1
|
Wu H, Ren Y, Zhang J, Xue J, Chen L, Chen H, Yang X, Wang H. Research progress of LpxC inhibitor on Gram-negative bacteria. Eur J Med Chem 2025; 289:117440. [PMID: 40020426 DOI: 10.1016/j.ejmech.2025.117440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) is a metalloprotein that utilizes zinc as a cofactor. LpxC plays a crucial role in catalyzing the synthesis of Lipid A, a major component of the outer membrane lipopolysaccharide in Gram-negative (G-) bacteria, and LpxC shares no common amino acid sequence with various mammalian enzyme proteins. LpxC is essential for the survival of Gram-negative bacteria, making it a promising target for the antibacterial drug development. In recent years, numerous LpxC inhibitors have been reported, which can be broadly categorized into hydroxamic acid and non-hydroxamic acid based on their structural characteristics. Although no LpxC inhibitors are currently available on the market, several candidate small molecules are anticipated to enter clinical trials. The current manuscript offers a comprehensive review of the structures, enzyme catalytic mechanisms, and research progress of novel LpxC inhibitors, with the objective of providing insights and directions for future research in the development of LpxC inhibitors as new antibacterial agents.
Collapse
Affiliation(s)
- Han Wu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China
| | - Yixin Ren
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China
| | - Jungan Zhang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China
| | - Jingsu Xue
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China
| | - Lulu Chen
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
2
|
Euteneuer CF, Davis BN, Lui LM, Neville AJ, Davis PH. Expanded Gram-Negative Activity of Marinopyrrole A. Pathogens 2025; 14:290. [PMID: 40137776 PMCID: PMC11946689 DOI: 10.3390/pathogens14030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
The rise of bacterial infections is a global health issue that calls for the development and availability of additional antimicrobial agents. Known for its in vitro effects on Gram-positive organisms, the drug-like small molecule marinopyrrole A was re-examined for the potential of broader efficacy against a wider array of microbes. We uncovered selective efficacy against an important subset of Gram-negative bacteria from three genera: Neisseria, Moraxella, and Campylobacter. This susceptibility is correlated with the absence of canonical LPS in these specific Gram-negative species, a phenomenon observed with other hydrophobic anti-microbial compounds. Further, when exposed to molecules which inhibit the LpxC enzyme of the LPS synthesis pathway, previously resistant LPS-producing Gram-negative bacteria showed increased susceptibility to marinopyrrole A. These results demonstrate marinopyrrole A's efficacy against a broader range of Gram-negative bacteria than previously known, including N. gonorrhea, a species identified as a priority pathogen by the WHO.
Collapse
Affiliation(s)
| | | | | | | | - Paul H. Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (C.F.E.); (B.N.D.); (L.M.L.); (A.J.N.)
| |
Collapse
|
3
|
Poulsen BE, Warrier T, Barkho S, Bagnall J, Romano KP, White T, Yu X, Kawate T, Nguyen PH, Raines K, Ferrara K, Golas AL, FitzGerald M, Boeszoermenyi A, Kaushik V, Serrano-Wu M, Shoresh N, Hung DT. Discovery of a Pseudomonas aeruginosa-specific small molecule targeting outer membrane protein OprH-LPS interaction by a multiplexed screen. Cell Chem Biol 2025; 32:307-324.e15. [PMID: 39732052 DOI: 10.1016/j.chembiol.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/19/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024]
Abstract
The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against Pseudomonas aeruginosa, a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of P. aeruginosa combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging. We adapted PROSPECT, a target-based, whole-cell screening strategy, to discover small molecule probes that kill P. aeruginosa mutants depleted for essential proteins localized at the OM. We identified BRD1401, a small molecule that has specific activity against a P. aeruginosa mutant depleted for the essential lipoprotein, OprL. Genetic and chemical biological studies identified that BRD1401 acts by targeting the OM β-barrel protein OprH to disrupt its interaction with LPS and increase membrane fluidity. Studies with BRD1401 also revealed an interaction between OprL and OprH, directly linking the OM with peptidoglycan. Thus, a whole-cell, multiplexed screen can identify species-specific chemical probes to reveal pathogen biology.
Collapse
Affiliation(s)
- Bradley E Poulsen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thulasi Warrier
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sulyman Barkho
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Keith P Romano
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tiantian White
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xiao Yu
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tomohiko Kawate
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Phuong H Nguyen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kyra Raines
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kristina Ferrara
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - A Lorelei Golas
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Virendar Kaushik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; 3 Point Bio LLC, Cambridge, MA 02142, USA
| | | | - Noam Shoresh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Deborah T Hung
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Chen F, Jiang Y, Xu Z, Zhao D, Li D, Yang H, Zhu S, Xu H, Peng S, Miao Z, Wang H, Tong M, Hou Y, Zhao Y. Design, synthesis and evaluation of novel LpxC inhibitors containing a hydrazone moiety as Gram-negative antibacterial agents. Eur J Med Chem 2024; 279:116892. [PMID: 39341094 DOI: 10.1016/j.ejmech.2024.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
LpxC inhibitors are new-type antibacterial agents developed in the last twenty years, mainly against Gram-negative bacteria infections. To enable the development of novel LpxC inhibitors with potent antibacterial activities, several series of compounds were designed and synthesized and their antibacterial activities were evaluated against E. coli ATCC25922, P. aeruginosa ATCC27853, P. aeruginosa clinical isolate PAE 22-1, K. pneumoniae ATCC700603, K. pneumoniae clinical isolate KPN+22-1 in vitro. Compound 6i exhibited significant antibacterial activities against above five Gram-negative bacteria except P. aeruginosa ATCC27853. Moreover, compound 6i exhibited moderate liver microsomal stability and a promising pharmacokinetic profile (AUC0-t = 1050 ng h mL-1, oral bioavailability of 13.3 %) in Sprague-Dawley rats, acceptable PPB, low risk of drug-drug interactions and non-cytotoxic activity against hepatic cell. Collectively, compound 6i could be a promising Gram-negative antibacterial agent for further investigation.
Collapse
Affiliation(s)
- Fei Chen
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Yufeng Jiang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Zidong Xu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group JiangSu Haici Biological Pharmaceutical Co., Ltd., No. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou, Jiangsu, 225326, China
| | - Dan Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Huiyuan Yang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Shenghong Zhu
- Yangtze River Pharmaceutical Group JiangSu Haici Biological Pharmaceutical Co., Ltd., No. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou, Jiangsu, 225326, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical Group Co., Ltd., No. 1 South Yangtze River Road, Taizhou, Jiangsu, 225321, China
| | - Shan Peng
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou, 215104, China
| | - Zhenyu Miao
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou, 215104, China
| | - Han Wang
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou, 215104, China
| | - Minghui Tong
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou, 215104, China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China.
| | - Yanfang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
5
|
Romano KP, Bagnall J, Warrier T, Sullivan J, Ferrara K, Orzechowski M, Nguyen PH, Raines K, Livny J, Shoresh N, Hung DT. Perturbation-specific transcriptional mapping for unbiased target elucidation of antibiotics. Proc Natl Acad Sci U S A 2024; 121:e2409747121. [PMID: 39467118 PMCID: PMC11551328 DOI: 10.1073/pnas.2409747121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
The rising prevalence of antibiotic resistance threatens human health. While more sophisticated strategies for antibiotic discovery are being developed, target elucidation of new chemical entities remains challenging. In the postgenomic era, expression profiling can play an important role in mechanism-of-action (MOA) prediction by reporting on the cellular response to perturbation. However, the broad application of transcriptomics has yet to fulfill its promise of transforming target elucidation due to challenges in identifying the most relevant, direct responses to target inhibition. We developed an unbiased strategy for MOA prediction, called perturbation-specific transcriptional mapping (PerSpecTM), in which large-throughput expression profiling of wild-type or hypomorphic mutants, depleted for essential targets, enables a computational strategy to address this challenge. We applied PerSpecTM to perform reference-based MOA prediction based on the principle that similar perturbations, whether chemical or genetic, will elicit similar transcriptional responses. Using this approach, we elucidated the MOAs of three molecules with activity against Pseudomonas aeruginosa by comparing their expression profiles to those of a reference set of antimicrobial compounds with known MOAs. We also show that transcriptional responses to small-molecule inhibition resemble those resulting from genetic depletion of essential targets by clustered regularly interspaced short palindromic repeats interference (CRISPRi) by PerSpecTM, demonstrating proof of concept that correlations between expression profiles of small-molecule and genetic perturbations can facilitate MOA prediction when no chemical entities exist to serve as a reference. Empowered by PerSpecTM, this work lays the foundation for an unbiased, readily scalable, systematic reference-based strategy for MOA elucidation that could transform antibiotic discovery efforts.
