1
|
Sirijaraensre J. Exploring the catalytic performance of ligand-functionalized Cu-BTC paddlewheels in carboxylative cyclization of propargyl alcohol with CO 2: DFT and SISSO insights. J Mol Graph Model 2025; 138:109022. [PMID: 40127533 DOI: 10.1016/j.jmgm.2025.109022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/21/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
The M06-L functional with the 6-31G(d,p) and SDD ECP basis sets, was used to investigate the structure and electronic properties of defective linker-coordinated paddlewheel complexes (Cu-BTC(L1-L4)) in the catalytic conversion of propargyl alcohol (PA) and CO2 into cyclic carbonate. Two catalytic processes are proposed based on the different PA adsorption modes at the Cu center. The reaction proceeds via adsorption by the hydroxyl group in two sequential steps: PA/CO2 activation and cyclization. This pathway is proposed as the dominant process in the Cu-BTC and Cu-BTC(L1-L3) systems. However, only Cu-BTC(L3) and Cu-BTC(L4), which exhibit stronger electron back-donation compared to the other systems, effectively promote the catalytic process via PA adsorption through its alkyne bond. In this latter mode, the reaction proceeds through three consecutive steps: PA/CO2 activation, ring closure, and H-transfer. Compared to pristine Cu-BTC, Cu-BTC(L3) and Cu-BTC(L4) are proposed as more efficient catalysts for the carboxylative cycloaddition of CO2 with PA. The rate-determining step for the reaction on these two systems is the PA/CO2 activation via the latter mechanism. This step has an activation free energy of 16.7 kcal/mol and 15.0 kcal/mol for the Cu-BTC(L3) and Cu-BTC(L4). The SISSO model reveals the role of the Cu center in activating PA and stabilizing the generated intermediate, thereby lowering the activation free energy for PA/CO2 activation.
Collapse
Affiliation(s)
- Jakkapan Sirijaraensre
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food, and Agricultural Industries, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
2
|
Chen Y, Li J, Chen Y, Cheng Y, Tian X, Xiao D, Wang HT, Lu YR, Zhang L, Lin W, Luo J, Han L. Nitrogen-doping-induced electron spin polarization activates scandium oxide as high-performance zinc-air battery cathode. J Colloid Interface Sci 2025; 686:96-106. [PMID: 39892013 DOI: 10.1016/j.jcis.2025.01.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Platinum (Pt) is the most active catalyst for the oxygen reduction reaction (ORR). However, the scarcity, high cost, and susceptibility to deactivation of Pt constrain its large-scale applications. Transition metal oxide (TMO) materials have emerged as promising alternatives due to their abundant availability and catalytic potential. Herein, we report a dissolution-and-carbonization strategy to synthesize a carbon-supported nitrogen-doped Sc2O3 catalyst (N-Sc2O3/C). Nitrogen doping significantly enhances the conductivity of the otherwise poor-conductivity Sc2O3, transforming it into a superior ORR catalyst. The synthesized N-Sc2O3/C exhibits remarkable ORR performance in 0.1 M KOH, achieving a half-wave potential of 0.92 V, which is 55 mV higher than the state-of-the-art commercial Pt/C (0.87 V). Moreover, as a cathode for a zinc-air battery, N-Sc2O3/C achieves a peak power density of 150.7 mW cm-2 and a specific capacity of 766.4 mAh gZn-1. Density functional theory calculations reveal that nitrogen doping induces electron spin polarization within Sc2O3, narrowing the bandgap. This enhanced electronic structure improves conductivity and optimizes the adsorption of oxygen intermediates, thereby facilitating the ORR process. Our study demonstrates that nitrogen doping activates the wide-bandgap Sc2O3 semiconductor, converting it into a highly efficient ORR electrocatalyst and highlighting the potential of wide-bandgap TMO materials in energy applications.
Collapse
Affiliation(s)
- Yuhui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 China; Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 China
| | - Jun Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 China
| | - Yiqing Chen
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A0C9, Canada
| | - Ying Cheng
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xinxin Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hsiao-Tsu Wang
- Department of Physics, Tamkang University, New Taipei City 251301, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 China.
| | - Wenlie Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 China.
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 China.
| |
Collapse
|
3
|
Stanley J, Pauker HN, Kuker E, Dong V, Nielsen RJ, Yang JY. Sorbent Mediated Electrocatalytic Reduction of Dilute CO 2 to Methane. J Am Chem Soc 2025; 147:16099-16106. [PMID: 40326475 PMCID: PMC12082630 DOI: 10.1021/jacs.4c18303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
Efficient CO2 utilization is a critical component of closing the anthropogenic carbon cycle. Most studies have focused on the use of pure streams of CO2. However, CO2 is generally available only in dilute streams, which requires capture by sorbents followed by energy-intensive regeneration to release concentrated CO2. Direct utilization of sorbed-CO2 avoids the costly regeneration step, and the sorbent-CO2 interaction can kinetically activate CO2 to tune its reactivity toward products that could otherwise be inaccessible with direct CO2 reduction. We demonstrate that an N-heterocyclic carbene, 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (DPIy), quantitatively reacts with CO2 from dilute streams (0.04 and 10%) to form the sorbent-CO2 substrate 1,3-bis(2,6-diisopropylphenyl)imidazolium-2-carboxylate (DPICx). Electrocatalyst iron tetraphenylporphyrin chloride (Fe(TPP)Cl) typically reduces CO2 to CO; however, with DPICx as the substrate, the eight-electron reduced product methane (CH4) is produced with a high Faradaic efficiency (>85%) and regeneration of the sorbent DPIy. In addition to the overall energy and capital advantages of integrated CO2 capture and conversion, this result illustrates how sorbents can serve a dual purpose for both CO2 capture and chemical auxiliary purposes to access unique products. CO2 has a spectrum of reactivity with different types of sorbents; thus, these studies demonstrate how sorbent-CO2 interactions can be leveraged for integrated capture and utilization platforms to access a wider range of CO2-derived products.
Collapse
Affiliation(s)
- Jared
S. Stanley
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Hunter N. Pauker
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Erin Kuker
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Vy Dong
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Robert J. Nielsen
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Jenny Y. Yang
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| |
Collapse
|
4
|
Zhao C, Chang Q, Yin F, Niu G, Zhang C, Liu D, Mamba BB, Kuvarega AT. Catalytic Performance of Highly Dispersed Bimetallic Catalysts for CO Hydrogenation to DME. Chempluschem 2025; 90:e202500010. [PMID: 40019462 DOI: 10.1002/cplu.202500010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/01/2025]
Abstract
Highly dispersed bimetallic atomic-scale catalysts have garnered significant attention in syngas conversion filed due to the synergistic effects of the precisely structured bimetallic site, which facilitate the effective activation of CO. Despite their potential, synthesizing these catalysts to meet the specific application requirements remains challenging. Herein, various bimetallic catalysts were synthesized through the pyrolysis of the bimetallic ZIF precursors which were prepared by in situ doping of different metals (Mn, Fe, Co, Ni and Cu) into the ZIF-8 structure. In the presence of a highly dispersed and highly loaded Zn, the doping content in the ultimate second metallic catalysts varied between 0.15-1.20 wt % for different metals. The catalysts were systematically characterized using XRD, BET, TEM, XPS, Raman, ICP, and H2-TPD techniques. Among them, the Zn-NC regulated with Cu or Ni exhibited superior catalytic performance. Notably, the Cu-Zn-NC catalyst showed the highest activity, achieving a CO conversion of 32.8 % and optimal DME selectivity approaching 95.2 % in CO hydrogenation reactions. These enhanced performance metrics were attributed to the synergetic effects of bimetallic components. The incorporation of Cu not only preserved the original Zn-N structure but also preserved the catalytic performance unchanged. This preparation strategy is expected to filter out new research targets to use in diverse catalytic applications.
Collapse
Affiliation(s)
- Chunqiu Zhao
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
| | - Qiang Chang
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
| | - Fu Yin
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China
| | - Guowei Niu
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
| | - Chenghua Zhang
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China
| | - Dan Liu
- Tianjin Key Laboratory of Green Chemical Technology and Processes Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Alex T Kuvarega
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| |
Collapse
|
5
|
Thongam DD, Hang DR, Liang CT, Chou MMC. Doping and defect engineering in carbon-based electrocatalysts for enhanced electrochemical CO 2 reduction: From 0D to 3D materials. Adv Colloid Interface Sci 2025; 339:103429. [PMID: 39951901 DOI: 10.1016/j.cis.2025.103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 12/16/2024] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
The increasing atmospheric CO2 levels and the urgent need for sustainable energy solutions have driven research into electrochemical CO2 reduction. Carbon-based materials have received significant attention for their potential as electrocatalysts, yet their inert nature often limits their performance. Defect engineering and heteroatom doping have emerged as transformative approaches to overcome these limitations, enhancing both catalytic activity and Faradaic efficiency. This review systematically examines the role of these strategies across diverse carbon materials, including graphene, carbon nanotubes, carbon dots, and boron-doped diamond. Special attention is given to the incorporation of heteroatoms, such as nitrogen and boron, and the modulation of defect structures to optimize CO2 reduction pathways. By exploring the interplay between dopant type, defect density, and material dimensionality, we provide a comprehensive understanding of how tailored carbon-based electrocatalysts can drive advancements in sustainable electrochemical CO2 conversion. This work underscores the potential of defect-engineered and doped carbon materials to revolutionize the field of electrocatalysis, paving the way for innovative solutions to environmental and energy challenges.
Collapse
Affiliation(s)
- Debika Devi Thongam
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Assam 781039, India; Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Da-Ren Hang
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Chi-Te Liang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan; Taiwan Consortium of Emergent Crystalline Materials, Taipei 10617, Taiwan; Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Mitch M C Chou
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
6
|
He Y, Ma DD, Ma K, Li X, Han L, Wu XT, Zhu QL. Electrocatalytic N-C-N coupling over a hierarchically ordered open single-atom superstructure toward organonitrogen synthesis. Nat Commun 2025; 16:3564. [PMID: 40234412 PMCID: PMC12000409 DOI: 10.1038/s41467-025-58948-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/08/2025] [Indexed: 04/17/2025] Open
Abstract
Electrochemically constructing C-N and N-C-N bonds provides an economical and sustainable alternative to conventional chemosynthesis. Herein, a hierarchically ordered open superstructure of N-doped carbon isolated with accessible three-coordinated Zn single-atom sites is explored for efficient electrocatalytic N-C-N coupling. Benefiting from the distinctive structural merits, this catalyst enables electrocatalytic preparation of N-C-N bonded compounds from methanol and amines. Notably, the Faradaic efficiency and selectivity of N,N,N',N'-tetramethyldiaminomethane reach up to 77% and 96% at 0.8 V, respectively. Further integrating the aminoalkylation reaction, an electro-thermo cascade synthesis is explored with the electrochemically obtained N,N,N',N'-tetramethyldiaminomethane serving as a unique reagent, leading to a specific set of organonitrogen compounds with (dimethylamino)methyl substituent, including topotecan hydrochloride, an anti-tumor drug, with a high yield of 95%. Furthermore, the in situ spectroscopic characterization and calculations unveil that the under-coordinated Zn-N3 sites play a pivotal role in stabilizing the key *CH2O intermediate, thereby facilitating subsequent nucleophilic addition with amines.
