1
|
Cui L, Liu B, Ling Z, Liu K, Tan S, Gong Z, Xiao W. Characterization of physicochemical properties of different epigallocatechin-3-gallate nanoparticles and their effect on bioavailability. Food Chem 2025; 480:143935. [PMID: 40147275 DOI: 10.1016/j.foodchem.2025.143935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/28/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
Epigallocatechin-3-gallate (EGCG), a major catechin in green tea, exhibits potent antioxidant and disease-preventive properties, but its application is limited by poor stability and bioavailability. This study aimed to address these challenges by preparing and characterizing three EGCG-loaded nanoparticles: chitosan-EGCG-tripolyphosphate nanoparticles (CE-NPs), β-cyclodextrin-EGCG (BE-NPs), and EGCG-nanostructured lipid carriers (NE-NPs). BE-NPs exhibited the highest loading performance and retention rate under thermal environment (89.78 % after 10 h at 80 °C). NE-NPs had the highest EGCG stability in alkaline condition (45 % after 4 h at pH 7.4). Compared to free EGCG, all NPs significantly improved in vitro bioaccessibility following incubation in simulated gastrointestinal digestion for 4 h; BE-NPs enhanced oral bioavailability by 1.71 times in vivo. Additionally, CE-NPs and NE-NPs increased the relative abundance of Faecalibaculum, Erysipelotrichaceae, and Bifidobacterium in the colons of Sprague-Dawley rats. These findings suggest that BE-NPs are a promising nano-delivery system for enhancing EGCG stability and bioavailability in healthy organisms.
Collapse
Affiliation(s)
- Lidan Cui
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Baogui Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Zhihui Ling
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Kehong Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Simin Tan
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| |
Collapse
|
2
|
D'Almeida CTDS, Sales ACDA, Xavier AAO, Mameri H, Ferreira MSL, Tavares GM. β-Lactoglobulin and sorghum phenolic compounds molecular binding: Interaction mechanism and thermal stability impact. Food Chem 2025; 478:143632. [PMID: 40058253 DOI: 10.1016/j.foodchem.2025.143632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/07/2025] [Accepted: 02/25/2025] [Indexed: 04/06/2025]
Abstract
The mechanism of molecular interaction between β-lactoglobulin (β-lg) and sorghum bran phenolic compounds from 4 genotypes was studied. Catechin (CA) and ferulic acid (FA) were used as model systems. Higher affinity for β-lg:FA interaction (Ksv ≈ 105 M-1) compared with β-lg:CA interaction (Ksv ≈ 104 M-1) was revealed, with different preferable binding sites identified through molecular docking. Nevertheless, regarding the molecular interaction between the proteins and the complex extracts of phenolic compounds, Ksv in the magnitude order of 104 M-1 were observed. Antioxidant capacity progressively increased after protein-phenolic interaction, indicating a potential synergistic effect. Concerning the thermal stability of the phenolic compounds, epimerization as the primary response of CA to thermal treatment (90 °C / 10 min) was identified, but the addition of β-lg exerted a protective effect against CA degradation (-7 % in β-lg:CA complexes); however, proteins were not able to protect complex phenolic matrices (e.g. sorghum extracts).
Collapse
Affiliation(s)
- Carolina Thomaz Dos Santos D'Almeida
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro, UNIRIO, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Rio de Janeiro 22290-240, Brazil.
| | | | - Ana Augusta O Xavier
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, UNICAMP, Brazil.
| | - Hamza Mameri
- UMR 1208 IATE, Univ. Montpellier, INRAE, L'Institut-Agro Montpellier, F-34060 Montpellier, France.
| | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro, UNIRIO, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Rio de Janeiro 22290-240, Brazil.
| | - Guilherme M Tavares
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, UNICAMP, Brazil.
| |
Collapse
|
3
|
Radeva-Ilieva M, Stoeva S, Hvarchanova N, Georgiev KD. Green Tea: Current Knowledge and Issues. Foods 2025; 14:745. [PMID: 40077449 PMCID: PMC11899301 DOI: 10.3390/foods14050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Green tea possesses antioxidant, anti-inflammatory, anticancer, and antimicrobial activities, reduces body weight, and slows down aging. These effects are primarily attributed to catechins contained in green tea leaves, particularly epigallocatechin-3-gallate. However, in humans, the realization of green tea's beneficial effects is limited. In order to summarize and critically analyze the available scientific information about green tea's health benefits and issues related to its use, we conducted an in-depth literature review in scientific databases. A number of in vitro studies reported that green tea catechins modulate various signaling pathways in cells, which is thought to underlie their beneficial effects. However, data on the effects of catechins in humans are scarce, which is partly due to their low stability and oral bioavailability. Furthermore, catechins may also participate in pharmacokinetic interactions when co-administered with certain drugs such as anticancer agents, drugs for cardiovascular diseases, immunosuppressors, etc. As a result, adverse drug reactions or therapy failure may occur. In conclusion, over the years, various approaches have been investigated to optimize catechin intake and to achieve beneficial effects in humans, but to date, the use of catechins for prophylaxis or disease treatment remains limited. Therefore, future studies regarding the possibilities of catechins administration are needed.
Collapse
Affiliation(s)
- Maya Radeva-Ilieva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University—Varna, 9002 Varna, Bulgaria; (S.S.); (N.H.); (K.D.G.)
| | | | | | | |
Collapse
|
4
|
Fu M, Zhang L, Killeen R, Onugwu KE, McCarrick RM, Hagerman AE. Green Tea Polyphenol Epigallocatechin Gallate Interactions with Copper-Serum Albumin. Molecules 2025; 30:320. [PMID: 39860190 PMCID: PMC11767587 DOI: 10.3390/molecules30020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Epigallocatechin gallate (EGCg), an abundant phytochemical in green tea, is an antioxidant that also binds proteins and complex metals. After gastrointestinal absorption, EGCg binds to serum albumin in the hydrophobic pocket between domains IIA and IIIA and overlaps with the Sudlow I site. Serum albumin also has two metal binding sites, a high-affinity N-terminal site (NTS) site that selectively binds Cu(II), and a low-affinity, less selective multi-metal binding site (MBS). We proposed to determine whether EGCg binds or reacts with Cu(II)-serum albumin using fluorescence, UV-Visible and electron paramagnetic resonance (EPR) spectroscopy. Our results suggest that when serum albumin is loaded with Cu(II) in both sites, EGCg binds to the MBS-Cu(II) and reduces the copper to Cu(I). EGCg does not bind to or react with Cu(II) in the high-affinity NTS site. Potential consequences include changes in copper homeostasis and damage from pro-oxidative Fenton reactions.
Collapse
Affiliation(s)
- Meiling Fu
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; (M.F.); (K.E.O.); (R.M.M.)
| | - Liangliang Zhang
- Institute of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China;
| | - Rick Killeen
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Kenneth E. Onugwu
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; (M.F.); (K.E.O.); (R.M.M.)
| | - Robert M. McCarrick
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; (M.F.); (K.E.O.); (R.M.M.)
| | - Ann E. Hagerman
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; (M.F.); (K.E.O.); (R.M.M.)
| |
Collapse
|
5
|
Plamada D, Arlt M, Güterbock D, Sevenich R, Kanzler C, Neugart S, Vodnar DC, Kieserling H, Rohn S. Impact of Thermal, High-Pressure, and Pulsed Electric Field Treatments on the Stability and Antioxidant Activity of Phenolic-Rich Apple Pomace Extracts. Molecules 2024; 29:5849. [PMID: 39769938 PMCID: PMC11678205 DOI: 10.3390/molecules29245849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Apple pomace, a by-product of apple juice production, is typically discarded as waste. Recent approaches have focused on utilizing apple pomace by extracting beneficial bioactive compounds, such as antioxidant phenolic compounds (PCs). Before these PC-rich extracts can be used in food products, they must undergo food preservation and processing methods. However, the effects of these processes on the composition, stability, and properties of the PC remain insufficiently understood. The present study aimed at investigating the effects of a thermal treatment (TT), a high-pressure thermal treatment (HPTT), and a pulsed electric field treatment (PEF) on the composition and antioxidant activity of PC-rich apple pomace extracts (APEs). Major PCs, including phloridzin, chlorogenic acid, and epicatechin, as well as minor compounds, were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high-performance thin-layer chromatography (HPTLC). As a stability indicative property, the antioxidant activity was analyzed by a Trolox equivalent antioxidant capacity assay (TEAC), electron paramagnetic resonance spectroscopy, and the Folin-Ciocalteu reagent assay. The results showed that TT at 80 °C increased phloridzin content, likely due to the hydrolysis of bound forms, while higher temperatures and HPTT resulted in a substantial PC conversion. The PEF treatment also caused notable PC conversion, but generally, it had a milder effect compared to TT and HPTT. Hence, low temperatures with and without high pressure and PEF seem to be the most promising treatments for preserving the highest content of major PC in APE. Antioxidant activity varied among the analytical methods, with HPTT showing minor changes despite PC loss compared to the untreated APE. This suggests that other antioxidant compounds in the extracts may contribute to the overall antioxidant activity. This study demonstrates that apple pomace contains valuable PC, highlighting its potential as a health-promoting food additive and the impact of conventional preservation and processing methods on PC stability.
