1
|
Prevete G, Scipioni E, Donati E, Villanova N, Fochetti A, Lilla L, Borocci S, Bernini R, Mazzonna M. Impact of pharmacokinetic enhancement strategies on the antimicrobial and antioxidant activities of hydroxytyrosol. RSC Adv 2025; 15:3448-3464. [PMID: 39902104 PMCID: PMC11789759 DOI: 10.1039/d4ra08205b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/27/2025] [Indexed: 02/05/2025] Open
Abstract
Hydroxytyrosol (HTyr), a plant-derived phenolic compound found in Olea europaea L. products and by-products, is well-known for its antioxidant activity and a wide range of biological effects, including anti-inflammatory, anticancer, antiviral, cardioprotective, neuroprotective, and antibacterial properties. However, due to its high hydrophilicity, HTyr exhibits unfavorable pharmacokinetic properties, preventing its potential therapeutic use. Various strategies can be employed to address these limitations. In this study, we evaluated the effect of two specific approaches on the HTyr antimicrobial and antioxidant activities: chemical modification of HTyr by lipophilization of the alcoholic moiety and encapsulation in liposomes. Based on our experience in the synthesis and biological activities of HTyr derivatives, the attention was focused on HTyr oleate (HTyr-OL), having a C-18 unsaturated alkylic chain responsible for an increased lipophilicity compared to HTyr. This structural feature enhanced antimicrobial activity against both tested strains of S. aureus, ATCC 25923 (wild-type strain) and ATCC 33591 (MRSA), and comparable antioxidant activity against two different radicals, Galvinoxyl radical and 1,1-diphenyl-2-picrylhydrazyl radical. Moreover, liposomes as delivery systems for HTyr and HTyr-OL were developed using both natural and synthetic amphiphiles, and the impact of encapsulation on their activities was further investigated. The experimental results showed that the antimicrobial properties of HTyr and HTyr-OL against S. aureus strains were not enhanced after encapsulation in liposomes, while the high antioxidant activity of HTyr-OL was preserved when conveyed in liposomes.
Collapse
Affiliation(s)
- Giuliana Prevete
- CNR-Institute for Biological Systems (ISB), Research Area of Rome 1 Strada Provinciale 35d, n. 9 00010 Montelibretti Roma Italy
| | - Elisa Scipioni
- CNR-Institute for Biological Systems (ISB), Research Area of Rome 1 Strada Provinciale 35d, n. 9 00010 Montelibretti Roma Italy
| | - Enrica Donati
- CNR-Institute for Biological Systems (ISB), Research Area of Rome 1 Strada Provinciale 35d, n. 9 00010 Montelibretti Roma Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia 01100 Viterbo Italy
| | - Andrea Fochetti
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia 01100 Viterbo Italy
| | - Laura Lilla
- CNR-Institute for Biological Systems (ISB), Research Area of Rome 1 Strada Provinciale 35d, n. 9 00010 Montelibretti Roma Italy
| | - Stefano Borocci
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia 01100 Viterbo Italy
- CNR-Institute for Biological Systems (ISB) - Secondary Office of Rome-Reaction Mechanisms c/o Department of Chemistry, La Sapienza University of Rome Rome Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia 01100 Viterbo Italy
| | - Marco Mazzonna
- CNR-Institute for Biological Systems (ISB), Research Area of Rome 1 Strada Provinciale 35d, n. 9 00010 Montelibretti Roma Italy
| |
Collapse
|
2
|
Bonacci S, Cione E, Coscarella M, Nardi M, Scarpelli R, Simeonov S, Procopio A. Selective Lipophilization of Natural Phenolic Alcohols Induced by In Situ Choline Chloride-Based Natural Deep Eutectic Solvents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27841-27849. [PMID: 39651870 DOI: 10.1021/acs.jafc.4c09446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
In this scientific work, a novel and green method for selective lipophilization of EVOO's bioactive phenolic alcohols (PAs), namely, tyrosol, hydroxytyrosol, and its metabolite homovanillyl alcohol as fatty acid esters, is elucidated. The PAs have been employed as hydrogen bond donors in the formation of natural deep eutectic solvents (NADES) with choline chloride (ChCl). The fast and cheap esterification method by in situ formation of choline chloride-based deep eutectic solvents promotes the derivatization of PAs with various fatty acids as acylating agents in the absence of organic solvents and catalysts. Furthermore, given the growing interest in the application of NADES formed by bioactive molecules in the pharmacological and cosmetic fields, we analyzed the activity of antioxidant enzymes, superoxide dismutase, and glutathione S-transferase of three chemical formulations obtained after the formation of PA-oleate in the H2O2-treated HaCat human keratinocytes cell line, assessing also their toxicity via the MTT assay.
Collapse
Affiliation(s)
- Sonia Bonacci
- AGreen Food Laboratory Health Sciences Department, Magna Græcia University, Germaneto, CZ 88100, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Rende, CS 88036, Italy
- GalaScreen Laboratories, University of Calabria, Arcavacata di Rende, Rende, CS 88036, Italy
| | - Mario Coscarella
- AGreen Food Laboratory Health Sciences Department, Magna Græcia University, Germaneto, CZ 88100, Italy
| | - Monica Nardi
- AGreen Food Laboratory Health Sciences Department, Magna Græcia University, Germaneto, CZ 88100, Italy
| | - Rosa Scarpelli
- AGreen Food Laboratory Health Sciences Department, Magna Græcia University, Germaneto, CZ 88100, Italy
| | - Svilen Simeonov
- Head of Laboratory Organic Synthesis and Stereochemistry Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev str. Bl. 9, Sofia 1113, Bulgaria
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Antonio Procopio
- AGreen Food Laboratory Health Sciences Department, Magna Græcia University, Germaneto, CZ 88100, Italy
| |
Collapse
|
3
|
Nieto S, Lozano I, Ruiz FJ, Costa JF, Villa R, Lozano P. Sustainable Synthesis of New Antioxidants from Hydroxytyrosol by Direct Biocatalytic Esterification in Ionic Liquids. Molecules 2024; 29:5057. [PMID: 39519698 PMCID: PMC11547527 DOI: 10.3390/molecules29215057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Hydroxytyrosol (HT) is a nutraceutical compound, mainly found in the fruit, leaves and waste from the olive oil industry, known for exhibiting one of the highest antioxidant activities among molecules of natural origin. To harness this bioactivity in cosmetics, pharmaceuticals and the food industry, it is essential to modify the hydrophilicity of HT to enhance its compatibility with lipid-based mixtures. This chemical modification must be carried out with high selectivity to avoid compromising its radical scavenging activity. This work presents a highly efficient and selective approach to perform the biocatalytic esterification of free fatty acids (FFAs) of different alkyl chain lengths with HT in a reaction medium based on the SLIL [C12mim][NTf2]. By using a 1:2 (mol/mol) HT:FFA mixture of substrates, the HT-monoester derivative was obtained up to 77% yield after 2 h at 80 °C. The optimized molar ratio of substrates, combined with the ability to recover the SLIL for further reuse, significantly reduces waste accumulation compared to other reported strategies and results in a more sustainable approach as demonstrated by different green metrics. The antioxidant activity of HT-monoester products was fully maintained with respect to that presented by the natural HT, being stable for at least 3 months at 4 °C, as demonstrated by the DPPH and FRAP antioxidant analysis.
Collapse
Affiliation(s)
- Susana Nieto
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, E-30100 Murcia, Spain; (I.L.); (F.J.R.); (J.F.C.); (R.V.)
| | | | | | | | | | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, E-30100 Murcia, Spain; (I.L.); (F.J.R.); (J.F.C.); (R.V.)
| |
Collapse
|
4
|
Wang E, Jiang Y, Zhao C. Hydroxytyrosol isolation, comparison of synthetic routes and potential biological activities. Food Sci Nutr 2024; 12:6899-6912. [PMID: 39479663 PMCID: PMC11521723 DOI: 10.1002/fsn3.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 11/02/2024] Open
Abstract
Hydroxytyrosol (HT) is a polyphenol found in the olive plant (Olea europaea) that has garnered attention from the food, feed, supplement, and pharmaceutical industries. HT has evolved from basic separation and extraction to chemical and biocatalytic synthesis. The yield of HT can reach 1.93 g/L/h through chemical synthesis and 7.7 g/L/h through biocatalysis; however, both methods are subject to inherent limitations. Furthermore, the potential health benefits associated with HT have been highlighted, including its ability to act as an antioxidant, reduce inflammation, combat cancer and obesity, and exert antibacterial and antiviral effects. Its neuroprotective effects, skin protection, and wound healing capabilities are also discussed. Given these remarkable biological properties, HT stands out as one of the most extensively investigated natural phenols. This review highlights future methods and pathways for the synthesis of HT, providing insights based on its bioactivity characteristics, health benefits, and potential future applications.
Collapse
Affiliation(s)
- Enhui Wang
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| |
Collapse
|
5
|
Bernini R, Campo M, Cassiani C, Fochetti A, Ieri F, Lombardi A, Urciuoli S, Vignolini P, Villanova N, Vita C. Polyphenol-Rich Extracts from Agroindustrial Waste and Byproducts: Results and Perspectives According to the Green Chemistry and Circular Economy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12871-12895. [PMID: 38829927 DOI: 10.1021/acs.jafc.4c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Polyphenols are natural secondary metabolites found in plants endowed with multiple biological activities (antioxidant, anti-inflammatory, antimicrobial, cardioprotective, and anticancer). In view of these properties, they find many applications and are used as active ingredients in nutraceutical, food, pharmaceutical, and cosmetic formulations. In accordance with green chemistry and circular economy strategies, they can also be recovered from agroindustrial waste and reused in various sectors, promoting sustainable processes. This review described structural characteristics, methods for extraction, biological properties, and applications of polyphenolic extracts obtained from two selected plant materials of the Mediterranean area as olive (Olea europaea L.) and pomegranate (Punica granatum L.) based on recent literature, highlighting future research perspectives.
