ni2]2+ equilibrium in solution; crystallization yields only the [Fe2Ni2]2+ dimer, isolated as PF6- and BArF- salts. The monomer is a spin-coupled diradical between {Fe(NO)}7 and NiDT+, while dimerization couples the two NiDT+ via a Ni2S2 rhomb. Magnetic susceptibility studies on the dimer found a singlet ground state with a thermally accessible triplet excited state responsible for the magnetism at 300 K (χMT = 0.67 emu·K·mol-1, µeff = 2.31 µB), and detectable by parallel-mode EPR spectroscopy at 20 to 50 K. A theoretical model built on an H4 chain explains this unexpected low energy triplet state arising from a combination of anti- and ferromagnetic coupling of a four-radical molecular conglomerate.
Collapse
Affiliation(s)
- Manuel Quiroz
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Molly M Lockart
- Department of Chemistry & Biochemistry, Samford University, Birmingham, AL 35229
| | - Mohamed R Saber
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
| | - Shaik Waseem Vali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77845
| | - Lindy C Elrod
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Brad S Pierce
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, AL 35487
| | - Michael B Hall
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | | |
Collapse
|
25
|
Rall JM, Schorpp M, Keilwerth M, Mayländer M, Friedmann C, Daub M, Richert S, Meyer K, Krossing I. Synthesis and Characterization of Stable Iron Pentacarbonyl Radical Cation Salts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jan M. Rall
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF) Albert-Ludwigs-Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Marcel Schorpp
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF) Albert-Ludwigs-Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Martin Keilwerth
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Department für Chemie und Pharmazie Anorganische Chemie Egerlandstrasse 1 91059 Erlangen Germany
| | - Maximilian Mayländer
- Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Christian Friedmann
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF) Albert-Ludwigs-Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Michael Daub
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF) Albert-Ludwigs-Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Sabine Richert
- Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Karsten Meyer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Department für Chemie und Pharmazie Anorganische Chemie Egerlandstrasse 1 91059 Erlangen Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF) Albert-Ludwigs-Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| |
Collapse
|
26
|
Wu Y, Wang Y, Sun Y, Li Z, Li X, Zhou Z, Tang D. Dissociation of Bipyridine and Coordination with Nitrosyl: Cyclometalated Ruthenium Nitrosyl Complex. Inorg Chem 2022; 61:8997-9011. [PMID: 35657382 DOI: 10.1021/acs.inorgchem.1c03770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel family of ruthenium nitrosyl complexes [Ru(bpy)(C∧N)(MeCN)NO](PF6)2 (2a-2e, bpy = 2,2'-bipyridine, HC∧N = 2-phenylpyridine and its derivatives) has been prepared by reacting cyclometalated ruthenium complexes [Ru(bpy)2(C∧N)][PF6] (1a-1e) with NO+, which were comprehensively characterized by mass, IR, NMR, and UV-vis spectra as well as the single-crystal X-ray structure determinations. Herein, the coordination geometry of Ru atoms in 2a-2e is a distorted octahedron and {RuII-NO+}6 is present in these complexes. Theoretical calculations suggest that the reactions involving dissociation of one bipyridine and coordination with NO+ proceed spontaneously (ΔG < 0) and the transformation from 1a-1e to the intermediates is dominated by substituents (ΔGRI varies from -1.19 to -1.53 eV), which influence the binding energy between Ru(II) and NO+ in complexes 2a-2e (-89.42 to -101.17 kcal/mol) and thus control the photorelease of NO on a certain scale. The weak absorption bands in the visible region could be attributed to the contribution of dπ(RuII) → π*(NO+), which were enhanced greatly under light, indicating the possible release of NO. The photoinduced NO, as well as singlet oxygen (1O2), was then confirmed by EPR spectra, and the amount of NO released from 2a-2e was estimated via Griess reagent assay. The cytotoxicity of these complexes with or without visible light irradiation was also investigated using an MTT assay.