Collapse
Affiliation(s)
- Diana Plamada
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania;
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany (D.G.); (C.K.); (H.K.); (S.R.)
| | - Miriam Arlt
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany (D.G.); (C.K.); (H.K.); (S.R.)
| | - Daniel Güterbock
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany (D.G.); (C.K.); (H.K.); (S.R.)
| | - Robert Sevenich
- Department of Food Biotechnology and Food Process Engineering, Institute of Food Technology and Food Chemistry, Königin-Luise-Straße 22, 14195 Berlin, Germany;
| | - Clemens Kanzler
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany (D.G.); (C.K.); (H.K.); (S.R.)
| | - Susanne Neugart
- Department of Crop Sciences, Division of Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany;
| | - Dan C. Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania;
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Helena Kieserling
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany (D.G.); (C.K.); (H.K.); (S.R.)
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany (D.G.); (C.K.); (H.K.); (S.R.)
| |
Collapse
|
6
|
Zhang XP, Ma X, Liu JL, Liu AL. Exploring the potential use of Caenorhabditis elegans as an animal model for evaluating chemical-induced intestinal dysfunction. Toxicol Appl Pharmacol 2024; 493:117140. [PMID: 39500396 DOI: 10.1016/j.taap.2024.117140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Evaluating intestinal toxicity is crucial for identifying and preventing the harmful effects of environmental chemicals. Owing to the limitations of existing models in evaluating intestinal toxicity, the development of alternative models is urgently needed. This study explored the potential use of the nematode Caenorhabditis elegans as a model animal for assessing chemical-induced intestinal dysfunction. Changes in intestinal permeability and nutrient absorption in C. elegans individuals exposed to four intestine-disrupting chemicals (sodium dodecyl sulfate (SDS), dextran sulfate sodium (DSS), lipopolysaccharide (LPS) and ethanol) were examined using dye stain assays, an enzymatic photometric assay, and fluorescent probe uptake assays. Additionally, epigallocatechin-3-gallate (EGCG), an intestine-protecting phytochemical, was chosen to prevent ethanol-induced intestinal damage. The results indicated that SDS, DSS, LPS, and ethanol compromised the intestinal barrier in C. elegans. SDS had no effect on glucose absorption, but LPS, DSS, and ethanol inhibited or tended to inhibit glucose absorption. SDS, DSS, LPS, and ethanol reduced fatty acid absorption. LPS increased peptide absorption at a low dose but decreased it at a high dose; SDS, DSS, and ethanol attenuated peptide absorption. EGCG protected against the disruption of the intestinal barrier that was induced by ethanol treatment. These results suggest that C. elegans is a suitable surrogate model animal for evaluating chemical-induced intestinal dysfunction. These findings also provide new insights into the effects of SDS, DSS, LPS, and ethanol on intestinal function and highlight the potential of EGCG as a natural dietary intervention to protect individuals who use excess alcohol from intestinal injury.
Collapse
Affiliation(s)
- Xiao-Pan Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuan Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun-Ling Liu
- Wuhan Center for Disease Control and Prevention, Wuhan 430022, China
| | - Ai-Lin Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
7
|
Li S, Tian H, Zhu G, Wei Z. The application of untargeted metabolomics coupled with chemometrics for the analysis of agitation effects on the sensory profiles of matcha tea. Curr Res Food Sci 2024; 9:100843. [PMID: 39309407 PMCID: PMC11415815 DOI: 10.1016/j.crfs.2024.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
In the study, the effects of agitating parameters (different agitating rates and time) on the aroma and taste profiles of matcha tea were systematically investigated by the combination of untargeted metabolomics and chemometrics. The aroma profiles of matcha tea agitated at low rates (500 rpm) and for 30 s were more richness than that agitated with other parameters by sensory analysis and gas chromatography-ion mobility spectrometry. The key aroma compounds contributed to the sensory differences of matcha tea agitated at different rates and time were analyzed by gas chromatography-mass spectrometry and partial least square-discriminate analysis (PLS-DA), which were further verified by the triangle test. Thereinto, 2,4-decadienal associated with the sweet, brown and seaweed aroma significantly affected the aroma profiles of matcha tea with different agitating rates and time. The levels of bitterness and astringency were also higher in matcha tea with low agitating rates and time by sensory evaluation, which were attributed to the variations of phenolic compounds. Flavonol glycosides, gallic acid and (-)-gallocatechin were determined the key compound to the taste differences of matcha tea with different agitating parameters by the analysis of PLS-DA based on the results of high performance liquid chromatography and the sensory verification. And flavonol glycosides were mainly contributed to the bitterness and astringency, and gallic acid and (-)-gallocatechin influenced the umami and sweetness of matcha tea. Consequently, agitation has the potential to affect the sensory profiles of matcha tea by changing aroma and taste substances.
Collapse
Affiliation(s)
- Siying Li
- Department of Biosystems Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Department of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Hehe Tian
- Department of Biosystems Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Guilong Zhu
- College of Life Science and Engineering, Northwest MinZu University, Lanzhou, 730124, PR China
| | - Zhenbo Wei
- Department of Biosystems Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Department of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
8
|
Almahasheer H. Unveiling the total catechin profile in tea leaves: a novel one-step extraction method empowered by UPLC-IDX-Orbitrap mass spectrometry. BRAZ J BIOL 2024; 84:e283740. [PMID: 39230082 DOI: 10.1590/1519-6984.283740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/14/2024] [Indexed: 09/05/2024] Open
Abstract
More catechins are found in green tea than in any other type of tea, with its predominant production taking place in Asian nations. Consumption of green tea has been strongly correlated with a reduced risk of many diseases. This study introduces a new, efficient, and reliable method for extracting total catechins using ultra-high-performance liquid chromatography coupled with an ID-X-Orbitrap Mass spectrometer (UHPLC-IDX-Orbitrap-MS). The method was then applied to quantify the catechin content in green tea, yielding results comparable to previously published studies. Among the various sources of green tea analyzed, the lowest average catechin content was observed in Vietnam, Japan (2: Matcha), and Morocco, ranging between 346 and 322 mg/L. Conversely, the highest average catechin content (between 424 and 422 mg/L) was found in Sri Lanka and Japan (1: Sencha). For the remaining green tea extracts, the catechin levels ranged from 367 to 410 mg/L, exhibiting similar values. These findings demonstrate the high reproducibility of the proposed extraction procedure, with a relative standard deviation (RSD) error of less than 15% for the catechin standard. Additionally, the limit of detection for catechins was determined to be 1 ng mL-1. This study serves as a pilot investigation for extracting catechins from various green tea sources. Future research will focus on identifying all active compounds present. Furthermore, it is worth noting that this study aligns with the goals set forth in Saudi Vision 2030, which aims to diversify the country's economy and promote scientific advancements in various fields, including healthcare and agriculture.
Collapse
Affiliation(s)
- H Almahasheer
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441-1982, Saudi Arabia
| |
Collapse
|
9
|
Salee N, Naruenartwongsakul S, Chaiyana W, Yawootti A, Suthapakti K, Simapaisarn P, Chaisan W, Utama-Ang N. Enhancing catechins, antioxidant and sirtuin 1 enzyme stimulation activities in green tea extract through pulse electric field-assisted water extraction: Optimization by response surface methodology approach. Heliyon 2024; 10:e36479. [PMID: 39253176 PMCID: PMC11382074 DOI: 10.1016/j.heliyon.2024.e36479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Green tea is an economic resource in Thailand because it is derived from smallholder agriculture and has expanded into food production. The purpose of this study is to optimize the parameters of pulsed electric field (PEF) assisted green tea extraction to produce a natural health product. A central composite design was involved to determine the effect of independent variables, including the intensity of electric field (I; 3-5 kV/cm), number of pulses (Np; 1000 to 3000 pulses) and green tea-to-water ratio (GT/W; 0.05-0.15 g/mL) on catechin (C), epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC) and epigallocatechin gallate (EGCG), total phenolic compound, antioxidant and sirtuin 1 enzyme stimulating activities. The results indicated that the Np had the most significant impact (p < 0.05) on the content of catechin and its derivatives and sirtuin 1 enzyme stimulating activity. The observations revealed that the I had a greater impact on antioxidant activities compared to the Np. The optimal conditions for PEF using the response surface method were determined to be I of 5 kV/cm, Np of 3000 pulses, GT/W of 0.14 g/mL and specific energy of 27 kJ/kg. Under the optimized conditions, the content of C, EC, ECG, EGC and EGCG were 7.34 ± 0.33, 11.26 ± 0.25, 3.75 ± 0.13, 7.53 ± 0.77 and 37.78 ± 0.58 mg/g extract, respectively. Furthermore, it was observed that green tea extract exhibited the ability to modulate the deacetylation activity of the sirtuin 1 enzyme, with a value of 22.63 ± 0.17 FIR. The results emphasized that the PEF led to achieving better responses compared to without pre-treatment using the PEF. Therefore, innovative technologies as PEF can be utilized for green tea extraction to produce natural ingredients, which can contribute to improved accessibility to healthcare. Additionally, the implementation of innovation techniques, such as PEF, in the extraction industry can enhance productivity growth and economic development.
Collapse
Affiliation(s)
- Nuttinee Salee
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
| | - Srisuwan Naruenartwongsakul
- Division of Food Engineering Development Technology, Faculty of Agro-Industry, Chiang Mai University, Thailand
| | - Wantida Chaiyana
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Thailand
| | - Artit Yawootti
- Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna, Chiang Mai, Thailand
| | - Kanyarat Suthapakti
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
| | - Piyawan Simapaisarn
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
| | - Worrapob Chaisan
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Thailand
| | - Niramon Utama-Ang
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Thailand
| |
Collapse
|
10
|
Chen X, Wang Y, Chen Y, Dai J, Cheng S, Chen X. Formation, physicochemical properties, and biological activities of theabrownins. Food Chem 2024; 448:139140. [PMID: 38574720 DOI: 10.1016/j.foodchem.2024.139140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Theabrownins (TBs) are heterogeneous mixtures of water-soluble brown tea pigments, and important constituents to evaluate the quality of dark tea. TBs have numerous hydroxyl and carboxyl groups and are formed by the oxidative polymerization of tea polyphenols. Many biological activities attributed to TBs, including antioxidant, anti-obesity, and lipid-regulating, have been demonstrated. This review summarizes the research progress made on the formation mechanism and physicochemical properties of TBs. It also discusses their protective effects against various diseases and associated potential molecular mechanisms. Additionally, it examines the signaling pathways mediating the bioactivities of TBs and highlights the difficulties and challenges of TBs research as well as their research prospects and applications.