Collapse
Affiliation(s)
- Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Margherita Campo
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Chiara Cassiani
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Fochetti
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Ieri
- Institute of Bioscience and BioResources (IBBR), National Research Council of Italy (CNR), 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Lombardi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Silvia Urciuoli
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Pamela Vignolini
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Chiara Vita
- QuMAP - PIN, University Center "Città di Prato" Educational and Scientific Services for the University of Florence, 59100 Prato, Italy
| |
Collapse
|
6
|
Lombardi A, Campo M, Vignolini P, Papalini M, Pizzetti M, Bernini R. Phenolic-Rich Extracts from Circular Economy: Chemical Profile and Activity against Filamentous Fungi and Dermatophytes. Molecules 2023; 28:molecules28114374. [PMID: 37298850 DOI: 10.3390/molecules28114374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Fungal infections represent a relevant issue in agri-food and biomedical fields because they could compromise quality of food and humans' health. Natural extracts represent a safe alternative to synthetic fungicides and in the green chemistry and circular economy scenario, agro-industrial wastes and by-products offer an eco-friendly source of bioactive natural compounds. In this paper, phenolic-rich extracts from Olea europaea L. de-oiled pomace, Castanea sativa Mill. wood, Punica granatum L. peel, and Vitis vinifera L. pomace and seeds were characterized by HPLC-MS-DAD analysis. Finally, these extracts were tested as antimicrobial agents against pathogenic filamentous fungi and dermatophytes such as Aspergillus brasiliensis, Alternaria sp., Rhizopus stolonifer, and Trichophyton interdigitale. The experimental results evidenced that all extracts exhibited a significant growth inhibition for Trichophyton interdigitale. Punica granatum L., Castanea sativa Mill., and Vitis vinifera L. extracts showed a high activity against Alternaria sp. and Rhizopus stolonifer. These data are promising for the potential applications of some of these extracts as antifungal agents in the food and biomedical fields.
Collapse
Affiliation(s)
- Andrea Lombardi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Margherita Campo
- Phytolab, Department of Statistics, Informatics, Applications "G. Parenti", DiSIA, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Pamela Vignolini
- Phytolab, Department of Statistics, Informatics, Applications "G. Parenti", DiSIA, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Marco Papalini
- Bioricerche S.r.l., Loc. Ferro di Cavallo, 58034 Castell'Azzara, Italy
| | - Mirco Pizzetti
- Bioricerche S.r.l., Loc. Ferro di Cavallo, 58034 Castell'Azzara, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
7
|
Terholsen H, Meyer JRH, Zhang Z, Deuss PJ, Bornscheuer UT. Chemoenzymatic Cascade Reaction for the Valorization of the Lignin Depolymerization Product G-C2-Dioxolane Phenol. CHEMSUSCHEM 2023; 16:e202300168. [PMID: 36826410 DOI: 10.1002/cssc.202300168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 05/20/2023]
Abstract
Combining solid acid catalysts with enzyme reactions in aqueous environments is challenging because either very acidic conditions inactivate the enzymes, or the solid acid catalyst is neutralized. In this study, Amberlyst-15 encapsulated in polydimethylsiloxane (Amb-15@PDMS) is used to deprotect the lignin depolymerization product G-C2 dioxolane phenol in a buffered system at pH 6.0. This reaction is directly coupled with the biocatalytic reduction of the released homovanillin to homovanillyl alcohol by recombinant horse liver alcohol dehydrogenase, which is subsequently acylated by the promiscuous acyltransferase/hydrolase PestE_I208A_L209F_N288A in a one-pot system. The deprotection catalyzed with Amb-15@PDMS attains up to 97 % conversion. Overall, this cascade enables conversions of up to 57 %.
Collapse
Affiliation(s)
- Henrik Terholsen
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Jule R H Meyer
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Zhenlei Zhang
- Faculty of Science and Engineering, Chemical Technology, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Peter J Deuss
- Faculty of Science and Engineering, Chemical Technology, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| |
Collapse
|
8
|
Velotti F, Bernini R. Hydroxytyrosol Interference with Inflammaging via Modulation of Inflammation and Autophagy. Nutrients 2023; 15:nu15071774. [PMID: 37049611 PMCID: PMC10096543 DOI: 10.3390/nu15071774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Inflammaging refers to a chronic, systemic, low-grade inflammation, driven by immune (mainly macrophages) and non-immune cells stimulated by endogenous/self, misplaced or altered molecules, belonging to physiological aging. This age-related inflammatory status is characterized by increased inflammation and decreased macroautophagy/autophagy (a degradation process that removes unnecessary or dysfunctional cell components). Inflammaging predisposes to age-related diseases, including obesity, type-2 diabetes, cancer, cardiovascular and neurodegenerative disorders, as well as vulnerability to infectious diseases and vaccine failure, representing thus a major target for anti-aging strategies. Phenolic compounds-found in extra-virgin olive oil (EVOO)-are well known for their beneficial effect on longevity. Among them, hydroxytyrosol (HTyr) appears to greatly contribute to healthy aging by its documented potent antioxidant activity. In addition, HTyr can modulate inflammation and autophagy, thus possibly counteracting and reducing inflammaging. In this review, we reference the literature on pure HTyr as a modulatory agent of inflammation and autophagy, in order to highlight its possible interference with inflammaging. This HTyr-mediated activity might contribute to healthy aging and delay the development or progression of diseases related to aging.
Collapse
Affiliation(s)
- Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
9
|
Chen C, Tang W, Chen Q, Han M, Shang Q, Liu W. Biomimetic synthesis of hydroxytyrosol from conversion of tyrosol by mimicking tyrosine hydroxylase. J Biol Inorg Chem 2023; 28:379-391. [PMID: 37017773 DOI: 10.1007/s00775-023-01996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/07/2023] [Indexed: 04/06/2023]
Abstract
Hydroxytyrosol, one of the most powerful natural antioxidants, exhibits certificated benefits for human health. In this study, a biomimetic approach to synthesize hydroxytyrosol from the hydroxylation of tyrosol was established. EDTA-Fe2+ coordination complex served as an active center to simulate tyrosine hydroxylase. H2O2 and ascorbic acid were used as oxygen donor and hydrogen donor, respectively. Hydroxy radical and singlet oxygen contributed to active species. The biomimetic system displayed analogous component, structure, and activity with TyrH. Hydroxytyrosol titer of 21.59 mM, and productivity of 9985.92 mg·L-1·h-1 was achieved with 100 mM tyrosol as substrate. The proposed approach provided efficient and convenient route to quickly produce high amount of hydroxytyrosol.
Collapse
Affiliation(s)
- Chan Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Weikang Tang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qinfei Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Mengqi Han
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi Shang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenbin Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
10
|
Micheli L, Bertini L, Bonato A, Villanova N, Caruso C, Caruso M, Bernini R, Tirone F. Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients 2023; 15:1767. [PMID: 37049607 PMCID: PMC10096778 DOI: 10.3390/nu15071767] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Aging is a multi-faceted process caused by the accumulation of cellular damage over time, associated with a gradual reduction of physiological activities in cells and organs. This degeneration results in a reduced ability to adapt to homeostasis perturbations and an increased incidence of illnesses such as cognitive decline, neurodegenerative and cardiovascular diseases, cancer, diabetes, and skeletal muscle pathologies. Key features of aging include a chronic low-grade inflammation state and a decrease of the autophagic process. The Mediterranean diet has been associated with longevity and ability to counteract the onset of age-related disorders. Extra virgin olive oil, a fundamental component of this diet, contains bioactive polyphenolic compounds as hydroxytyrosol (HTyr) and oleuropein (OLE), known for their antioxidant, anti-inflammatory, and neuroprotective properties. This review is focused on brain, skeletal muscle, and gut microbiota, as these systems are known to interact at several levels. After the description of the chemistry and pharmacokinetics of HTyr and OLE, we summarize studies reporting their effects in in vivo and in vitro models of neurodegenerative diseases of the central/peripheral nervous system, adult neurogenesis and depression, senescence and lifespan, and age-related skeletal muscle disorders, as well as their impact on the composition of the gut microbiota.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Agnese Bonato
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
11
|
Anti-Inflammatory Activity of Olive Oil Polyphenols-The Role of Oleacein and Its Metabolites. Biomedicines 2022; 10:biomedicines10112990. [PMID: 36428559 PMCID: PMC9687571 DOI: 10.3390/biomedicines10112990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
The anti-inflammatory potential of oleacein, the main polyphenolic compound found in olive oil, and its main metabolites were characterized by their effects on RAW 264.7 macrophages challenged with lipopolysaccharide (LPS), and by their ability to inhibit enzymes of the arachidonic acid metabolism with a key role in the synthesis of pro-inflammatory lipid mediators. Oleacein at 12.5 µM significantly decreased the amount of L-citrulline and ●NO generated by LPS-stimulated macrophages. Hydroxytyrosol, hydroxytyrosol acetate and hydroxytyrosol acetate sulfate were also able to reduce the cellular amount of ●NO, although to a lesser extent. In contrast, hydroxytyrosol glucuronide and sulfate did not show detectable effects. Oleacein was also able to inhibit the coupled PLA2 + 5-LOX enzyme system (IC50 = 16.11 µM), as well as the 5-LOX enzyme (IC50 = 45.02 µM). Although with lower activity, both hydroxytyrosol and hydroxytyrosol acetate were also capable of inhibiting these enzymes at a concentration of 100 µM. None of the other tested metabolites showed a capacity to inhibit these enzymes. In contrast, all compounds, including glucuronides and sulfate metabolites, showed a remarkable capacity to inhibit both cyclooxygenase isoforms, COX-1 and COX-2, with IC50 values lower than 3 µM. Therefore, oleacein and its metabolites have the ability to modulate ●NO- and arachidonic acid-dependent inflammatory cascades, contributing to the anti-inflammatory activity associated with olive oil polyphenols.