Collapse
Affiliation(s)
- Keith P. Romano
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Josephine Bagnall
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Thulasi Warrier
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
| | - Jaryd Sullivan
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Kristina Ferrara
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
| | - Marek Orzechowski
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Phuong H. Nguyen
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Kyra Raines
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
| | - Jonathan Livny
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Noam Shoresh
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Deborah T. Hung
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| |
Collapse
|
6
|
Shanley HT, Taki AC, Nguyen N, Wang T, Byrne JJ, Ang CS, Leeming MG, Williamson N, Chang BCH, Jabbar A, Sleebs BE, Gasser RB. Comparative structure activity and target exploration of 1,2-diphenylethynes in Haemonchus contortus and Caenorhabditis elegans. Int J Parasitol Drugs Drug Resist 2024; 25:100534. [PMID: 38554597 PMCID: PMC10992699 DOI: 10.1016/j.ijpddr.2024.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024]
Abstract
Infections and diseases caused by parasitic nematodes have a major adverse impact on the health and productivity of animals and humans worldwide. The control of these parasites often relies heavily on the treatment with commercially available chemical compounds (anthelmintics). However, the excessive or uncontrolled use of these compounds in livestock animals has led to major challenges linked to drug resistance in nematodes. Therefore, there is a need to develop new anthelmintics with novel mechanism(s) of action. Recently, we identified a small molecule, designated UMW-9729, with nematocidal activity against the free-living model organism Caenorhabditis elegans. Here, we evaluated UMW-9729's potential as an anthelmintic in a structure-activity relationship (SAR) study in C. elegans and the highly pathogenic, blood-feeding Haemonchus contortus (barber's pole worm), and explored the compound-target relationship using thermal proteome profiling (TPP). First, we synthesised and tested 25 analogues of UMW-9729 for their nematocidal activity in both H. contortus (larvae and adults) and C. elegans (young adults), establishing a preliminary nematocidal pharmacophore for both species. We identified several compounds with marked activity against either H. contortus or C. elegans which had greater efficacy than UMW-9729, and found a significant divergence in compound bioactivity between these two nematode species. We also identified a UMW-9729 analogue, designated 25, that moderately inhibited the motility of adult female H. contortus in vitro. Subsequently, we inferred three H. contortus proteins (HCON_00134350, HCON_00021470 and HCON_00099760) and five C. elegans proteins (F30A10.9, F15B9.8, B0361.6, DNC-4 and UNC-11) that interacted directly with UMW-9729; however, no conserved protein target was shared between the two nematode species. Future work aims to extend the SAR investigation in these and other parasitic nematode species, and validate individual proteins identified here as possible targets of UMW-9729. Overall, the present study evaluates this anthelmintic candidate and highlights some challenges associated with early anthelmintic investigation.
Collapse
Affiliation(s)
- Harrison T Shanley
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nghi Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michael G Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Brad E Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
7
|
Muñoz KA, Ulrich RJ, Vasan AK, Sinclair M, Wen PC, Holmes JR, Lee HY, Hung CC, Fields CJ, Tajkhorshid E, Lau GW, Hergenrother PJ. A Gram-negative-selective antibiotic that spares the gut microbiome. Nature 2024; 630:429-436. [PMID: 38811738 DOI: 10.1038/s41586-024-07502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
Infections caused by Gram-negative pathogens are increasingly prevalent and are typically treated with broad-spectrum antibiotics, resulting in disruption of the gut microbiome and susceptibility to secondary infections1-3. There is a critical need for antibiotics that are selective both for Gram-negative bacteria over Gram-positive bacteria, as well as for pathogenic bacteria over commensal bacteria. Here we report the design and discovery of lolamicin, a Gram-negative-specific antibiotic targeting the lipoprotein transport system. Lolamicin has activity against a panel of more than 130 multidrug-resistant clinical isolates, shows efficacy in multiple mouse models of acute pneumonia and septicaemia infection, and spares the gut microbiome in mice, preventing secondary infection with Clostridioides difficile. The selective killing of pathogenic Gram-negative bacteria by lolamicin is a consequence of low sequence homology for the target in pathogenic bacteria versus commensals; this doubly selective strategy can be a blueprint for the development of other microbiome-sparing antibiotics.
Collapse
Affiliation(s)
- Kristen A Muñoz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca J Ulrich
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Archit K Vasan
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matt Sinclair
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Po-Chao Wen
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jessica R Holmes
- High-Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyang Yeon Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chien-Che Hung
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher J Fields
- High-Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emad Tajkhorshid
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
8
|
Poulsen BE, Warrier T, Barkho S, Bagnall J, Romano KP, White T, Yu X, Kawate T, Nguyen PH, Raines K, Ferrara K, Golas A, Fitzgerald M, Boeszoermenyi A, Kaushik V, Serrano-Wu M, Shoresh N, Hung DT. "Multiplexed screen identifies a Pseudomonas aeruginosa -specific small molecule targeting the outer membrane protein OprH and its interaction with LPS". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.16.585348. [PMID: 38559044 PMCID: PMC10980007 DOI: 10.1101/2024.03.16.585348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against Pseudomonas aeruginosa , a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of P. aeruginosa combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging. We adapted PROSPECT 1 , a target-based, whole-cell screening strategy, to discover small molecule probes that kill P. aeruginosa mutants depleted for essential proteins localized at the OM. We identified BRD1401, a small molecule that has specific activity against a P. aeruginosa mutant depleted for the essential lipoprotein, OprL. Genetic and chemical biological studies identified that BRD1401 acts by targeting the OM β-barrel protein OprH to disrupt its interaction with LPS and increase membrane fluidity. Studies with BRD1401 also revealed an interaction between OprL and OprH, directly linking the OM with peptidoglycan. Thus, a whole-cell, multiplexed screen can identify species-specific chemical probes to reveal novel pathogen biology.
Collapse
|
9
|
Amudala S, Sumit, Aidhen IS. LpxC inhibition: Potential and opportunities with carbohydrate scaffolds. Carbohydr Res 2024; 537:109057. [PMID: 38402732 DOI: 10.1016/j.carres.2024.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Uridine diphosphate-3-O-(hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a key enzyme involved in the biosynthesis of lipid A, an essential building block, for the construction and assembly of the outer membrane (OM) of Gram-negative bacteria. The enzyme is highly conserved in almost all Gram-negative bacteria and hence has emerged as a promising target for drug discovery in the fight against multi-drug resistant Gram-negative infections. Since the first nanomolar LpxC inhibitor, L-161,240, an oxazoline-based hydroxamate, the two-decade-long ongoing search has provided valuable information regarding essential features necessary for inhibition. Although the design and structure optimization for arriving at the most efficacious inhibitor of this enzyme has made good use of different heterocyclic moieties, the use of carbohydrate scaffold is scant. This review briefly covers the advancement and progress made in LpxC inhibition. The field awaits the use of potential associated with carbohydrate-based scaffolds for LpxC inhibition and the discovery of anti-bacterial agents against Gram-negative infections.
Collapse
Affiliation(s)
- Subramanyam Amudala
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Sumit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Indrapal Singh Aidhen
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
10
|
Janssens A, Nguyen VS, Cecil AJ, Van der Verren SE, Timmerman E, Deghelt M, Pak AJ, Collet JF, Impens F, Remaut H. SlyB encapsulates outer membrane proteins in stress-induced lipid nanodomains. Nature 2024; 626:617-625. [PMID: 38081298 DOI: 10.1038/s41586-023-06925-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
The outer membrane in Gram-negative bacteria consists of an asymmetric phospholipid-lipopolysaccharide bilayer that is densely packed with outer-membrane β-barrel proteins (OMPs) and lipoproteins1. The architecture and composition of this bilayer is closely monitored and is essential to cell integrity and survival2-4. Here we find that SlyB, a lipoprotein in the PhoPQ stress regulon, forms stable stress-induced complexes with the outer-membrane proteome. SlyB comprises a 10 kDa periplasmic β-sandwich domain and a glycine zipper domain that forms a transmembrane α-helical hairpin with discrete phospholipid- and lipopolysaccharide-binding sites. After loss in lipid asymmetry, SlyB oligomerizes into ring-shaped transmembrane complexes that encapsulate β-barrel proteins into lipid nanodomains of variable size. We find that the formation of SlyB nanodomains is essential during lipopolysaccharide destabilization by antimicrobial peptides or acute cation shortage, conditions that result in a loss of OMPs and compromised outer-membrane barrier function in the absence of a functional SlyB. Our data reveal that SlyB is a compartmentalizing transmembrane guard protein that is involved in cell-envelope proteostasis and integrity, and suggest that SlyB represents a larger family of broadly conserved lipoproteins with 2TM glycine zipper domains with the ability to form lipid nanodomains.