Collapse
Affiliation(s)
- Yingchun He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong-Dong Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Ke Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Xiaofang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, China.
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
7
|
Lu C, Shi P, Huang S, Yang C, Zhu J, Zhang J, Ke C, Su Y, Zhuang X, Wang T. Heteroarchitectural Gas Diffusion Layer Promotes CO 2 Reduction Coupled with Biomass Oxidation at Ampere-Level Current Density. Angew Chem Int Ed Engl 2025; 64:e202423263. [PMID: 39777826 DOI: 10.1002/anie.202423263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Achieving high product selectivity at ampere-level current densities is essential for the industrial application of electrochemical CO2 reduction. However, the operational stability of CO2 electrolyzers at large current density has long been hindered by flooding of gas diffusion layer (GDL). Herein, a new heteroarchitectural GDL is designed to overcome flooding. Such GDL is constructed by sequentially sputtering the conductive silver and titanium boride (TiB2) onto a polytetrafluoroethylene substrate. Assembled with Cu catalyst in a flow cell, a maximum ethylene Faradaic efficiency of 64.7 % was achieved at a current density of 1.2 A cm-2 in 6 M KOH. Furthermore, the GDL is capable of stable operation for over 40 hours at 400 mA cm-2. Theoretical calculations and in situ experiments demonstrate enhanced intermediates adsorption on the TiB2-supported Cu surface, thereby reducing the energy barrier for C-C coupling. When coupling the CO2 reduction reaction with 5-hydroxymethylfurfural oxidation reaction, Faradaic efficiencies of 49.2 % for ethylene and 85.4 % for 2,5-furandicarboxylic acid were achieved at 1.2 A cm-2. This work provides a highly stable GDL for efficient CO2 conversion at ampere-level current density and paves the way for integrating biomolecules conversion in stack-level devices.
Collapse
Affiliation(s)
- Chenbao Lu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Pengfei Shi
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Senhe Huang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chongqing Yang
- College of Smart Energy, Shanghai Jiao Tong University, 665 Jianchuan Road, Shanghai, 200240, China
| | - Jinhui Zhu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, China
| | - Changchun Ke
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuezeng Su
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaodong Zhuang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Tianfu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
8
|
Zhang G, Liu F, Zhong S, Liu F, Zhu Q, Tang Y, Tan J, Zheng A, Jiang L, Xiao FS. Surpassing stoichiometric limitation for supra-multi-molar adsorption and separation of acid gases. Nat Commun 2025; 16:2861. [PMID: 40128180 PMCID: PMC11933455 DOI: 10.1038/s41467-025-58148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Capture of acid gases holds crucial importance for addressing air pollution and climate change, where achieving a molar ratio for adsorption and separation of acid gases on an active site higher than 1.0 remains challenging. Herein, we demonstrate that three nitrogen-bonded one Zn sites within a single-crystalline-like porous carbon (Zn-N3@SC-PC) derived from controlled carbonization of ZIF-8-C ≡ N with KCl, exhibit supra-multi-molar adsorption for CO2, COS, and H2S, even to 1:6 ratio for SO2 on the Zn-N3. This exceptional performance is attributed to the protruded structure in the Zn-N3@SC-PC for more coordination between Zn vacant orbital and acid gases evidenced by DFT calculation and in situ EXAFS. The high capacity for capturing acid gases on this adsorbent is crucial for future in carbon neutrality and environment protection.
Collapse
Affiliation(s)
- Guanqing Zhang
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC-CFC), School of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Fengqing Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shouchao Zhong
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC-CFC), School of Chemical Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian, China
| | - Fujian Liu
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC-CFC), School of Chemical Engineering, Fuzhou University, Fuzhou, China.
- Qingyuan Innovation Laboratory, Quanzhou, Fujian, China.
| | - Qiliang Zhu
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC-CFC), School of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Yu Tang
- Institute of Molecular Engineering Plus, College of Chemistry, Fuzhou University, Fuzhou, China.
| | - Jingyi Tan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, China.
| | - Lilong Jiang
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC-CFC), School of Chemical Engineering, Fuzhou University, Fuzhou, China.
- Qingyuan Innovation Laboratory, Quanzhou, Fujian, China.
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Lu L, Huang J, Guerrero A, Street I, Mosali S, Sumpter BG, Mustain WE, Chen Z. The Significance of the 'Insignificant': Non-covalent Interactions in CO 2 Reduction Reactions with 3C-TM (TM=Sc-Zn) Single-Atom Catalysts. CHEMSUSCHEM 2025; 18:e202401957. [PMID: 39639583 DOI: 10.1002/cssc.202401957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Indexed: 12/07/2024]
Abstract
With energy shortages and excessive CO2 emissions driving climate change, converting CO2 into high-value-added products offers a promising solution for carbon recycling. We investigate CO2 reduction reactions (CO2RR) catalyzed by 10 single-atom catalysts (SACs), incorporating weak non-covalent interactions, specifically lone pair-π and H-π interactions. The SACs, consisting of transition metals coordinated by three carbon atoms in a defective graphene substrate (3C-TM, TM=Sc-Zn), leverage these interactions to influence the energy fluctuations of intermediates and the limiting potentials of CO2RR, without altering the overall reaction pathway. Our findings show that SACs based on early transition metals (Sc, Ti, V, Cr) can serve as catalysts for C1 products, including HCOOH, HCHO, CH3OH, and CH4, while those based on Fe and Co are suitable for CO formation. Driving force analysis helps bridge theoretical results with experimental observations and propose a modified approach for assessing hydrogen evolution reactions (HER) competition. SACs based on Ni and Cu exhibit moderate HER tolerance, while early transition metals excel in selective CO2 reduction. We also identify a linear scaling relationship between the free energies of *COOH and *CO. This study offers valuable insights for future experimental studies and large-scale computational screenings.
Collapse
Affiliation(s)
- Linguo Lu
- Department of Physics, University of Puerto Rico, Rio Piedras, San Juan, PR, 00931, United States
| | - Jingsong Huang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Alvaro Guerrero
- Department of Physics, University of Puerto Rico, Rio Piedras, San Juan, PR, 00931, United States
| | - Ian Street
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, United States
| | - Sriram Mosali
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, United States
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - William E Mustain
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, United States
| | - Zhongfang Chen
- Department of Chemistry, University of Puerto Rico, Rio Piedras, San Juan, PR, 00931, United States
| |
Collapse
|
10
|
Maity S, Kolay S, Chakraborty S, Devi A, Rashi, Patra A. A comprehensive review of atomically precise metal nanoclusters with emergent photophysical properties towards diverse applications. Chem Soc Rev 2025; 54:1785-1844. [PMID: 39670813 DOI: 10.1039/d4cs00962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Atomically precise metal nanoclusters (MNCs) composed of a few to hundreds of metal atoms represent an emerging class of nanomaterials with a precise composition. With the size approaching the Fermi wavelength of electrons, their energy levels are well-separated, leading to molecule-like properties, like discrete single electronic transitions, tunable photoluminescence (PL), inherent structural anisotropy, and distinct redox behavior. Extensive synthetic efforts and electronic structure revelation have expanded applicability of MNCs in catalysis, optoelectronics, and biology. This review highlights the intriguing photophysical and electrochemical behaviors of MNCs and their regulatory parameters and applications. Initially, we present a brief discussion on the evolution of MNCs from gas-phase naked metal clusters to monolayer ligand-protected MNCs along with representative studies on their electronic structure. Due to their quantized molecular orbitals, they often exhibit PL, which can be regulated based on their capping ligands, number of atoms, crystal packing, presence of heterometal, and surrounding environment. Apart from PL, the relaxation pathways of MNCs on an ultrafast time scale have been extensively studied, which significantly differ from that of plasmonic metal nanoparticles. Moreover, their interaction with high-intensity light results in unique non-linear optical properties. The synergy between MNCs in a hierarchical self-assembled structure has been exploited to enhance their PL by precisely tuning their non-covalent interactions. Moreover, several NC-based hybrids have been designed to exhibit efficient electron or energy transfer in the photoexcited state. In the next section, we briefly focus on the redox behavior of NCs and facile electron transfer to suitable substrates, which result in enzyme-like catalytic activity. Utilizing these photophysical and electrochemical behaviors, NCs are widely employed in catalysis, optical sensing, and light-harvesting applications, which are also discussed in this review. In the final section, conclusions and open questions for the NC research community are included. This review will provide a comprehensive view of the emerging physicochemical properties of MNCs, thereby enabling an understanding for their precise modulation in future.
Collapse
Affiliation(s)
- Subarna Maity
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sarita Kolay
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Sikta Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Aarti Devi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rashi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
11
|
Chai L, Li R, Sun Y, Zhou K, Pan J. MOF-derived Carbon-Based Materials for Energy-Related Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413658. [PMID: 39791306 DOI: 10.1002/adma.202413658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Indexed: 01/12/2025]
Abstract
New carbon-based materials (CMs) are recommended as attractively active materials due to their diverse nanostructures and unique electron transport pathways, demonstrating great potential for highly efficient energy storage applications, electrocatalysis, and beyond. Among these newly reported CMs, metal-organic framework (MOF)-derived CMs have achieved impressive development momentum based on their high specific surface areas, tunable porosity, and flexible structural-functional integration. However, obstacles regarding the integrity of porous structures, the complexity of preparation processes, and the precise control of active components hinder the regulation of precise interface engineering in CMs. In this context, this review systematically summarizes the latest advances in tailored types, processing strategies, and energy-related applications of MOF-derived CMs and focuses on the structure-activity relationship of metal-free carbon, metal-doped carbon, and metallide-doped carbon. Particularly, the intrinsic correlation and evolutionary behavior between the synergistic interaction of micro/nanostructures and active species with electrochemical performances are emphasized. Finally, unique insights and perspectives on the latest relevant research are presented, and the future development prospects and challenges of MOF-derived CMs are discussed, providing valuable guidance to boost high-performance electrochemical electrodes for a broader range of application fields.