Collapse
|
12
|
Laghezza Masci V, Bernini R, Villanova N, Clemente M, Cicaloni V, Tinti L, Salvini L, Taddei AR, Tiezzi A, Ovidi E. In Vitro Anti-Proliferative and Apoptotic Effects of Hydroxytyrosyl Oleate on SH-SY5Y Human Neuroblastoma Cells. Int J Mol Sci 2022; 23:12348. [PMID: 36293207 PMCID: PMC9604296 DOI: 10.3390/ijms232012348] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
The antitumor activity of polyphenols derived from extra virgin olive oil and, in particular the biological activity of HTyr, has been studied extensively. However, the use of HTyr as a therapeutic agent for clinical applications is limited by its low bioavailability and rapid excretion in humans. To overcome these limitations, several synthetic strategies have been optimized to prepare lipophenols and new compounds derived from HTyr to increase lipophilicity and bioavailability. One very promising ester is hydroxytyrosyl oleate (HTyr-OL) because the chemical structure of HTyr, which is responsible for several biological activities, is linked to the monounsaturated chain of oleic acid (OA), giving the compound high lipophilicity and thus bioavailability in the cellular environment. In this study, the in vitro cytotoxic, anti-proliferative, and apoptotic induction activities of HTyr-OL were evaluated against SH-SY5Y human neuroblastoma cells, and the effects were compared with those of HTyr and OA. The results showed that the biological activity of HTyr was maintained in HTyr-OL treatments at lower dosages. In addition, the shotgun proteomic approach was used to study HTyr-OL-treated and untreated neuroblastoma cells, revealing that the antioxidant, anti-proliferative and anti-inflammatory activities of HTyr-OL were observed in the unique proteins of the two groups of samples.
Collapse
Affiliation(s)
- Valentina Laghezza Masci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Mariangela Clemente
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Vittoria Cicaloni
- Toscana Life Science Foundation, Via Fiorentina 1, 53100 Siena, Italy
| | - Laura Tinti
- Toscana Life Science Foundation, Via Fiorentina 1, 53100 Siena, Italy
| | - Laura Salvini
- Toscana Life Science Foundation, Via Fiorentina 1, 53100 Siena, Italy
| | - Anna Rita Taddei
- High Equipment Centre, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Antonio Tiezzi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Elisa Ovidi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| |
Collapse
|
13
|
Tomaino E, Capecchi E, Piccinino D, Saladino R. Lignin nanoparticles support lipase‐tyrosinase enzymatic cascade in the synthesis of lipophilic hydroxytyrosol ester derivatives. ChemCatChem 2022. [DOI: 10.1002/cctc.202200380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elisabetta Tomaino
- University of Tuscia: Universita degli Studi della Tuscia Department of Biological and Ecological Sciences Via S.C De Lellis s.n.c. 01100 Viterbo ITALY
| | - Eliana Capecchi
- University of Tuscia: Universita degli Studi della Tuscia Department of Biological and Ecological Sciences Via S.C. De Lellis s.n.c. 01100 Viterbo ITALY
| | - Davide Piccinino
- University of Tuscia: Universita degli Studi della Tuscia Department of Biological and Ecological Sciences 01100 Viterbo ITALY
| | - Raffaele Saladino
- University of Tuscia: Universita degli Studi della Tuscia Department of Biological and Ecological Sciences Via S. Camillo de Lellis 00100 Viterbo ITALY
| |
Collapse
|
14
|
Leo M, Muccillo L, Dugo L, Bernini R, Santi L, Sabatino L. Polyphenols Extracts from Oil Production Waste Products (OPWPs) Reduce Cell Viability and Exert Anti-Inflammatory Activity via PPARγ Induction in Colorectal Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11040624. [PMID: 35453308 PMCID: PMC9029425 DOI: 10.3390/antiox11040624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
Olive oil production is associated with the generation of oil production waste products (OPWPs) rich in water-soluble polyphenols that represent serious environmental problems. Yet OPWPs can offer new opportunities by exploiting their bioactive properties. In this study, we chemically characterized OPWPs polyphenolic extracts and investigated their biological activities in normal and colorectal cancer cells. Hydroxytyrosol (HTyr), the major constituent of these extracts, was used as the control. We show that both HTyr and the extracts affect cell viability by inducing apoptosis and cell cycle arrest. They downregulate inflammation by impairing NF-κB phosphorylation and expression of responsive cytokine genes, as TNF-α and IL-8, at both mRNA and protein levels, and prevent any further increase elicited by external challenges. Mechanistically, HTyr and the extracts activate PPARγ while hampering pro-inflammatory genes expression, acting as a specific agonist, likely through a trans-repression process. Altogether, OPWPs polyphenolic extracts show stronger effects than HTyr, conceivably due to additive or synergistic effects of all polyphenols contained. They display anti-inflammatory properties and these results may pave the way for improving OPWPs extraction and enrichment methods to reduce the environmental impact and support their use to ameliorate the inflammation associated with diseases and tumors.
Collapse
Affiliation(s)
- Manuela Leo
- Department of Sciences and Technologies, University of Sannio, Via F. De Sanctis, 82100 Benevento, Italy; (M.L.); (L.M.)
| | - Livio Muccillo
- Department of Sciences and Technologies, University of Sannio, Via F. De Sanctis, 82100 Benevento, Italy; (M.L.); (L.M.)
| | - Laura Dugo
- Department of Science and Technology for Humans and the Environment, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Roma, Italy;
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (R.B.); (L.S.)
| | - Luca Santi
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (R.B.); (L.S.)
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Via F. De Sanctis, 82100 Benevento, Italy; (M.L.); (L.M.)
- Correspondence: ; Tel.: +39-0824-305149 or +39-0824-305167
| |
Collapse
|
15
|
Biocatalyzed Flow Oxidation of Tyrosol to Hydroxytyrosol and Efficient Production of Their Acetate Esters. Antioxidants (Basel) 2021; 10:antiox10071142. [PMID: 34356374 PMCID: PMC8301122 DOI: 10.3390/antiox10071142] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Tyrosol (Ty) and hydroxytyrosol (HTy) are valuable dietary phenolic compounds present in olive oil and wine, widely used for food, nutraceutical and cosmetic applications. Ty and HTy are endowed with a number of health-related biological activities, including antioxidant, antimicrobial and anti-inflammatory properties. In this work, we developed a sustainable, biocatalyzed flow protocol for the chemo- and regio-selective oxidation of Ty into HTy catalyzed by free tyrosinase from Agaricus bisporus in a gas/liquid biphasic system. The aqueous flow stream was then in-line extracted to recirculate the water medium containing the biocatalyst and the excess ascorbic acid, thus improving the cost-efficiency of the process and creating a self-sufficient closed-loop system. The organic layer was purified in-line through a catch-and-release procedure using supported boronic acid that was able to trap HTy and leave the unreacted Ty in solution. Moreover, the acetate derivatives (TyAc and HTyAc) were produced by exploiting a bioreactor packed with an immobilized acyltransferase from Mycobacterium smegmatis (MsAcT), able to selectively act on the primary alcohol. Under optimized conditions, high-value HTy was obtained in 75% yield, whereas TyAc and HTyAc were isolated in yields of up to 80% in only 10 min of residence time.
Collapse
|
16
|
Hydroxytyrosol and Oleuropein-Enriched Extracts Obtained from Olive Oil Wastes and By-Products as Active Antioxidant Ingredients for Poly (Vinyl Alcohol)-Based Films. Molecules 2021; 26:molecules26072104. [PMID: 33917644 PMCID: PMC8038859 DOI: 10.3390/molecules26072104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stability of food is one of the most important parameters affecting integrity and consequently nutritional properties of dietary constituents. Antioxidants are widely used to avoid deterioration during transformation, packaging, and storage of food. In this paper, novel poly (vinyl alcohol) (PVA)-based films were prepared by solvent casting method adding an hydroxytyrosol-enriched extract (HTyrE) or an oleuropein-enriched extract (OleE) in different percentages (5, 10 and 20% w/w) and a combination of both at 5% w/w. Both extracts were obtained from olive oil wastes and by-products using a sustainable process based on membrane technologies. Qualitative and quantitative analysis of each sample carried out by high performance liquid chromatography (HPLC) and nuclear resonance magnetic spectroscopy (NMR) proved that the main components were hydroxytyrosol (HTyr) and oleuropein (Ole), respectively, two well-known antioxidant bioactive compounds found in Olea europaea L. All novel formulations were characterized investigating their morphological, optical and antioxidant properties. The promising performances suggest a potential use in active food packaging to preserve oxidative-sensitive food products. Moreover, this research represents a valuable example of reuse and valorization of agro-industrial wastes and by-products according to the circular economy model.