Collapse
Affiliation(s)
- Arne Janssens
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Van Son Nguyen
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Adam J Cecil
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Sander E Van der Verren
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Evy Timmerman
- VIB Proteomics Core, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Michaël Deghelt
- Walloon Excellence in Life Sciences and Biotechnology, WELBIO, Brussels, Belgium
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Alexander J Pak
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, USA
| | - Jean-François Collet
- Walloon Excellence in Life Sciences and Biotechnology, WELBIO, Brussels, Belgium
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Francis Impens
- VIB Proteomics Core, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
11
|
Kumar Pal S, Kumar S. LpxC (UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase) inhibitors: A long path explored for potent drug design. Int J Biol Macromol 2023; 234:122960. [PMID: 36565833 DOI: 10.1016/j.ijbiomac.2022.12.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Microbial infections are becoming resistant to traditional antibiotics. As novel resistance mechanisms are developed and disseminated across the world, our ability to treat the most common infectious diseases is becoming increasingly compromised. As existing antibiotics are losing their effectiveness, especially treatment of bacterial infections, is difficult. In order to combat this issue, it is of utmost importance to identify novel pharmacological targets or antibiotics. LpxC, a zinc-dependent metalloamidase that catalyzes the committed step in the biosynthesis of lipid A (endotoxin) in bacteria, is a prime candidate for drug/therapeutic target. So far, the rate-limiting metallo-amidase LpxC has been the most-targeted macromolecule in the Raetz pathway. This is because it is important for the growth of these bacterial infections. This review showcases on the research done to develop efficient drugs in this area before and after the 2015.
Collapse
Affiliation(s)
- Sudhir Kumar Pal
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Sanjit Kumar
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
12
|
Niu Z, Lei P, Wang Y, Wang J, Yang J, Zhang J. Small molecule LpxC inhibitors against gram-negative bacteria: Advances and future perspectives. Eur J Med Chem 2023; 253:115326. [PMID: 37023679 DOI: 10.1016/j.ejmech.2023.115326] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Uridine diphosphate-3-O-(hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a metalloenzyme with zinc ions as cofactors and is a key enzyme in the essential structural outer membrane lipid A synthesis commitment step of gram-negative bacteria. As LpxC is extremely homologous among different Gram-negative bacteria, it is conserved in almost all gram-negative bacteria, which makes LpxC a promising target. LpxC inhibitors have been reported extensively in recent years, such as PF-5081090 and CHIR-090 were found to have broad-spectrum antibiotic activity against P. aeruginosa and E. coli. They are mainly classified into hydroxamate inhibitors and non-hydroxamate inhibitors based on their structure, but no LpxC inhibitors have been marketed due to safety and activity issues. This review, therefore, focuses on small molecule inhibitors of LpxC against gram-negative pathogenic bacteria and covers recent advances in LpxC inhibitors, focusing on their structural optimization process, structure-activity relationships, and future directions, with the aim of providing ideas for the development of LpxC inhibitors and clinical research.
Collapse
|
13
|
Basak S, Li Y, Tao S, Daryaee F, Merino J, Gu C, Delker SL, Phan JN, Edwards TE, Walker SG, Tonge PJ. Structure-Kinetic Relationship Studies for the Development of Long Residence Time LpxC Inhibitors. J Med Chem 2022; 65:11854-11875. [PMID: 36037447 PMCID: PMC10182817 DOI: 10.1021/acs.jmedchem.2c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a promising drug target in Gram-negative bacteria. Previously, we described a correlation between the residence time of inhibitors on Pseudomonas aeruginosa LpxC (paLpxC) and the post-antibiotic effect (PAE) caused by the inhibitors on the growth of P. aeruginosa. Given that drugs with prolonged activity following compound removal may have advantages in dosing regimens, we have explored the structure-kinetic relationship for paLpxC inhibition by analogues of the pyridone methylsulfone PF5081090 (1) originally developed by Pfizer. Several analogues have longer residence times on paLpxC than 1 (41 min) including PT913, which has a residence time of 124 min. PT913 also has a PAE of 4 h, extending the original correlation observed between residence time and PAE. Collectively, the studies provide a platform for the rational modulation of paLpxC inhibitor residence time and the potential development of antibacterial agents that cause prolonged suppression of bacterial growth.
Collapse
Affiliation(s)
- Sneha Basak
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Yong Li
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Suyuan Tao
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Fereidoon Daryaee
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Jonathan Merino
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Chendi Gu
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | - Jenny N. Phan
- McGill University Montreal, Quebec H3A 0G4, Canada Canada
| | | | - Stephen G. Walker
- Department of Oral Biology and Pathology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Peter J. Tonge
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Radiology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
14
|
Ali S, Alam M, Hasan GM, Hassan MI. Potential therapeutic targets of Klebsiella pneumoniae: a multi-omics review perspective. Brief Funct Genomics 2021; 21:63-77. [PMID: 34448478 DOI: 10.1093/bfgp/elab038] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/15/2022] Open
Abstract
The multidrug resistance developed in many organisms due to the prolonged use of antibiotics has been an increasing global health crisis. Klebsiella pneumoniae is a causal organism for various infections, including respiratory, urinary tract and biliary diseases. Initially, immunocompromised individuals are primarily affected by K. pneumoniae. Due to the emergence of hypervirulent strains recently, both healthy and immunocompetent individuals are equally susceptible to K. pneumoniae infections. The infections caused by multidrug-resistant and hypervirulent K. pneumoniae strains are complicated to treat, illustrating an urgent need to develop novel and more practical approaches to combat the pathogen. We focused on the previously performed high-throughput analyses by other groups to discover several novel enzymes that may be considered attractive drug targets of K. pneumoniae. These targets qualify most of the selection criteria for drug targeting, including an absence of its homolog's gene in the host. The capsule, lipopolysaccharide, fimbriae, siderophores and essential virulence factors facilitate the pathogen entry, infection and survival inside the host. This review discusses K. pneumoniae pathophysiology, including its virulence determinants and further the potential drug targets that might facilitate the discovery of novel drugs and effective treatment regimens shortly.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| |
Collapse
|
15
|
Shang Y, Wu C, Gao Q, Liu C, Li L, Zhang X, Cheng HG, Liu S, Zhou Q. Diversity-oriented functionalization of 2-pyridones and uracils. Nat Commun 2021; 12:2988. [PMID: 34016986 PMCID: PMC8137914 DOI: 10.1038/s41467-021-23058-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/09/2021] [Indexed: 11/28/2022] Open
Abstract
Heterocycles 2-pyridone and uracil are privileged pharmacophores. Diversity-oriented synthesis of their derivatives is in urgent need in medicinal chemistry. Herein, we report a palladium/norbornene cooperative catalysis enabled dual-functionalization of iodinated 2-pyridones and uracils. The success of this research depends on the use of two unique norbornene derivatives as the mediator. Readily available alkyl halides/tosylates and aryl bromides are utilized as ortho-alkylating and -arylating reagents, respectively. Widely accessible ipso-terminating reagents, including H/DCO2Na, boronic acid/ester, terminal alkene and alkyne are compatible with this protocol. Thus, a large number of valuable 2-pyridone derivatives, including deuterium/CD3-labeled 2-pyridones, bicyclic 2-pyridones, 2-pyridone-fenofibrate conjugate, axially chiral 2-pyridone (97% ee), as well as uracil and thymine derivatives, can be quickly prepared in a predictable manner (79 examples reported), which will be very useful in new drug discovery.
Collapse
Affiliation(s)
- Yong Shang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Chenggui Wu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Qianwen Gao
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Chang Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Lisha Li
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Xinping Zhang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Hong-Gang Cheng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Shanshan Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China.
| |
Collapse
|
16
|
Sebbane F, Lemaître N. Antibiotic Therapy of Plague: A Review. Biomolecules 2021; 11:724. [PMID: 34065940 PMCID: PMC8151713 DOI: 10.3390/biom11050724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Plague-a deadly disease caused by the bacterium Yersinia pestis-is still an international public health concern. There are three main clinical forms: bubonic plague, septicemic plague, and pulmonary plague. In all three forms, the symptoms appear suddenly and progress very rapidly. Early antibiotic therapy is essential for countering the disease. Several classes of antibiotics (e.g., tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, chloramphenicol, rifamycin, and β-lactams) are active in vitro against the majority of Y. pestis strains and have demonstrated efficacy in various animal models. However, some discrepancies have been reported. Hence, health authorities have approved and recommended several drugs for prophylactic or curative use. Only monotherapy is currently recommended; combination therapy has not shown any benefits in preclinical studies or case reports. Concerns about the emergence of multidrug-resistant strains of Y. pestis have led to the development of new classes of antibiotics and other therapeutics (e.g., LpxC inhibitors, cationic peptides, antivirulence drugs, predatory bacteria, phages, immunotherapy, host-directed therapy, and nutritional immunity). It is difficult to know which of the currently available treatments or therapeutics in development will be most effective for a given form of plague. This is due to the lack of standardization in preclinical studies, conflicting data from case reports, and the small number of clinical trials performed to date.