Collapse
Affiliation(s)
- Lulu Chai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Rui Li
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yanzhi Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
12
|
Singhvi C, Sharma G, Verma R, Paidi VK, Glatzel P, Paciok P, Patel VB, Mohan O, Polshettiwar V. Tuning the electronic structure and SMSI by integrating trimetallic sites with defective ceria for the CO 2 reduction reaction. Proc Natl Acad Sci U S A 2025; 122:e2411406122. [PMID: 39813253 PMCID: PMC11759900 DOI: 10.1073/pnas.2411406122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/12/2024] [Indexed: 01/18/2025] Open
Abstract
Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO2) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO2)-based electronically tuned trimetallic catalyst for CO2 to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them. The catalyst showed CO productivity of 49,279 mmol g-1 h-1 at 650 °C. CO selectivity up to 99% and excellent stability (rate remained unchanged even after 100 h) stemmed from the synergistic interactions among Ni-Cu-Zn sites and their SMSI with the defective ceria support. High-energy-resolution fluorescence-detection X-ray absorption spectroscopy (HERFD-XAS) confirmed this SMSI, further corroborated by in situ electron energy loss spectroscopy (EELS) and density functional theory (DFT) simulations. The in situ studies (HERFD-XAS & EELS) indicated the key role of oxygen vacancies of defective CeO2 during catalysis. The in situ transmission electron microscopy (TEM) imaging under catalytic conditions visualized the movement and growth of active trimetallic sites, which completely stopped once SMSI was established. In situ FTIR (supported by DFT) provided a molecular-level understanding of the formation of various reaction intermediates and their conversion into products, which followed a complex coupling of direct dissociation and redox pathway assisted by hydrogen, simultaneously on different active sites. Thus, sophisticated manipulation of electronic properties of trimetallic sites and defect dynamics significantly enhanced catalytic performance during CO2 to CO conversion.
Collapse
Affiliation(s)
- Charvi Singhvi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai400005, India
| | - Gunjan Sharma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai400005, India
| | - Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai400005, India
| | - Vinod K. Paidi
- Experiments Division, European Synchrotron Radiation Facility, Grenoble38043, Cedex 9, France
| | - Pieter Glatzel
- Experiments Division, European Synchrotron Radiation Facility, Grenoble38043, Cedex 9, France
| | - Paul Paciok
- Ernst-Ruska Center for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich52425, Germany
| | - Vashishtha B. Patel
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Ojus Mohan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai400005, India
| |
Collapse
|
13
|
Yu F, Zhang G, Shu M, Wang H. f-π* Back-Bonding Orbital Induced by a Lutetium-Based Conducting Metal-Organic Framework Promotes Highly Selective CO 2-to-CH 4 Conversion at Low Potential. Angew Chem Int Ed Engl 2025; 64:e202416467. [PMID: 39317956 DOI: 10.1002/anie.202416467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
The research on electrocatalytic carbon dioxide reduction (ECR) catalysts using renewable energy is particularly crucial in energy conversion studies, especially for viable hydrocarbon production. This study employs density functional theory calculations to screen a series of non-radioactive lanthanide two-dimensional metal-organic frameworks (MOFs) for product selectivity in ECR. Based on theoretical screening, our focus is on a lutetium (Lu)-based conducting MOF (Lu-HHTP), which exhibits a Faradaic efficiency of approximately 77 % for methane (CH4) production and maintains a stable current density of -280 mA/cm2 at -1.1 V vs. RHE. In situ electrochemical experiments and material characterization demonstrate that the Lu sites possess high coordination stability and structural recoverability during catalytic CO2 reduction, attributed to the overlap between Lu's f-orbitals and the π*-orbitals of the ligand O, and the formation of back bonding orbitals between the f-orbitals of Lu and the π* orbitals of CO contribute increasing CH4 selectivity and lowering the potential. This study leverages rare-earth MOF-type materials, offering a novel approach to addressing low conductivity and stabilizing rare-earth materials, thereby establishing a theoretical framework for the conversion of linearly adsorbed *CO into hydrocarbons.
Collapse
Affiliation(s)
- Fuqing Yu
- College of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Nanchang University, Nanchang, 330031, China
| | - Guangyao Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Nanchang University, Nanchang, 330031, China
| | - Minxing Shu
- College of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Nanchang University, Nanchang, 330031, China
| | - Hongming Wang
- College of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
14
|
Gallagher C, Kothakonda M, Zhao Q. Graphene-based single-atom catalysts for electrochemical CO 2 reduction: unraveling the roles of metals and dopants in tuning activity. Phys Chem Chem Phys 2025. [PMID: 39807814 DOI: 10.1039/d4cp04212c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Discovering electrocatalysts that can efficiently convert carbon dioxide (CO2) to valuable fuels and feedstocks using excess renewable electricity is an emergent carbon-neutral technology. A single metal atom embedded in doped graphene, i.e., single-atom catalyst (SAC), possesses high activity and selectivity for electrochemical CO2 reduction (CO2R) to CO, yet further reduction to hydrocarbons is challenging. Here, using density functional theory calculations, we investigate stability and reactivity of a broad SAC chemical space with various metal centers (3d transition metals) and dopants (2p dopants of B, N, O; 3p dopants of P, S) as electrocatalysts for CO2R to methane and methanol. We observe that the rigidities of these SACs depend on the type of dopants, with 3p-coordinating SACs exhibiting more severe out-of-plane distortion than 2p-coordinating SACs. Using CO adsorption energy as a descriptor for CO2R reactivity, we narrow down the candidates and identify seven SACs with near-optimal CO binding strength. We then elucidate full reaction mechanisms towards methane and methanol generation on these identified candidates and observe highly dopant-dependent activity and rate-limiting steps, divergent from conventional mechanistic understanding on metallic surfaces, calling into question whether previous design principles established on metals are directly transferrable to SACs. Consequently, we find that zinc embedded in boron-doped graphene (Zn-B-C) is a highly active catalyst for electrochemical CO2R to C1 hydrocarbons. Our work reveals the opportunities of tuning SAC reactivity via engineering dopants and metals and highlights the importance of re-elucidating CO2R reaction mechanisms on SACs towards unearthing new design principles for SAC chemistry.
Collapse
Affiliation(s)
- Colin Gallagher
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115, USA.
| | - Manish Kothakonda
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115, USA.
| | - Qing Zhao
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
15
|
Zeng G, Liu G, Panzeri G, Kim C, Song C, Alley OJ, Bell AT, Weber AZ, Toma FM. Surface Composition Impacts Selectivity of ZnTe Photocathodes in Photoelectrochemical CO 2 Reduction Reaction. ACS ENERGY LETTERS 2025; 10:34-39. [PMID: 39816620 PMCID: PMC11731327 DOI: 10.1021/acsenergylett.4c02259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 01/18/2025]
Abstract
Light-driven reduction of CO2 into chemicals using a photoelectrochemical (PEC) approach is considered as a promising way to meet the carbon neutral target. The very top surface of the photoelectrode and semiconductor/electrolyte interface plays a pivotal role in defining the performance for PEC CO2 reduction. However, such impact remains poorly understood. Here, we report an electrodeposition-annealing route for tailoring surface composition of ZnTe photocathodes. Our work demonstrates that a Zn-rich surface on the ZnTe photocathode is essential to impact the CO2 reduction activity and selectivity. In particular, the Zn-rich surface not only facilitated the interfacial charge carrier transfer, but also acted as electrocatalyst for boosting carbon product selectivity and suppressing the hydrogen evolution reaction. This work provides a new avenue to optimize the photocathode, as well as improvement of the CO2RR performance.
Collapse
Affiliation(s)
- Guosong Zeng
- Liquid
Sunlight Alliance, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Mechanical and Energy Engineering, Southern
University of Science and Technology, Shenzhen 518055, China
| | - Guiji Liu
- Liquid
Sunlight Alliance, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Gabriele Panzeri
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Politecnico di Milano, 20131 Milano, Italy
| | - Chanyeon Kim
- Liquid
Sunlight Alliance, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Department
of Energy Science & Engineering, DGIST, Daegu 42988 South Korea
| | - Chengyu Song
- National
Center for Electron Microscopy, The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Olivia J. Alley
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Alexis T. Bell
- Liquid
Sunlight Alliance, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Adam Z. Weber
- Liquid
Sunlight Alliance, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Energy
Technologies
Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Francesca M. Toma
- Liquid
Sunlight Alliance, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Institute
of Functional Materials for Sustainability, Helmholtz Zentrum Hereon, Kanstrasse 55, 14157 Teltow, Germany
- Faculty of
Mechanical and Civil Engineering, Helmut
Schmidt University, Hamburg 22043, Germany
| |
Collapse
|
16
|
Lindhardt JH, Holm PE, Zhu YG, Lu C, Hansen HCB. Plant-substrate biochar properties critical for mediating reductive debromination of 1,2-dibromoethane. J Environ Sci (China) 2025; 147:1-10. [PMID: 39003031 DOI: 10.1016/j.jes.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 07/15/2024]
Abstract
Dibromoethane is a widespread, persistent organic pollutant. Biochars are known mediators of reductive dehalogenation by layered FeII-FeIII hydroxides (green rust), which can reduce 1,2-dibromoethane to innocuous bromide and ethylene. However, the critical characteristics that determine mediator functionality are lesser known. Fifteen biochar substrates were pyrolyzed at 600 °C and 800 °C, characterized by elemental analysis, X-ray photo spectrometry C and N surface speciation, X-ray powder diffraction, specific surface area analysis, and tested for mediation of reductive debromination of 1,2-dibromoethane by a green rust reductant under anoxic conditions. A statistical analysis was performed to determine the biochar properties, critical for debromination kinetics and total debromination extent. It was shown that selected plant based biochars can mediate debromination of 1,2-dibromoethane, that the highest first order rate constant was 0.082/hr, and the highest debromination extent was 27% in reactivity experiments with 0.1 µmol (20 µmol/L) 1,2-dibromoethane, ≈ 22 mmol/L FeIIGR, and 0.12 g/L soybean meal biochar (7 days). Contents of Ni, Zn, N, and P, and the relative contribution of quinone surface functional groups were significantly (p < 0.05) positively correlated with 1,2-dibromoethane debromination, while adsorption, specific surface area, and the relative contribution of pyridinic N oxide surface groups were significantly negatively correlated with debromination.
