1
|
Zhang Z, Zhang S, Liu S, He Y, Wang A. Fuzhisan ameliorates cognitive ability in Alzheimer's disease by p62 and related autophagy regulatory pathways. Brain Res 2025; 1849:149436. [PMID: 39736370 DOI: 10.1016/j.brainres.2024.149436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/29/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND Maintaining autophagic homeostasis has been proved to play an important role in Alzheimer's disease. OBJECT The aim of this study was to investigate the effect of Fuzhisan(FZS) on autophagic function in Alzheimer's disease and to elucidate its potential mechanism through the P62 regulatory pathways. METHODS FZS was extracted by water extraction-rotary evaporation method. The novel object recognition test, morris water maze test and Y maze test were used to observe the cognitive and memory ability of APP/PS1 mice. The effects of FZS on the ultrastructure of mice hippocampus were examined by transmission electron microscopy. Molecular level changes were also further detected, including Aβ deposition, tau hyperphosphorylation, SOD, CAT and autophagy related proteins (p62, Nrf2, keap1, mTOR, LC3II/I, Beclin1, Atgs). RESULTS FZS could alleviate memory and cognitive impairment in APP/PS1 mice, increase the autophagic vesicles and organelle abundance in hippocampus. FZS also reduced the levels of Aβ and tau hyperphosphorylation in the hippocampus of model mice, upregulated the levels of SOD, CAT and autophagy related proteins (Nrf2, LC3II/LC3I, Beclin1, Atg7 and Atg12) as well as downregulated the expression of P62, keap1 and p-mTOR/mTOR proteins. Co-Ip results showed that FZS elevated the levels of p62/LC3 and P62-keap1-Nrf2 complex, but decreased the P62 and keap1 association. CONCLUSION Our findings indicate that FZS may affect autophagy function and oxidative stress by regulating P62 and related pathways to promote the clearance of Aβ and phosphorylated tau, thereby improving the cognitive ability of AD, which provided a novel perspective for exploring the potential mechanism of FZS upon AD.
Collapse
Affiliation(s)
- Zhaoxu Zhang
- Department of Neurology, Peking University People's Hospital, Beijing 100044, PR China
| | - Shuangmei Zhang
- Department of Pain Rehabilitation Rehabilitation, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, PR China
| | - Shen Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 251412, PR China; Department of Neurology of TCM, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Yang He
- Department of Neurology, Peking University People's Hospital, Beijing 100044, PR China
| | - Anrong Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan 250014, PR China.
| |
Collapse
|
2
|
Zhou Q, Wu XN, Luo WH, Huang QH, Feng LL, Wu Y, Zhang C. Discovery of Effective Inhibitors Against Phosphodiesterase 9, a Potential Therapeutic Target of Alzheimer's Disease with Antioxidant Capacities. Antioxidants (Basel) 2025; 14:123. [PMID: 40002310 PMCID: PMC11852235 DOI: 10.3390/antiox14020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) is a widely recognized type of dementia that leads to progressive cognitive decline and memory loss, affecting a significant number of people and their families worldwide. Given the multifactorial nature of AD, multitarget-directed ligands (MTDLs) hold promise in developing effective drugs for AD. Phosphodiesterase-9 (PDE9) is emerging as a promising target for AD therapy. In this study, by combining a PDE9 inhibitor C33 with the antioxidant melatonin, we designed and discovered a series of pyrazolopyrimidinone derivatives that simultaneously inhibit PDE9 and possess antioxidant activities. Molecular docking, together with dynamics simulations, were applied to accelerate compound design and reduce synthetic work. Four out of the 14 compounds were validated as effective PDE9 inhibitors with comparable antioxidant activity. Notably, compounds 17b and 17d demonstrated IC50 values of 91 and 89 nM against PDE9, respectively, with good antioxidant activities (ORAC (Trolox) of 2.00 and 2.60). This work provides a new approach for designing MTDLs for the treatment of AD and offers insights for further structural modifications of PDE9 inhibitors with antioxidant capacities.