Collapse
Affiliation(s)
- Florent Sebbane
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nadine Lemaître
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
- Laboratoire de Bactériologie-Hygiène, Centre Hospitalier Universitaire Amiens Picardie, UR 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Université de Picardie Jules Verne, F-80000 Amiens, France
| |
Collapse
|
17
|
Furuya T, Shapiro AB, Comita-Prevoir J, Kuenstner EJ, Zhang J, Ribe SD, Chen A, Hines D, Moussa SH, Carter NM, Sylvester MA, Romero JAC, Vega CV, Sacco MD, Chen Y, O'Donnell JP, Durand-Reville TF, Miller AA, Tommasi RA. N-Hydroxyformamide LpxC inhibitors, their in vivo efficacy in a mouse Escherichia coli infection model, and their safety in a rat hemodynamic assay. Bioorg Med Chem 2020; 28:115826. [PMID: 33160146 DOI: 10.1016/j.bmc.2020.115826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022]
Abstract
UDP-3-O-(R-3-hydroxyacyl)-N-acetylglucosamine deacetylase (LpxC), the zinc metalloenzyme catalyzing the first committed step of lipid A biosynthesis in Gram-negative bacteria, has been a target for antibacterial drug discovery for many years. All inhibitor chemotypes reaching an advanced preclinical stage and clinical phase 1 have contained terminal hydroxamic acid, and none have been successfully advanced due, in part, to safety concerns, including hemodynamic effects. We hypothesized that the safety of LpxC inhibitors could be improved by replacing the terminal hydroxamic acid with a different zinc-binding group. After choosing an N-hydroxyformamide zinc-binding group, we investigated the structure-activity relationship of each part of the inhibitor scaffold with respect to Pseudomonas aeruginosa and Escherichia coli LpxC binding affinity, in vitro antibacterial potency and pharmacological properties. We identified a novel, potency-enhancing hydrophobic binding interaction for an LpxC inhibitor. We demonstrated in vivo efficacy of one compound in a neutropenic mouse E. coli infection model. Another compound was tested in a rat hemodynamic assay and was found to have a hypotensive effect. This result demonstrated that replacing the terminal hydroxamic acid with a different zinc-binding group was insufficient to avoid this previously recognized safety issue with LpxC inhibitors.
Collapse
Affiliation(s)
- Takeru Furuya
- Entasis Therapeutics, 35 Gatehouse Dr., Waltham, MA 02451, USA.
| | - Adam B Shapiro
- Entasis Therapeutics, 35 Gatehouse Dr., Waltham, MA 02451, USA
| | | | | | - Jing Zhang
- Entasis Therapeutics, 35 Gatehouse Dr., Waltham, MA 02451, USA
| | - Seth D Ribe
- Entasis Therapeutics, 35 Gatehouse Dr., Waltham, MA 02451, USA
| | - April Chen
- Entasis Therapeutics, 35 Gatehouse Dr., Waltham, MA 02451, USA
| | - Daniel Hines
- Entasis Therapeutics, 35 Gatehouse Dr., Waltham, MA 02451, USA
| | - Samir H Moussa
- Entasis Therapeutics, 35 Gatehouse Dr., Waltham, MA 02451, USA
| | - Nicole M Carter
- Entasis Therapeutics, 35 Gatehouse Dr., Waltham, MA 02451, USA
| | | | - Jan A C Romero
- Entasis Therapeutics, 35 Gatehouse Dr., Waltham, MA 02451, USA
| | - Camilo V Vega
- Entasis Therapeutics, 35 Gatehouse Dr., Waltham, MA 02451, USA
| | - Michael D Sacco
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida 12901 Bruce B. Downs Blvd, MDC 07, Tampa, FL 33612, USA
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida 12901 Bruce B. Downs Blvd, MDC 07, Tampa, FL 33612, USA
| | | | | | - Alita A Miller
- Entasis Therapeutics, 35 Gatehouse Dr., Waltham, MA 02451, USA
| | - Ruben A Tommasi
- Entasis Therapeutics, 35 Gatehouse Dr., Waltham, MA 02451, USA.
| |
Collapse
|
18
|
Rodríguez-Alvarado M, Russo R, Connell ND, Brenner-Moyer SE. Design, organocatalytic synthesis, and bioactivity evaluation of enantiopure fluorinated LpxC inhibitors. Org Biomol Chem 2020; 18:5867-5878. [PMID: 32671374 DOI: 10.1039/d0ob01125h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Enantiopure compounds with a strategically incorporated fluorine atom intended to enhance LpxC inhibition have been synthesized using an organocascade fluorination reaction as the key step. These are the first low molecular weight LpxC inhibitors to contain a fluorine atom on a critically important chiral center that is substituted with two pharmacophoric moieties, and were thusly designed to provide new SAR data for this class of compounds. Fluorinated compounds were evaluated against ESKAPE pathogens and exhibited MICs of ≤12.5 μg mL-1 against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
| | - Riccardo Russo
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Nancy D Connell
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Stacey E Brenner-Moyer
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA.
| |
Collapse
|
19
|
Synthesis and biological evaluation of triazolyl-substituted benzyloxyacetohydroxamic acids as LpxC inhibitors. Bioorg Med Chem 2020; 28:115529. [DOI: 10.1016/j.bmc.2020.115529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/13/2023]
|
20
|
Structural basis of the UDP-diacylglucosamine pyrophosphohydrolase LpxH inhibition by sulfonyl piperazine antibiotics. Proc Natl Acad Sci U S A 2020; 117:4109-4116. [PMID: 32041866 PMCID: PMC7049123 DOI: 10.1073/pnas.1912876117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The UDP-2,3-diacylglucosamine pyrophosphate hydrolase LpxH is an essential lipid A biosynthetic enzyme that is conserved in the majority of gram-negative bacteria. It has emerged as an attractive novel antibiotic target due to the recent discovery of an LpxH-targeting sulfonyl piperazine compound (referred to as AZ1) by AstraZeneca. However, the molecular details of AZ1 inhibition have remained unresolved, stymieing further development of this class of antibiotics. Here we report the crystal structure of Klebsiella pneumoniae LpxH in complex with AZ1. We show that AZ1 fits snugly into the L-shaped acyl chain-binding chamber of LpxH with its indoline ring situating adjacent to the active site, its sulfonyl group adopting a sharp kink, and its N-CF3-phenyl substituted piperazine group reaching out to the far side of the LpxH acyl chain-binding chamber. Intriguingly, despite the observation of a single AZ1 conformation in the crystal structure, our solution NMR investigation has revealed the presence of a second ligand conformation invisible in the crystalline state. Together, these distinct ligand conformations delineate a cryptic inhibitor envelope that expands the observed footprint of AZ1 in the LpxH-bound crystal structure and enables the design of AZ1 analogs with enhanced potency in enzymatic assays. These designed compounds display striking improvement in antibiotic activity over AZ1 against wild-type K. pneumoniae, and coadministration with outer membrane permeability enhancers profoundly sensitizes Escherichia coli to designed LpxH inhibitors. Remarkably, none of the sulfonyl piperazine compounds occupies the active site of LpxH, foretelling a straightforward path for rapid optimization of this class of antibiotics.
Collapse
|
21
|
Surivet JP, Panchaud P, Specklin JL, Diethelm S, Blumstein AC, Gauvin JC, Jacob L, Masse F, Mathieu G, Mirre A, Schmitt C, Lange R, Tidten-Luksch N, Gnerre C, Seeland S, Herrmann C, Seiler P, Enderlin-Paput M, Mac Sweeney A, Wicki M, Hubschwerlen C, Ritz D, Rueedi G. Discovery of Novel Inhibitors of LpxC Displaying Potent in Vitro Activity against Gram-Negative Bacteria. J Med Chem 2019; 63:66-87. [PMID: 31804826 DOI: 10.1021/acs.jmedchem.9b01604] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UDP-3-O-((R)-3-hydroxymyristoyl)-N-glucosamine deacetylase (LpxC) is as an attractive target for the discovery and development of novel antibacterial drugs to address the critical medical need created by multidrug resistant Gram-negative bacteria. By using a scaffold hopping approach on a known family of methylsulfone hydroxamate LpxC inhibitors, several hit series eliciting potent antibacterial activities against Enterobacteriaceae and Pseudomonas aeruginosa were identified. Subsequent hit-to-lead optimization, using cocrystal structures of inhibitors bound to Pseudomonas aeruginosa LpxC as guides, resulted in the discovery of multiple chemical series based on (i) isoindolin-1-ones, (ii) 4,5-dihydro-6H-thieno[2,3-c]pyrrol-6-ones, and (iii) 1,2-dihydro-3H-pyrrolo[1,2-c]imidazole-3-ones. Synthetic methods, antibacterial activities and relative binding affinities, as well as physicochemical properties that allowed compound prioritization are presented. Finally, in vivo properties of lead molecules which belong to the most promising pyrrolo-imidazolone series, such as 18d, are discussed.