Collapse
Affiliation(s)
- Xiujuan Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yongyong Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Jun Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Shuiyuan Cheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
11
|
Kim T, Cho AY, Lee SW, Lee HJ. Optimized Epigallocatechin Gallate Delivery and Adipogenesis Inhibition through Fluorescent Mesoporous Nanocarriers. Biomater Res 2024; 28:0053. [PMID: 39015131 PMCID: PMC11249910 DOI: 10.34133/bmr.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
Epigallocatechin gallate (EGCG), a naturally occurring compound known for its multiple health benefits including antioxidant, anti-inflammatory, cancer preventive, and weight management effects, faces challenges due to its inherent instability and limited bioavailability. To address these limitations, our study pioneers an investigation into the unique behavior of EGCG, revealing its degradation into epicatechin (EGC) and gallic acid (GA) during the drug delivery process. In this research, we use fluorescent mesoporous silica nanoparticles (FMSNs) as a sophisticated delivery system for EGCG. This innovative approach aims to not only enhance the stability of EGCG but also regulate its sustained release dynamics to enable prolonged cellular activity. To comprehensively evaluate our novel delivery strategy, we performed assays to assess both the antioxidant potential and its impact on lipid inhibition using Oil Red O. The results not only underscore the potential of FMSN-based nanocarriers for efficient EGCG delivery but also reveal groundbreaking insights into its enzymatic degradation, a previously unexplored facet. This research substantially advances our understanding of EGCG's behavior during delivery and offers a promising avenue for improving its therapeutic efficacy and expanding its applications in health management.
Collapse
Affiliation(s)
| | | | - Sang-Wha Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do13120, Republic of Korea
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do13120, Republic of Korea
| |
Collapse
|
12
|
Su S, Long P, Zhang Q, Wen M, Han Z, Zhou F, Ke J, Wan X, Ho CT, Zhang L. Chemical, sensory and biological variations of black tea under different drying temperatures. Food Chem 2024; 446:138827. [PMID: 38402772 DOI: 10.1016/j.foodchem.2024.138827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
As the final processing step, drying temperature between 90 and 140 ℃ is usually applied to terminate enzymatic activities and improve sensory characteristics of black tea. Liquid chromatography tandem mass spectrometry (LC-MS) based non-targeted and targeted metabolomics analyses combined in vitro biological assays were adopted to investigate the chemical and biological variations after drying. Fifty-nine differentially expressed metabolites including several hydroxycinnamic acid derivatives and pyroglutamic acid-glucose Amadori rearrangement products (ARPs) were identified, the latter of which was correspondingly accumulated with increasing temperature. The levels of theaflavins (TFs), thearubigins (TRs), monosaccharides and free amino acids gradually decreased with increasing temperature. Furthermore, the bioassays of black tea showed that drying under 110 ℃ provided the highest antioxidant capacities, but the inhibitory effects on α-glucosidase and α-amylase were decreasing along with increasing drying temperature. These results are valuable for optimizing drying process to obtain superior sensory properties and preserve bioactivities of black tea.
Collapse
Affiliation(s)
- Shengxiao Su
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qing Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Feng Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jiaping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
13
|
Lin Y, Liang S, Zhang Y, Yu Y. The antibacterial mechanism of (-)-epigallocatechin-3-gallate (EGCG) against Campylobacter jejuni through transcriptome profiling. J Food Sci 2024; 89:2384-2396. [PMID: 38389445 DOI: 10.1111/1750-3841.16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) has been shown antibacterial activity against Campylobacter jejuni; however, the relevant antibacterial mechanism is unknown. In this study, phenotypic experiments and RNA sequencing were used to explore the antibacterial mechanism. The minimum inhibitory concentration of EGCG on C. jejuni was 32 µg/mL. EGCG-treated was able to increase intracellular reactive oxygen species levels and decline bacterial motility. The morphology and cell membrane of C. jejuni after EGCG treatment were observed collapsed, broken, and agglomerated by field emission scanning electron microscopy and fluorescent microscopy. The RNA-seq analysis presents that there are 36 and 72 differential expressed genes after C. jejuni was treated by EGCG with the concentration of 16 and 32 µg/mL, respectively. EGCG-treated increased the thioredoxin expression, which was a critical protein to resist oxidative stress. Moreover, downregulation of the flgH and flgM gene in flagellin biosynthesis of C. jejuni was able to impair the flagella, reducing cell motility and virulence. The primary antibacterial mechanism revealed by RNA-seq is that EGCG with iron-chelating activity competes with C. jejuni for iron, causing iron deficiency in C. jejuni, which potentially impacts the survival and virulence of C. jejuni. The results suggested a new direction for exploring the activity of EGCG against C. jejuni in the food industry. PRACTICAL APPLICATION: A deeper understanding of the antibacterial mechanism of EGCG against C. jejuni was more beneficial in improving the food safety, eliminating concerns about human health caused by C. jejuni in future food, and promoting the natural antibacterial agent EGCG application in the food industry.
Collapse
Affiliation(s)
- Yilin Lin
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Siwei Liang
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yigang Yu
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Rodríguez M, Bianchi F, Simonato B, Rizzi C, Fontana A, Tironi VA. Exploration of grape pomace peels and amaranth flours as functional ingredients in the elaboration of breads: phenolic composition, bioaccessibility, and antioxidant activity. Food Funct 2024; 15:608-624. [PMID: 38099478 DOI: 10.1039/d3fo04494g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This study evaluated the incorporation of two ingredients as a source of bioactive compounds: amaranth flour (AF) and grape pomace peels flour (GP) to improve the nutritional qualities and functional properties of a wheat bread, emphasising the revalorisation of agricultural residues from grape winemaking as an ethical and economically viable source of bioactive compounds. Specifically, wheat flour (WF) substitutions were carried out for the individual ingredients, replacing 20% WF (A20 bread) or 5% GP (GP5 bread) and a mixture of both ingredients 20% WF and 5% GP (A20GP5 bread), and the antioxidant potential of the breads was analysed. The effect of simulated gastrointestinal digestion (SGID) on the phenolic profile and antioxidant activity of the fortified breads was also investigated. The substitution of WF by AF or GP introduced several phenolic compounds, digestion increased the bioaccessibility of phenolic compounds and reshaped their phenolic composition profiles. The combined presence of AF and GP in the breads modified the phenolic compounds composition and improved their antioxidant activity after SGID. Interactions between the phenolic compounds and other AF components (possibly proteins) were observed, which could protect the phenols from degradation during SGID, allowing them to be released after SGID.
Collapse
Affiliation(s)
- Mariela Rodríguez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (CCT La Plata-CONICET, CICPBA, UNLP), 47 y 116 (1900), La Plata, Argentina.
| | - Federico Bianchi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Barbara Simonato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Corrado Rizzi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza (IBAM), CONICET-Facultad de Ciencias Agrarias (FCA)-Universidad Nacional de Cuyo (IBAM-FCA-CONICET-UNCuyo); Almirante Brown 500, M5528AHB Chacras de Coria, Mendoza, Argentina
| | - Valeria A Tironi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (CCT La Plata-CONICET, CICPBA, UNLP), 47 y 116 (1900), La Plata, Argentina.
| |
Collapse
|
15
|
Le MM, Zhong LW, Ren ZW, An MQ, Long YH, Ling TJ. Dynamic Changes in the Microbial Community and Metabolite Profile during the Pile Fermentation Process of Fuzhuan Brick Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19142-19153. [PMID: 37827989 DOI: 10.1021/acs.jafc.3c04459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The pile fermentation process of Fuzhuan brick tea is unique in that it involves preheating without the use of starter cultures. The detailed metabolite changes and their drivers during this procedure are not known. Characterizing these unknown changes that occur in the metabolites and microbes during pile fermentation of Fuzhuan brick tea is important for industrial modernization of this traditional fermented food. Using microbial DNA amplicon sequencing, mass spectrometry-based untargeted metabolomics, and feature-based molecular networking, we herein reveal that significant changes in the microbial community occur before changes in the metabolite profile. These changes were characterized by a decrease in Klebsiella and Aspergillus, alongside an increase in Bacillus and Eurotium. The decrease in lysophosphatidylcholines, unsaturated fatty acids, and some astringent flavan-3-ols and bitter amino acids, as well as the increase in some less astringent flavan-3-ols and sweet or umami amino acids, contributed importantly to the overall changes observed in the metabolite profile. The majority of these changes was caused by bacterial metabolism and the corresponding heat generated by it.