Collapse
Affiliation(s)
- Jonathan H Lindhardt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Key lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Sino-Danish Center for education and research, China and Denmark, Dalgas Avenue 4, DK-8000 Aarhus C., Denmark.
| | - Peter E Holm
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Sino-Danish Center for education and research, China and Denmark, Dalgas Avenue 4, DK-8000 Aarhus C., Denmark
| | - Yong-Guan Zhu
- Key lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Sino-Danish Center for education and research, China and Denmark, Dalgas Avenue 4, DK-8000 Aarhus C., Denmark
| | - Changyong Lu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Hans Christian B Hansen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Sino-Danish Center for education and research, China and Denmark, Dalgas Avenue 4, DK-8000 Aarhus C., Denmark
| |
Collapse
|
17
|
Heng JM, Zhu HL, Zhao ZH, Liao PQ, Chen XM. Fabrication of Ultrahigh-Loading Dual Copper Sites in Nitrogen-Doped Porous Carbons Boosting Electroreduction of CO 2 to C 2H 4 Under Neutral Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415101. [PMID: 39548939 DOI: 10.1002/adma.202415101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Indexed: 11/18/2024]
Abstract
Synthesis of high-loading atomic-level dispersed catalysts for highly efficient electrochemical CO2 reduction reaction (eCO2RR) to ethylene (C2H4) in neutral electrolyte remain challenging tasks. To address common aggregation issues, a host-guest strategy is employed, by using a metal-azolate framework (MAF-4) with nanocages as the host and a dinuclear Cu(I) complex as the guest, to form precursors for pyrolysis into a series of nitrogen-doped porous carbons (NPCs) with varying loadings of dual copper sites, namely NPCMAF-4-Cu2-21 (21.2 wt%), NPCMAF-4-Cu2-11 (10.6 wt%), and NPCMAF-4-Cu2-7 (6.9 wt%). Interestingly, as the loading of dual copper sites increased from 6.9 to 21.2 wt%, the partial current density for eCO2RR to yield C2H4 also gradually increased from 38.7 to 93.6 mA cm-2. In a 0.1 m KHCO3 electrolyte, at -1.4 V versus reversible hydrogen electrode (vs. RHE), NPCMAF-4-Cu2-21 exhibits the excellent performance with a Faradaic efficiency of 52% and a current density of 180 mA cm-2. Such performance can be attributed to the presence of ultrahigh-loading dual copper sites, which promotes C─C coupling and the formation of C2 products. The findings demonstrate the confinement effect of MAF-4 with nanocages is conducive to the preparation of high-loading atomic-level catalysts.
Collapse
Affiliation(s)
- Jin-Meng Heng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| |
Collapse
|
18
|
Herranz D, Bernedo Biriucov S, Arranz A, Avilés Moreno JR, Ocón P. Syngas Production Improvement from CO2RR Using Cu-Sn Electrodeposited Catalysts. MATERIALS (BASEL, SWITZERLAND) 2024; 18:105. [PMID: 39795751 PMCID: PMC11722079 DOI: 10.3390/ma18010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Electrochemical reduction of CO2 is an efficient and novel strategy to reduce the amount of this greenhouse-effect pollutant gas in the atmosphere while synthesizing value-added products, all of it with an easy synergy with intermittent renewable energies. This study investigates the influence of different ways of combining electrodeposited Cu and Sn as metallic elements in the electrocatalyst. From there, the use of Sn alone or with a small amount of Cu beneath is investigated, and finally, the best catalyst obtained, which has Sn over a slight Cu layer, is evaluated in consecutive cycles to make an initial exploration of the catalyst durability. As a result of this work, after optimization of the Sn and Cu-based catalysts, it is possible to obtain more than 60% of the organic products of interest, predominantly CO, the main component of syngas. Finally, this great amount of CO is obtained under low cell potential (below 3 V), which is a remarkable result in terms of the cost of the process.
Collapse
Affiliation(s)
- Daniel Herranz
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain; (D.H.); (S.B.B.); (P.O.)
| | - Santiago Bernedo Biriucov
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain; (D.H.); (S.B.B.); (P.O.)
| | - Antonio Arranz
- Departamento de Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain;
| | - Juan Ramón Avilés Moreno
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain; (D.H.); (S.B.B.); (P.O.)
| | - Pilar Ocón
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain; (D.H.); (S.B.B.); (P.O.)
| |
Collapse
|
19
|
Sun X, Zhang P, Zhang B, Xu C. Electronic Structure Regulated Carbon-Based Single-Atom Catalysts for Highly Efficient and Stable Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405624. [PMID: 39252646 DOI: 10.1002/smll.202405624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/18/2024] [Indexed: 09/11/2024]
Abstract
Single-atom-catalysts (SACs) with atomically dispersed sites on carbon substrates have attained great advancements in electrocatalysis regarding maximum atomic utilization, unique chemical properties, and high catalytic performance. Precisely regulating the electronic structure of single-atom sites offers a rational strategy to optimize reaction processes associated with the activation of reactive intermediates with enhanced electrocatalytic activities of SACs. Although several approaches are proposed in terms of charge transfer, band structure, orbital occupancy, and the spin state, the principles for how electronic structure controls the intrinsic electrocatalytic activity of SACs have not been sufficiently investigated. Herein, strategies for regulating the electronic structure of carbon-based SACs are first summarized, including nonmetal heteroatom doping, coordination number regulating, defect engineering, strain designing, and dual-metal-sites scheming. Second, the impacts of electronic structure on the activation behaviors of reactive intermediates and the electrocatalytic activities of water splitting, oxygen reduction reaction, and CO2/N2 electroreduction reactions are thoroughly discussed. The electronic structure-performance relationships are meticulously understood by combining key characterization techniques with density functional theory (DFT) calculations. Finally, a conclusion of this paper and insights into the challenges and future prospects in this field are proposed. This review highlights the understanding of electronic structure-correlated electrocatalytic activity for SACs and guides their progress in electrochemical applications.
Collapse
Affiliation(s)
- Xiaohui Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Bangyan Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| |
Collapse
|
20
|
Woldu AR, Yohannes AG, Huang Z, Kennepohl P, Astruc D, Hu L, Huang XC. Experimental and Theoretical Insights into Single Atoms, Dual Atoms, and Sub-Nanocluster Catalysts for Electrochemical CO 2 Reduction (CO 2RR) to High-Value Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2414169. [PMID: 39593251 DOI: 10.1002/adma.202414169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Indexed: 11/28/2024]
Abstract
Electrocatalytic carbon dioxide (CO2) conversion into valuable chemicals paves the way for the realization of carbon recycling. Downsizing catalysts to single-atom catalysts (SACs), dual-atom catalysts (DACs), and sub-nanocluster catalysts (SNCCs) has generated highly active and selective CO2 transformation into highly reduced products. This is due to the introduction of numerous active sites, highly unsaturated coordination environments, efficient atom utilization, and confinement effect compared to their nanoparticle counterparts. Herein, recent Cu-based SACs are first reviewed and the newly emerged DACs and SNCCs expanding the catalysis of SACs to electrocatalytic CO2 reduction (CO2RR) to high-value products are discussed. Tandem Cu-based SAC-nanocatalysts (NCs) (SAC-NCs) are also discussed for the CO2RR to high-value products. Then, the non-Cu-based SACs, DACs, SAC-NCs, and SNCCs and theoretical calculations of various transition-metal catalysts for CO2RR to high-value products are summarized. Compared to previous achievements of less-reduced products, this review focuses on the double objective of achieving full CO2 reduction and increasing the selectivity and formation rate toward C-C coupled products with additional emphasis on the stability of the catalysts. Finally, through combined theoretical and experimental research, future outlooks are offered to further develop the CO2RR into high-value products over isolated atoms and sub-nanometal clusters.
Collapse
Affiliation(s)
- Abebe Reda Woldu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Asfaw G Yohannes
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Zanling Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Pierre Kennepohl
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Didier Astruc
- ISM, UMR CNRS 5255, University of Bordeaux, Talence, Cedex, 33405, France
| | - Liangsheng Hu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| |
Collapse
|
21
|
Kment Š, Bakandritsos A, Tantis I, Kmentová H, Zuo Y, Henrotte O, Naldoni A, Otyepka M, Varma RS, Zbořil R. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem Rev 2024; 124:11767-11847. [PMID: 38967551 PMCID: PMC11565580 DOI: 10.1021/acs.chemrev.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.
Collapse
Affiliation(s)
- Štĕpán Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Iosif Tantis
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Hana Kmentová
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Yunpeng Zuo
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Olivier Henrotte
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Alberto Naldoni
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Department
of Chemistry and NIS Centre, University
of Turin, Turin, Italy 10125
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- IT4Innovations, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
22
|
Cui Y, Ren C, Wu M, Chen Y, Li Q, Ling C, Wang J. Structure-Stability Relation of Single-Atom Catalysts under Operating Conditions of CO 2 Reduction. J Am Chem Soc 2024; 146:29169-29176. [PMID: 39387638 DOI: 10.1021/jacs.4c11516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Single-atom catalysts (SACs) have exhibited exceptional atomic efficiency and catalytic performance in various reactions but suffer poor stability. Understanding the structure-stability relation is the prerequisite for stability optimization but has been rarely explored due to complexity of the degradation process and reaction environments. Herein, we successfully established the structure-stability relation of N-doped carbon-supports SACs (MN4 SACs) under working conditions of CO2 reduction, by using advanced constant-potential density functional theory calculations. Systematic mechanism investigation that considered different factors identifies the key role of initial hydrogen adsorption on the coordination N atom in catalytic stability, where the feasibility of the adsorption eventually determines the leaching of the metal atom. On this basis, a simple descriptor consisting of electron number and electronegativity is constructed, realizing accurate and rapid prediction of the stability of SACs. Furthermore, strategies via modifying the local geometric structure to improve the stability without changing the active centers are proposed accordingly, which are supported by related experiments. These findings fill the current void in understanding SAC stability under practical working conditions, potentially advancing the widespread application of SACs in sustainable energy conversion systems.
Collapse
Affiliation(s)
- Yu Cui
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Chunjin Ren
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Mingliang Wu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Yu Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Qiang Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
23
|
Liu P, Zheng S, He Z, Qu C, Zhang L, Ouyang B, Wu F, Kong J. Optimizing Integrated-Loss Capacities via Asymmetric Electronic Environments for Highly Efficient Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403903. [PMID: 38953301 DOI: 10.1002/smll.202403903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/12/2024] [Indexed: 07/04/2024]
Abstract
Asymmetric electronic environments based on microscopic-scale perspective have injected infinite vitality in understanding the intrinsic mechanism of polarization loss for electromagnetic (EM) wave absorption, but still exists a significant challenge. Herein, Zn single-atoms (SAs), structural defects, and Co nanoclusters are simultaneously implanted into bimetallic metal-organic framework derivatives via the two-step dual coordination-pyrolysis process. Theoretical simulations and experimental results reveal that the electronic coupling interactions between Zn SAs and structural defects delocalize the symmetric electronic environments and generate additional dipole polarization without sacrificing conduction loss owing to the compensation of carbon nanotubes. Moreover, Co nanoclusters with large nanocurvatures induce a strong interfacial electric field, activate the superiority of heterointerfaces and promote interfacial polarization. Benefiting from the aforementioned merits, the resultant derivatives deliver an optimal reflection loss of -58.9 dB and the effective absorption bandwidth is 5.2 GHz. These findings provide an innovative insight into clarifying the microscopic loss mechanism from the asymmetric electron environments viewpoint and inspire the generalized electronic modulation engineering in optimizing EM wave absorption.