Collapse
Affiliation(s)
- Qian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China; (Q.Z.); (W.-H.L.)
| | - Xu-Nian Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (X.-N.W.); (Q.-H.H.); (L.-L.F.)
| | - Wei-Hao Luo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China; (Q.Z.); (W.-H.L.)
| | - Qing-Hua Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (X.-N.W.); (Q.-H.H.); (L.-L.F.)
| | - Ling-Ling Feng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (X.-N.W.); (Q.-H.H.); (L.-L.F.)
| | - Yinuo Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (X.-N.W.); (Q.-H.H.); (L.-L.F.)
| | - Chen Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China; (Q.Z.); (W.-H.L.)
| |
Collapse
|
3
|
Shankar G, Praveen Kumar C, Yadav M, Ghosh A, Panda SR, Banerjee A, Tiwari A, Rai S, Kumar S, Garg P, Naidu VGM, Kulkarni O, Modi G. Discovery of novel substituted (Z)-N'-hydroxy-3-(3-phenylureido)benzimidamide derivatives as multifunctional molecules targeting pathological hallmarks of Alzheimer's disease. Eur J Med Chem 2024; 280:116959. [PMID: 39461036 DOI: 10.1016/j.ejmech.2024.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder marked by significant loss of central cholinergic neurons. This progressive deterioration leads to cognitive dysfunction and impaired motor activity, culminating in the brain cell's death at the later stages of the disease. The approved drugs for AD are limited to providing symptomatic relief for an initial period due to the multifaceted etiology of the disease. Several studies have demonstrated that rivastigmine (RIV) is a selectively potent inhibitor of butyrylcholinesterase and devoid of antioxidant, Aβ, and tau protein aggregation inhibition and anti-inflammatory properties. Therefore, to address these issues associated with RIV, novel rivastigmine-based molecules were rationally designed, synthesized, and evaluated in various in-vitro and in-vivo AD models. In in-vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition studies revealed that 3q & 6e as promising leads (AChE, IC50 1.72 ± 0.15, 0.91 ± 0.016 μM, BChE, IC50 6.69 ± 0.28 μM, 1.19 ± 0.026 μM, for 3q & 6e, respectively). The computational studies (molecular docking and dynamics) further corroborated the in-vitro studies. Further, 3q and 6e were found to be potent antioxidants in the DPPH assay (IC50 16.15 ± 1.05 & 15.17 ± 0.07 μM, for 3q & 6e, respectively). Interestingly, 3q, and 6e could effectively inhibit self-induced full-length tau and Aβ1-42 aggregation. Treatment with 3q & 6e inhibited microglial activation by attenuating ROS release and mitochondrial damage. Further, 3q & 6e also suppressed NLRP3 inflammasome and NF-κB expression levels in microglial cells and halted the release of pro-inflammatory cytokines in human microglial cells. Finally, 3q & 6e were found to be efficacious in reversing the scopolamine-induced memory impairment in the Morris water maze test. The expression of various neuroprotection markers, such as BDNF and TRKB, was significantly overexpressed compared to the disease control group.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - C Praveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Meenu Yadav
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Aparajita Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Aritra Banerjee
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Ankit Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India; Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India.
| |
Collapse
|
4
|
Tolstova T, Dotsenko E, Luzgina N, Rusanov A. Preconditioning of Mesenchymal Stem Cells Enhances the Neuroprotective Effects of Their Conditioned Medium in an Alzheimer's Disease In Vitro Model. Biomedicines 2024; 12:2243. [PMID: 39457556 PMCID: PMC11504366 DOI: 10.3390/biomedicines12102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) develops as a result of oxidative damage to neurons and chronic inflammation of microglia. These processes can be influenced by the use of a conditioned medium (CM) derived from mesenchymal stem cells (MSCs). The CM contains a wide range of factors that have neurotrophic, antioxidant, and anti-inflammatory effects. In addition, the therapeutic potential of the CM can be further enhanced by pretreating the MSCs to increase their paracrine activity. The current study aimed to investigate the neuroprotective effects of CM derived from MSCs, which were either activated by a TLR3 ligand or exposed to CoCl2, a hypoxia mimetic (pCM or hCM, respectively), in an in vitro model of AD. METHODS We have developed a novel in vitro model of AD that allows us to investigate the neuroprotective and anti-inflammatory effects of MSCs on induced neurodegeneration in the PC12 cell line and the activation of microglia using THP-1 cells. RESULTS This study demonstrates for the first time that pCM and hCM exhibit more pronounced immunosuppressive effects on proinflammatory M1 macrophages compared to CM derived from untreated MSCs (cCM). This may help prevent the development of neuroinflammation by balancing the M1 and M2 microglial phenotypes via the decreased secretion of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and increased secretion of IL-4, as well as the expression of IL-10 and TGF-β by macrophages. Moreover, a previously unknown increase in the neurotrophic properties of hCM was discovered, which led to an increase in the viability of neuron-like PC12 cells under H2O2-induced oxidative-stress conditions. These results are likely associated with an increase in the production of growth factors, including vascular endothelial growth factor (VEGF). In addition, the neuroprotective effects of CM from preconditioned MSCs are also mediated by the activation of the Nrf2/ARE pathway in PC12 cells. CONCLUSIONS TLR3 activation in MSCs leads to more potent immunosuppressive effects of the CM against pro-inflammatory M1 macrophages, while the use of hCM led to increased neurotrophic effects after H2O2-induced damage to neuronal cells. These results are of interest for the potential treatment of AD with CM from preactivated MSCs.