Collapse
Affiliation(s)
- Miao-Miao Le
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- Xianyang Jingwei Fu Tea Co. Ltd., Xianyang 712044, Shaanxi, China
| | - Li-Wen Zhong
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Zhi-Wei Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Mao-Qiang An
- Yiyang Fu Cha Industry Development Co. Ltd., 690 North Datao Road, Yiyang 413000, Hunan, P. R. China
| | - Yan-Hua Long
- School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| |
Collapse
|
16
|
Lu X, Lin Y, Tuo Y, Liu L, Du X, Zhu Q, Hu Y, Shi Y, Wu L, Lin J. Optimizing Processing Techniques of Oolong Tea Balancing between High Retention of Catechins and Sensory Quality. Foods 2023; 12:4334. [PMID: 38231828 DOI: 10.3390/foods12234334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/19/2024] Open
Abstract
Catechins are the major flavor substances in teas, which have a variety of health effects; however, high catechin and high sensory quality are a pair of contradictions that are difficult to coordinate. To explore the processing procedure with high catechins and high sensory quality, a single-factor processing experiment was carried out over the processing production of oolong tea. Combined with orthogonal partial least square discriminant analysis (OPLS-DA), correlation analysis, and principal component analysis (PCA), the optimal production procedure for oolong tea is as follows: red light withering for 8 h, leaf rotating for 10 min with a total standing time for 8 h, drum roasting for 5 min at 290 °C, low-temperature rolling (flattening at 4 °C for 5 min, without pressure for 1 min and under pressure for 5 min), microwave drying (800 W for 7.5 min). This study demonstrates a significant increase in the retention of catechins, which contributes to the mellow and brisk tastes of oolong tea, addressing the challenge of catechin content and sensory quality. Our study provides a novel insight into the relationship between the oolong tea processing and flavor formation.
Collapse
Affiliation(s)
- Xiaofeng Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanyan Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanming Tuo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijia Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxin Du
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunfei Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yutao Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Feilcke R, Bär V, Wendt C, Imming P. Antibacterial and Disinfecting Effects of Standardised Tea Extracts on More than 100 Clinical Isolates of Methicillin-Resistant Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3440. [PMID: 37836180 PMCID: PMC10575227 DOI: 10.3390/plants12193440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are still a major problem in hospitals. The excellent safety profile, accessibility and anti-infective activity of tea extracts make them promising agents for the treatment of infected wounds. To investigate the possibility of sterilising MRSA-infected surfaces, including skin with tea extracts, we determined the MICs for different extracts from green and black tea (Camellia sinensis), including epigallocatechin gallate (EGCG), on a large number of clinical isolates of MRSA, selected to represent a high genetic diversity. The extracts were prepared to achieve the maximal extraction of EGCG from tea and were used as stable lyophilisate with a defined EGCG content. All extracts showed a complete inhibition of cell growth at a concentration of approx. 80 µg/mL of EGCG after a contact time of 24 h. Time-kill plots were recorded for the extract with the highest amount of EGCG. The reduction factor (RF) was 5 after a contact time of 240 min. EGCG and tea extracts showed an RF of 2 in methicillin-sensitive S. aureus. Extracts from green and black tea showed lower MICs than an aqueous solution with the same concentration of pure EGCG. To the best of our knowledge, we are the first to show a reduction of 99.999% of clinically isolated MRSA by green tea extract within 4 h.
Collapse
Affiliation(s)
- Ruth Feilcke
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany
| | - Volker Bär
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany
| | - Constanze Wendt
- Zentrum für Infektiologie, Universität Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Labor Dr. Limbach & Kollegen GbR, Medizinisches Versorgungszentrum, Im Breitspiel 15, 69126 Heidelberg, Germany
| | - Peter Imming
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany
| |
Collapse
|
18
|
Raus de Baviera D, Ruiz-Canales A, Barrajón-Catalán E. Cistus albidus L.-Review of a Traditional Mediterranean Medicinal Plant with Pharmacological Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2988. [PMID: 37631199 PMCID: PMC10458491 DOI: 10.3390/plants12162988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Cistus albidus L. (Cistaceae) is a medicinal plant that has been used therapeutically since ancient times in the Mediterranean basin for its important pharmacological properties. The ability of C. albidus to produce large quantities of a wide range of natural metabolites makes it an attractive source of raw material. The main constituents with bioactive functions that exert pharmacological effects are terpenes and polyphenols, with more than 200 identified compounds. The purpose of this review is to offer a detailed account of the botanical, ethnological, phytochemical, and pharmacological characteristics of C. albidus with the aim of encouraging additional pharmaceutical investigations into the potential therapeutic benefits of this medicinal plant. This review was carried out using organized searches of the available literature up to July 2023. A detailed analysis of C. albidus confirms its traditional use as a medicinal plant. The outcome of several studies suggests a deeper involvement of certain polyphenols and terpenes in multiple mechanisms such as inflammation and pain, with a potential application focus on neurodegenerative diseases and disorders. Other diseases such as prostate cancer and leukemia have already been researched with promising results for this plant, for which no intoxication has been reported in humans.
Collapse
Affiliation(s)
- Daniel Raus de Baviera
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Antonio Ruiz-Canales
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Enrique Barrajón-Catalán
- Institute for Research, Development and Innovation in Health Biotechnology, Miguel Hernández University, 03202 Elche, Spain
- Department of Pharmacy, Elche University Hospital-FISABIO, 03203 Elche, Spain
| |
Collapse
|
19
|
Sentkowska A, Pyrzynska K. Catechins and Selenium Species-How They React with Each Other. Molecules 2023; 28:5897. [PMID: 37570866 PMCID: PMC10420645 DOI: 10.3390/molecules28155897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The combination of selenium and tea infusion, both with antioxidant properties, has potentially complementary mechanisms of action. Se-enriched tea has been considered as a possible Se supplement and a functional beverage to reduce the health risk of Se deficiency. This work investigated the interactions between plant catechins present in tea infusions and selenium species based on changes in the concentration of both reagents, their stability in aqueous solutions, and the possibilities of selenonanoparticles (SeNPs) formation. Selenium species exhibited instability both alone in their standard solutions and in the presence of studied catechins; selenocystine appeared as the most unstable. The recorded UV-Vis absorption spectra indicated the formation of SeNPs in the binary mixtures of catechins and selenite. SeNPs have also formed with diameters smaller than 100 nm when selenite and selenomethionine were added to tea infusions. This is an advantage from the point of view of potential medical applications.
Collapse
Affiliation(s)
| | - Krystyna Pyrzynska
- Faculty of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093 Warsaw, Poland
| |
Collapse
|
20
|
Seraglio SKT, Hernández-Velásquez BS, Osses-Millar ME, Malverde-Muñoz BY, Guerra-Valle ME, Pavez-Guajardo C, Moreno J. Processing of Enriched Pear Slices with Blueberry Juice: Phenolics, Antioxidant, and Color Characteristics. Antioxidants (Basel) 2023; 12:1408. [PMID: 37507947 PMCID: PMC10376512 DOI: 10.3390/antiox12071408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
This study evaluated the effectiveness of phenolic compound incorporation from blueberry juice into pear slices (PS) using a combination of ohmic heating (OH) and vacuum impregnation (VI), followed by air-drying (AD) or freeze-drying (FD). Our results showed that OH increased the content of bioactive compounds and antioxidant capacity of blueberry juice, with the optimal OH condition set at 50 °C for 20 min under an electric field of 13 V·cm-1. Furthermore, the combination of VI and OH was efficient in enriching PS with bioactive compounds from blueberry juice (such as cyanidin and epigallocatechin), with the optimal VI/OH condition set at 50 °C for 90 min under an electric field of 7.8 V·cm-1. Moreover, anthocyanin pigments from blueberry juice affected the color parameters of PS by increasing the a* parameter and decreasing the b* and L* parameters. However, both FD and AD (at 40, 50, and 60 °C) negatively affected (p ≤ 0.05) the phenolic content and antioxidant capacity. Notably, AD at 60 °C showed the highest levels of phenolic compounds and antioxidant potential for both impregnated and non-impregnated PS.