Collapse
Affiliation(s)
- Panbo Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Shuyun Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Zizhuang He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Chang Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Leqian Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Bo Ouyang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fan Wu
- School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jie Kong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| |
Collapse
|
24
|
Jia C, Sun Q, Liu R, Mao G, Maschmeyer T, Gooding JJ, Zhang T, Dai L, Zhao C. Challenges and Opportunities for Single-Atom Electrocatalysts: From Lab-Scale Research to Potential Industry-Level Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404659. [PMID: 38870958 DOI: 10.1002/adma.202404659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Single-atom electrocatalysts (SACs) are a class of promising materials for driving electrochemical energy conversion reactions due to their intrinsic advantages, including maximum metal utilization, well-defined active structures, and strong interface effects. However, SACs have not reached full commercialization for broad industrial applications. This review summarizes recent research achievements in the design of SACs for crucial electrocatalytic reactions on their active sites, coordination, and substrates, as well as the synthesis methods. The key challenges facing SACs in activity, selectivity, stability, and scalability, are highlighted. Furthermore, it is pointed out the new strategies to address these challenges including increasing intrinsic activity of metal sites, enhancing the utilization of metal sites, improving the stability, optimizing the local environment, developing new fabrication techniques, leveraging insights from theoretical studies, and expanding potential applications. Finally, the views are offered on the future direction of single-atom electrocatalysis toward commercialization.
Collapse
Affiliation(s)
- Chen Jia
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Qian Sun
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ruirui Liu
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Thomas Maschmeyer
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Liming Dai
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
25
|
Senthilkumar AK, Kumar M, Samuel MS, Ethiraj S, Shkir M, Chang JH. Recent advancements in carbon/metal-based nano-catalysts for the reduction of CO 2 to value-added products. CHEMOSPHERE 2024; 364:143017. [PMID: 39103104 DOI: 10.1016/j.chemosphere.2024.143017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 06/11/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Due to the increased human activities in burning of fossil fuels and deforestation, the CO2 level in the atmosphere gets increased up to 415 ppm; although it is an essential component for plant growth, an increased level of CO2 in the atmosphere leads to global warming and catastrophic climate change. Various conventional methods are used to capture and utilize CO2, among that a feasible and eco-friendly technique for creating value-added products is the CO2RR. Photochemical, electrochemical, thermochemical, and biochemical approaches can be used to decrease the level of CO2 in the atmosphere. The introduction of nano-catalysts in the reduction process helps in the efficient conversion of CO2 with improved selectivity, increased efficiency, and also enhanced stability of the catalyst materials. Thus, in this mini-review of nano-catalysts, some of the products formed during the reduction process, like CH3OH, C2H5OH, CO, HCOOH, and CH4, are explained. Among different types of metal catalysts, carbonaceous, single-atom catalysts, and MOF based catalysts play a significant role in the CO2 RR process. The effects of the catalyst material on the surface area, composition, and structural alterations are covered in depth. To aid in the design and development of high-performance nano-catalysts for value-added products, the current state, difficulties, and future prospects are provided.
Collapse
Affiliation(s)
- Arun Kumar Senthilkumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan; Department of Applied Chemistry, Chaoyang University of Technology, Taichung City, 413310, Taiwan
| | - Mohanraj Kumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| | - Melvin S Samuel
- Department of Civil, Construction & Environmental Engineering, Marquette University, 1637 W Wisconsin Ave, Milwaukee, WI, 53233, USA
| | - Selvarajan Ethiraj
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Mohd Shkir
- Department of Physics, College of Science, King Khalid University, P.O Box-9004, Abha, 61413, Saudi Arabia
| | - Jih-Hsing Chang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| |
Collapse
|
26
|
Liu X, Huang L, Ma Y, She G, Zhou P, Zhu L, Zhang Z. Enable biomass-derived alcohols mediated alkylation and transfer hydrogenation. Nat Commun 2024; 15:7012. [PMID: 39147765 PMCID: PMC11327299 DOI: 10.1038/s41467-024-51307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
A single-atom catalyst with generally regarded inert Zn-N4 motifs derived from ZIF-8 is unexpectedly efficient for the activation of alcohols, enabling alcohol-mediated alkylation and transfer hydrogenation. C-alkylation of nitriles, ketones, alcohols, N-heterocycles, amides, keto acids, and esters, and N-alkylation of amines and amides all go smoothly with the developed method. Taking the α-alkylation of nitriles with alcohols as an example, the α-alkylation starts from the (1) nitrogen-doped carbon support catalyzed dehydrogenation of alcohols into aldehydes, which further condensed with nitriles to give vinyl nitriles, followed by (2) transfer hydrogenation of C=C bonds in vinyl nitriles on Zn-N4 sites. The experimental results and DFT calculations reveal that the Lewis acidic Zn-N4 sites promote step (2) by activating the alcohols. This is the first example of highly efficient single-atom catalysts for various organic transformations with biomass-derived alcohols as the alkylating reagents and hydrogen donors.
Collapse
Affiliation(s)
- Xixi Liu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Liang Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Yuandie Ma
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Guoqiang She
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Peng Zhou
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Liangfang Zhu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
27
|
Chen S, Chung LH, Chen S, Jiang Z, Li N, Hu J, Liao WM, He J. Efficient Lead Removal by Assembly of Bio-Derived Ellagate Framework, Which Enables Electrocatalytic Reduction of CO 2 to Formate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400978. [PMID: 38593307 DOI: 10.1002/smll.202400978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Lead (Pb) poisoning and CO2-induced global warming represent two exemplary environmental and energy issues threatening humanity. Various biomass-derived materials are reported to take up Pb and convert CO2 electrochemically into low-valent carbon species, but these works address the problems separately rather than settle the issues simultaneously. In this work, cheap, natural ellagic acid (EA) extracted from common plants is adopted to assemble a stable metal-organic framework (MOF), EA-Pb, by effective capture of Pb2+ ions in an aqueous medium (removal rate close to 99%). EA-Pb represents the first structurally well-defined Pb-based MOF showing selective electrocatalytic CO2-to-HCOO- conversion with Faradaic efficiency (FE) of 95.37% at -1.08 V versus RHE. The catalytic mechanism is studied by 13CO2 labeling, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and theoretical calculation. The use of EA-Pb as an electrocatalyst for CO2 reduction represents a 2-in-1 solution of converting detrimental wastes (Pb2+) as well as natural resources (EA) into wealth (electrocatalytic EA-Pb) for addressing the global warming issue.
Collapse
Affiliation(s)
- Song Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Shaoru Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhixin Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Ning Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Wei-Ming Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| |
Collapse
|
28
|
Li X, Jiang L, Zhou Y, Yu Q. Electrochemical CO 2 Reduction on Cu-Based Monatomic Alloys: A DFT Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39007735 DOI: 10.1021/acs.langmuir.4c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In recent years, single-atom alloy catalysts (SAAs) have received much attention due to the combination of structural features of both single-atom and alloy catalysts, as well as their efficient catalytic activity, high selectivity, and high stability in various chemical reactions. In this work, we designed a series of Cu-based SAAs by doping isolated 3d transition metal (TM1) atoms on the surface of Cu(111) (TM1 = Fe, Co, Ru, Rh, Os and Ir), in which Ir1/Cu(111) SAAs are considered to be the most stable among 3d-series SAAs due to their optimal binding energy (Eb). The density of states of SAAs have been systematically investigated to further discuss structural properties. Based on density functional theory calculations, the activity and selectivity of Ir1/Cu(111) SAAs are investigated for electrocatalytic CO2 reduction reaction (CO2RR). The initial hydrogenation of CO2 on Ir1/Cu(111) SAAs can form *CO intermediates, which will be further to CH4 production by the pathway of *CO → *CHO → *CHOH → *CH2OH → *CH2 → *CH3 → CH4. This study provides theoretical insights for the rational design of selective Cu-based monatomic alloy catalysts.
Collapse
Affiliation(s)
- Xiaojiao Li
- School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
| | - Liyun Jiang
- School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
| | - Yilei Zhou
- School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
| | - Qi Yu
- School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Wang C, Lv Z, Liu Y, Liu R, Sun C, Wang J, Li L, Liu X, Feng X, Yang W, Wang B. Hydrogen-Bonded Organic Framework Supporting Atomic Bi-N 2O 2 Sites for High-Efficiency Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202404015. [PMID: 38530039 DOI: 10.1002/anie.202404015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Single atomic catalysts (SACs) offer a superior platform for studying the structure-activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to obtain well-defined and novel site configuration owing to the uncertainty of functional framework-derived SACs through calcination. Herein, a novel Bi-N2O2 site supported on the (1 1 0) plane of hydrogen-bonded organic framework (HOF) is reported directly for CO2RR. In flow cell, the target catalyst Bi1-HOF maintains a faradaic efficiency (FE) HCOOH of over 90 % at a wide potential window of 1.4 V. The corresponding partial current density ranges from 113.3 to 747.0 mA cm-2. And, Bi1-HOF exhibits a long-term stability of over 30 h under a successive potential-step test with a current density of 100-400 mA cm-2. Density function theory (DFT) calculations illustrate that the novel Bi-N2O2 site supported on the (1 1 0) plane of HOF effectively induces the oriented electron transfer from Bi center to CO2 molecule, reaching an enhanced CO2 activation and reduction. Besides, this study offers a versatile method to reach series of M-N2O2 sites with regulable metal centers via the same intercalation mechanism, broadening the platform for studying the structure-activity relationships during CO2RR.
Collapse
Affiliation(s)
- Changli Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Zunhang Lv
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Yarong Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Rui Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Caiting Sun
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Jinming Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Liuhua Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Xiangjian Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Wenxiu Yang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| |
Collapse
|
30
|
Jiang M, Wang H, Zhu M, Luo X, He Y, Wang M, Wu C, Zhang L, Li X, Liao X, Jiang Z, Jin Z. Review on strategies for improving the added value and expanding the scope of CO 2 electroreduction products. Chem Soc Rev 2024; 53:5149-5189. [PMID: 38566609 DOI: 10.1039/d3cs00857f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The electrochemical reduction of CO2 into value-added chemicals has been explored as a promising solution to realize carbon neutrality and inhibit global warming. This involves utilizing the electrochemical CO2 reduction reaction (CO2RR) to produce a variety of single-carbon (C1) and multi-carbon (C2+) products. Additionally, the electrolyte solution in the CO2RR system can be enriched with nitrogen sources (such as NO3-, NO2-, N2, or NO) to enable the synthesis of organonitrogen compounds via C-N coupling reactions. However, the electrochemical conversion of CO2 into valuable chemicals still faces challenges in terms of low product yield, poor faradaic efficiency (FE), and unclear understanding of the reaction mechanism. This review summarizes the promising strategies aimed at achieving selective production of diverse carbon-containing products, including CO, formate, hydrocarbons, alcohols, and organonitrogen compounds. These approaches involve the rational design of electrocatalysts and the construction of coupled electrocatalytic reaction systems. Moreover, this review presents the underlying reaction mechanisms, identifies the existing challenges, and highlights the prospects of the electrosynthesis processes. The aim is to offer valuable insights and guidance for future research on the electrocatalytic conversion of CO2 into carbon-containing products of enhanced value-added potential.