Collapse
Affiliation(s)
- Jean-Philippe Surivet
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Philippe Panchaud
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Jean-Luc Specklin
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Stefan Diethelm
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | | | | | - Loïc Jacob
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Florence Masse
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Gaëlle Mathieu
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Azely Mirre
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Christine Schmitt
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Roland Lange
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Naomi Tidten-Luksch
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Carmela Gnerre
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Swen Seeland
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Charlyse Herrmann
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Peter Seiler
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Michel Enderlin-Paput
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Aengus Mac Sweeney
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Micha Wicki
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | | | - Daniel Ritz
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Georg Rueedi
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| |
Collapse
|
22
|
Panchaud P, Surivet JP, Diethelm S, Blumstein AC, Gauvin JC, Jacob L, Masse F, Mathieu G, Mirre A, Schmitt C, Enderlin-Paput M, Lange R, Gnerre C, Seeland S, Herrmann C, Locher HH, Seiler P, Ritz D, Rueedi G. Optimization of LpxC Inhibitor Lead Compounds Focusing on Efficacy and Formulation for High Dose Intravenous Administration. J Med Chem 2019; 63:88-102. [DOI: 10.1021/acs.jmedchem.9b01605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philippe Panchaud
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | | | - Stefan Diethelm
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | | | | | - Loïc Jacob
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Florence Masse
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Gaëlle Mathieu
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Azely Mirre
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Christine Schmitt
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | | | - Roland Lange
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Carmela Gnerre
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Swen Seeland
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Charlyse Herrmann
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Hans H. Locher
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Peter Seiler
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Daniel Ritz
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Georg Rueedi
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| |
Collapse
|
23
|
John CM, Feng D, Jarvis GA. Treatment of human challenge and MDR strains of Neisseria gonorrhoeae with LpxC inhibitors. J Antimicrob Chemother 2019; 73:2064-2071. [PMID: 29726994 DOI: 10.1093/jac/dky151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 11/15/2022] Open
Abstract
Objectives Inhibitors of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC), which catalyses the second step in the biosynthesis of lipid A, have been developed as potential antibiotics for Gram-negative infections. Our objectives were to determine the effect of LpxC inhibition on the in vitro survival and inflammatory potential of Neisseria gonorrhoeae. Methods Survival of four human challenge strains was determined after treatment with two LpxC inhibitors for 2 and 4 h. To confirm results from treatment and assess their anti-inflammatory effect, the expression of TNF-α by human THP-1 monocytic cells infected with bacteria in the presence of the LpxC inhibitors was quantified. Cytotoxicity of inhibitors for THP-1 cells was evaluated by release of lactate dehydrogenase. Survival of five MDR strains was determined after 2 h of treatment with an LpxC inhibitor and the effect of co-treatment on MICs of ceftriaxone and azithromycin was examined. Results The inhibitors had bactericidal activity against the four human challenge and five MDR strains with one compound exhibiting complete killing at ≥5 mg/L after either 2 or 4 h of treatment. Treatment of gonococci infecting THP-1 monocytic cells reduced the levels of TNF-α probably owing to reduced numbers of bacteria and a lower level of expression of lipooligosaccharide. Neither inhibitor exhibited cytotoxicity for THP-1 cells. The MIC of azithromycin was slightly lowered by sublethal treatment of two MDR strains with an LpxC inhibitor. Conclusions Our in vitro results demonstrated promising efficacy of LpxC inhibition of N. gonorrhoeae that warrants further investigation particularly owing to the rise in MDR gonorrhoea.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Dongxiao Feng
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
24
|
Rubab M, Chelliah R, Saravanakumar K, Barathikannan K, Wang M, Oh D. Potential application of
Brassica rapa subsp. pekinensis
extract on fresh beef meat during refrigeration storage. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Momna Rubab
- Department of Food Science and Biotechnology College of Agriculture and Life Sciences Kangwon National University Chuncheon Republic of Korea/South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology College of Agriculture and Life Sciences Kangwon National University Chuncheon Republic of Korea/South Korea
| | - Kandasamy Saravanakumar
- Department of Medical Biotechnology College of Biomedical Sciences Kangwon National University Chuncheon Republic of Korea/South Korea
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology College of Agriculture and Life Sciences Kangwon National University Chuncheon Republic of Korea/South Korea
| | - Myeong‐Hyeon Wang
- Department of Medical Biotechnology College of Biomedical Sciences Kangwon National University Chuncheon Republic of Korea/South Korea
| | - Deog‐Hwan Oh
- Department of Food Science and Biotechnology College of Agriculture and Life Sciences Kangwon National University Chuncheon Republic of Korea/South Korea
| |
Collapse
|
25
|
Vila J, Moreno-Morales J, Ballesté-Delpierre C. Current landscape in the discovery of novel antibacterial agents. Clin Microbiol Infect 2019; 26:596-603. [PMID: 31574341 DOI: 10.1016/j.cmi.2019.09.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Standard treatments against bacterial infections are becoming ineffective due to the rise of antibacterial resistance worldwide. Classical approaches to develop new antibacterial agents are not sufficient to fulfil the current pipeline, therefore new strategies are currently being devised in the field of antibacterial discovery. OBJECTIVES The objective of this narrative review is to compile the most successful strategies for drug discovery within the antibacterial context that are currently being pursued. SOURCES Peer-reviewed publications from the MEDLINE database with robust data addressing the discovery of new antibacterial agents in the current pipeline have been selected. CONTENT Several strategies to discover new antibacterials are described in this review: (i) derivatives of known antibacterial agents; the activity of a known antimicrobial agent can be improved through two strategies: (a) the modification of the original chemical structure of an antimicrobial agent to circumvent antibacterial resistance mechanisms and (b) the development of a compound that inhibits the mechanisms of resistance to an antibacterial agent; (ii) new antibacterial agents targeting new proteins; (iii) inhibitors of virulence factors; (iv) nanoparticles; (v) antimicrobial peptides and peptidomimetics; (vi) phage therapy and enzybiotics; and (vii) antisense oligonucleotides. IMPLICATIONS This review intends to provide a positive message affirming that several different strategies to design new antibacterial agents are currently being developed, and we are therefore confident that in the near future some of the most promising approaches will come to fruition.
Collapse
Affiliation(s)
- J Vila
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Department of Clinical Microbiology, Centre for Biomedical Diagnosis, Hospital Clínic, Barcelona, Spain.
| | - J Moreno-Morales
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
26
|
Ding S, Ji J, Zhang M, Yang Y, Wang R, Zhu X, Wang L, Zhong Y, Gao L, Lu M, Liu J, Chen Y. Exploration of the structure–activity relationship and druggability of novel oxazolidinone‐based compounds as Gram‐negative antibacterial agents. Arch Pharm (Weinheim) 2019; 352:e1900129. [DOI: 10.1002/ardp.201900129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Shi Ding
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Jing‐Chao Ji
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| | - Ming‐Juan Zhang
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| | - Yu‐She Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Rui Wang
- Central Hospital affiliated to Shenyang Medical College Shenyang Liaoning China
| | - Xing‐Long Zhu
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| | - Li‐Hong Wang
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| | - Yi Zhong
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| | - Le Gao
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| | - Man Lu
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| | - Ju Liu
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| | - Ye Chen
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| |
Collapse
|
27
|
Ahmad S, Navid A, Akhtar AS, Azam SS, Wadood A, Pérez-Sánchez H. Subtractive Genomics, Molecular Docking and Molecular Dynamics Simulation Revealed LpxC as a Potential Drug Target Against Multi-Drug Resistant Klebsiella pneumoniae. Interdiscip Sci 2019; 11:508-526. [PMID: 29721784 DOI: 10.1007/s12539-018-0299-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/11/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022]
Abstract
The emergence and dissemination of pan drug resistant clones of Klebsiella pneumoniae are great threat to public health. In this regard new therapeutic targets must be highlighted to pave the path for novel drug discovery and development. Subtractive proteomic pipeline brought forth UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase (LpxC), a Zn+2 dependent cytoplasmic metalloprotein and catalyze the rate limiting deacetylation step of lipid A biosynthesis pathway. Primary sequence analysis followed by 3-dimensional (3-D) structure elucidation of the protein led to the detection of K. pneumoniae LpxC (KpLpxC) topology distinct from its orthologous counterparts in other bacterial species. Molecular docking study of the protein recognized receptor antagonist compound 106, a uridine-based LpxC inhibitory compound, as a ligand best able to fit the binding pocket with a Gold Score of 67.53. Molecular dynamics simulation of docked KpLpxC revealed an alternate binding pattern of ligand in the active site. The ligand tail exhibited preferred binding to the domain I residues as opposed to the substrate binding hydrophobic channel of subdomain II, usually targeted by inhibitory compounds. Comparison with the undocked KpLpxC system demonstrated ligand induced high conformational changes in the hydrophobic channel of subdomain II in KpLpxC. Hence, ligand exerted its inhibitory potential by rendering the channel unstable for substrate binding.