Collapse
Affiliation(s)
- Siluana Katia Tischer Seraglio
- Departamento de Ingeniería en Alimentos, Facultad de Ciencias para el Cuidado de la Salud, Campus Fernando May, Universidad del Bio-Bio, Box 447, Chillán 4081112, Chile
| | - Belkis Sarahí Hernández-Velásquez
- Departamento de Ingeniería en Alimentos, Facultad de Ciencias para el Cuidado de la Salud, Campus Fernando May, Universidad del Bio-Bio, Box 447, Chillán 4081112, Chile
| | - Moira Elizabeth Osses-Millar
- Departamento de Ingeniería en Alimentos, Facultad de Ciencias para el Cuidado de la Salud, Campus Fernando May, Universidad del Bio-Bio, Box 447, Chillán 4081112, Chile
| | - Bárbara Yolanda Malverde-Muñoz
- Departamento de Ingeniería en Alimentos, Facultad de Ciencias para el Cuidado de la Salud, Campus Fernando May, Universidad del Bio-Bio, Box 447, Chillán 4081112, Chile
| | - María Estuardo Guerra-Valle
- Departamento de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Campus Concepción, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Constanza Pavez-Guajardo
- Departamento de Ingeniería en Alimentos, Facultad de Ciencias para el Cuidado de la Salud, Campus Fernando May, Universidad del Bio-Bio, Box 447, Chillán 4081112, Chile
| | - Jorge Moreno
- Departamento de Ingeniería en Alimentos, Facultad de Ciencias para el Cuidado de la Salud, Campus Fernando May, Universidad del Bio-Bio, Box 447, Chillán 4081112, Chile
| |
Collapse
|
21
|
Epigallocatechin-3-gallate enhances sterilization of irradiated whole bovine casein and protects alpha and beta caseins from gamma radiation: Depending on polyphenol/protein ratio. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2023.100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Hong X, Song X, Wu X, Yang C, Gong D, Zhang G. Treatments of heating and ultrasound improve the inhibition of gallocatechin gallate on tyrosinase. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3896-3906. [PMID: 36321508 DOI: 10.1002/jsfa.12307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Gallocatechin gallate (GCG), a catechin of tea polyphenols, possesses inhibitory ability against tyrosinase, but few studies have reported how common processing methods affect it. In this research, the influence of heating and ultrasound treatments on the inhibition of GCG against tyrosinase was explored by ultraviolet-visible absorption, fluorescence spectroscopy, high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry. RESULTS Both heating and ultrasound treatments of GCG alone improved GCG's inhibitory ability against tyrosinase compared with the untreated, and a combination of heating and ultrasound treatment (100 °C, 20 min + 630 W, 20 min) further decreased the relative tyrosinase activity to 26.8%. The treated GCG exhibited a stronger fluorescence quenching effect on tyrosinase, but did not have any influence on the static quenching mechanism. Compared to the untreated GCG, the binding constants of treated GCG by heating, ultrasound and their combination with tyrosinase significantly increased, but the number of binding sites was still approximately one and the main driving force of the treated GCG was still hydrophobic interaction. After treatments of heating, ultrasound and their combination, the composition of GCG solutions was changed. CONCLUSION The enhanced inhibition of treated GCG on tyrosinase may be due to partial conversion of GCG into epigallocatechin-3-gallate (EGCG) and gallic acid (GA), which may cooperate with GCG to better inhibit the enzyme activity. This study has provided some valuable information for the application of catechins against tyrosinase in food processing and cosmetic industry. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyue Hong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xin Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaqing Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Change Yang
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Oxidation and degradation of (epi)gallocatechin gallate (EGCG/GCG) and (epi)catechin gallate (ECG/CG) in alkali solution. Food Chem 2023; 408:134815. [PMID: 36549155 DOI: 10.1016/j.foodchem.2022.134815] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
The oxidative decomposition/degradation of two main tea flavanols, EGCG/GCG and ECG/CG, was studied in alkaline solution under ultrasonic-assisted thermal conditions. The study employed HPLC-ESI-ToF-MS to identify the products generated by atmospheric oxygen oxidation and various base-catalyzed reactions. Strong basic condition led to accelerated hydrolysis and oxidation of EGCG/GCG and ECG/CG and yielded gallic acid, de-galloyl flavanols and corresponding o-quinone derivatives. Meanwhile, peroxidation or base-catalyzed cleavage and rearrangement occurred extensively on C- and B-rings of flavanol and generated various simpler aldehydes or acids. Besides, a number of dimers/trimers were produced. This contribution provides empirical proof of oxidative degradation of flavanols under strong alkaline condition. Meanwhile, detailed reaction mechanisms of C-/B-ring degradation and dimerization/polymerization phenomena are proposed to help understand the structural changes of flavanols under strong alkaline conditions.
Collapse
|
24
|
Yu K, Huang X, He W, Wu D, Du C. Kinetics of polyphenol losses during cooking of dried green tea noodles as influenced by microwave treatment of dough. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
25
|
Feng Y, Niu L, Sun C, Tu J, Yu L, Xiao J. Collagen hydrolysates improve the efficiency of sodium alginate-encapsulated tea polyphenols in beads and the storage stability after commercial sterilization. Int J Biol Macromol 2023; 231:123314. [PMID: 36681216 DOI: 10.1016/j.ijbiomac.2023.123314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
This study showed that sodium alginates (SA)-based beads reinforced with collagen hydrolysates (CHs) significantly increased an encapsulation rate of tea polyphenols (TP) from 34.54 % to 85.06 % when the mass ratio of SA: CHs increased from1.5:0 to 1.5:0.5. And after the 30-day storage at 37 °C, the retention rate of TP in beads with CHs at the solutions with pH = 4.0 or pH = 7.0 increased from 61.10 % to 80.21 %, or from 67.72 % to 80.47 % after sterilization at 98 °C or 121 °C for 30 min, respectively. Also, the addition of CHs at 0.5 % resulted in a greater retention of the polyphenolic compositions values of TP determined by UPLC-Orbitrap-MS system. Additionally, the DPPH and ABTS+ free-radical scavenging capacities and ferric-reducing antioxidant power of beads with CHs after sterilization at 98 °C or 121 °C for 30 min were significantly higher than which without CHs. Physical phenomena based on ζ-potential, particle size, fluorescence, UV spectroscopy and confocal laser scanning microscope showed that tightly non-covalent complexes of CHs in combination to TP could be uniformly and stably distributed in the network of SA solution for encapsulating TP in SA-based beads. These findings provided suggestions for the co-encapsulation design and development of hydrophilic nutritive compounds based on CHs in SA-based beads.
Collapse
Affiliation(s)
- Yaping Feng
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liya Niu
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chao Sun
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jin Tu
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lili Yu
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianhui Xiao
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
26
|
Karimi-Shahri M, Alalikhan A, Hashemian P, Hashemzadeh A, Javid H. The applications of epigallocatechin gallate (EGCG)-nanogold conjugate in cancer therapy. NANOTECHNOLOGY 2023; 34:212001. [PMID: 36535007 DOI: 10.1088/1361-6528/acaca3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Cancer has recently increased the death toll worldwide owing to inadequate therapy and decreased drug bioavailability. Long-term and untargeted chemotherapeutic exposure causes toxicity to healthy cells and drug resistance. These challenges necessitate the development of new methods to increase drug efficacy. Nanotechnology is an emerging field in the engineering of new drug delivery platforms. The phytochemical epigallocatechin gallate (EGCG), the main component of green tea extract and its most bioactive component, offers novel approaches to cancer cell eradication. The current review focuses on the nanogold-based carriers containing EGCG, with an emphasis on the chemotherapeutic effects of EGCG in cancer treatment. The nanoscale vehicle may improve the EGCG solubility and bioavailability while overcoming constraints and cellular barriers. This article reviewed the phytochemical EGCG-based gold nanoplatforms and their major anticancer applications, both individually, and in combination therapy in a few cases.
Collapse
Affiliation(s)
- Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abbas Alalikhan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Chen J, Mei S, Zheng P, Guo J, Zeng Z, Lu H, Sun B. A multi-omics view of the preservation effect on Camellia sinensis leaves during low temperature postharvest transportation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
28
|
Ahmad R, Aldholmi M, Alqathama A, Althomali E, Aljishi F, Mostafa A, Alqarni AM, Shaaban H. The effect of natural antioxidants, pH, and green solvents upon catechins stability during ultrasonic extraction from green tea leaves (Camellia sinensis). ULTRASONICS SONOCHEMISTRY 2023; 94:106337. [PMID: 36821932 PMCID: PMC9981997 DOI: 10.1016/j.ultsonch.2023.106337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/28/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND This is a first-time report to evaluate the effect of natural antioxidants, pH, and green solvents upon catechins yield and stability during the active process of extraction from green tea leaves. METHODOLOGY Green solvents (model-A) augmented with piperine (PPN) and quercetin (QT) as natural antioxidants (model-B) at different pH 2-6 (model-C) were used to extract catechins from green tea leaves using an ultrasonic extraction process (USE). For quantification of catechins (EC; epicatechins, ECG; epicatechin gallate, and EGCG; epigallocatechin gallate), a green and sensitive UHPLC-MS/MS method was developed and validated. RESULTS The UHPLC-MS/MS method showed an accuracy of 98.3-102.6 % within the linearity range of 1-500 ppb for EC (m/z) 289 → 245 → 109, ECG (m/z) 441.2 → 169 → 289, and EGCG (m/z) 457.1 → 169 → 125.1. The general yield (ppb) for EC, ECG, and EGCG was observed with the ranges and sum of (N = 180) 0.06-157.80 and 6696.83, 0.04-316.93 and 12632.60 and, 0.12-584.11 and 26144.83, respectively. Model-C revealed the highest yield for catechins at the lowest pH-2 with an individual catechin yield of EGCG (584.11) > ECG (316.93) > EC (157.80) in CW2. In terms of stability, EGCG was the most unstable catechin whereas, catechins extracted in model-B exhibited more stability (%recovery of 14.70 for EC, 10.55 for ECG, and 5.36 for EGCG in BEP). Moreover, model-B showed the minimal degradation for catechins within the range of 11.81-94.64 (BEP); even the most degradable EGCG was seen with the smallest %loss of 11.81-94.64 at time 24-70 h, as compared to the loss of > 95 % in model-A and C. The ANOVA score for catechins yield was; F11,168 = 61.06 (EC), F11,168 = 66.53 (ECG), and F11,168 = 48.92 (EGCG) (P = 0.00) with mean scores of (M = 94.63, SD = 25.46) for EC, (M = 194.87, SD = 51.41) ECG, and (M = 357.57, SD = 96.80) EGCG in CE2. CONCLUSION A significant effect on catechins yield and stability was observed with the use of natural antioxidants and lowest pH-2.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia.
| | - Mohammed Aldholmi
- Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ebtihal Althomali
- Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Fatema Aljishi
- Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Ahmed Mostafa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Heba Shaaban
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, P. O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
29
|
Secretan PH, Vieillard V, Thirion O, Annereau M, Yayé HS, Astier A, Paul M, Damy T, Do B. 3D-Printed, Liquid-Filled Capsules of Concentrated and Stabilized Polyphenol Epigallocatechin Gallate, Developed in a Clinical Trial. Antioxidants (Basel) 2023; 12:antiox12020424. [PMID: 36829983 PMCID: PMC9952645 DOI: 10.3390/antiox12020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
In vitro studies have shown that epigallocatechin gallate (EGCG), the most potent antioxidant of the green tea polyphenol catechins, is able to effectively prevent the formation of amyloid plaques and induce their clearance. However, its high chemical reactivity promotes high chemical instability, which represents a major obstacle for the development of pharmaceutical forms containing solubilized EGCG, an essential condition for a better systemic passage via the oral route. After discovering that EGCG forms a deep eutectic with choline chloride, we exploited this property to formulate and patent liquid-filled capsules containing 200-800 mg of soluble EGCG in easy-to-administer sizes. The gelatin envelopes used are of the conventional type and their filling has been achieved using 3D printing technology. Not only did the EGCG-choline complex allow the formulation of hydrophilic solutions with a high concentration of active substance but it also contributed significantly to its chemical stability, since after at least 18 months of storage at 25 °C/60% RH and one year at 40 °C/75% RH, the capsules show unchanged hardness, chromatographic profiles and antioxidant activity compared to T0. Preclinical studies in monkeys showed that bioavailability was increased by a factor of 10 compared to marketed capsules comprising EGCG powder. This pharmaceutical development was conducted in the context of upcoming clinical trials to evaluate EGCG alone or in combination when treating transthyretin and light-chain cardiac amyloidosis.