Collapse
Affiliation(s)
- Minghang Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Mengjun Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Caijun Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Liyun Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Xiao Li
- College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, China.
| | - Xuemei Liao
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhenju Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
31
|
O'Brien CP, Miao RK, Shayesteh Zeraati A, Lee G, Sargent EH, Sinton D. CO 2 Electrolyzers. Chem Rev 2024; 124:3648-3693. [PMID: 38518224 DOI: 10.1021/acs.chemrev.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
CO2 electrolyzers have progressed rapidly in energy efficiency and catalyst selectivity toward valuable chemical feedstocks and fuels, such as syngas, ethylene, ethanol, and methane. However, each component within these complex systems influences the overall performance, and the further advances needed to realize commercialization will require an approach that considers the whole process, with the electrochemical cell at the center. Beyond the cell boundaries, the electrolyzer must integrate with upstream CO2 feeds and downstream separation processes in a way that minimizes overall product energy intensity and presents viable use cases. Here we begin by describing upstream CO2 sources, their energy intensities, and impurities. We then focus on the cell, the most common CO2 electrolyzer system architectures, and each component within these systems. We evaluate the energy savings and the feasibility of alternative approaches including integration with CO2 capture, direct conversion of flue gas and two-step conversion via carbon monoxide. We evaluate pathways that minimize downstream separations and produce concentrated streams compatible with existing sectors. Applying this comprehensive upstream-to-downstream approach, we highlight the most promising routes, and outlook, for electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Ali Shayesteh Zeraati
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
32
|
Guo Z, Zhou P, Jiang L, Liu S, Yang Y, Li Z, Wu P, Zhang Z, Li H. Electron Localization-Triggered Proton Pumping Toward Cu Single Atoms for Electrochemical CO 2 Methanation of Unprecedented Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311149. [PMID: 38153318 DOI: 10.1002/adma.202311149] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Slow multi-proton coupled electron transfer kinetics and unexpected desorption of intermediates severely hinder the selectivity of CO2 methanation. In this work, a one-stone-two-bird strategy of pumping protons and improving adsorption configuration/capability enabled by electron localization is developed to be highly efficient for CH4 electrosynthesis over Cu single atoms anchored on bismuth vacancies of BiVO4 (Bi1-xVO4─Cu), with superior kinetic isotope effect and high CH4 Faraday efficiency (92%), far outperforming state-of-the-art electrocatalysts for CO2 methanation. Control experiments and theoretical calculations reveal that the bismuth vacancies (VBi) not only act as active sites for H2O dissociation but also induce electron transfer toward Cu single-atom sites. The VBi-induced electron localization pumps *H from VBi sites to Cu single atoms, significantly promoting the generation and stabilization of the pivotal intermediate (*CHO) for highly selective CH4 electrosynthesis. The metal vacancies as new initiators show enormous potential in the proton transfer-involved hydrogenative conversion processes.
Collapse
Affiliation(s)
- Zhenyan Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Peng Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Liqun Jiang
- Guangdong Engineering Laboratory of Biomass High-value Utilization, Guangdong Plant Fiber Comprehensive Utilization Engineering Technology Research and Development Center, Guangzhou Key Laboratory of Biomass Comprehensive Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Shengqi Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Ying Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Zhengyi Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Peidong Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Hu Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
33
|
Yang Z, Lai F, Mao Q, Liu C, Wang R, Lu Z, Zhang T, Liu X. Reversing Zincophobic/Hydrophilic Nature of Metal-N-C via Metal-Coordination Interaction for Dendrite-Free Zn Anode with High Depth-of-Discharge. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311637. [PMID: 38191995 DOI: 10.1002/adma.202311637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Dendrite-free Zn metal anodes with high depth-of-discharge (DoD) and robust cycle performances are highly desired for the practical application of aqueous Zn-ion batteries. Herein, the zincophobic/hydrophilic nature of Metal-N-C through manipulating the electronic interactions between metal and coordination atoms is successfully reversed, thereby fabricating a zincophilic/hydrophobic asymmetric Zn-N3Py+1Pr-C (consisting of a Zn center coordinated with 3 pyridinic N atoms and 1 pyrrolic N atom) host, which realizes uniformed Zn deposition and a long lifespan with high DoD. The experimental and theoretical investigations demonstrate weakened interaction between pyrrolic N and metal center in the asymmetric Zn-N3Py+1Pr-C triggers downshift of the Zn 3d-band-center and a new localization nonbonding state in the N and C 2p-band, resulting in preferred Zn adsorption to water adsorption. Consequently, the asymmetric Zn-N3Py+1Pr-C host delivers small Zn nucleation overpotential and high Coulombic efficiency of 98.3% over 500 cycles. The symmetric cells with Zn-N3Py+1Pr-C@Zn anode demonstrate 500 h dendrite-free cycles at DoD up to 50%. The Zn-N3Py+1Pr-C@Zn/S-PANI full cell also shows a robust long-term cycle performance of 1000 cycles at 10 A g-1. This strategy of constructing zincophilic/hydrophobic Metal-N-C may open up their application for the dendrite-free metal anode.
Collapse
Affiliation(s)
- Ziyi Yang
- College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Fayuan Lai
- College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Qianjiang Mao
- College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Chong Liu
- College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Ruoyu Wang
- College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Zhihua Lu
- College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Tianran Zhang
- College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing, 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, P. R. China
| | - Xiangfeng Liu
- College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| |
Collapse
|
34
|
Tan X, Zhu H, He C, Zhuang Z, Sun K, Zhang C, Chen C. Customizing catalyst surface/interface structures for electrochemical CO 2 reduction. Chem Sci 2024; 15:4292-4312. [PMID: 38516078 PMCID: PMC10952066 DOI: 10.1039/d3sc06990g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Electrochemical CO2 reduction reaction (CO2RR) provides a promising route to converting CO2 into value-added chemicals and to neutralizing the greenhouse gas emission. For the industrial application of CO2RR, high-performance electrocatalysts featuring high activities and selectivities are essential. It has been demonstrated that customizing the catalyst surface/interface structures allows for high-precision control over the microenvironment for catalysis as well as the adsorption/desorption behaviors of key reaction intermediates in CO2RR, thereby elevating the activity, selectivity and stability of the electrocatalysts. In this paper, we review the progress in customizing the surface/interface structures for CO2RR electrocatalysts (including atomic-site catalysts, metal catalysts, and metal/oxide catalysts). From the perspectives of coordination engineering, atomic interface design, surface modification, and hetero-interface construction, we delineate the resulting specific alterations in surface/interface structures, and their effect on the CO2RR process. At the end of this review, we present a brief discussion and outlook on the current challenges and future directions for achieving high-efficiency CO2RR via surface/interface engineering.
Collapse
Affiliation(s)
- Xin Tan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Haojie Zhu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Chang He
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Zewen Zhuang
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Kaian Sun
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 China
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
35
|
Chen W, Jin X, Zhang L, Wang L, Shi J. Modulating the Structure and Composition of Single-Atom Electrocatalysts for CO 2 reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304424. [PMID: 38044311 PMCID: PMC10916602 DOI: 10.1002/advs.202304424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/05/2023] [Indexed: 12/05/2023]
Abstract
Electrochemical CO2 reduction reaction (eCO2 RR) is a promising strategy to achieve carbon cycling by converting CO2 into value-added products under mild reaction conditions. Recently, single-atom catalysts (SACs) have shown enormous potential in eCO2 RR due to their high utilization of metal atoms and flexible coordination structures. In this work, the recent progress in SACs for eCO2 RR is outlined, with detailed discussions on the interaction between active sites and CO2 , especially the adsorption/activation behavior of CO2 and the effects of the electronic structure of SACs on eCO2 RR. Three perspectives form the starting point: 1) Important factors of SACs for eCO2 RR; 2) Typical SACs for eCO2 RR; 3) eCO2 RR toward valuable products. First, how different modification strategies can change the electronic structure of SACs to improve catalytic performance is discussed; Second, SACs with diverse supports and how supports assist active sites to undergo catalytic reaction are introduced; Finally, according to various valuable products from eCO2 RR, the reaction mechanism and measures which can be taken to improve the selectivity of eCO2 RR are discussed. Hopefully, this work can provide a comprehensive understanding of SACs for eCO2 RR and spark innovative design and modification ideas to develop highly efficient SACs for CO2 conversion to various valuable fuels/chemicals.
Collapse
Affiliation(s)
- Weiren Chen
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Xixiong Jin
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Lingxia Zhang
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024P. R. China
| | - Lianzhou Wang
- Nanomaterials CentreSchool of Chemical Engineering and Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| | - Jianlin Shi
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| |
Collapse
|
36
|
Wan W, Zhao Y, Meng J, Allen CS, Zhou Y, Patzke GR. Tailoring C─N Containing Compounds into Carbon Nanomaterials with Tunable Morphologies for Electrocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304663. [PMID: 37821413 DOI: 10.1002/smll.202304663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/26/2023] [Indexed: 10/13/2023]
Abstract
Carbon materials with unique sp2 -hybridization are extensively researched for catalytic applications due to their excellent conductivity and tunable physicochemical properties. However, the development of economic approaches to tailoring carbon materials into desired morphologies remains a challenge. Herein, a convenient "bottom-up" strategy by pyrolysis of graphitic carbon nitride (g-C3 N4 ) (or other carbon/nitrogen (C, N)-enriched compounds) together with selected metal salts and molecules is reported for the construction of different carbon-based catalysts with tunable morphologies, including carbon nano-balls, carbon nanotubes, nitrogen/sulfur (S, N) doped-carbon nanosheets, and single-atom catalysts, supported by carbon layers. The catalysts are systematically investigated through various microscopic, spectroscopic, and diffraction methods and they demonstrate promising and broad applications in electrocatalysis such as in the oxygen reduction reaction and water splitting. Mechanistic monitoring of the synthesis process through online thermogravimetric-gas chromatography-mass spectrometry measurements indicates that the release of C─N-related moieties, such as dicyan, plays a key role in the growth of carbon products. This enables to successfully predict other widely available precursor compounds beyond g-C3 N4 such as caffeine, melamine, and urea. This work develops a novel and economic strategy to generate morphologically diverse carbon-based catalysts and provides new, essential insights into the growth mechanism of carbon nanomaterials syntheses.