Collapse
Affiliation(s)
- Sajjad Ahmad
- National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Afifa Navid
- National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Amina Saleem Akhtar
- National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Sikander Azam
- National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University-Mardan, Shankar Campus, Mardan, Khyber Pukhtoonkhwa, Pakistan
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| |
Collapse
|
28
|
Mulina OM, Pirgach DA, Nikishin GI, Terent'ev AO. Switching of Sulfonylation Selectivity by Nature of Solvent and Temperature: The Reaction of β-Dicarbonyl Compounds with Sodium Sulfinates under the Action of Iron-Based Oxidants. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Olga M. Mulina
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospekt 119991 Moscow Russian Federation
| | - Dmitry A. Pirgach
- D.I. Mendeleev University of Chemical Technology of Russia; 125047, Moscow Russian Federation
| | - Gennady I. Nikishin
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospekt 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospekt 119991 Moscow Russian Federation
- D.I. Mendeleev University of Chemical Technology of Russia; 125047, Moscow Russian Federation
| |
Collapse
|
29
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
30
|
Galster M, Löppenberg M, Galla F, Börgel F, Agoglitta O, Kirchmair J, Holl R. Phenylethylene glycol-derived LpxC inhibitors with diverse Zn2+-binding groups. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
González-Bello C. The Inhibition of Lipid A Biosynthesis-The Antidote Against Superbugs? ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| |
Collapse
|
32
|
Thomas J, Navre M, Rubio A, Coukell A. Shared Platform for Antibiotic Research and Knowledge: A Collaborative Tool to SPARK Antibiotic Discovery. ACS Infect Dis 2018; 4:1536-1539. [PMID: 30240184 DOI: 10.1021/acsinfecdis.8b00193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The discovery of urgently needed antibiotics is hindered by challenges to information sharing. To help address this challenge, The Pew Charitable Trusts launched SPARK: the Shared Platform for Antibiotic Research and Knowledge. SPARK is an online, publicly available, interactive database designed to help scientists build on previous research and generate new insights to advance the field's understanding of Gram-negative permeability. This Viewpoint details how data are selected and integrated into the platform, how scientists can use SPARK to share their data, and the ways the scientific community can access and use these data to develop hypotheses.
Collapse
Affiliation(s)
- Joe Thomas
- The Pew Charitable Trusts, 901 E Street NW, Washington, D.C. 20004, United States
| | - Marc Navre
- Wemberly Scientific, Inc., 1025 Alameda de las Pulgas, #116, Belmont, California 94002, United States
| | - Aileen Rubio
- Spero Therapeutics, 675 Massachusetts Avenue, 14th Floor, Cambridge, Massachusetts 02139, United States
| | - Allan Coukell
- The Pew Charitable Trusts, 901 E Street NW, Washington, D.C. 20004, United States
| |
Collapse
|
33
|
Interplay of Klebsiella pneumoniae fabZ and lpxC Mutations Leads to LpxC Inhibitor-Dependent Growth Resulting from Loss of Membrane Homeostasis. mSphere 2018; 3:3/5/e00508-18. [PMID: 30381354 PMCID: PMC6211225 DOI: 10.1128/msphere.00508-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Emergence of antibiotic resistance has prompted efforts to identify and optimize novel inhibitors of antibacterial targets such as LpxC. This enzyme catalyzes the first committed step of lipid A synthesis, which is necessary to generate lipopolysaccharide and ultimately the Gram-negative protective outer membrane. Investigation of this pathway and its interrelationship with inner membrane (phospholipid) biosynthesis or other pathways is therefore highly important to the fundamental understanding of Gram-negative bacteria and by extension to antibiotic discovery. Here we exploited the availability of a novel LpxC inhibitor to engender the generation of K. pneumoniae resistant mutants whose growth depends on chemical inhibition of LpxC. Inhibitor dependency resulted from the interaction of different resistance mutations and was based on loss of normal cellular mechanisms required to establish membrane homeostasis. This study provides new insights into the importance of this process in K. pneumoniae and how it may be linked to novel biosynthetic pathway inhibitors. Tight coordination of inner and outer membrane biosynthesis is very important in Gram-negative bacteria. Biosynthesis of the lipid A moiety of lipopolysaccharide, which comprises the outer leaflet of the outer membrane has garnered interest for Gram-negative antibacterial discovery. In particular, several potent inhibitors of LpxC (the first committed step of the lipid A pathway) are described. Here we show that serial passaging of Klebsiella pneumoniae in increasing levels of an LpxC inhibitor yielded mutants that grew only in the presence of the inhibitor. These strains had mutations in fabZ and lpxC occurring together (encoding either FabZR121L/LpxCV37G or FabZF51L/LpxCV37G). K. pneumoniae mutants having only LpxCV37G or LpxCV37A or various FabZ mutations alone were less susceptible to the LpxC inhibitor and did not require LpxC inhibition for growth. Western blotting revealed that LpxCV37G accumulated to high levels, and electron microscopy of cells harboring FabZR121L/LpxCV37G indicated an extreme accumulation of membrane in the periplasm when cells were subcultured without LpxC inhibitor. Significant accumulation of detergent-like lipid A pathway intermediates that occur downstream of LpxC (e.g., lipid X and disaccharide monophosphate [DSMP]) was also seen. Taken together, our results suggest that redirection of lipid A pathway substrate by less active FabZ variants, combined with increased activity from LpxCV37G was overdriving the lipid A pathway, necessitating LpxC chemical inhibition, since native cellular maintenance of membrane homeostasis was no longer functioning. IMPORTANCE Emergence of antibiotic resistance has prompted efforts to identify and optimize novel inhibitors of antibacterial targets such as LpxC. This enzyme catalyzes the first committed step of lipid A synthesis, which is necessary to generate lipopolysaccharide and ultimately the Gram-negative protective outer membrane. Investigation of this pathway and its interrelationship with inner membrane (phospholipid) biosynthesis or other pathways is therefore highly important to the fundamental understanding of Gram-negative bacteria and by extension to antibiotic discovery. Here we exploited the availability of a novel LpxC inhibitor to engender the generation of K. pneumoniae resistant mutants whose growth depends on chemical inhibition of LpxC. Inhibitor dependency resulted from the interaction of different resistance mutations and was based on loss of normal cellular mechanisms required to establish membrane homeostasis. This study provides new insights into the importance of this process in K. pneumoniae and how it may be linked to novel biosynthetic pathway inhibitors.
Collapse
|
34
|
Rubab M, Chellia R, Saravanakumar K, Mandava S, Khan I, Tango CN, Hussain MS, Daliri EBM, Kim SH, Ramakrishnan SR, Wang MH, Lee J, Kwon JH, Chandrashekar S, Oh DH. Preservative effect of Chinese cabbage (Brassica rapa subsp. pekinensis) extract on their molecular docking, antioxidant and antimicrobial properties. PLoS One 2018; 13:e0203306. [PMID: 30281596 PMCID: PMC6169867 DOI: 10.1371/journal.pone.0203306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022] Open
Abstract
This study aimed at investigating the antimicrobial activity of different solvent extracts of Chinese cabbage Brassica rapa subsp. pekinensis (BRARP) and their antioxidant and cytotoxicity properties. Of the different solvents extracts, the chloroform extracts (CE) were significantly inhibited the bacterial pathogens at minimum inhibitory concentration (MIC) of 16.5 mg.mL-1. Biochemical analysis revealed that total phenol (62.6 ± 0.05 mg GAE.g-1) and flavonoids (27.6 ± 0.04 mg QE.g-1) were higher in the extracts of BRARP, which resulted in enhanced antioxidant activity in CE. A total of eight dominant compounds were detected in the potent antimicrobial extract from BRARP based on GC-MS analysis. The molecular interactions study revealed that, among the screened compounds the 1,2-benzenedicarboxylic acid and 2,3-dicyanopropionamide interacted with the active site of pathogenicity and survival related protein with lipopolysaccharide (LpxC) with higer binding energy. This work concluded that the 1, 2-Benzenedicarboxylic acid and 2, 3-Dicyanopropionamide from BRARP was reported to be good non-cytotoxic and antioxidant antimicrobials against bacterial pathogens.