Collapse
Affiliation(s)
- Yuhao Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Yirong Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Yun Sun
- College of Chemistry and Materials Science, International Joint Laboratory on Resource Chemistry of Ministry Education, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Zhen Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Xianghong Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China.,Key Laboratory of Analytical Chemistry of State Ethnic affairs Commission, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Zhiguo Zhou
- College of Chemistry and Materials Science, International Joint Laboratory on Resource Chemistry of Ministry Education, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Dingguo Tang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| |
Collapse
|
27
|
Sherbow TJ, Fu W, Tao L, Zakharov LN, Britt RD, Pluth MD. Thionitrite (SNO
−
) and Perthionitrite (SSNO
−
) are Simple Synthons for Nitrosylated Iron Sulfur Clusters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tobias J. Sherbow
- Department of Chemistry and Biochemistry Materials Science Institute Knight Campus for Accelerating Scientific Impact and Institute of Molecular Biology University of Oregon Eugene OR 97403–1253 USA
| | - Wen Fu
- Department of Chemistry University of California Davis Davis CA 95616 USA
| | - Lizhi Tao
- Department of Chemistry University of California Davis Davis CA 95616 USA
| | - Lev N. Zakharov
- Department of Chemistry and Biochemistry Materials Science Institute Knight Campus for Accelerating Scientific Impact and Institute of Molecular Biology University of Oregon Eugene OR 97403–1253 USA
| | - R. David Britt
- Department of Chemistry University of California Davis Davis CA 95616 USA
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry Materials Science Institute Knight Campus for Accelerating Scientific Impact and Institute of Molecular Biology University of Oregon Eugene OR 97403–1253 USA
| |
Collapse
|
28
|
Cordes Née Kupper C, Klawitter I, Rüter I, Dechert S, Demeshko S, Ye S, Meyer F. Organometallic μ-Nitridodiiron Complexes in Oxidation States Ranging from (III/III) to (IV/IV). Inorg Chem 2022; 61:7153-7164. [PMID: 35475617 DOI: 10.1021/acs.inorgchem.2c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron complexes with nitrido ligands are of interest as molecular analogues of key intermediates during N2-to-NH3 conversion in industrial or enzymatic processes. Dinuclear iron complexes with a bridging nitrido unit are mostly known in relatively high oxidation states (III/IV or IV/IV), originating from the decomposition of azidoiron precursors via high-valent Fe≡N intermediates. The use of a tetra-NHC macrocyclic scaffold ligand (NHC = N-heterocyclic carbene) has now allowed for the isolation of a series of organometallic μ-nitridodiiron complexes ranging from the mid-valent FeIII-N-FeIII (1) via mixed-valent FeIII-N-FeIV (type 4) to the high-valent FeIV-N-FeIV (type 5) species that are interconverted at moderate potentials, accompanied by axial ligand binding at the FeIV sites. Magnetic measurements and electron paramagnetic resonance spectroscopy showed the homovalent complexes to be diamagnetic and the mixed-valent system to feature an S = 1/2 ground state due to very strong antiferromagnetic coupling. The bonding in the Fe-N-Fe moiety has been further probed by crystallographic structure determination, 57Fe Mössbauer and UV-vis spectroscopies, as well as density functional theory computations, which revealed high covalency and nearly identical Fe-N distances across this redox series. The latter has been rationalized in terms of the nonbonding nature of the combination of Fe dz2 atomic orbitals from which electrons are successively removed upon oxidation, and these redox processes are best described as being metal-centered. The tetra-NHC-ligated μ-nitridodiiron series complements a set of related complexes with single-atom μ-oxido and μ-phosphido bridges, but the Fe-N-Fe core exhibits a comparatively high stability over several oxidation states. This promises interesting applications in view of the manifold catalytic uses of μ-nitridodiiron complexes based on macrocyclic N-donor porphinato(2-) or phthalocyaninato(2-) ligands.