Collapse
Affiliation(s)
- Wenchao Wan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, D-45470, Mülheim an der Ruhr, Germany
| | - Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Jie Meng
- Division of Chemical Physics, Lund University, Box 124, Lund, 22100, Sweden
| | - Christopher S Allen
- Electron Physical Science Imaging Center, Diamond Light Source Ltd, Didcot, Oxfordshire, OX11 0DE, UK
- Department of Materials, University of Oxford, Oxford, OX1 3HP, UK
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| |
Collapse
|
37
|
Wang H, Deng N, Li X, Chen Y, Tian Y, Cheng B, Kang W. Recent insights on the use of modified Zn-based catalysts in eCO 2RR. NANOSCALE 2024; 16:2121-2168. [PMID: 38206085 DOI: 10.1039/d3nr05344j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Converting CO2 into valuable chemicals can provide a new path to mitigate the greenhouse effect, achieving the aim of "carbon neutrality" and "carbon peaking". Among numerous electrocatalysts, Zn-based materials are widely distributed and cheap, making them one of the most promising electrocatalyst materials to replace noble metal catalysts. Moreover, the Zn metal itself has a certain selectivity for CO. After appropriate modification, such as oxide derivatization, structural reorganization, reconstruction of the surfaces, heteroatom doping, and so on, the Zn-based electrocatalysts can expose more active sites and adjust the d-band center or electronic structure, and the FE and stability of them can be effectively improved, and they can even convert CO2 to multi-carbon products. This review aims to systematically describe the latest progresses of modified Zn-based electrocatalyst materials (including organic and inorganic materials) in the electrocatalytic carbon dioxide reduction reaction (eCO2RR). The applications of modified Zn-based catalysts in improving product selectivity, increasing current density and reducing the overpotential of the eCO2RR are reviewed. Moreover, this review describes the reasonable selection and good structural design of Zn-based catalysts, presents the characteristics of various modified zinc-based catalysts, and reveals the related catalytic mechanisms for the first time. Finally, the current status and development prospects of modified Zn-based catalysts in eCO2RR are summarized and discussed.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Xinyi Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Yiyang Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Ying Tian
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
38
|
Hursán D, Timoshenko J, Ortega E, Jeon HS, Rüscher M, Herzog A, Rettenmaier C, Chee SW, Martini A, Koshy D, Roldán Cuenya B. Reversible Structural Evolution of Metal-Nitrogen-Doped Carbon Catalysts During CO 2 Electroreduction: An Operando X-ray Absorption Spectroscopy Study. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307809. [PMID: 37994692 DOI: 10.1002/adma.202307809] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Electrochemical CO2 reduction (CO2 RR) is a rising technology, aiming to reduce the energy sector dependence on fossil fuels and to produce carbon-neutral raw materials. Metal-nitrogen-doped carbons (M-N-C) are emerging, cost-effective catalysts for this reaction; however, their long-term stability is a major issue. To overcome this, understanding their structural evolution is crucial, requiring systematic in-depth operando studies. Here a series of M-N-C catalysts (M = Fe, Sn, Cu, Co, Ni, Zn) is investigated using operando X-ray absorption spectroscopy. It is found that the Fe-N-C and Sn-N-C are prone to oxide clusters formation even before CO2 RR. In contrast, the respective metal cations are singly dispersed in the as-prepared Cu-N-C, Co-N-C, Ni-N-C, and (Zn)-N-C. During CO2 RR, metallic clusters/nanoparticles reversibly formed in all catalysts, except for the Ni-N-C. This phenomenon, previously observed only in Cu-N-C, thus is ubiquitous in M-N-C catalysts. The competition between M-O and M-N interactions is an important factor determining the mobility of metal species in M-N-C. Specifically, the strong interaction between the Ni centers and the N-functional groups of the carbon support results in higher stability of the Ni single-sites, leading to the excellent performance of Ni-N-C in the CO2 to CO conversion, in comparison to other transition metals.
Collapse
Affiliation(s)
- Dorottya Hursán
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Eduardo Ortega
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Hyo Sang Jeon
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Martina Rüscher
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Antonia Herzog
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Clara Rettenmaier
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - See Wee Chee
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Andrea Martini
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - David Koshy
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Beatriz Roldán Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| |
Collapse
|
39
|
Wan Y, Chen W, Wu S, Gao S, Xiong F, Guo W, Feng L, Cai K, Zheng L, Wang Y, Zhong R, Zou R. Confinement Engineering of Zinc Single-Atom Triggered Charge Redistribution on Ruthenium Site for Alkaline Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308798. [PMID: 38085468 DOI: 10.1002/adma.202308798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Optimizing the interaction between metal and support in the supported metal catalysts effectively refines the electronic structure and boosts the catalytic properties of loaded active components. Herein a method is introduced to confine ultrafine ruthenium (Ru) nanoparticles within atomically dispersed Zn-N4 sites on a N-doped carbon network (Ru/Zn-N-C) through the strong electronic metal-support interaction, achieving superior catalytic activity and stability for alkaline hydrogen evolution. Spectroscopic data and theoretical modeling elucidate that the remarkable catalytic performance of Ru sites stems from their strong electronic coupling with neighboring Zn-N4 moiety and pyridinic N/pyrrolic N. This interaction induces an electron-deficient state of Ru, thereby accelerating the dissociation of H2 O and lowering the energy barriers for the desorption of OH* and H*. This insight provides a deeper understanding of the catalytic mechanisms at play. Furthermore, alkaline water electrolyzer using this catalyst as cathode delivers a mass activity of 3 A mgcat -1 at 2.0 V, much surpassing Ru-C. This research opens a novel pathway for the development of advanced materials , tailored for energy storage and conversion applications.
Collapse
Affiliation(s)
- Yinji Wan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, Beijing, 102249, China
| | - Weibin Chen
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Shengqiang Wu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Song Gao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Feng Xiong
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Wenhan Guo
- School of Physical Sciences, Great Bay University, Dongguan, Guangdong Province, 523000, China
| | - Long Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, Beijing, 102249, China
| | - Kunting Cai
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Yonggang Wang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Ruiqin Zhong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, Beijing, 102249, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| |
Collapse
|
40
|
Lakshmanan K, Huang WH, Chala SA, Chang CY, Saravanan ST, Taklu BW, Moges EA, Nikodimos Y, Dandena BD, Yang SC, Lee JF, Huang PY, Lee YC, Tsai MC, Su WN, Hwang BJ. Generating Multi-Carbon Products by Electrochemical CO 2 Reduction via Catalytically Harmonious Ni/Cu Dual Active Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307180. [PMID: 38054789 DOI: 10.1002/smll.202307180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/11/2023] [Indexed: 12/07/2023]
Abstract
Despite the unique advantages of single-atom catalysts, molecular dual-active sites facilitate the C-C coupling reaction for C2 products toward the CO2 reduction reaction (CO2 RR). The Ni/Cu proximal dual-active site catalyst (Ni/Cu-PASC) is developed, which is a harmonic catalyst with dual-active sites, by simply mixing commercial Ni-phthalocyanine (Ni-Pc) and Cu-phthalocyanine (Cu-Pc) molecules physically. According to scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) energy dispersive spectroscopy (EDS) data, Ni and Cu atoms are separated, creating dual-active sites for the CO2 RR. The Ni/Cu-PASC generates ethanol with an FE of 55%. Conversely, Ni-Pc and Cu-Pc have only detected single-carbon products like CO and HCOO- . In situ X-ray absorption spectroscopy (XAS) indicates that CO generation is caused by the stable Ni active site's balanced electronic state. The CO production from Ni-Pc consistently increased the CO concentration over Cu sites attributed to subsequent reduction reaction through a C-C coupling on nearby Cu. The CO bound (HCOO- ) peak, which can be found on Cu-Pc, vanishes on Ni/Cu-PASC, as shown by in situ fourier transformation infrared (FTIR). The characteristic intermediate of *CHO instead of HCOO- proves to be the prerequisite for multi-carbon products by electrochemical CO2 RR. The work demonstrates that the harmonic dual-active sites in Ni/Cu-PASC can be readily available by the cascading proximal active Ni- and Cu-Pc sites.
Collapse
Affiliation(s)
- Keseven Lakshmanan
- NanoElectrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Soressa Abera Chala
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chia-Yu Chang
- NanoElectrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Sruthi Thiraviam Saravanan
- NanoElectrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Bereket Woldegbreal Taklu
- NanoElectrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Endalkachew Asefa Moges
- NanoElectrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Yosef Nikodimos
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Berhanu Degagsa Dandena
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Sheng-Chiang Yang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Pei-Yu Huang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yao-Chang Lee
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Meng-Che Tsai
- NanoElectrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
- Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Wei-Nien Su
- NanoElectrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
- Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Bing Joe Hwang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| |
Collapse
|
41
|
Xin S, Ni L, Zhang P, Tan H, Song M, Li T, Gao Y, Hu C. Electron Delocalization Realizes Speedy Fenton-Like Catalysis over a High-Loading and Low-Valence Zinc Single-Atom Catalyst. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304088. [PMID: 37840391 DOI: 10.1002/advs.202304088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/20/2023] [Indexed: 10/17/2023]
Abstract
A zinc (Zn)-based single-atom catalyst (SAC) is recently reported as an active Fenton-like catalyst; however, the low Zn loading greatly restricts its catalytic activity. Herein, a molecule-confined pyrolysis method is demonstrated to evidently increase the Zn loading to 11.54 wt.% for a Zn SAC (ZnSA -N-C) containing a mixture of Zn-N4 and Zn-N3 coordination structures. The latter unsaturated Zn-N3 sites promote electron delocalization to lower the average valence state of Zn in the mix-coordinated Zn-Nx moiety conducive to interaction of ZnSA -N-C with peroxydisulfate (PDS). A speedy Fenton-like catalysis is thus realized by the high-loading and low-valence ZnSA -N-C for PDS activation with a specific activity up to 0.11 min L-1 m-2 , outstripping most Fenton-like SACs. Experimental results reveal that the formation of ZnSA -N-C-PDS* complex owing to the strong affinity of ZnSA -N-C to PDS empowers intense direct electron transfer from the electron-rich pollutant toward this complex, dominating the rapid bisphenol A (BPA) elimination. The electron transfer pathway benefits the desirable environmental robustness of the ZnSA -N-C/PDS system for actual water decontamination. This work represents a new class of efficient and durable Fenton-like SACs for potential practical environmental applications.
Collapse
Affiliation(s)
- Shaosong Xin
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Luning Ni
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Peng Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Haobin Tan
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Mingyang Song
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Tong Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yaowen Gao
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
42
|
Wei G, Li Y, Liu X, Huang J, Liu M, Luan D, Gao S, Lou XWD. Single-Atom Zinc Sites with Synergetic Multiple Coordination Shells for Electrochemical H 2 O 2 Production. Angew Chem Int Ed Engl 2023; 62:e202313914. [PMID: 37789565 DOI: 10.1002/anie.202313914] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023]
Abstract
Precise manipulation of the coordination environment of single-atom catalysts (SACs), particularly the simultaneous engineering of multiple coordination shells, is crucial to maximize their catalytic performance but remains challenging. Herein, we present a general two-step strategy to fabricate a series of hollow carbon-based SACs featuring asymmetric Zn-N2 O2 moieties simultaneously modulated with S atoms in higher coordination shells of Zn centers (n≥2; designated as Zn-N2 O2 -S). Systematic analyses demonstrate that the synergetic effects between the N2 O2 species in the first coordination shell and the S atoms in higher coordination shells lead to robust discrete Zn sites with the optimal electronic structure for selective O2 reduction to H2 O2 . Remarkably, the Zn-N2 O2 moiety with S atoms in the second coordination shell possesses a nearly ideal Gibbs free energy for the key OOH* intermediate, which favors the formation and desorption of OOH* on Zn sites for H2 O2 generation. Consequently, the Zn-N2 O2 -S SAC exhibits impressive electrochemical H2 O2 production performance with high selectivity of 96 %. Even at a high current density of 80 mA cm-2 in the flow cell, it shows a high H2 O2 production rate of 6.924 mol gcat -1 h-1 with an average Faradaic efficiency of 93.1 %, and excellent durability over 65 h.