Collapse
Affiliation(s)
- Tatiana Tolstova
- Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | | | | | - Alexander Rusanov
- Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| |
Collapse
|
5
|
Malek R, Sałat K, Totoson P, Karcz T, Refouvelet B, Skrzypczak-Wiercioch A, Maj M, Simakov A, Martin H, Siwek A, Szałaj N, Godyń J, Panek D, Więckowska A, Jozwiak K, Demougeot C, Kieć-Kononowicz K, Chabchoub F, Iriepa I, Marco-Contelles J, Ismaili L. Discovery of New Highly Potent Histamine H 3 Receptor Antagonists, Calcium Channel Blockers, and Acetylcholinesterase Inhibitors. ACS Chem Neurosci 2024; 15:3363-3383. [PMID: 39208251 DOI: 10.1021/acschemneuro.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
At present, one of the most promising strategies to tackle the complex challenges posed by Alzheimer's disease (AD) involves the development of novel multitarget-directed ligands (MTDLs). To this end, we designed and synthesized nine new MTDLs using a straightforward and cost-efficient one-pot Biginelli three-component reaction. Among these newly developed compounds, one particular small molecule, named 3e has emerged as a promising MTDL. This compound effectively targets critical biological factors associated with AD, including the simultaneous inhibition of cholinesterases (ChEs), selective antagonism of H3 receptors, and blocking voltage-gated calcium channels. Additionally, compound 3e exhibited remarkable neuroprotective activity against H2O2 and Aβ1-40, and effectively restored cognitive function in AD mice treated with scopolamine in the novel object recognition task, confirming that this compound could provide a novel and innovative therapeutic approach for the effective treatment of AD.
Collapse
Affiliation(s)
- Rim Malek
- Université de Franche-Comté, INSERM, UMR 1322 LINC, F-25000 Besançon, France
- Laboratory of Applied Chemistry: Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, B. P 802, Sfax 3000, Tunisia
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków 30-688, Poland
| | - Perle Totoson
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Bernard Refouvelet
- Université de Franche-Comté, INSERM, UMR 1322 LINC, F-25000 Besançon, France
| | - Anna Skrzypczak-Wiercioch
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, 24/28 Mickiewicz St., Kraków 30-059, Poland
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, Lublin 20-093, Poland
| | - Alexey Simakov
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France
| | - Helene Martin
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Natalia Szałaj
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Krzysztof Jozwiak
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, Lublin 20-093, Poland
| | - Celine Demougeot
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Fakher Chabchoub
- Laboratory of Applied Chemistry: Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, B. P 802, Sfax 3000, Tunisia
| | - Isabel Iriepa
- Universidad de Alcalá. Departamento de Química Orgánica y Química Inorgánica, Alcalá de Henares, Madrid 28805, Spain
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, Alcalá de Henares, Madrid 28805, Spain, Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM)
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/ Juan de la Cierva 3, Madrid 28006, Spain
- CIBER, ISCIII, Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid 28006, Spain
| | - Lhassane Ismaili
- Université de Franche-Comté, INSERM, UMR 1322 LINC, F-25000 Besançon, France
| |
Collapse
|
6
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Jiang Y, Zhao J, Zhang D. Manganese Dioxide-Based Nanomaterials for Medical Applications. ACS Biomater Sci Eng 2024; 10:2680-2702. [PMID: 38588342 DOI: 10.1021/acsbiomaterials.3c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Manganese dioxide (MnO2) nanomaterials can react with trace hydrogen peroxide (H2O2) to produce paramagnetic manganese (Mn2+) and oxygen (O2), which can be used for magnetic resonance imaging and alleviate the hypoxic environment of tumors, respectively. MnO2 nanomaterials also can oxidize glutathione (GSH) to produce oxidized glutathione (GSSG) to break the balance of intracellular redox reactions. As a consequence of the sensitivity of the tumor microenvironment to MnO2-based nanomaterials, these materials can be used as multifunctional diagnostic and therapeutic platforms for tumor imaging and treatment. Importantly, when MnO2 nanomaterials are implanted along with other therapeutics, synergetic tumor therapy can be achieved. In addition to tumor treatment, MnO2-based nanomaterials display promising prospects for tissue repair, organ protection, and the treatment of other diseases. Herein, we provide a thorough review of recent progress in the use of MnO2-based nanomaterials for biomedical applications, which may be helpful for the design and clinical translation of next-generation MnO2 nanomaterials.