Collapse
|
17
|
Romanucci V, Giordano M, De Tommaso G, Iuliano M, Bernini R, Clemente M, Garcia-Viñuales S, Milardi D, Zarrelli A, Di Fabio G. Synthesis of New Tyrosol-Based Phosphodiester Derivatives: Effect on Amyloid β Aggregation and Metal Chelation Ability. ChemMedChem 2021; 16:1172-1183. [PMID: 33326184 DOI: 10.1002/cmdc.202000807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/11/2020] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial pathology that requires multifaceted agents able to address its peculiar nature. Increasing evidence has shown that aggregation of amyloid β (Aβ) and oxidative stress are strictly interconnected, and their modulation might have a positive and synergic effect in contrasting AD-related impairments. Herein, a new and efficient fragment-based approach towards tyrosol phosphodiester derivatives (TPDs) has been developed starting from suitable tyrosol building blocks and exploiting the well-established phosphoramidite chemistry. The antioxidant activity of new TPDs has been tested as well as their ability to inhibit Aβ protein aggregation. In addition, their metal chelating ability has been evaluated as a possible strategy to develop new natural-based entities for the prevention or therapy of AD. Interestingly, TPDs containing a catechol moiety have demonstrated highly promising activity in inhibiting the aggregation of Aβ40 and a strong ability to chelate biometals such as CuII and ZnII .
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Maddalena Giordano
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Gaetano De Tommaso
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Mauro Iuliano
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100, Viterbo, Italy
| | - Mariangela Clemente
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100, Viterbo, Italy
| | - Sara Garcia-Viñuales
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| |
Collapse
|
18
|
Ricelli A, Gionfra F, Percario Z, De Angelis M, Primitivo L, Bonfantini V, Antonioletti R, Bullitta SM, Saso L, Incerpi S, Pedersen JZ. Antioxidant and Biological Activities of Hydroxytyrosol and Homovanillic Alcohol Obtained from Olive Mill Wastewaters of Extra-Virgin Olive Oil Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15428-15439. [PMID: 33305574 DOI: 10.1021/acs.jafc.0c05230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Some constituents of the Mediterranean diet, such as extra-virgin olive oil (EVOO) contain substances such as hydroxytyrosol (HT) and its metabolite homovanillic alcohol (HA). HT has aroused much interest due to its antioxidant activity as a radical scavenger, whereas only a few studies have been made on the HA molecule. Both chemical synthesis and extraction techniques have been developed to obtain these molecules, with each method having its advantages and drawbacks. In this study, we report the use of tyrosol from olive mill wastewaters as a starting molecule to synthesize HT and HA, using a sustainable procedure characterized by high efficiency and low cost. The effects of HT and HA were evaluated on two cell lines, THP-1 human leukemic monocytes and L-6 myoblasts from rat skeletal muscle, after treating the cells with a radical generator. Both HT and HA efficiently inhibited ROS production. In particular, HT inhibited the proliferation of the THP-1 leukemic monocytes, while HA protected L-6 myoblasts from cytotoxicity.
Collapse
Affiliation(s)
| | - Fabio Gionfra
- Dept Sciences, University Roma Tre, I-00146 Roma, Italy
| | | | - Martina De Angelis
- Institute of Molecular Biology and Pathology-CNR I-00185 Roma, Italy
- Dept Chemistry, University "Sapienza", I-00185 Roma, Italy
| | - Ludovica Primitivo
- Institute of Molecular Biology and Pathology-CNR I-00185 Roma, Italy
- Dept Chemistry, University "Sapienza", I-00185 Roma, Italy
| | | | | | - Simonetta Maria Bullitta
- Institute for the Animal Production System in the Mediterranean Environment-CNR, I-07100 Sassari, Italy
| | - Luciano Saso
- Dept Physiology and Pharmacology, University "Sapienza", V. Erspamer I- 00185 Rome, Italy
| | | | | |
Collapse
|
19
|
Oliverio M, Nardi M, Di Gioia ML, Costanzo P, Bonacci S, Mancuso S, Procopio A. Semi-synthesis as a tool for broadening the health applications of bioactive olive secoiridoids: a critical review. Nat Prod Rep 2020; 38:444-469. [PMID: 33300916 DOI: 10.1039/d0np00084a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: 2005 up to 2020Olive bioactive secoiridoids are recognized as natural antioxidants with multiple beneficial effects on human health. Nevertheless, the study of their biological activity has also disclosed some critical aspects associated with their application. Firstly, only a few of them can be extracted in large amounts from their natural matrix, namely olive leaves, drupes, oil and olive mill wastewater. Secondly, their application as preventive agents and drugs is limited by their low membrane permeability. Thirdly, the study of their biological fate after administration is complicated by the absence of pure analytical standards. Accordingly, efficient synthetic methods to obtain natural and non-natural bioactive phenol derivatives have been developed. Among them, semi-synthetic protocols represent efficient and economical alternatives to total synthesis, combining efficient extraction protocols with efficient catalytic conversions to achieve reasonable amounts of active molecules. The aim of this review is to summarize the semi-synthetic protocols published in the last fifteen years, covering 2005 up to 2020, which can produce natural olive bioactive phenols scarcely available by extractive procedures, and new biophenol derivatives with enhanced biological activity. Moreover, the semi-synthetic protocols to produce olive bioactive phenol derivatives as analytical standards are also discussed. A critical analysis of the advantages offered by semi-synthesis compared to classical extraction methods or total synthesis protocols is also performed.
Collapse
Affiliation(s)
- Manuela Oliverio
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Potential Beneficial Effects of Extra Virgin Olive Oils Characterized by High Content in Minor Polar Compounds in Nephropathic Patients: A Pilot Study. Molecules 2020; 25:molecules25204757. [PMID: 33081292 PMCID: PMC7587576 DOI: 10.3390/molecules25204757] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil (EVOO) is a lipid food, which constitutes a pillar of the Mediterranean diet. A high number of scientific data have demonstrated that it exerts a variety of beneficial effects on human health due to its peculiar chemical composition including fatty acids (98–99%) and other active compounds even if found in a very low percentage (1–2%). Among them, minor polar compounds (MCPs), represented mainly by phenolic compounds, are relevant for their healthy properties, as stated by the European Food Safety Authority’s (EFSA) claims. In this paper, we described the results obtained from a pilot in vivo study, focused for the first time on the evaluation of the possible beneficial effects of two EVOOs on chronic kidney disease (CKD) patients after the consumption of 40 mL per day for 9 weeks. The selected EVOOs, traced in the production chain, and characterized by High-Performance Liquid Chromatography (HPLC-DAD-MS) analysis, resulted rich in MCPs and satisfied the EFSA’s claim for their content of hydroxytyrosol and derivatives. The results obtained by this in vivo study appear to highlight the potential beneficial role in CKD patients of these EVOOs and are promising for future studies.
Collapse
|
21
|
Romanucci V, García-Viñuales S, Tempra C, Bernini R, Zarrelli A, Lolicato F, Milardi D, Di Fabio G. Modulating Aβ aggregation by tyrosol-based ligands: The crucial role of the catechol moiety. Biophys Chem 2020; 265:106434. [DOI: 10.1016/j.bpc.2020.106434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Accepted: 07/12/2020] [Indexed: 01/19/2023]
|
22
|
Romani A, Campo M, Urciuoli S, Marrone G, Noce A, Bernini R. An Industrial and Sustainable Platform for the Production of Bioactive Micronized Powders and Extracts Enriched in Polyphenols From Olea europaea L. and Vitis vinifera L. Wastes. Front Nutr 2020; 7:120. [PMID: 32974376 PMCID: PMC7473407 DOI: 10.3389/fnut.2020.00120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
In the last few years, literature data have reported that health status is related to the consumption of foods rich in polyphenols, bioactive compounds found in the plant world, in particular in vegetables and fruit. These pieces of scientific evidence have led to an increase in the demand for functional foods and drinks enriched in polyphenols, so that plant materials are more and more requested. The availability of food and agricultural wastes has adverse effects on the economy, environment, and human health. On the other hand, these materials are a precious source of bioactive compounds as polyphenols. Their recovery and reuse from wastes are according to the circular economy strategy, which has introduced the “zero waste concept.” However, the process is convenient from an economic and environmental point of view only if the final products are standardized and obtained using sustainable and industrial technologies. In this panorama, this paper describes an industrial and sustainable platform for the production of micronized powders and extracts enriched in polyphenols from Olea europaea L. and Vitis vinifera L. wastes that are useful for food, cosmetics, and pharmaceuticals sectors. The platform is based on drying plant materials, extraction of polyphenols through membrane technologies with water, and, when necessary, the concentration of the final fractions under vacuum evaporation. All powders and extracts were characterized by high-performance liquid chromatography–diode array detector–mass spectrometry analysis to define the qualitative and quantitative content of bioactive compounds and insure their standardization and reproducibility. The chromatographic profiles evidenced the presence of secoiridoids, flavones, flavonols, anthocyanins, hydroxycinnamic acids, catechins, and condensed tannins. An overview of the biological activities of the main polyphenols present in Olea europaea L. and Vitis vinifera L. powders and extracts is reported because of biomedical applications.