Collapse
Affiliation(s)
| | - Victoire Vieillard
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Créteil, France
| | - Olivier Thirion
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Créteil, France
| | - Maxime Annereau
- Matériaux et Santé, Université Paris-Saclay, 91400 Orsay, France
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Hassane Sadou Yayé
- Department of Pharmacy, Hôpitaux Universitaires Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Alain Astier
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Créteil, France
| | - Muriel Paul
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Créteil, France
- EpidermE, University Paris Est Creteil, 94010 Creteil, France
| | - Thibaud Damy
- Department of Cardiology, Henri Mondor Hospital, AP-HP, 94000 Créteil, France
| | - Bernard Do
- Matériaux et Santé, Université Paris-Saclay, 91400 Orsay, France
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Créteil, France
| |
Collapse
|
30
|
Wang W, Wang H, Wu Z, Duan T, Liu P, Ou S, El-Nezami H, Zheng J. Reduction in Five Harmful Substances in Fried Potato Chips by Pre-Soaking Treatment with Different Tea Extracts. Foods 2023; 12:foods12020321. [PMID: 36673412 PMCID: PMC9858103 DOI: 10.3390/foods12020321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Thermally processed food always contains various types of harmful substances. Control of their levels in food is important for human health. This work used the extracts from green tea dust, old green tea, yellow tea, white tea, oolong tea, and black tea to simultaneously mitigate diverse harmful substances in fried potato chips. The six tea extracts (30 g/L) all showed considerable inhibitory effects on the formation of 5-hydroxymethylfurfural (reduced by 19.8%-53.2%), glyoxal (26.9%-36.6%), and methylglyoxal (16.1%-75.1%). Green tea and black tea extracts exhibited better inhibitory abilities than the other three teas and were further investigated for other harmful compounds by various concentration treatments. Finally, pre-soaking of fresh potato slices in 50 g/L extracts of green tea dust displayed, overall, the most promising inhibitory capacity of HMF (decreased by 73.3%), glyoxal (20.3%), methylglyoxal (69.7%), acrylamide (21.8%), and fluorescent AGEs (42.9%) in fried potato chips, while it exhibited the least impact on the color and texture. The high level of catechins in green tea dust may contribute most to its outstanding inhibitory effect, whereas the distinguished inhibitory effect of black tea extract was speculated to be attributable to the high levels of theaflavins and amino acids in the fully fermented tea. This study indicated that green tea dust, a predominant waste of the tea industry, had great potential to be exploited to improve food quality and safety.
Collapse
Affiliation(s)
- Weitao Wang
- School of Biological Science, University of Hong Kong, Pok Fu Lam Road, Hong Kong 999077, China
| | - Huaixu Wang
- School of Biological Science, University of Hong Kong, Pok Fu Lam Road, Hong Kong 999077, China
| | - Zhongjun Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Tingting Duan
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Pengzhan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China
| | - Hani El-Nezami
- School of Biological Science, University of Hong Kong, Pok Fu Lam Road, Hong Kong 999077, China
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
- Correspondence: (H.E.-N.); (J.Z.); Tel.: +86-8522-6630 (J.Z.)
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China
- Correspondence: (H.E.-N.); (J.Z.); Tel.: +86-8522-6630 (J.Z.)
| |
Collapse
|
31
|
Li C, Ding X, Li J, Yan S. Effects of different concentrations of ascorbic acid on the stability of (+) – Catechin under enzymatic conditions. Food Chem 2023; 399:133933. [DOI: 10.1016/j.foodchem.2022.133933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
|
32
|
Gong W, Zhao X, Manickam S, Liu X, Li D, Han Y, Kiani H, Feng C, Tao Y. Impact of cell wall adsorption behaviours on phenolic stability under air drying of blackberry with and without contact ultrasound assistance. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Zhou J, Fang T, Li W, Jiang Z, Zhou T, Zhang L, Yu Y. Widely targeted metabolomics using UPLC-QTRAP-MS/MS reveals chemical changes during the processing of black tea from the cultivar Camellia sinensis (L.) O. Kuntze cv. Huangjinya. Food Res Int 2022; 162:112169. [DOI: 10.1016/j.foodres.2022.112169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
|
34
|
Study on the color effects of (-)-epigallocatechin-3-gallate under different pH and temperatures in a model beverage system. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG): A Time for a New Player in the Treatment of Respiratory Diseases? Antioxidants (Basel) 2022; 11:antiox11081566. [PMID: 36009285 PMCID: PMC9405266 DOI: 10.3390/antiox11081566] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol of green tea that possesses a wide variety of actions. EGCG acts as a strong antioxidant which effectively scavenges reactive oxygen species (ROS), inhibits pro-oxidant enzymes including NADPH oxidase, activates antioxidant systems including superoxide dismutase, catalase, or glutathione, and reduces abundant production of nitric oxide metabolites by inducible nitric oxide synthase. ECGC also exerts potent anti-inflammatory, anti-fibrotic, pro-apoptotic, anti-tumorous, and metabolic effects via modulation of a variety of intracellular signaling cascades. Based on this knowledge, the use of EGCG could be of benefit in respiratory diseases with acute or chronic inflammatory, oxidative, and fibrotizing processes in their pathogenesis. This article reviews current information on the biological effects of EGCG in those respiratory diseases or animal models in which EGCG has been administered, i.e., acute respiratory distress syndrome, respiratory infections, COVID-19, bronchial asthma, chronic obstructive pulmonary disease, lung fibrosis, silicosis, lung cancer, pulmonary hypertension, and lung embolism, and critically discusses effectiveness of EGCG administration in these respiratory disorders. For this review, articles in English language from the PubMed database were used.
Collapse
|
36
|
Sahadevan R, Singh S, Binoy A, Sadhukhan S. Chemico-biological aspects of (-)-epigallocatechin- 3-gallate (EGCG) to improve its stability, bioavailability and membrane permeability: Current status and future prospects. Crit Rev Food Sci Nutr 2022; 63:10382-10411. [PMID: 35491671 DOI: 10.1080/10408398.2022.2068500] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural products have been a bedrock for drug discovery for decades. (-)-Epigallocatechin-3-gallate (EGCG) is one of the widely studied natural polyphenolic compounds derived from green tea. It is the key component believed to be responsible for the medicinal value of green tea. Significant studies implemented in in vitro, in cellulo, and in vivo models have suggested its anti-oxidant, anti-cancer, anti-diabetic, anti-inflammatory, anti-microbial, neuroprotective activities etc. Despite having such a wide array of therapeutic potential and promising results in preclinical studies, its applicability to humans has encountered with rather limited success largely due to the poor bioavailability, poor membrane permeability, rapid metabolic clearance and lack of stability of EGCG. Therefore, novel techniques are warranted to address those limitations so that EGCG or its modified analogs can be used in the clinical setup. This review comprehensively covers different strategies such as structural modifications, nano-carriers as efficient drug delivery systems, synergistic studies with other bioactivities to improve the chemico-biological aspects (e.g., stability, bioavailability, permeability, etc.) of EGCG for its enhanced pharmacokinetics and pharmacological properties, eventually enhancing its therapeutic potentials. We think this review article will serve as a strong platform with comprehensive literature on the development of novel techniques to improve the bioavailability of EGCG so that it can be translated to the clinical applications.