Collapse
Affiliation(s)
- Claudia Cordes Née Kupper
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Iris Klawitter
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Isabelle Rüter
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
29
|
Grieco G, Blacque O. The reaction of rhenium nitrosyl with a sterically hindered NHC-carbene. Dalton Trans 2022; 51:1521-1526. [PMID: 34989739 PMCID: PMC8787765 DOI: 10.1039/d1dt03966k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/24/2021] [Indexed: 01/15/2023]
Abstract
In this article, we present the serendipitous synthesis of the unknown Re(I) complex [(OPPh3)Re(NO)2Cl3] (3) that we obtained reacting the Re(V) complex trans-[(PPh3)2ReOCl3] (1) with NO gas in presence of CH3COOH. We found that 3 reacts with 1,3-bis (2,4,6-trimethylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene (IMes) to yield a stable oximate-Re(III) complex [(OPPh3)Re(NO)(ONIMes)Cl3] (4). We speculate that the IMes reacts with a bent NO, because the DFT calculations excluded the formation of both dimeric and η2-NO complexes in solution. The reactivity of the NO toward the carbene is probably due to an internal fluxional process in which the NO passes from linear to bent, triggered by the π-electrons given by the three chlorides to the Re through the mesomeric effect.
Collapse
Affiliation(s)
- G Grieco
- University of Zurich Irchel, Department of Chemistry Winterthurerstrasse 190 CH-8057 Zurich, Switzerland.
| | - O Blacque
- University of Zurich Irchel, Department of Chemistry Winterthurerstrasse 190 CH-8057 Zurich, Switzerland.
| |
Collapse
|
30
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
31
|
SantaLucia DJ, Berry JF. Antiferromagnetic Exchange and Metal-Metal Bonding in Roussin's Black Sulfur and Selenium Salts. Inorg Chem 2021; 60:16241-16255. [PMID: 34662109 DOI: 10.1021/acs.inorgchem.1c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atom-efficient syntheses of the tetraethylammonium Roussin black sulfur and selenium salts ((Et4N)[Fe4E3(NO)7], E = S, Se) as well as their 15N-labeled counterparts are described herein. Broken-symmetry DFT calculations were conducted on both complexes to model an antiferromagnetic interaction between the apical {FeNO}7 unit, Sap = 3/2, and the three basal {Fe(NO)2}9 units, Sbas = 1/2. The calculated J values are -1813 and -1467 cm-1 for the sulfur and selenium compounds, respectively. The mechanism for antiferromagnetic exchange in both compounds was deduced to be direct exchange on the basis of the partially overlapping magnetic orbitals with orbital density only residing on the Fe-centers. The obtained Mössbauer parameters are most consistent with the calculated MS = 0 broken-symmetry state for both complexes. The values for J have been determined with variable-temperature 15N NMR experiments. Values of -1660 and -1430 cm-1 for the sulfur and selenium compounds, respectively, were obtained by fits to the variable-temperature NMR data, further validating the broken-symmetry MS = 0 model of the electronic structure.
Collapse
Affiliation(s)
- Daniel J SantaLucia
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
32
|
Tian S, Fan R, Albert T, Khade RL, Dai H, Harnden KA, Hosseinzadeh P, Liu J, Nilges MJ, Zhang Y, Moënne-Loccoz P, Guo Y, Lu Y. Stepwise nitrosylation of the nonheme iron site in an engineered azurin and a molecular basis for nitric oxide signaling mediated by nonheme iron proteins. Chem Sci 2021; 12:6569-6579. [PMID: 34040732 PMCID: PMC8132939 DOI: 10.1039/d1sc00364j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mononitrosyl and dinitrosyl iron species, such as {FeNO}7, {FeNO}8 and {Fe(NO)2}9, have been proposed to play pivotal roles in the nitrosylation processes of nonheme iron centers in biological systems. Despite their importance, it has been difficult to capture and characterize them in the same scaffold of either native enzymes or their synthetic analogs due to the distinct structural requirements of the three species, using redox reagents compatible with biomolecules under physiological conditions. Here, we report the realization of stepwise nitrosylation of a mononuclear nonheme iron site in an engineered azurin under such conditions. Through tuning the number of nitric oxide equivalents and reaction time, controlled formation of {FeNO}7 and {Fe(NO)2}9 species was achieved, and the elusive {FeNO}8 species was inferred by EPR spectroscopy and observed by Mössbauer spectroscopy, with complemental evidence for the conversion of {FeNO}7 to {Fe(NO)2}9 species by UV-Vis, resonance Raman and FT-IR spectroscopies. The entire pathway of the nitrosylation process, Fe(ii) → {FeNO}7 → {FeNO}8 → {Fe(NO)2}9, has been elucidated within the same protein scaffold based on spectroscopic characterization and DFT calculations. These results not only enhance the understanding of the dinitrosyl iron complex formation process, but also shed light on the physiological roles of nitric oxide signaling mediated by nonheme iron proteins. Stepwise nitrosylation from Fe(ii) to {FeNO}7, {FeNO}8 and then to {Fe(NO)2}9 is reported for the first time in the same protein scaffold, providing deeper understanding of the detailed mechanism of dinitrosyl iron complex formation.![]()
Collapse