Collapse
Affiliation(s)
- Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, Florence, Italy
| | - Margherita Campo
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, Florence, Italy
| | - Silvia Urciuoli
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, Florence, Italy
| | - Giulia Marrone
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Rome, Italy.,UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
23
|
Roma E, Mattoni E, Lupattelli P, Moeini SS, Gasperi T, Bernini R, Incerpi S, Tofani D. New Dihydroxytyrosyl Esters from Dicarboxylic Acids: Synthesis and Evaluation of the Antioxidant Activity In Vitro (ABTS) and in Cell-Cultures (DCF Assay). Molecules 2020; 25:molecules25143135. [PMID: 32659910 PMCID: PMC7397168 DOI: 10.3390/molecules25143135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022] Open
Abstract
New dihydroxytyrosyl esters 2a, 2c–2j of dicarboxylic acids were synthesized from methyl orthoformate protected hydroxytyrosol 3 and diacyl chlorides. New compounds were characterized (HRMS, FT-IR, 1H- and 13C-NMR), and tested for antioxidant activity both in vitro (ABTS) and on L6 myoblasts and THP1 leukemic monocytes cell culture by DCF assay. According to the ABTS assay, compounds 2a, 2c–2j showed a TEAC value of antioxidant capacity up to twice that of Trolox. Very high or complete ROS protections were obtained in the cell environment where lipophilicity and rigidity of dicarboxylic structure seem to facilitate the antioxidant effect. MTT assay and proliferation test were used for assessment of cell viability. These compounds can be envisaged as a new class of preservatives for food or cosmetic products.
Collapse
Affiliation(s)
- Elia Roma
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; (E.R.); (S.S.M.); (T.G.); (S.I.)
| | - Elena Mattoni
- Centro Interdipartimentale per la Didattica Chimica (CeDiC), Via della Vasca Navale 79, 00146 Roma, Italy;
| | - Paolo Lupattelli
- Department of Science, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Seyed Sepehr Moeini
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; (E.R.); (S.S.M.); (T.G.); (S.I.)
| | - Tecla Gasperi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; (E.R.); (S.S.M.); (T.G.); (S.I.)
- Centro Interdipartimentale per la Didattica Chimica (CeDiC), Via della Vasca Navale 79, 00146 Roma, Italy;
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy;
| | - Sandra Incerpi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; (E.R.); (S.S.M.); (T.G.); (S.I.)
| | - Daniela Tofani
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; (E.R.); (S.S.M.); (T.G.); (S.I.)
- Centro Interdipartimentale per la Didattica Chimica (CeDiC), Via della Vasca Navale 79, 00146 Roma, Italy;
- Correspondence: ; Tel.: +39-06-5733-3371
| |
Collapse
|
24
|
D’Andrea G, Ceccarelli M, Bernini R, Clemente M, Santi L, Caruso C, Micheli L, Tirone F. Hydroxytyrosol stimulates neurogenesis in aged dentate gyrus by enhancing stem and progenitor cell proliferation and neuron survival. FASEB J 2020; 34:4512-4526. [DOI: 10.1096/fj.201902643r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Giorgio D’Andrea
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
- Department of Ecological and Biological Sciences University of Tuscia Viterbo Italy
| | - Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE) University of Tuscia Viterbo Italy
| | - Mariangela Clemente
- Department of Agriculture and Forest Sciences (DAFNE) University of Tuscia Viterbo Italy
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE) University of Tuscia Viterbo Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences University of Tuscia Viterbo Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
| |
Collapse
|
25
|
Macaúbas-Silva C, Félix MDG, Aquino AKSD, Pereira-Júnior PG, Brito EVDO, Oliveira-Filho AAD, Igoli JO, Watson DG, Teles YCF. Araçain, a tyrosol derivative and other phytochemicals from Psidium guineense Sw. Nat Prod Res 2019; 35:2424-2428. [PMID: 31581838 DOI: 10.1080/14786419.2019.1672683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Psidium guineense Sw. (Myrtaceae) is a shrub distributed all over South America and Brazil. Its leaves are traditionally used to treat digestive problems and infections. Several biological activities have been reported for P. guineense extracts, however phytochemical studies are scarce. The present study is on the isolation of compounds from P. guineense leaf extracts using chromatographic and spectroscopic techniques and evaluation of their antibacterial activity. Araçain, a tyrosol derivative was isolated as a natural product for the first time. Other compounds isolated were ursolic acid, a phaeophorbide and three flavonoids. The extracts were tested for their antimicrobial activity against Klebsiella pneumoniae strains and they showed moderate to high antibacterial activity.
Collapse
Affiliation(s)
- Camila Macaúbas-Silva
- Department of Chemistry and Physics, Agrarian Sciences Center, Universidade Federal da Paraíba, Areia, Brazil
| | - Maysa D G Félix
- Department of Chemistry and Physics, Agrarian Sciences Center, Universidade Federal da Paraíba, Areia, Brazil
| | - Ana Karoline S de Aquino
- Department of Chemistry and Physics, Agrarian Sciences Center, Universidade Federal da Paraíba, Areia, Brazil
| | - Paulo G Pereira-Júnior
- Department of Chemistry and Physics, Agrarian Sciences Center, Universidade Federal da Paraíba, Areia, Brazil
| | | | | | - John O Igoli
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Yanna C F Teles
- Department of Chemistry and Physics, Agrarian Sciences Center, Universidade Federal da Paraíba, Areia, Brazil
| |
Collapse
|
26
|
Pannucci E, Caracciolo R, Romani A, Cacciola F, Dugo P, Bernini R, Varvaro L, Santi L. An hydroxytyrosol enriched extract from olive mill wastewaters exerts antioxidant activity and antimicrobial activity on Pseudomonas savastanoi pv. savastanoi and Agrobacterium tumefaciens. Nat Prod Res 2019; 35:2677-2684. [DOI: 10.1080/14786419.2019.1662006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Elisa Pannucci
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Rocco Caracciolo
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Annalisa Romani
- Department of Statistics, Computing, Applications “Giuseppe Parenti” DiSIA, Phytolab, University of Florence, Florence, Italy
| | - Francesco Cacciola
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, Messina, Italy
| | - Paola Dugo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Polo Annunziata, Messina, Italy
- Chromaleont s.r.l., c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Polo Annunziata, Messina, Italy
- Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Leonardo Varvaro
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
27
|
Kalampaliki AD, Giannouli V, Skaltsounis AL, Kostakis IK. A Three-Step, Gram-Scale Synthesis of Hydroxytyrosol, Hydroxytyrosol Acetate, and 3,4-Dihydroxyphenylglycol. Molecules 2019; 24:E3239. [PMID: 31492013 PMCID: PMC6767028 DOI: 10.3390/molecules24183239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Hydroxytyrosol and two other polyphenols of olive tree, hydroxytyrosol acetate and 3,4-dihydroxyphenylglycol, are known for a wide range of beneficial activities in human health and prevention from diseases. The inability to isolate high, pure amounts of these natural compounds and the difficult and laborious procedures for the synthesis of them led us to describe herein an efficient, easy, cheap, and scaling up synthetic procedure, from catechol, via microwave irradiation.
Collapse
Affiliation(s)
- Amalia D Kalampaliki
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece.
| | - Vassiliki Giannouli
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece.
| | - Alexios-Leandros Skaltsounis
- Division of Pharmacognosy & Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece.
| | - Ioannis K Kostakis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece.
| |
Collapse
|
28
|
Romani A, Ieri F, Urciuoli S, Noce A, Marrone G, Nediani C, Bernini R. Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, By-Products, and Leaf of Olea europaea L. Nutrients 2019; 11:nu11081776. [PMID: 31374907 PMCID: PMC6724211 DOI: 10.3390/nu11081776] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/31/2022] Open
Abstract
Olea europaea L. fruit is a peculiar vegetal matrix containing high levels of fatty acids (98–99% of the total weight of extra-virgin olive oil, EVOO) and low quantities (1–2%) of phenolics, phytosterols, tocopherols, and squalene. Among these minor components, phenolics are relevant molecules for human health. This review is focused on their beneficial activity, in particular of hydroxytyrosol (HT), oleuropein (OLE), oleocanthal (OLC), and lignans found in EVOO, olive oil by-products and leaves. Specifically, the cardioprotective properties of the Mediterranean diet (MD) related to olive oil consumption, and the biological activities of polyphenols recovered from olive oil by-products and leaves were described. Recent European projects such as EPIC (European Prospective Investigation into Cancer and Nutrition) and EPICOR (long-term follow-up of antithrombotic management patterns in acute coronary syndrome patients) have demonstrated the functional and preventive activities of EVOO showing the relation both between cancer and nutrition and between consumption of EVOO, vegetables, and fruit and the incidence of coronary heart disease. The data reported in this review demonstrate that EVOO, one of the pillars of the MD, is the main product of Olea europaea L. fruits; leaves and by-products are secondary but precious products from which bioactive compounds can be recovered by green technologies and reused for food, agronomic, nutraceutical, and biomedical applications according to the circular economy strategy.
Collapse
Affiliation(s)
- Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)-DiSIA, University of Florence, Via U. Schiff, 6, 50019 Sesto Fiorentino, Italy.
| | - Francesca Ieri
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)-DiSIA, University of Florence, Via U. Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Silvia Urciuoli
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)-DiSIA, University of Florence, Via U. Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
29
|
Begines P, Biedermann D, Valentová K, Petrásková L, Pelantová H, Maya I, Fernández-Bolaños JG, Křen V. Chemoenzymatic Synthesis and Radical Scavenging of Sulfated Hydroxytyrosol, Tyrosol, and Acetylated Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7281-7288. [PMID: 31198027 DOI: 10.1021/acs.jafc.9b01065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Potential metabolites of bioactive compounds are important for their biological activities and as authentic standards for metabolic studies. The phenolic compounds contained in olive oil are an important part of the human diet, and therefore their potential metabolites are of utmost interest. We developed a convenient, scalable, one-pot chemoenzymatic method using the arylsulfotransferase from Desulfitobacterium hafniense for the sulfation of the natural olive oil phenols tyrosol, hydroxytyrosol, and of their monoacetylated derivatives. Respective monosulfated (tentative) metabolites were fully structurally characterized using LC-MS, NMR, and HRMS. In addition, Folin-Ciocalteu reduction, 1,1-diphenyl-2-picrylhydrazyl radical scavenging, and antilipoperoxidant activity in rat liver microsomes damaged by tert-butylhydroperoxide were measured and compared to the parent compounds. As expected, the sulfation diminished the radical scavenging properties of the prepared compounds. These compounds will serve as authentic standards of phase II metabolites.