Collapse
Affiliation(s)
- Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Satyam Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh, India
| | - Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Kerala, India
| |
Collapse
|
37
|
Xu Z, Shan G, Hao N, Li L, Lan T, Dong Y, Wen J, Tian R, Zhang Y, Jiang L, Sui X. Structure remodeling of soy protein-derived amyloid fibrils mediated by epigallocatechin-3-gallate. Biomaterials 2022; 283:121455. [DOI: 10.1016/j.biomaterials.2022.121455] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022]
|
38
|
Dobrov A, Darvasiová D, Zalibera M, Bučinský L, Jelemenská I, Rapta P, Shova S, Dumitrescu DG, Andrade MA, Martins LMDRS, Pombeiro AJL, Arion VB. Diastereomeric dinickel(II) complexes with non-innocent bis(octaazamacrocyclic) ligands: isomerization, spectroelectrochemistry, DFT calculations and use in catalytic oxidation of cyclohexane. Dalton Trans 2022; 51:5151-5167. [PMID: 35266945 PMCID: PMC8962992 DOI: 10.1039/d2dt00154c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022]
Abstract
Diastereomeric dinickel(II) complexes with bis-octaazamacrocyclic 15-membered ligands [Ni(L1-3-L1-3)Ni] (4-6) have been prepared by oxidative dehydrogenation of nickel(II) complexes NiL1-3 (1-3) derived from 1,2- and 1,3-diketones and S-methylisothiocarbohydrazide. The compounds were characterized by elemental analysis, ESI mass spectrometry, and IR, UV-vis, 1H NMR, and 13C NMR spectroscopy. Single crystal X-ray diffraction (SC-XRD) confirmed the isolation of the anti and syn isomers of bis-octaazamacrocyclic dinickel(II) complexes 4a and 4s, the syn-configuration of 5s and the anti-configuration of the dinickel(II) complex 6a. Dimerization of prochiral nickel(II) complexes 1-3 generates two chiral centers at the bridging carbon atoms. The anti-complexes were isolated as meso-isomers (4a and 6a) and the syn-compounds as racemic mixtures of R,R/S,S-enantiomers (4s and 5s). The syn-anti isomerization (epimerization) of the isolated complexes in chloroform was disclosed. The isomerization kinetics of 5a was monitored at five different temperatures ranging from 20 °C to 50 °C by 1H NMR spectroscopy indicating the clean conversion of 5a into 5s. The activation barrier determined from the temperature dependence of the rate constants via the Eyring equation was found to be ΔH‡ = 114 ± 1 kJ mol-1 with activation entropy ΔS‡ = 13 ± 3 J K-1 mol-1. The complexes contain two low-spin nickel(II) ions in a square-planar coordination environment. The electrochemical behavior of 4a, 4s, 5s and 6a and the electronic structure of the oxidized species were studied by UV-vis-NIR-spectroelectrochemistry (SEC) and DFT calculations indicating the redox non-innocent behavior of the complexes. The dinickel(II) complexes 4a, 4s, 5s and 6a/6s were investigated as catalysts for microwave-assisted solvent-free oxidation of cyclohexane by tert-butyl hydroperoxide to produce a mixture of cyclohexanone and cyclohexanol (KA oil). The best value for KA oil yield (16%) was obtained with a mixture of 6a/6s after 2 h of microwave irradiation at 100 °C.
Collapse
Affiliation(s)
- Anatolie Dobrov
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria.
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria
| | - Denisa Darvasiová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic.
| | - Michal Zalibera
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic.
| | - Lukáš Bučinský
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic.
| | - Ingrid Jelemenská
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic.
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic.
| | - Sergiu Shova
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Dan G Dumitrescu
- Elettra - Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163, 5 in AREA Science Park 34149 Basovizza, Trieste, Italy
| | - Marta A Andrade
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Luísa M D R S Martins
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- Peoples' Friendship University of Russia (RUDN University), Research Institute of Chemistry, 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Vladimir B Arion
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria.
| |
Collapse
|
39
|
Moracci L, Sensi F, Biccari A, Crotti S, Gaio E, Benetti F, Traldi P, Pucciarelli S, Agostini M. An investigation on [5 fluorouracil and epigallocatechin-3-gallate] complex activity on HT-29 cell death and its stability in gastrointestinal fluid. Oncotarget 2022; 13:476-489. [PMID: 35251495 PMCID: PMC8893781 DOI: 10.18632/oncotarget.28207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
Recently an enhancement of the sensitivity of colorectal cancer (CRC) cells by 5-fluorouracil (5FU) due to the concurrent treatment with epigallocatechin-3-gallate (EGCG) has been found. In the present paper, to investigate on this aspect, adenocarcinoma cells HT29 were treated with 5FU, EGCG and an equimolar mixture of 5FU and EGCG ([5FU+EGCG]) and cell viability was determined. While 5FU exhibits a clear activity, EGCG alone does not express any activity. However by treating the cells with [5FU+EGCG] a strong effect of EGCG is evidenced: the sensitivity of HT29 cells to 5FU was increased by 12-fold. A simulation of the behavior of [5FU+EGCG] in different compartments of the gastrointestinal digestion model was also performed. 5FU and EGCG solubilized into a mixture of digestive fluids analyzed by mass spectrometry did not lead to signals of 5FU, EGCG and the related complex, while by diluting the solution they become detectable. On the contrary, when 5FU and EGCG are submitted to the step-by-step digestion model procedure, the analysis did not show the presence of 5FU, EGCG and [5FU+EGCG]. This behaviour could be ascribed to the instability of these compounds due to the too severe digestion conditions and/or to the complexity of the matrix which could lead in ESI conditions to the suppression of the signals of the analytes of interest.
Collapse
Affiliation(s)
- Laura Moracci
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,General Surgical Clinic 3, Department of Surgical, Oncological and Gastroentrological Sciences, University of Padua, Padova, Italy
| | - Francesca Sensi
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Venice, Italy
| | - Andrea Biccari
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,General Surgical Clinic 3, Department of Surgical, Oncological and Gastroentrological Sciences, University of Padua, Padova, Italy
| | - Sara Crotti
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,General Surgical Clinic 3, Department of Surgical, Oncological and Gastroentrological Sciences, University of Padua, Padova, Italy
| | - Elisa Gaio
- ECSIN-European Center for the Sustainable Impact of Nanotechnology, ECAMRICERT SRL, Padova, Italy
| | - Federico Benetti
- ECSIN-European Center for the Sustainable Impact of Nanotechnology, ECAMRICERT SRL, Padova, Italy
| | - Pietro Traldi
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Salvatore Pucciarelli
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,General Surgical Clinic 3, Department of Surgical, Oncological and Gastroentrological Sciences, University of Padua, Padova, Italy
| | - Marco Agostini
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,General Surgical Clinic 3, Department of Surgical, Oncological and Gastroentrological Sciences, University of Padua, Padova, Italy
| |
Collapse
|
40
|
Comparison of traditional hot water and vacuum assisted blanching methods on the physico-chemical quality parameters and antioxidant activity of zucchini (Cucurbita pepo L.) slices. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Genovese M, Luti S, Pardella E, Vivoli-Vega M, Pazzagli L, Parri M, Caselli A, Cirri P, Paoli P. Differential impact of cold and hot tea extracts on tyrosine phosphatases regulating insulin receptor activity: a focus on PTP1B and LMW-PTP. Eur J Nutr 2022; 61:1905-1918. [DOI: 10.1007/s00394-021-02776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/06/2021] [Indexed: 11/04/2022]
|
42
|
Effect of Brewing Water on the Antioxidant Capacity of Green Tea Infusion with DPPH Assay. J CHEM-NY 2022. [DOI: 10.1155/2022/7736117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Brewing water plays a crucial role in flavor and potential healthy functions of tea infusion. In this study, seven water samples with different physicochemical properties were selected to brew green tea. Results showed that the brewing water with higher minerals level and pH value would reduce the yield of catechins in tea infusion, which in turn caused the decrease of antioxidant activity to a large extent. Besides, it was found that EGCG, as a major contributor to the antioxidant activity of green tea infusion, was influenced differently by different metal ions, among which Ca2+/Mg2+ could enhance the antioxidant activity of EGCG solutions with different concentration through synergistic effect, particularly Ca2+, and the effect was more markable at a higher EGCG concentration. These results offered theoretical direction to the selection of tea brewing water for consumers and gave a new sight to the effects of metal ions on the antioxidant capacity of EGCG.
Collapse
|
43
|
Peng J, Dai W, Lu M, Yan Y, Zhang Y, Chen D, Wu W, Gao J, Dong M, Lin Z. New insights into the influences of baking and storage on the nonvolatile compounds in oolong tea: A nontargeted and targeted metabolomics study. Food Chem 2021; 375:131872. [PMID: 34953237 DOI: 10.1016/j.foodchem.2021.131872] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022]
Abstract
A nontargeted and targeted metabolomics method was applied to comprehensively investigate the influences of baking and storage on chemical constituents in fresh-, strong-, and aged-scent types of Foshou oolong teas. The contents of N-ethyl-2-pyrrolidone-substituted flavanols (EPSFs), flavone C-glycosides, gallic acid, and most lipids increased after baking and storage, while the contents of cis-flavanols, alkaloids, flavonol O-glycosides, and most amino acids decreased. Degradation, epimerization, and interaction with theanine were main pathways for the decrease in cis-flavanols. Approximately 20.7%, 12.8%, and 11.6% of epigallocatechin gallate were degraded, epimerized, and interacted with theanine after baking, respectively; 22.5% and 8.71% of epigallocatechin gallate were degraded and interacted with theanine after 10-year storage, respectively. Simulated reactions confirmed that the increases in EPSFs and apigenin C-glycosides were caused by interactions between theanine and flavanols and between apigenin aglycone and glucose, respectively. This study offers novel insights into chemical changes during baking and storage of oolong tea.
Collapse
Affiliation(s)
- Jiakun Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China.
| | - Meiling Lu
- Agilent Technologies (China) Limited, Beijing 100102, China
| | - Yongquan Yan
- Yongchun County Agricultural and Rural Bureau, Quanzhou, Fujian 362600, China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Wenliang Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Jianjian Gao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minghua Dong
- Yongchun County Agricultural and Rural Bureau, Quanzhou, Fujian 362600, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China.
| |
Collapse
|
44
|
Hwang HJ, Kim YG, Chung MS. Improving the Extraction of Catechins of Green Tea ( Camellia sinensis) by Subcritical Water Extraction (SWE) Combined with Pulsed Electric Field (PEF) or Intense Pulsed Light (IPL) Pretreatment. Foods 2021; 10:foods10123092. [PMID: 34945642 PMCID: PMC8701373 DOI: 10.3390/foods10123092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to find the optimum condition of pulsed electric field (PEF) and intense pulsed light (IPL) for the enhancement of subcritical water extraction (SWE), which is an eco-friendly extraction method, for extracting tea catechins from green tea leaves (Camellia sinensis). The leaves were treated with PEF under conditions of electric field strength (1, 2 and 3 kV/cm) during 60 s. Moreover, IPL was applied at various voltages (800, 1000, and 1200 V) for 60 s. The SWE was performed for 5 min at varying temperatures (110, 130, 150, 170, and 190 °C). The maximum yield of total catechin was 44.35 ± 2.00 mg/g dry green tea leaves at PEF treatment conditions of 2 kV/cm during 60 s, as well as the SWE temperature of 130 °C. In the case of IPL treatment, the largest amount of total catechin was 48.06 ± 5.03 mg/g dry green tea leaves at 800 V during 60 s when the extraction temperature was 130 °C. The total catechin content was increased by 15.43% for PEF and 25.09% for IPL compared to the value of untreated leaves. This study verified that PEF and IPL had a positive effect on the enhancement of tea catechins extraction from green tea leaves using SWE.