Affiliation(s)
- Shiliang Tian
- Department of Chemistry, Department of Biochemistry, School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL USA +1-217-333-2619
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA USA +1-412-268-1061 +1-412-268-1704
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University 3181 S.W. Sam Jackson Park Road Portland OR USA +1-503-346-3429
| | - Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology 1 Castle Point Terrace Hoboken NJ USA +1-201-216-8240 +1-201-216-5513
| | - Huiguang Dai
- Department of Chemistry, Department of Biochemistry, School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL USA +1-217-333-2619
| | - Kevin A Harnden
- Department of Chemistry, Department of Biochemistry, School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL USA +1-217-333-2619
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL USA +1-217-333-2619
| | - Jing Liu
- Department of Chemistry, Department of Biochemistry, School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL USA +1-217-333-2619
| | - Mark J Nilges
- Department of Chemistry, Department of Biochemistry, School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL USA +1-217-333-2619
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology 1 Castle Point Terrace Hoboken NJ USA +1-201-216-8240 +1-201-216-5513
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University 3181 S.W. Sam Jackson Park Road Portland OR USA +1-503-346-3429
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA USA +1-412-268-1061 +1-412-268-1704
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL USA +1-217-333-2619
| |
Collapse
|
33
|
Keilwerth M, Grunwald L, Mao W, Heinemann FW, Sutter J, Bill E, Meyer K. Ligand Tailoring Toward an Air-Stable Iron(V) Nitrido Complex. J Am Chem Soc 2021; 143:1458-1465. [PMID: 33430587 DOI: 10.1021/jacs.0c11141] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new supporting ligand, tris-[2-(3-mesityl-imidazol-2-ylidene)methyl]amine (TIMMNMes), was developed and utilized to isolate an air-stable iron(V) complex bearing a terminal nitrido ligand, which was synthesized by one-electron oxidation from the iron(IV) precursor. Single-crystal X-ray diffraction analyses of both complexes reveal that the metal-centered oxidation is escorted by iron nitride (Fe≡N) bond elongation, which in turn is accompanied by the accommodation of the high-valence iron center closer to the equatorial plane of a trigonal bipyramid. This contrasts with the previous observation of the only other literature-known Fe(IV)≡N/Fe(V)≡N redox pair, namely, [PhB(tBuIm)3FeN]0/+. On the basis of 57Fe Mössbauer, EPR, and UV/vis electronic absorption spectroscopy as well as quantum chemical calculations, we identified the lesser degree of pyramidalization around the iron atom, the Jahn-Teller distortion, and the resulting nature of the SOMO to be the decisive factors at play.
Collapse
Affiliation(s)
- Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Liam Grunwald
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Weiqing Mao
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Jörg Sutter
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
34
|
Dong HT, Chalkley MJ, Oyala PH, Zhao J, Alp EE, Hu MY, Peters JC, Lehnert N. Exploring the Limits of Dative Boratrane Bonding: Iron as a Strong Lewis Base in Low-Valent Non-Heme Iron-Nitrosyl Complexes. Inorg Chem 2020; 59:14967-14982. [PMID: 32989992 PMCID: PMC7640944 DOI: 10.1021/acs.inorgchem.0c01686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We previously reported the synthesis and preliminary characterization of a unique series of low-spin (ls) {FeNO}8-10 complexes supported by an ambiphilic trisphosphineborane ligand, [Fe(TPB)(NO)]+/0/-. Herein, we use advanced spectroscopic techniques and density functional theory (DFT) calculations to extract detailed information as to how the bonding changes across the redox series. We find that, in spite of the highly reduced nature of these complexes, they feature an NO+ ligand throughout with strong Fe-NO π-backbonding and essentially closed-shell electronic structures of their FeNO units. This is enabled by an Fe-B interaction that is present throughout the series. In particular, the most reduced [Fe(TPB)(NO)]- complex, an example of a ls-{FeNO}10 species, features a true reverse dative Fe → B bond where the Fe center acts as a strong Lewis-base. Hence, this complex is in fact electronically similar to the ls-{FeNO}8 system, with two additional electrons "stored" on site in an Fe-B single bond. The outlier in this series is the ls-{FeNO}9 complex, due to spin polarization (quantified by pulse EPR spectroscopy), which weakens the Fe-NO bond. These data are further contextualized by comparison with a related N2 complex, [Fe(TPB)(N2)]-, which is a key intermediate in Fe(TPB)-catalyzed N2 fixation. Our present study finds that the Fe → B interaction is key for storing the electrons needed to achieve a highly reduced state in these systems, and highlights the pitfalls associated with using geometric parameters to try to evaluate reverse dative interactions, a finding with broader implications to the study of transition metal complexes with boratrane and related ligands.