Collapse
Affiliation(s)
- Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chellia
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, South Korea
| | - Suresh Mandava
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Imran Khan
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Charles Nkufi Tango
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Mohammad Shakhawat Hussain
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Se-Hun Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | | | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, South Korea
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Joong-Ho Kwon
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
- * E-mail:
| |
Collapse
|
35
|
Lee PS, Lapointe G, Madera AM, Simmons RL, Xu W, Yifru A, Tjandra M, Karur S, Rico A, Thompson K, Bojkovic J, Xie L, Uehara K, Liu A, Shu W, Bellamacina C, McKenney D, Morris L, Tonn GR, Osborne C, Benton BM, McDowell L, Fu J, Sweeney ZK. Application of Virtual Screening to the Identification of New LpxC Inhibitor Chemotypes, Oxazolidinone and Isoxazoline. J Med Chem 2018; 61:9360-9370. [PMID: 30226381 DOI: 10.1021/acs.jmedchem.8b01287] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This report summarizes the identification and synthesis of novel LpxC inhibitors aided by computational methods that leveraged numerous crystal structures. This effort led to the identification of oxazolidinone and isoxazoline inhibitors with potent in vitro activity against P. aeruginosa and other Gram-negative bacteria. Representative compound 13f demonstrated efficacy against P. aeruginosa in a mouse neutropenic thigh infection model. The antibacterial activity against K. pneumoniae could be potentiated by Gram-positive antibiotics rifampicin (RIF) and vancomycin (VAN) in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Patrick S Lee
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Guillaume Lapointe
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Ann Marie Madera
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Robert L Simmons
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Wenjian Xu
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Aregahegn Yifru
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Meiliana Tjandra
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Subramanian Karur
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Alice Rico
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Katherine Thompson
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Jade Bojkovic
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Lili Xie
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Kyoko Uehara
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Amy Liu
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Wei Shu
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Cornelia Bellamacina
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - David McKenney
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Laura Morris
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - George R Tonn
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Colin Osborne
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Bret M Benton
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Laura McDowell
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Jiping Fu
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Zachary K Sweeney
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| |
Collapse
|
36
|
Wang T, Yu Y, Liang X, Luo S, He Z, Sun Z, Jiang Y, Omsland A, Zhou P, Song L. Lipid A Has Significance for Optimal Growth of Coxiella burnetii in Macrophage-Like THP-1 Cells and to a Lesser Extent in Axenic Media and Non-phagocytic Cells. Front Cell Infect Microbiol 2018; 8:192. [PMID: 29938202 PMCID: PMC6002510 DOI: 10.3389/fcimb.2018.00192] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/22/2018] [Indexed: 02/02/2023] Open
Abstract
Lipid A is an essential basal component of lipopolysaccharide of most Gram-negative bacteria. Inhibitors targeting LpxC, a conserved enzyme in lipid A biosynthesis, are antibiotic candidates against Gram-negative pathogens. Here we report the characterization of the role of lipid A in Coxiella burnetii growth in axenic media, monkey kidney cells (BGMK and Vero), and macrophage-like THP-1 cells by using a potent LpxC inhibitor -LPC-011. We first determined the susceptibility of C. burnetii LpxC to LPC-011 in a surrogate E. coli model. In E. coli, the minimum inhibitory concentration (MIC) of LPC-011 against C. burnetii LpxC is < 0.05 μg/mL, a value lower than the inhibitor's MIC against E. coli LpxC. Considering the inhibitor's problematic pharmacokinetic properties in vivo and Coxiella's culturing time up to 7 days, the stability of LPC-011 in cell cultures was assessed. We found that regularly changing inhibitor-containing media was required for sustained inhibition of C. burnetii LpxC in cells. Under inhibitor treatment, Coxiella has reduced growth yields in axenic media and during replication in non-phagocytic cells, and has a reduced number of productive vacuoles in such cells. Inhibiting lipid A biosynthesis in C. burnetii by the inhibitor was shown in a phase II strain transformed with chlamydial kdtA. This exogenous KdtA enzyme modifies Coxiella lipid A with an α-Kdo-(2 → 8)-α-Kdo epitope that can be detected by anti-chlamydia genus antibodies. In inhibitor-treated THP-1 cells, Coxiella shows severe growth defects characterized by poor vacuole formation and low growth yields. Coxiella progenies prepared from inhibitor-treated cells retain the capability of normally infecting all tested cells in the absence of the inhibitor, which suggests a dispensable role of lipid A for infection and early vacuole development. In conclusion, our data suggest that lipid A has significance for optimal development of Coxiella-containing vacuoles, and for robust multiplication of C. burnetii in macrophage-like THP-1 cells. Unlike many bacteria, C. burnetii replication in axenic media and non-phagocytic cells was less dependent on normal lipid A biosynthesis.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaofei Liang
- Department of Chemistry, Duke University, Durham, NC, United States
| | - Shengdong Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zemin He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Anders Omsland
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Lihua Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
37
|
Shiri F, Salahinejad M, Dijoor R, Nejati-Yazdinejad M. An explorative study on potent Gram-negative specific LpxC inhibitors: CoMFA, CoMSIA, HQSAR and molecular docking. J Recept Signal Transduct Res 2018; 38:151-165. [DOI: 10.1080/10799893.2018.1457052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Ding S, Dai RY, Wang WK, Cao Q, Lan LF, Zhou XL, Yang YS. Design, synthesis and structure-activity relationship evaluation of novel LpxC inhibitors as Gram-negative antibacterial agents. Bioorg Med Chem Lett 2018; 28:94-102. [DOI: 10.1016/j.bmcl.2017.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
|
39
|
Sengyee S, Saiprom N, Paksanont S, Limmathurotsakul D, Wuthiekanun V, Chantratita N. Susceptibility of Clinical Isolates of Burkholderia pseudomallei to a Lipid A Biosynthesis Inhibitor. Am J Trop Med Hyg 2017; 97:62-67. [PMID: 28719324 PMCID: PMC5508901 DOI: 10.4269/ajtmh.16-0858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a serious infection associated with high mortality and relapse. Current antimicrobial therapy using ceftazidime (CAZ) is often ineffective. Inhibitors of LpxC, the enzyme responsible for lipid A biosynthesis, have potential antimicrobial activity against several Gram-negative bacteria in vivo, but their activity against B. pseudomallei is unclear. Herein, we investigated the susceptibility of B. pseudomallei clinical isolates to LpxC-4, an LpxC inhibitor, and LpxC-4 in combination with CAZ. Time-kill assays for bactericidal activity were conducted for B. pseudomallei K96243, revealing growth inhibition and bactericidal effect at LpxC-4 concentrations of 2 μg/mL and 4 μg/mL, respectively. No significant synergistic effect was observed with the combination of LpxC-4 and CAZ. LpxC-4 susceptibility was tested on three groups of clinical isolates:1) CAZ- and trimethoprim-sulfamethoxazole (SXT)-susceptible (N = 71), 2) CAZ-resistant (N = 14), and 3) SXT-resistant (N = 23) isolates, by broth microdilution. The minimum concentration of LpxC-4 required to inhibit the growth of 90% of organisms was 2 μg/mL for all isolates. The median minimum inhibitory concentration of both the CAZ/SXT-susceptible and CAZ-resistant groups was 1 μg/mL (interquartile range [IQR] = 1-2 μg/mL), compared with 2 μg/mL (IQR = 2-4 μg/mL) for the SXT-resistant group. Cell morphology was observed after drug exposure by immunofluorescent staining, and a change from rod-shaped to cell wall-defective spherical cells was observed in surviving bacteria. LpxC-4 is a potent bactericidal agent against B. pseudomallei and warrants further testing as a new antibiotic to treat melioidosis.
Collapse
Affiliation(s)
- Sineenart Sengyee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Suporn Paksanont
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Direk Limmathurotsakul
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
40
|
Affiliation(s)
- Dmitrii V. Kalinin
- Institut für Organische Chemie, Universität Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Ralph Holl
- Institut für Organische Chemie, Universität Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems
| |
Collapse
|
41
|
Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC. mBio 2017; 8:mBio.00674-17. [PMID: 28743813 PMCID: PMC5527309 DOI: 10.1128/mbio.00674-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis. Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria. The rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are active in vitro against a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad-spectrum antibiotic targeting LpxC. Hence, the data highlight the therapeutic potential of LpxC inhibitors against a wide variety of Gram-negative bacterial infections, including the most severe ones caused by Y. pestis and by multidrug-resistant and extensively drug-resistant carbapenemase-producing strains.