Collapse
Affiliation(s)
- Paloma Begines
- Department of Organic Chemistry, Faculty of Chemistry , University of Seville , Sevilla E-41012 , Spain
| | - David Biedermann
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Lucie Petrásková
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Helena Pelantová
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Inés Maya
- Department of Organic Chemistry, Faculty of Chemistry , University of Seville , Sevilla E-41012 , Spain
| | - José G Fernández-Bolaños
- Department of Organic Chemistry, Faculty of Chemistry , University of Seville , Sevilla E-41012 , Spain
| | - Vladimír Křen
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| |
Collapse
|
30
|
Li C, Jia P, Bai Y, Fan TP, Zheng X, Cai Y. Efficient Synthesis of Hydroxytyrosol from l-3,4-Dihydroxyphenylalanine Using Engineered Escherichia coli Whole Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6867-6873. [PMID: 31134807 DOI: 10.1021/acs.jafc.9b01856] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydroxytyrosol is a high-value-added compound with a variety of biological and pharmacological activities. In this study, a whole-cell catalytic method for the synthesis of hydroxytyrosol was developed: aromatic amino acid aminotransferase (TyrB), l-glutamate dehydrogenase (GDH), α-keto acid decarboxylase (PmKDC), and aldehyde reductase (YahK) were co-expressed in Escherichia coli to catalyze the synthesis of hydroxytyrosol from l-3,4-dihydroxyphenylalanine (l-DOPA). The plasmids with different copy numbers were used to balance the expression of the four enzymes, and the most appropriate strain (pRSF- yahK- tyrB and pCDF- gdh- Pmkdc) was identified. After determination of the optimum temperature (35 °C) and pH (7.5) for whole-cell catalysis, the yield of hydroxytyrosol reached 36.33 mM (5.59 g/L) and the space-time yield reached 0.70 g L-1 h-1.
Collapse
Affiliation(s)
- Chaozhi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Pu Jia
- College of Life Sciences , Northwest University , Xi'an , Shaanxi 710069 , People's Republic of China
| | - Yajun Bai
- College of Life Sciences , Northwest University , Xi'an , Shaanxi 710069 , People's Republic of China
| | - Tai-Ping Fan
- Department of Pharmacology , University of Cambridge , Cambridge CB2 1PD , United Kingdom
| | - Xiaohui Zheng
- College of Life Sciences , Northwest University , Xi'an , Shaanxi 710069 , People's Republic of China
| | - Yujie Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
31
|
Bernini R, Carastro I, Santoni F, Clemente M. Synthesis of Lipophilic Esters of Tyrosol, Homovanillyl Alcohol and Hydroxytyrosol. Antioxidants (Basel) 2019; 8:E174. [PMID: 31197081 PMCID: PMC6617409 DOI: 10.3390/antiox8060174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Low-molecular weight phenols such as tyrosol, homovanillyl alcohol and hydroxytyrosol are valuable compounds that exhibit a high number of health-promoting effects such as antioxidant, anti-inflammatory and anticancer activity. Despite these remarkable properties, their applications such as dietary supplements and stabilizers of foods and cosmetics in non-aqueous media are limited for the hydrophilic character. With the aim to overcome this limitation, the paper describes a simple and low-cost procedure for the synthesis of lipophilic esters of tyrosol, homovanillyl alcohol and hydroxytyrosol. The reactions were carried out under mild and green chemistry conditions, at room temperature, solubilizing the phenolic compounds in dimethyl carbonate, an eco-friendly solvent, and adding a little excess of the appropriate C2-C18 acyl chloride. The final products were isolated in good yields. Finally, according to the "circular economy" strategy, the procedure was applied to hydroxytyrosol-enriched extracts obtained by Olea europaea by-products to prepare a panel of lipophilic extracts that are useful for applications where solubility in lipid media is required.
Collapse
Affiliation(s)
- Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy.
| | - Isabella Carastro
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy.
| | - Francesca Santoni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy.
| | - Mariangela Clemente
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy.
| |
Collapse
|
32
|
Britton J, Davis R, O'Connor KE. Chemical, physical and biotechnological approaches to the production of the potent antioxidant hydroxytyrosol. Appl Microbiol Biotechnol 2019; 103:5957-5974. [PMID: 31177312 DOI: 10.1007/s00253-019-09914-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
Abstract
Hydroxytyrosol (HT) is a polyphenol of interest to the food, feed, supplements and pharmaceutical sectors. It is one of the strongest known natural antioxidants and has been shown to confer other benefits such as anti-inflammatory and anti-carcinogenic properties, and it has the potential to act as a cardio- and neuroprotectant. It is known to be one of the compounds responsible for the health benefits of the Mediterranean diet. In nature, HT is found in the olive plant (Olea europaea) as part of the secoiridoid compound oleuropein, in its leaves, fruit, oil and oil production waste products. HT can be extracted from these olive sources, but it can also be produced by chemical synthesis or through the use of microorganisms. This review looks at the production of HT using plant extraction, chemical synthesis and biotechnological approaches.
Collapse
Affiliation(s)
- James Britton
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Reeta Davis
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin E O'Connor
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland. .,Beacon Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
33
|
(-)-Epigallocatechin-3-gallate and hydroxytyrosol improved antioxidative and anti-inflammatory responses in bovine mammary epithelial cells. Animal 2019; 13:2847-2856. [DOI: 10.1017/s1751731119001356] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
34
|
Sakakura A, Pauze M, Namiki A, Funakoshi-Tago M, Tamura H, Hanaya K, Higashibayashi S, Sugai T. Chemoenzymatic synthesis of hydroxytyrosol monoesters and their suppression effect on nitric oxide production stimulated by lipopolysaccharides. Biosci Biotechnol Biochem 2018; 83:185-191. [PMID: 30319060 DOI: 10.1080/09168451.2018.1530970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Fatty acid monoesters of hydroxytyrosol [2-(3,4-dihydroxyphenyl)ethanol] were synthesized in two steps from tyrosol (4-hydroxyphenylethanol) by successive Candida antarctica lipase B-catalyzed chemoselective acylation on the primary aliphatic hydroxy group over phenolic hydroxy group in tyrosol, and 2-iodoxybenzoic acid (IBX)-mediated hydroxylation adjacent to the remaining free phenolic hydroxy group. Examination of their suppression effects on nitric oxide production stimulated by lipopolysaccharides in RAW264.7 cells showed that hydroxytyrosol butyrate exhibited the highest inhibition (IC50 7.0 μM) among the tested compounds.
Collapse
Affiliation(s)
| | - Martin Pauze
- a Faculty of Pharmacy , Keio University , Tokyo , Japan.,b Department of Chemistry , Graduate School of SIGMA Clermont , Aubiere Cedex , France
| | | | | | | | - Kengo Hanaya
- a Faculty of Pharmacy , Keio University , Tokyo , Japan
| | | | - Takeshi Sugai
- a Faculty of Pharmacy , Keio University , Tokyo , Japan
| |
Collapse
|
35
|
Sales KA, Ferreira da Silva E, Ramalho de Figueiredo PT, Carlos de O. Costa V, Scotti MT, de Fátima Agra M, Tavares JF, Sobral da Silva M. Chemical constituents from Paliavana tenuiflora Mansf. (Gesneriaceae). BIOCHEM SYST ECOL 2018. [DOI: 10.1016/j.bse.2018.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Sang D, Tu X, Tian J, He Z, Yao M. Anchimerically Assisted Cleavage of Aryl Methyl Ethers by Aluminum Chloride-Sodium Iodide in Acetonitrile. ChemistrySelect 2018. [DOI: 10.1002/slct.201802565] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dayong Sang
- Jingchu University of Technology; 33 Xiangshan Road, Jingmen Hubei 448000 P. R. of China
| | - Xiaodong Tu
- Jingchu University of Technology; 33 Xiangshan Road, Jingmen Hubei 448000 P. R. of China
| | - Juan Tian
- Jingchu University of Technology; 33 Xiangshan Road, Jingmen Hubei 448000 P. R. of China
| | - Zhoujun He
- Jingchu University of Technology; 33 Xiangshan Road, Jingmen Hubei 448000 P. R. of China
| | - Ming Yao
- Jingchu University of Technology; 33 Xiangshan Road, Jingmen Hubei 448000 P. R. of China
| |
Collapse
|
37
|
Ziosi P, Paolucci C, Santarelli F, Tabanelli T, Passeri S, Cavani F, Righi P. A Two-Step Process for the Synthesis of Hydroxytyrosol. CHEMSUSCHEM 2018; 11:2202-2210. [PMID: 29761656 DOI: 10.1002/cssc.201800684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/06/2018] [Indexed: 06/08/2023]
Abstract
A new process for the synthesis of hydroxytyrosol (3,4-dihydroxyphenylethanol), the most powerful natural antioxidant currently known, by means of a two-step approach is reported. Catechol is first reacted with 2,2-dimethoxyacetaldehyde in basic aqueous medium to produce the corresponding mandelic derivative with >90 % conversion of the limiting reactant and about 70 % selectivity to the desired para-hydroxyalkylated compound. Thereafter, the intermediate is hydrogenated to hydroxytyrosol by using a Pd/C catalyst, with total conversion of the mandelic derivative and 68 % selectivity. This two-step process is the first example of a synthetic pathway for hydroxytyrosol that does not involve the use of halogenated components or reduction methodologies that produce stoichiometric waste. It also avoids the complex procedure currently used for hydroxytyrosol purification when it is extracted from wastewater of olive oil production.