Collapse
Affiliation(s)
- Hai T. Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Matthew J. Chalkley
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Paul H. Oyala
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jiyong Zhao
- Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, Illinois 60439, United States
| | - E. Ercan Alp
- Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, Illinois 60439, United States
| | - Michael Y. Hu
- Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, Illinois 60439, United States
| | - Jonas C. Peters
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
35
|
Gallego CM, Gaviglio C, Ben-David Y, Milstein D, Doctorovich F, Pellegrino J. Synthesis, structure and reactivity of NO +, NO˙ and NO - pincer PCN-Rh complexes. Dalton Trans 2020; 49:7093-7108. [PMID: 32406454 DOI: 10.1039/d0dt00962h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Synthesis of a pincer-type linear nitrosyl complex [Rh(PtBu2CNEt2)(NO)]+ (3+) is described. The product and all intermediates involved were fully characterized by FTIR, NMR, cyclic voltammetry and X-ray crystallography. Attempts at obtaining (3+) from its chlorinated precursor Rh(PCN)(NO)Cl (2) revealed that a relative stabilization of this complex ion is introduced by the BArF- counteranion, as other counteranions-PF6-, BF4- and triflate-proved to coordinate to the metal center. Redox reactivity both of (3+) and of that of its five-coordinate derivatives (2) and [Rh(PCN)(NO)(CH3CN)]+ (4+) was found to distinguish itself from analogous PCP complexes due to a relative stabilization of higher oxidation states. Oxidation of these three complexes was studied by FTIR spectroelectrochemistry. Reduction of complex (3+) to yield a short-lived {RhNO}9 species [Rh(PCN)(NO)]˙ (3˙) was also carried out. Complex (3˙) was proved able to activate carbon-halogen bonds in aryl halides, in much a similar way as that of its PCP analogue. Complex (3+) was also seen to establish a linear ↔ bent nitrosyl equilibrium upon addition of CO which could not be fully displaced with excess CO.