Collapse
|
42
|
In Vitro and In Vivo Efficacy of an LpxC Inhibitor, CHIR-090, Alone or Combined with Colistin against Pseudomonas aeruginosa Biofilm. Antimicrob Agents Chemother 2017; 61:AAC.02223-16. [PMID: 28461320 DOI: 10.1128/aac.02223-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/18/2017] [Indexed: 11/20/2022] Open
Abstract
With the rapid spread of antimicrobial resistance in Gram-negative pathogens, biofilm-associated infections are increasingly harder to treat and combination therapy with colistin has become one of the most efficient therapeutic strategies. Our study aimed to evaluate the potential for the synergy of colistin combined with CHIR-090, a potent LpxC inhibitor, against in vitro and in vivoPseudomonas aeruginosa biofilms. Four P. aeruginosa isolates with various colistin susceptibilities were chosen for evaluation. The tested isolates of P. aeruginosa exhibited MIC values ranging from 1 to 64 and 0.0625 to 0.5 μg/ml for colistin and CHIR-090, respectively. Against 24-h static biofilms, minimum biofilm eradication concentration values ranged from 256 to 512 and 8 to >128 μg/ml for colistin and CHIR-090, respectively. Interestingly, subinhibitory concentrations of CHIR-090 contributed to the eradication of subpopulations of P. aeruginosa with the highest colistin MIC values. The combination of colistin and CHIR-090 at subinhibitory concentrations demonstrated synergistic activity both in vivo and in vitro and prevented the formation of colistin-tolerant subpopulations in in vitro biofilms. In summary, our study highlights the in vivo and in vitro synergistic activity of the colistin and CHIR-090 combination against both colistin-susceptible and -nonsusceptible P. aeruginosa biofilms. Further studies are warranted to investigate the clinical relevance of the combination of these two antimicrobials and outline the underlying mechanism for their synergistic action.
Collapse
|
43
|
Piizzi G, Parker DT, Peng Y, Dobler M, Patnaik A, Wattanasin S, Liu E, Lenoir F, Nunez J, Kerrigan J, McKenney D, Osborne C, Yu D, Lanieri L, Bojkovic J, Dzink-Fox J, Lilly MD, Sprague ER, Lu Y, Wang H, Ranjitkar S, Xie L, Wang B, Glick M, Hamann LG, Tommasi R, Yang X, Dean CR. Design, Synthesis, and Properties of a Potent Inhibitor of Pseudomonas aeruginosa Deacetylase LpxC. J Med Chem 2017; 60:5002-5014. [PMID: 28549219 DOI: 10.1021/acs.jmedchem.7b00377] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the past several decades, the frequency of antibacterial resistance in hospitals, including multidrug resistance (MDR) and its association with serious infectious diseases, has increased at alarming rates. Pseudomonas aeruginosa is a leading cause of nosocomial infections, and resistance to virtually all approved antibacterial agents is emerging in this pathogen. To address the need for new agents to treat MDR P. aeruginosa, we focused on inhibiting the first committed step in the biosynthesis of lipid A, the deacetylation of uridyldiphospho-3-O-(R-hydroxydecanoyl)-N-acetylglucosamine by the enzyme LpxC. We approached this through the design, synthesis, and biological evaluation of novel hydroxamic acid LpxC inhibitors, exemplified by 1, where cytotoxicity against mammalian cell lines was reduced, solubility and plasma-protein binding were improved while retaining potent anti-pseudomonal activity in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - David McKenney
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | - Colin Osborne
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | - Donghui Yu
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | - Leanne Lanieri
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | - Jade Bojkovic
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | - JoAnn Dzink-Fox
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | - Maria-Dawn Lilly
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | | | | | | | - Srijan Ranjitkar
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | - Lili Xie
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | | | | | | | | | - Xia Yang
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | - Charles R Dean
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| |
Collapse
|
44
|
Zhang J, Chan A, Lippa B, Cross JB, Liu C, Yin N, Romero JAC, Lawrence J, Heney R, Herradura P, Goss J, Clark C, Abel C, Zhang Y, Poutsiaka KM, Epie F, Conrad M, Mahamoon A, Nguyen K, Chavan A, Clark E, Li TC, Cheng RK, Wood M, Andersen OA, Brooks M, Kwong J, Barker J, Parr IB, Gu Y, Ryan MD, Coleman S, Metcalf CA. Structure-based discovery of LpxC inhibitors. Bioorg Med Chem Lett 2017; 27:1670-1680. [DOI: 10.1016/j.bmcl.2017.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
|
45
|
Kawai T, Kazuhiko I, Takaya N, Yamaguchi Y, Kishii R, Kohno Y, Kurasaki H. Sulfonamide-based non-alkyne LpxC inhibitors as Gram-negative antibacterial agents. Bioorg Med Chem Lett 2017; 27:1045-1049. [DOI: 10.1016/j.bmcl.2016.12.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/07/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
|
46
|
|
47
|
Fields FR, Lee SW, McConnell MJ. Using bacterial genomes and essential genes for the development of new antibiotics. Biochem Pharmacol 2016; 134:74-86. [PMID: 27940263 DOI: 10.1016/j.bcp.2016.12.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
The shrinking antibiotic development pipeline together with the global increase in antibiotic resistant infections requires that new molecules with antimicrobial activity are developed. Traditional empirical screening approaches of natural and non-natural compounds have identified the majority of antibiotics that are currently available, however this approach has produced relatively few new antibiotics over the last few decades. The vast amount of bacterial genome sequence information that has become available since the sequencing of the first bacterial genome more than 20years ago holds potential for contributing to the discovery of novel antimicrobial compounds. Comparative genomic approaches can identify genes that are highly conserved within and between bacterial species, and thus may represent genes that participate in key bacterial processes. Whole genome mutagenesis studies can also identify genes necessary for bacterial growth and survival under different environmental conditions, making them attractive targets for the development of novel inhibitory compounds. In addition, transcriptomic and proteomic approaches can be used to characterize RNA and protein levels on a cellular scale, providing information on bacterial physiology that can be applied to antibiotic target identification. Finally, bacterial genomes can be mined to identify biosynthetic pathways that produce many intrinsic antimicrobial compounds and peptides. In this review, we provide an overview of past and current efforts aimed at using bacterial genomic data in the discovery and development of novel antibiotics.
Collapse
Affiliation(s)
- Francisco R Fields
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Michael J McConnell
- Biomedical Institute of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
48
|
Inhibition of LpxC Increases Antibiotic Susceptibility in Acinetobacter baumannii. Antimicrob Agents Chemother 2016; 60:5076-9. [PMID: 27270288 DOI: 10.1128/aac.00407-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/02/2016] [Indexed: 02/02/2023] Open
Abstract
LpxC inhibitors have generally shown poor in vitro activity against Acinetobacter baumannii We show that the LpxC inhibitor PF-5081090 inhibits lipid A biosynthesis, as determined by silver staining and measurements of endotoxin levels, and significantly increases cell permeability. The presence of PF-5081090 at 32 mg/liter increased susceptibility to rifampin, vancomycin, azithromycin, imipenem, and amikacin but had no effect on susceptibility to ciprofloxacin and tigecycline. Potentiating existing antibiotics with LpxC inhibitors may represent an alternative treatment strategy for multidrug-resistant A. baumannii.
Collapse
|
49
|
Erwin AL. Antibacterial Drug Discovery Targeting the Lipopolysaccharide Biosynthetic Enzyme LpxC. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a025304. [PMID: 27235477 DOI: 10.1101/cshperspect.a025304] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The enzyme LpxC (UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase) is broadly conserved across Gram-negative bacteria and is essential for synthesis of lipid A, the membrane anchor of the lipopolysaccharides (LPSs), which are a major component of the outer membrane in nearly all Gram-negative bacteria. LpxC has been the focus of target-directed antibiotic discovery projects in numerous pharmaceutical and academic groups for more than 20 years. Despite intense effort, no LpxC inhibitor has been approved for therapeutic use, and only one has yet reached human studies. This article will summarize the history of LpxC as a drug target and the parallel history of research on LpxC biology. Both academic and industrial researchers have used LpxC inhibitors as tool compounds, leading to increased understanding of the differing mechanisms for regulation of LPS synthesis in Escherichia coli and Pseudomonas aeruginosa.
Collapse
|
50
|
Henderson JC, Zimmerman SM, Crofts AA, Boll JM, Kuhns LG, Herrera CM, Trent MS. The Power of Asymmetry: Architecture and Assembly of the Gram-Negative Outer Membrane Lipid Bilayer. Annu Rev Microbiol 2016; 70:255-78. [PMID: 27359214 DOI: 10.1146/annurev-micro-102215-095308] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Determining the chemical composition of biological materials is paramount to the study of natural phenomena. Here, we describe the composition of model gram-negative outer membranes, focusing on the predominant assembly, an asymmetrical bilayer of lipid molecules. We also give an overview of lipid biosynthetic pathways and molecular mechanisms that organize this material into the outer membrane bilayer. An emphasis is placed on the potential of these pathways as targets for antibiotic development. We discuss deviations in composition, through bacterial cell surface remodeling, and alternative modalities to the asymmetric lipid bilayer. Outer membrane lipid alterations of current microbiological interest, such as lipid structures found in commensal bacteria, are emphasized. Additionally, outer membrane components could potentially be engineered to develop vaccine platforms. Observations related to composition and assembly of gram-negative outer membranes will continue to generate novel discoveries, broaden biotechnologies, and reveal profound mysteries to compel future research.
Collapse
Affiliation(s)
- Jeremy C Henderson
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Shawn M Zimmerman
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - Alexander A Crofts
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Joseph M Boll
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Lisa G Kuhns
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - Carmen M Herrera
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - M Stephen Trent
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| |
Collapse
|