Collapse
Affiliation(s)
- Paolo Ziosi
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum-Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
- Consorzio INSTM, Research Unit of Bologna, Via G. Giusti 9, 50121, Firenze, Italy
| | - Claudio Paolucci
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum-Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Francesco Santarelli
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum-Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Tommaso Tabanelli
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum-Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Sauro Passeri
- CFS Europe SpA, Via Depretis 6, 48123, Ravenna, Italy
| | - Fabrizio Cavani
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum-Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
- Consorzio INSTM, Research Unit of Bologna, Via G. Giusti 9, 50121, Firenze, Italy
| | - Paolo Righi
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum-Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| |
Collapse
|
38
|
Wani TA, Masoodi F, Gani A, Baba WN, Rahmanian N, Akhter R, Wani IA, Ahmad M. Olive oil and its principal bioactive compound: Hydroxytyrosol – A review of the recent literature. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Luzi F, Fortunati E, Di Michele A, Pannucci E, Botticella E, Santi L, Kenny JM, Torre L, Bernini R. Nanostructured starch combined with hydroxytyrosol in poly(vinyl alcohol) based ternary films as active packaging system. Carbohydr Polym 2018; 193:239-248. [PMID: 29773378 DOI: 10.1016/j.carbpol.2018.03.079] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 01/12/2023]
Abstract
Novel ternary films have been realized by using poly(vinyl alcohol) (PVA) as polymeric matrix, nanostructured starch as reinforcement phase and hydroxytyrosol (HTyr), a low-molecular phenolic compound present in olive oil, as antioxidant agent. Nanostructured starch, in the form of starch nanocrystals (NC) and nanoparticles (NP) obtained by acid hydrolysis and ultrasound irradiation of starch derived from the bread wheat variety Cadenza (WT, amylose content 33%) and a derived-high amylose line (HA, amylose content 75%), was considered. The developed multifunctional films were characterized in terms of morphological, thermal and optical properties, water absorption capacity, overall and specific migration into a food simulant and antioxidant properties. Experimental data showed a prolonged release of HTyr from all ternary films and the released HTyr retained a strong antioxidant activity. The data, compared to those of PVA/HTyr binary films, demonstrated the key role of nanostructured starch in the ternary formulations in promoting a gradual release of HTyr. Overall, PVA fillm combined with nanoparticles from low amylose starch and hydroxytyrosol resulted as the most promising ternary formulation for food packaging applications.
Collapse
Affiliation(s)
- Francesca Luzi
- University of Perugia, Civil and Environmental Engineering Department, Strada di Pentima 4, 05100 Terni, Italy
| | - Elena Fortunati
- University of Perugia, Civil and Environmental Engineering Department, Strada di Pentima 4, 05100 Terni, Italy
| | - Alessandro Di Michele
- University of Perugia, Physic and Geology Department, Via Pascoli, 06123 Perugia, Italy
| | - Elisa Pannucci
- University of Tuscia, Department of Agricultural and Forestry Sciences (DAFNE), Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Ermelinda Botticella
- University of Tuscia, Department of Agricultural and Forestry Sciences (DAFNE), Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Luca Santi
- University of Tuscia, Department of Agricultural and Forestry Sciences (DAFNE), Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - José Maria Kenny
- University of Perugia, Civil and Environmental Engineering Department, Strada di Pentima 4, 05100 Terni, Italy
| | - Luigi Torre
- University of Perugia, Civil and Environmental Engineering Department, Strada di Pentima 4, 05100 Terni, Italy.
| | - Roberta Bernini
- University of Tuscia, Department of Agricultural and Forestry Sciences (DAFNE), Via S. Camillo De Lellis, 01100 Viterbo, Italy
| |
Collapse
|
40
|
Synthesis and Evaluation of the Antioxidant Activity of Lipophilic Phenethyl Trifluoroacetate Esters by In Vitro ABTS, DPPH and in Cell-Culture DCF Assays. Molecules 2018; 23:molecules23010208. [PMID: 29351214 PMCID: PMC6017616 DOI: 10.3390/molecules23010208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/23/2022] Open
Abstract
Polyphenols are natural compounds showing a variety of health-promoting effects. Unfortunately, due to low lipid solubility, their applications in the pharmaceutical, food, and cosmetic industries are limited. With the aim of obtaining novel lipophilic derivatives, the present study reports the synthesis of a series of phenethyl trifluoroacetate esters containing up to two hydroxyl groups in the aromatic ring. Experimental logP values confirmed a greater lipophilicity of the novel compounds compared to the parent compounds. The radical scavenging capacity of all phenethyl trifluoroacetate esters was evaluated by in vitro assays (ABTS, DPPH) and in cultured cells (L6 myoblasts and THP-1 leukemic monocytes) using 2′,7′-dichlorodihydrofluorescein diacetate. These data revealed that the esters showed a good antioxidant effect that was strictly dependent on the grade of hydroxylation of the phenyl ring. The lack of toxicity, evaluated by the MTT assay and proliferation curves, makes these trifluoroacetates attractive derivatives for pharmaceutical, food, and cosmetic applications.
Collapse
|
41
|
Sun Y, Zhou D, Shahidi F. Antioxidant properties of tyrosol and hydroxytyrosol saturated fatty acid esters. Food Chem 2017; 245:1262-1268. [PMID: 29287352 DOI: 10.1016/j.foodchem.2017.11.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/03/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yuanxin Sun
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Dayong Zhou
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
42
|
Tian J, Yi C, He Z, Yao M, Sang D. Aluminum Triiodide-Mediated Cleavage ofo-Hydroxyphenyl Alkyl Ethers Using Inorganic Bases and Metal Oxides as Acid Scavengers. ChemistrySelect 2017. [DOI: 10.1002/slct.201701685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juan Tian
- Jingchu University of Technology; 33 Xiangshan Road, Jingmen Hubei 448000, P. R. of China
| | - Cuicui Yi
- Jingchu University of Technology; 33 Xiangshan Road, Jingmen Hubei 448000, P. R. of China
| | - Zhoujun He
- Jingchu University of Technology; 33 Xiangshan Road, Jingmen Hubei 448000, P. R. of China
| | - Ming Yao
- Jingchu University of Technology; 33 Xiangshan Road, Jingmen Hubei 448000, P. R. of China
| | - Dayong Sang
- Jingchu University of Technology; 33 Xiangshan Road, Jingmen Hubei 448000, P. R. of China
| |
Collapse
|
43
|
Bernini R, Carastro I, Palmini G, Tanini A, Zonefrati R, Pinelli P, Brandi ML, Romani A. Lipophilization of Hydroxytyrosol-Enriched Fractions from Olea europaea L. Byproducts and Evaluation of the in Vitro Effects on a Model of Colorectal Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6506-6512. [PMID: 28285526 DOI: 10.1021/acs.jafc.6b05457] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A hydroxytyrosol (HTyr)-enriched fraction containing HTyr 6% w/w, derived from Olea europaea L. byproducts and obtained using an environmentally and economically sustainable technology, was lipophilized under green chemistry conditions. The effects of three fractions containing hydroxytyrosyl butanoate, octanoate, and oleate, named, respectively, lipophilic fractions 5, 6, and 7, and unreacted HTyr on the human colon cancer cell line HCT8-β8 engineered to overexpress estrogen receptor β (ERβ) were evaluated and compared to those of pure HTyr. The experimental data demonstrated that HTyr and all fractions showed an antiproliferative effect, as had been observed by the evaluation of the cellular doubling time under these different conditions (mean control, 32 ± 4 h; HTyr 1, 65 ± 9 h; fraction 5, 64 ± 11 h; fraction 6, 62 ± 14 h; fraction 7, 133 ± 30 h). As evidenced, fraction 7 containing hydroxytyrosyl oleate showed the highest activity. These results were related to the link with ER-β, which was assessed through simultaneous treatment with an inhibitor of ERβ.