Collapse
Affiliation(s)
- Cecilia Mariel Gallego
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
36
|
Lu S, Chiou TW, Li WL, Wang CC, Wang YM, Lee WZ, Lu TT, Liaw WF. Dinitrosyliron Complex [(PMDTA)Fe(NO)2]: Intermediate for Nitric Oxide Monooxygenation Activity in Nonheme Iron Complex. Inorg Chem 2020; 59:8308-8319. [DOI: 10.1021/acs.inorgchem.0c00691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shan Lu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tzung-Wen Chiou
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Wei-Liang Li
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Chieh Wang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Way-Zen Lee
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
37
|
Abstract
The synthesis and characterization of a series of homoleptic iron complexes [Fe(benzNHCOCO)2]2-/1-/0/1+ supported by the tridentate bis-aryloxide benzimidazolin-2-ylidene pincer ligand benzNHCOCO2- (II) is presented. While the reaction of 2 equiv of free ligand II with a ferrous iron precursor leads to the isolation of the coordination polymer [Fe(benzNHCOCOK)2]n (1), treatment of II with ferric iron salts allows for the synthesis and isolation of the mononuclear, octahedral bis-pincer compound K[Fe(benzNHCOCO)2] (2) and its crown-ether derivative [K(18c6)(THF)2][Fe(benzNHCOCO)2] (3). Electrochemical studies of 2 suggested stable products upon further one- and two-electron oxidation. Hence, treatment of 2 with 1 equiv of AgPF6 yields the charge-neutral species [Fe(benzNHCOCO)2] (4). Similarly, the cationic complex [Fe(benzNHCOCO)2]PF6 (5) is obtained by addition of 2 equiv of AgPF6. The characterization of complexes 1, 3, and 4 reveals iron-centered reduction and oxidation processes; thus, preserving the dianionic, closed-shell structure of both coordinated benzNHCOCO pincer chelates, II. This implies a stabilization of a highly Lewis acidic iron(IV) center by four phenolate anions rather than charge distribution across the ligand framework with a lower formal oxidation state at iron. Notably, the overall charge-neutral iron(IV) complex undergoes reductive elimination of the pincer ligand, providing a metal-free compound that can be described as a spirocyclic imidazolone ketal (6). In contrast, the ligand-metal bonds in 5, formally an iron(V) complex, are considerably covalent, rendering the assignment of its oxidation state challenging, if not impossible. All compounds are fully characterized, and the complexes' electronic structures were studied with a variety of spectroscopic and computational methods, including single-crystal X-ray diffraction (SC-XRD), X-band electron paramagnetic resonance (EPR), and zero-field 57Fe Mössbauer spectroscopy, variable-field and variable-temperature superconducting quantum interference device (SQUID) magnetization measurements, and multi-reference ab initio (NEVPT2/CASSCF) as well as density functional theory (DFT) studies. Taken altogether, the electronic structure of 5 is best described as an iron(IV) center antiferromagnetically coupled to a ligand-centered radical.
Collapse
Affiliation(s)
- Lisa Gravogl
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Dominik Munz
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
38
|
Chiang CK, Chu KT, Lin CC, Xie SR, Liu YC, Demeshko S, Lee GH, Meyer F, Tsai ML, Chiang MH, Lee CM. Photoinduced NO and HNO Production from Mononuclear {FeNO}6 Complex Bearing a Pendant Thiol. J Am Chem Soc 2020; 142:8649-8661. [DOI: 10.1021/jacs.9b13837] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chuan-Kuei Chiang
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan
| | - Kai-Ti Chu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Chin Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Shi-Rou Xie
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan
| | - Yu-Chiao Liu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Serhiy Demeshko
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University, Taipei 107, Taiwan
| | - Franc Meyer
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Ming-Li Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Ming Lee
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan
| |
Collapse
|
39
|
Bohnenberger J, Krossing I. Stabile Salze heteroleptischer Eisen‐Carbonyl/Nitrosylkationen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jan Bohnenberger
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF) Universität Freiburg Albertstraße 21 79104 Freiburg Deutschland
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF) Universität Freiburg Albertstraße 21 79104 Freiburg Deutschland
| |
Collapse
|
40
|
Bohnenberger J, Krossing I. Stable Salts of Heteroleptic Iron Carbonyl/Nitrosyl Cations. Angew Chem Int Ed Engl 2020; 59:5581-5585. [PMID: 31846555 PMCID: PMC7154531 DOI: 10.1002/anie.201915942] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 12/20/2022]
Abstract
The oxidation of Fe(CO)5 with the [NO]+ salt of the weakly coordinating perfluoroalkoxyaluminate anion [F‐{Al(ORF)3}2]− (RF=C(CF3)3) leads to stable salts of the 18 valence electron (VE) species [Fe(CO)4(NO)]+ and [Fe(CO)(NO)3]+ with the Enemark–Feltham numbers of {FeNO}8 and {FeNO}10. This finally concludes the triad of heteroleptic iron carbonyl/nitrosyl complexes, since the first discovery of the anionic ([Fe(CO)3(NO)]−) and neutral ([Fe(CO)2(NO)2]) species over 80 years ago. Both complexes were fully characterized (IR, Raman, NMR, UV/Vis, scXRD, pXRD) and are stable at room temperature under inert conditions over months and may serve as useful starting materials for further investigations.
Collapse
Affiliation(s)
- Jan Bohnenberger
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| |
Collapse
|