Collapse
Affiliation(s)
- Gangya Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
| | - Yunxiang Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
| | - Xupo Liu
- School of Materials Science and Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
| | - Jinrui Huang
- School of Materials Science and Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
| | - Mengran Liu
- School of Materials Science and Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - Shuyan Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
- School of Materials Science and Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| |
Collapse
|
43
|
Wang J, Li F, Li R, Xiang Q, Zhang W, Song C, Tao P, Shang W, Deng T, Zhu H, Wu J. Facile synthesis of supported CuNi nano-clusters as an electrochemical CO 2 reduction catalyst with broad potential range. Chem Commun (Camb) 2023; 59:13731-13734. [PMID: 37909273 DOI: 10.1039/d3cc03758d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A nitrogen-doped carbon-supported CuNi bimetallic nanocluster catalyst (CuNi-NC) was first synthesized via a facile ZIF-derived method. With a synergistic effect between Cu and Ni, the catalyst exhibited a maximum FECO of 96.3%. FECO is higher than 90% in a broad potential range of 600 mV, which was ascribed to the controllable pore size distribution. Density functional theory further demonstrated the preferred formation of *COOH in the catalytic process.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Runhua Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qian Xiang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wencong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Zhu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai 200240, China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
44
|
Chen Y, Zhang R, Wang HT, Lu YR, Huang YC, Chuang YC, Wang H, Luo J, Han L. Temperature-Dependent Structures of Single-Atom Catalysts. Chem Asian J 2023; 18:e202300679. [PMID: 37695094 DOI: 10.1002/asia.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Single-atom catalysts (SACs) have the unique coordination environment and electronic structure due to the quantum size effect, which plays an essential role in facilitating catalytic reactions. However, due to the limited understanding of the formation mechanism of single atoms, achieving the modulation of the local atomic structure of SACs is still difficult and challenging. Herein, we have prepared a series of Ni SACs loaded on nitrogen-doped carbon substrates with different parameters using a dissolution-and-carbonization method to systematically investigate the effect of temperature on the structure of the SACs. The results of characterization and electrochemical measurements are analyzed to reveal the uniform law between temperature and the metal loading, bond length, coordination number, valence state and CO2 reduction performance, showing the feasibility of controlling the structure of SACs through temperature to regulate the catalytic performance. This is important for the understanding of catalytic reaction mechanisms and the design of efficient catalysts.
Collapse
Affiliation(s)
- Yuhui Chen
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Rui Zhang
- Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
| | - Hsiao-Tsu Wang
- Bachelors's Program in Advanced Materials Science, Tamkang University, New Taipei City, 25137, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yu-Cheng Huang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hua Wang
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen, 518110, P. R. China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen, 518110, P. R. China
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
45
|
Zhang L, Jin N, Yang Y, Miao XY, Wang H, Luo J, Han L. Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review. NANO-MICRO LETTERS 2023; 15:228. [PMID: 37831204 PMCID: PMC10575848 DOI: 10.1007/s40820-023-01196-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023]
Abstract
Single-atom catalysts (SACs) have garnered increasingly growing attention in renewable energy scenarios, especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic structure adjustability. The intensive efforts towards the rational design and synthesis of SACs with versatile local configurations have significantly accelerated the development of efficient and sustainable electrocatalysts for a wide range of electrochemical applications. As an emergent coordination avenue, intentionally breaking the planar symmetry of SACs by adding ligands in the axial direction of metal single atoms offers a novel approach for the tuning of both geometric and electronic structures, thereby enhancing electrocatalytic performance at active sites. In this review, we briefly outline the burgeoning research topic of axially coordinated SACs and provide a comprehensive summary of the recent advances in their synthetic strategies and electrocatalytic applications. Besides, the challenges and outlooks in this research field have also been emphasized. The present review provides an in-depth and comprehensive understanding of the axial coordination design of SACs, which could bring new perspectives and solutions for fine regulation of the electronic structures of SACs catering to high-performing energy electrocatalysis.
Collapse
Affiliation(s)
- Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Na Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Yibing Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Xiao-Yong Miao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hua Wang
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China.
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
46
|
Jiao J, Yuan Q, Tan M, Han X, Gao M, Zhang C, Yang X, Shi Z, Ma Y, Xiao H, Zhang J, Lu T. Constructing asymmetric double-atomic sites for synergistic catalysis of electrochemical CO 2 reduction. Nat Commun 2023; 14:6164. [PMID: 37789007 PMCID: PMC10547798 DOI: 10.1038/s41467-023-41863-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
Elucidating the synergistic catalytic mechanism between multiple active centers is of great significance for heterogeneous catalysis; however, finding the corresponding experimental evidence remains challenging owing to the complexity of catalyst structures and interface environment. Here we construct an asymmetric TeN2-CuN3 double-atomic site catalyst, which is analyzed via full-range synchrotron pair distribution function. In electrochemical CO2 reduction, the catalyst features a synergistic mechanism with the double-atomic site activating two key molecules: operando spectroscopy confirms that the Te center activates CO2, and the Cu center helps to dissociate H2O. The experimental and theoretical results reveal that the TeN2-CuN3 could cooperatively lower the energy barriers for the rate-determining step, promoting proton transfer kinetics. Therefore, the TeN2-CuN3 displays a broad potential range with high CO selectivity, improved kinetics and good stability. This work presents synthesis and characterization strategies for double-atomic site catalysts, and experimentally unveils the underpinning mechanism of synergistic catalysis.
Collapse
Affiliation(s)
- Jiqing Jiao
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Qing Yuan
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Meijie Tan
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiaoqian Han
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Mingbin Gao
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xuan Yang
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.
| | - Zhaolin Shi
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yanbin Ma
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiangwei Zhang
- Science Center of Energy Material and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China.
| | - Tongbu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
47
|
Cho JH, Ma J, Kim SY. Toward high-efficiency photovoltaics-assisted electrochemical and photoelectrochemical CO 2 reduction: Strategy and challenge. EXPLORATION (BEIJING, CHINA) 2023; 3:20230001. [PMID: 37933280 PMCID: PMC10582615 DOI: 10.1002/exp.20230001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/30/2023] [Indexed: 11/08/2023]
Abstract
The realization of a complete techno-economy through a significant carbon dioxide (CO2) reduction in the atmosphere has been explored to promote a low-carbon economy in various ways. CO2 reduction reactions (CO2RRs) can be induced using sustainable energy, including electric and solar energy, using systems such as electrochemical (EC) CO2RR and photoelectrochemical (PEC) systems. This study summarizes various fabrication strategies for non-noble metal, copper-based, and metal-organic framework-based catalysts with excellent Faradaic efficiency (FE) for target carbon compounds, and for noble metals with low overvoltage. Although EC and PEC systems achieve high energy conversion efficiency with excellent catalysts, they still require external power and lack complete bias-free operation. Therefore, photovoltaics, which can overcome the limitations of these systems, have been introduced. The utilization of silicon and perovskite-based solar cells for photovoltaics-assisted EC (PV-EC) and photovoltaics-assisted PEC (PV-PEC) CO2RR systems are cost-efficient, and the III-V semiconductor photoabsorbers achieved high solar-to-carbon efficiency. This work focuses on PV-EC and PV-PEC CO2RR systems and their components and then summarizes the special cell configurations, including the tandem and stacked structures. Additionally, the study discusses current issues, such as low energy conversion, expensive PV, theoretical limits, and industrial scale-up, along with proposed solutions.
Collapse
Affiliation(s)
- Jin Hyuk Cho
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Joonhee Ma
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Soo Young Kim
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| |
Collapse
|
48
|
Darkwah WK, Appiagyei AB, Puplampu JB. Transforming the Petroleum Industry through Catalytic Oxidation Reactions vis-à-vis Preceramic Polymer Catalyst Supports. ACS OMEGA 2023; 8:34215-34234. [PMID: 37780012 PMCID: PMC10536879 DOI: 10.1021/acsomega.2c07562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/21/2023] [Indexed: 10/03/2023]
Abstract
Preceramic polymers, for instance, are used in a variety of chemical processing industries and applications. In this contribution, we report on the catalytic oxidation reactions generated using preceramic polymer catalyst supports. Also, we report the full knowledge of the use of the remarkable catalytic oxidation, and the excellent structures of these preceramic polymer catalyst supports are revealed. This finding, on the other hand, focuses on the functionality and efficacy of future applications of catalytic oxidation of preceramic polymer nanocrystals for energy and environmental treatment. The aim is to design future implementations that can address potential environmental impacts associated with fuel production, particularly in downstream petroleum industry processes. As a result, these materials are being considered as viable candidates for environmentally friendly applications such as refined fuel production and related environmental treatment.
Collapse
Affiliation(s)
- Williams Kweku Darkwah
- School
of Chemical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052 NSW, Australia
- Department
of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast 4P48+59H, Ghana
| | - Alfred Bekoe Appiagyei
- Department
of Chemical and Biological Engineering, Monash University, Wellington Road, Clayton, Melbourne, Victoria 3800, Australia
| | - Joshua B. Puplampu
- Department
of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast 4P48+59H, Ghana
| |
Collapse
|
49
|
Sun Y, Liu X, Zhu M, Zhang Z, Chen Z, Wang S, Ji Z, Yang H, Wang X. Non-noble metal single atom-based catalysts for electrochemical reduction of CO2: Synthesis approaches and performance evaluation. DECARBON 2023; 2:100018. [DOI: doi.org/10.1016/j.decarb.2023.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
50
|
Yao X, Halpren E, Liu YZ, Shan CH, Chen ZW, Chen LX, Singh CV. Intrinsic and external active sites of single-atom catalysts. iScience 2023; 26:107275. [PMID: 37496678 PMCID: PMC10366547 DOI: 10.1016/j.isci.2023.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Active components with suitable supports are the common paradigm for industrial catalysis, and the catalytic activity usually increases with minimizing the active component size, generating a new frontier in catalysis, single-atom catalysts (SACs). However, further improvement of SACs activity is limited by the relatively low loading of single atoms (SAs, which are heteroatoms for most SACs, i.e., external active sites) because of the highly favorable aggregation of single heteroatoms during preparation. Research interest should be shifted to investigate SACs with intrinsic SAs, which could circumvent the aggregation of external SAs and consequently increase the SAs loading while maintaining them individual to further improve the activity. In this review, SACs with external or intrinsic SAs are discussed and, at last, the perspectives and challenges for obtaining high-loading SACs with intrinsic SAs are outlined.
Collapse
Affiliation(s)
- Xue Yao
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Ethan Halpren
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Ye Zhou Liu
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Chung Hsuan Shan
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Zhi Wen Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Li Xin Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| |
Collapse
|