Collapse
Affiliation(s)
- Hee-Jeong Hwang
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University, Seoul 10326, Korea;
| | - Yu-Gyeong Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
| | - Myong-Soo Chung
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: ; Tel.: +82-232-774-508
| |
Collapse
|
45
|
Tallei TE, Fatimawali, Niode NJ, Idroes R, Zidan BMRM, Mitra S, Celik I, Nainu F, Ağagündüz D, Emran TB, Capasso R. A Comprehensive Review of the Potential Use of Green Tea Polyphenols in the Management of COVID-19. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:7170736. [PMID: 34899956 PMCID: PMC8664505 DOI: 10.1155/2021/7170736] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023]
Abstract
Green tea is produced from Camellia sinensis (L.) buds and leaves that have not gone through the oxidation and withering processes used to produce black and oolong teas. It was originated in China, but its cultivation and production have expanded to other Eastern Asian countries. Several polyphenolic compounds, including flavandiols, flavonols, flavonoids, and phenolic acids, are found in green tea and may constitute greater than 30% of the dry weight. Flavonols, especially catechins, represent the majority of green tea polyphenols. Green tea polyphenolic compounds have been reported to confer several health benefits. This review describes the potential use of green tea polyphenols in the management of coronavirus disease 2019 (COVID-19). The immunomodulatory, antibacterial, antioxidant, and anti-inflammatory effects of green tea polyphenols have also been considered in this review. In addition to describing the bioactivities associated with green tea polyphenols, this review discusses the potential delivery of these biomolecules using a nanoparticle drug delivery system. Moreover, the bioavailability and toxicity of green tea polyphenols are also evaluated.
Collapse
Affiliation(s)
- Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | - Nurdjannah Jane Niode
- Department of Dermatology and Venereology, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | | | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| |
Collapse
|
46
|
Secretan PH, Thirion O, Sadou Yayé H, Damy T, Astier A, Paul M, Do B. Simple Approach to Enhance Green Tea Epigallocatechin Gallate Stability in Aqueous Solutions and Bioavailability: Experimental and Theoretical Characterizations. Pharmaceuticals (Basel) 2021; 14:ph14121242. [PMID: 34959643 PMCID: PMC8706847 DOI: 10.3390/ph14121242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022] Open
Abstract
Because of its antioxidant, antimutagenic, and anti-infectious properties, epigallocatechin gallate (EGCG) is the most interesting compound among the green tea catechins polyphenols. However, its health effects are inconclusive due to its very low bioavailability, largely due to a particular instability that does not allow EGCG to reach the potency required for clinical developments. Over the last decade, many efforts have been made to improve the stability and bioavailability of EGCG using complex delivery systems such as nanotechnology, but these efforts have not been successful and easy to translate to industrial use. To meet the needs of a large-scale clinical trial requiring EGCG in a concentrated solution to anticipate swallowing impairments, we developed an EGCG-based aqueous solution in the simplest way while trying to circumvent EGCG instability. The solution was thoroughly characterized to sort out the unexpected stability outcome by combining experimental (HPLC-UV-mass spectrometry and infrared spectroscopy) and computational (density functional theory) studies. Against all odds, the EGCG–sucrose complex under certain conditions may have prevented EGCG from degradation in aqueous media. Indeed, in agreement with the ICH guidelines, the formulated solution was shown to be stable up to at least 24 months under 2–8 °C and at ambient temperature. Furthermore, considerable improvement in bioavailability in rats, against EGCG powder formulated in hard-gel capsules, was shown after gavage. Thus, the proposed formulation may provide an easily implementable platform to administer EGCG in the context of clinical development.
Collapse
Affiliation(s)
- Philippe-Henri Secretan
- Matériaux et Santé, Université Paris-Saclay, 92296 Châtenay-Malabry, France;
- Correspondence:
| | - Olivier Thirion
- Department of Pharmacy, Hôpitaux Universitaires Henri Mondor, AP-HP, 94000 Créteil, France; (O.T.); (A.A.); (M.P.)
| | - Hassane Sadou Yayé
- Department of Pharmacy, Hôpitaux Universitaires Pitié-Salpêtrière, AP-HP, 75013 Paris, France;
| | - Thibaud Damy
- Département de Cardiologie et des Maladies Vasculaires, Hôpitaux Universitaires Henri Mondor, AP-HP, 94000 Créteil, France;
| | - Alain Astier
- Department of Pharmacy, Hôpitaux Universitaires Henri Mondor, AP-HP, 94000 Créteil, France; (O.T.); (A.A.); (M.P.)
| | - Muriel Paul
- Department of Pharmacy, Hôpitaux Universitaires Henri Mondor, AP-HP, 94000 Créteil, France; (O.T.); (A.A.); (M.P.)
- EpidermE, Université Paris Est Creteil, 94010 Creteil, France
| | - Bernard Do
- Matériaux et Santé, Université Paris-Saclay, 92296 Châtenay-Malabry, France;
- Department of Pharmacy, Hôpitaux Universitaires Henri Mondor, AP-HP, 94000 Créteil, France; (O.T.); (A.A.); (M.P.)
| |
Collapse
|
47
|
Fernandes L, Cardim-Pires TR, Foguel D, Palhano FL. Green Tea Polyphenol Epigallocatechin-Gallate in Amyloid Aggregation and Neurodegenerative Diseases. Front Neurosci 2021; 15:718188. [PMID: 34594185 PMCID: PMC8477582 DOI: 10.3389/fnins.2021.718188] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
The accumulation of protein aggregates in human tissues is a hallmark of more than 40 diseases called amyloidoses. In seven of these disorders, the aggregation is associated with neurodegenerative processes in the central nervous system such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). The aggregation occurs when certain soluble proteins lose their physiological function and become toxic amyloid species. The amyloid assembly consists of protein filament interactions, which can form fibrillar structures rich in β-sheets. Despite the frequent incidence of these diseases among the elderly, the available treatments are limited and at best palliative, and new therapeutic approaches are needed. Among the many natural compounds that have been evaluated for their ability to prevent or delay the amyloidogenic process is epigallocatechin-3-gallate (EGCG), an abundant and potent polyphenolic molecule present in green tea that has extensive biological activity. There is evidence for EGCG’s ability to inhibit the aggregation of α-synuclein, amyloid-β, and huntingtin proteins, respectively associated with PD, AD, and HD. It prevents fibrillogenesis (in vitro and in vivo), reduces amyloid cytotoxicity, and remodels fibrils to form non-toxic amorphous species that lack seed propagation. Although it is an antioxidant, EGCG in an oxidized state can promote fibrils’ remodeling through formation of Schiff bases and crosslinking the fibrils. Moreover, microparticles to drug delivery were synthesized from oxidized EGCG and loaded with a second anti-amyloidogenic molecule, obtaining a synergistic therapeutic effect. Here, we describe several pre-clinical and clinical studies involving EGCG and neurodegenerative diseases and their related mechanisms.
Collapse
Affiliation(s)
- Luiza Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thyago R Cardim-Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando L Palhano
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
48
|
Di Santo MC, D' Antoni CL, Domínguez Rubio AP, Alaimo A, Pérez OE. Chitosan-tripolyphosphate nanoparticles designed to encapsulate polyphenolic compounds for biomedical and pharmaceutical applications - A review. Biomed Pharmacother 2021; 142:111970. [PMID: 34333289 DOI: 10.1016/j.biopha.2021.111970] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
Plant-based polyphenols are natural compounds, present in fruits and vegetables. During recent years, polyphenols have gained special attention due to their nutraceutical and pharmacological activities for the prevention and treatment of human diseases. Nevertheless, their photosensitivity and low bioavailability, rapid metabolism and short biological half-life represent the major limitations for their use, which could be overcome by polyphenols encapsulation (flavonoids and non-flavonoids) into chitosan (CS)-tripolyphosphate (TPP) based nanoparticles (NP). In this review, we particularly focused on the ionic gelation method for the NP design. This contribution exhaustively discusses and compares results of scientific reports published in the last decade referring to ionic gelation applied for the protection, controlled and site-directed delivery of polyphenols. As a consequence, CS-TPP NP would constitute true platforms to transport polyphenols, or a combination of them, to be used for the designing of a new generation of drugs or nutraceuticals.
Collapse
Affiliation(s)
- Mariana Carolina Di Santo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Cecilia Luciana D' Antoni
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Ana Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Agustina Alaimo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Oscar Edgardo Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|
49
|
Effects of temperature and ultrasonic scaler on the infusion process of green tea leaves and catechins stability under ultrasonic vibration. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Liu X, Le Bourvellec C, Guyot S, Renard CMGC. Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization. Compr Rev Food Sci Food Saf 2021; 20:4841-4880. [PMID: 34288366 DOI: 10.1111/1541-4337.12797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France
| | | | - Sylvain Guyot
- INRAE, UR1268 BIA, Team Polyphenol, Reactivity & Processing (PRP), Le Rheu, France
| | - Catherine M G C Renard
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France.,INRAE, TRANSFORM, Nantes, France
| |
Collapse
|