Collapse
Affiliation(s)
- Roberta Bernini
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia , Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Isabella Carastro
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia , Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Gaia Palmini
- Department of Surgery and Translational Medicine, University of Florence , 50134 Florence, Italy
| | - Annalisa Tanini
- Department of Surgery and Translational Medicine, University of Florence , 50134 Florence, Italy
| | - Roberto Zonefrati
- Department of Surgery and Translational Medicine, University of Florence , 50134 Florence, Italy
| | - Patrizia Pinelli
- Department of Statistics, Computing, Applications "G. Parenti" (DISIA), PHYTOLAB, University of Florence , 50134 Florence, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence , 50134 Florence, Italy
| | - Annalisa Romani
- Department of Statistics, Computing, Applications "G. Parenti" (DISIA), PHYTOLAB, University of Florence , 50134 Florence, Italy
| |
Collapse
|
44
|
Pulvirenti L, Muccilli V, Cardullo N, Spatafora C, Tringali C. Chemoenzymatic Synthesis and α-Glucosidase Inhibitory Activity of Dimeric Neolignans Inspired by Magnolol. JOURNAL OF NATURAL PRODUCTS 2017; 80:1648-1657. [PMID: 28497968 DOI: 10.1021/acs.jnatprod.7b00250] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A chemoenzymatic synthesis of a small library of dimeric neolignans inspired by magnolol (1) is reported. The 2-iodoxybenzoic acid (IBX)-mediated regioselective ortho-hydroxylation of magnolol is described, affording the bisphenols 6 and 7. Further magnolol analogues (12, 13, 15-17, 19-23) were obtained from eugenol (3), tyrosol (4), and homovanillic alcohol (5), through horseradish peroxidase (HRP)-mediated oxidative coupling and regioselective ortho-hydroxylation or ortho-demethylation in the presence of IBX, followed by reductive treatment with Na2S2O4. A chemoselective protection/deprotection of the alcoholic group of 4 and 5 was carried out by lipase-mediated acetylation/deacetylation. The dimeric neolignans, together with 1 and honokiol (2), were evaluated as inhibitors of yeast α-glucosidase, in view of their possible utilization and optimization as antidiabetic drugs. The synthetic analogues of magnolol showed a strong inhibitory activity with IC50 values in the range 0.15-4.1 μM, much lower than those of honokiol and the reference compounds quercetin and acarbose. In particular, a very potent inhibitory activity, with an IC50 of 0.15 μM, was observed for 1,1'-dityrosol-8,8'-diacetate (15), and comparable inhibitory activities were also shown by bisphenols 6 (0.49 μM), 13 (0.50 μM), and 22 (0.86 μM). A kinetic study showed that 15 acts as a competitive inhibitor, with a Ki value of 0.86 μM.
Collapse
Affiliation(s)
- Luana Pulvirenti
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Carmela Spatafora
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
45
|
Chen SS, Luo SZ, Zheng Z, Zhao YY, Pang M, Jiang ST. Enzymatic lipophilization of epicatechin with free fatty acids and its effect on antioxidative capacity in crude camellia seed oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:868-874. [PMID: 27197789 DOI: 10.1002/jsfa.7808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/17/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Crude camellia seed oil is rich in free fatty acids, which must be removed to produce an oil of acceptable quality. In the present study, we reduced the free fatty acid content of crude camellia seed oil by lipophilization of epicatechin with these free fatty acids in the presence of Candida antarctica lipase B (Novozym 435), and this may enhance the oxidative stability of the oil at the same time. RESULTS The acid value of crude camellia seed oil reduced from 3.7 to 2.5 mgKOH g-1 after lipophilization. Gas chomatography-mass spectrometry analysis revealed that epicatechin oleate and epicatechin palmitate were synthesized in the lipophilized oil. The peroxide, p-anisidine, and total oxidation values during heating of the lipophilized oil were much lower than that of the crude oil and commercially available camellia seed oil, suggesting that lipophilized epicatechin derivatives could help enhance the oxidative stability of edible oil. CONCLUSION The enzymatic process to lipophilize epicatechin with the free fatty acids in crude camellia seed oil described in the present study could decrease the acid value to meet the quality standards for commercial camellia seed oil and, at the same time, obtain a new edible camellia seed oil product with good oxidative stability. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sa-Sa Chen
- College of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Shui-Zhong Luo
- College of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Zhi Zheng
- College of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Yan-Yan Zhao
- College of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Min Pang
- College of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Shao-Tong Jiang
- College of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
46
|
Sánchez-Barrionuevo L, González-Benjumea A, Escobar-Niño A, García MT, López Ó, Maya I, Fernández-Bolaños JG, Cánovas D, Mellado E. A Straightforward Access to New Families of Lipophilic Polyphenols by Using Lipolytic Bacteria. PLoS One 2016; 11:e0166561. [PMID: 27855214 PMCID: PMC5113952 DOI: 10.1371/journal.pone.0166561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/30/2016] [Indexed: 11/18/2022] Open
Abstract
The chemical synthesis of new lipophilic polyphenols with improved properties presents technical difficulties. Here we describe the selection, isolation and identification of lipolytic bacteria from food-processing industrial wastes, and their use for tailoring a new set of compounds with great interest in the food industry. These bacteria were employed to produce lipolytic supernatants, which were applied without further purification as biocatalysts in the chemoselective and regioselective synthesis of lipophilic partially acetylated phenolic compounds derived from olive polyphenols. The chemoselectivity of polyphenols acylation/deacylation was analyzed, revealing the preference of the lipases for phenolic hydroxyl groups and phenolic esters. In addition, the alcoholysis of peracetylated 3,4-dihydroxyphenylglycol resulted in a series of lipophilic 2-alkoxy-2-(3,4-dihydroxyphenyl)ethyl acetate through an unexpected lipase-mediated etherification at the benzylic position. These new compounds are more lipophilic and retained their antioxidant properties. This approach can provide access to unprecedented derivatives of 3,4-dihydroxyphenylglycol with improved properties.
Collapse
Affiliation(s)
- Leyre Sánchez-Barrionuevo
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | | | - Almudena Escobar-Niño
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - María Teresa García
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Óscar López
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | - Inés Maya
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | | | - David Cánovas
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Encarnación Mellado
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
47
|
Sustainability, Innovation, and Green Chemistry in the Production and Valorization of Phenolic Extracts from Olea europaea L. SUSTAINABILITY 2016. [DOI: 10.3390/su8101002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
48
|
Fernandez-Pastor I, Fernandez-Hernandez A, Rivas F, Martinez A, Garcia-Granados A, Parra A. Synthesis and Antioxidant Activity of Hydroxytyrosol Alkyl-Carbonate Derivatives. JOURNAL OF NATURAL PRODUCTS 2016; 79:1737-1745. [PMID: 27337069 DOI: 10.1021/acs.jnatprod.6b00124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three procedures have been investigated for the isolation of tyrosol (1) and hydroxytyrosol (2) from a phenolic extract obtained from the solid residue of olive milling. These three methods, which facilitated the recovery of these phenols, were chemical or enzymatic acetylation, benzylation, and carbomethoxylation, and subsequent carbonylation or acetonation reactions. Several new lipophilic alkyl-carbonate derivatives of hydroxytyrosol have been synthesized, coupling the primary hydroxy group of this phenol, through a carbonate linker, using alcohols with different chain lengths. The antioxidant properties of these lipophilic derivatives have been evaluated by different methods and compared with free hydroxytyrosol (2) and also with the well-known antioxidants BHT and α-tocopherol. Three methods were used for the determination of this antioxidant activity: FRAP and ABTS assays, to test the antioxidant power in hydrophilic media, and the Rancimat test, to evaluate the antioxidant capacity in a lipophilic matrix. These new alkyl-carbonate derivatives of hydroxytyrosol enhanced the antioxidant activity of this natural phenol, with their antioxidant properties also being higher than those of the commercial antioxidants BHT and α-tocopherol. There was no clear influence of the side-chain length on the antioxidant properties of the alkyl-carbonate derivatives of 2, although the best results were achieved mainly by the compounds with a longer chain on the primary hydroxy group of this natural phenolic substance.
Collapse
Affiliation(s)
- Ignacio Fernandez-Pastor
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| | - Antonia Fernandez-Hernandez
- Centro "Venta del Llano" del Instituto Andaluz de Investigacion y Formacion Agraria, Pesquera, Agroalimentaria y de la Produccion Ecologica (IFAPA) , Mengibar, Jaén 23620, Spain
| | - Francisco Rivas
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| | - Antonio Martinez
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| | - Andres Garcia-Granados
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| | - Andres Parra
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| |
Collapse
|
49
|
Cutinase from Fusarium oxysporum catalyzes the acylation of tyrosol in an aqueous medium: Optimization and thermodynamic study of the reaction. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Fortunati E, Luzi F, Dugo L, Fanali C, Tripodo G, Santi L, Kenny JM, Torre L, Bernini R. Effect of hydroxytyrosol methyl carbonate on the thermal, migration and antioxidant properties of PVA-based films for active food packaging. POLYM INT 2016. [DOI: 10.1002/pi.5090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Elena Fortunati
- Civil and Environmental Engineering Department; UdR INSTM, University of Perugia; Strada di Pentima 4 05100 Terni Italy
| | - Francesca Luzi
- Civil and Environmental Engineering Department; UdR INSTM, University of Perugia; Strada di Pentima 4 05100 Terni Italy
| | - Laura Dugo
- Centre of Integrated Research (CIR); University Campus Bio-Medico of Rome; Via Alvaro del Portillo 21 00128 Rome Italy
| | - Chiara Fanali
- Centre of Integrated Research (CIR); University Campus Bio-Medico of Rome; Via Alvaro del Portillo 21 00128 Rome Italy
| | - Giusy Tripodo
- Centre of Integrated Research (CIR); University Campus Bio-Medico of Rome; Via Alvaro del Portillo 21 00128 Rome Italy
| | - Luca Santi
- Department of Agricultural and Forestry Sciences (DAFNE); University of Tuscia; Via S. Camillo De Lellis 01100 Viterbo Italy
| | - José M Kenny
- Civil and Environmental Engineering Department; UdR INSTM, University of Perugia; Strada di Pentima 4 05100 Terni Italy
| | - Luigi Torre
- Civil and Environmental Engineering Department; UdR INSTM, University of Perugia; Strada di Pentima 4 05100 Terni Italy
| | - Roberta Bernini
- Department of Agricultural and Forestry Sciences (DAFNE); University of Tuscia; Via S. Camillo De Lellis 01100 Viterbo Italy
| |
Collapse
|