Collapse
Affiliation(s)
- Yuting Jiang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jiayi Zhao
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
8
|
Marco-Contelles J. α-Phenyl- N-tert-Butylnitrone and Analogous α-Aryl- N-alkylnitrones as Neuroprotective Antioxidant Agents for Stroke. Antioxidants (Basel) 2024; 13:440. [PMID: 38671888 PMCID: PMC11047398 DOI: 10.3390/antiox13040440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The recent advances in research on the use of the antioxidant and neuroprotective agent α-phenyl-N-tert-butylnitrone (PBN) for the therapy of stroke have been reviewed. The protective effect of PBN in the transient occlusion of the middle cerebral artery (MCAO) has been demonstrated, although there have been significant differences in the neuronal salvaging effect between PBN-treated and untreated animals, each set of data having quite large inter-experimental variation. In the transient forebrain ischemia model of gerbil, PBN reduces the mortality after ischemia and the neuronal damage in the hippocampal cornu ammonis 1 (CA1) area of the hippocumpus caused by ischemia. However, PBN fails to prevent postischemic CA1 damage in the rat. As for focal cerebral ischemia, PBN significantly reduces cerebral infarction and decreases neurological deficit after ischemia using a rat model of persistent MCAO in rats. Similarly, the antioxidant and neuroprotective capacity of a number of PBN-derived nitrones prepared in the author's laboratory have also been summarized here, showing their high potential therapeutic power to treat stroke.
Collapse
Affiliation(s)
- José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), C/ Juan de la Cierva, 3, 28006 Madrid, Spain;
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Center for Biomedical Network Research (CIBER), Carlos III Health Institute (ISCIII), 46010 Madrid, Spain
| |
Collapse
|
9
|
Romanucci V, Pagano R, Kandhari K, Zarrelli A, Petrone M, Agarwal C, Agarwal R, Di Fabio G. 7- O-tyrosyl Silybin Derivatives as a Novel Set of Anti-Prostate Cancer Compounds. Antioxidants (Basel) 2024; 13:418. [PMID: 38671866 PMCID: PMC11047488 DOI: 10.3390/antiox13040418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Silybin is a natural compound extensively studied for its hepatoprotective, neuroprotective and anticancer properties. Envisioning the enhancement of silybin potential by suitable modifications in its chemical structure, here, a series of new 7-O-alkyl silybins derivatives were synthesized by the Mitsunobu reaction starting from the silybins and tyrosol-based phenols, such as tyrosol (TYR, 3), 3-methoxytyrosol (MTYR, 4), and 3-hydroxytyrosol (HTYR, 5). This research sought to explore the antioxidant and anticancer properties of eighteen new derivatives and their mechanisms. In particular, the antioxidant properties of new derivatives outlined by the DPPH assay showed a very pronounced activity depending on the tyrosyl moiety (HTYR > MTYR >> TYR). A significant contribution of the HTYR moiety was observed for silybins and 2,3-dehydro-silybin-based derivatives. According to the very potent antioxidant activity, 2,3-dehydro-silybin derivatives 15ab, 15a, and 15b exerted the most potent anticancer activity in human prostate cancer PC-3 cells. Furthermore, flow cytometric analysis for cell cycle and apoptosis revealed that 15ab, 15a, and 15b induce strong G1 phase arrest and increase late apoptotic population in PC-3 cells. Additionally, Western blotting for apoptotic marker cleaved caspase-3 confirmed apoptosis induction by these silybin derivatives in PC-3 cells. These findings hold significant importance in the investigation of anticancer properties of silybin derivatives and strongly encourage swift investigation in pre-clinical models and clinical trials.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Monte Sant’Angelo, Via Cintia 4, I-80126 Napoli, Italy; (V.R.); (R.P.); (A.Z.); (M.P.)
| | - Rita Pagano
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Monte Sant’Angelo, Via Cintia 4, I-80126 Napoli, Italy; (V.R.); (R.P.); (A.Z.); (M.P.)
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.K.); (C.A.); (R.A.)
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Monte Sant’Angelo, Via Cintia 4, I-80126 Napoli, Italy; (V.R.); (R.P.); (A.Z.); (M.P.)
| | - Maria Petrone
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Monte Sant’Angelo, Via Cintia 4, I-80126 Napoli, Italy; (V.R.); (R.P.); (A.Z.); (M.P.)
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.K.); (C.A.); (R.A.)
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.K.); (C.A.); (R.A.)
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Monte Sant’Angelo, Via Cintia 4, I-80126 Napoli, Italy; (V.R.); (R.P.); (A.Z.); (M.P.)
| |
Collapse
|
10
|
Zhou Z, Huang X, Zhang YY, Cui S, Wang Y, Dong M, Zhou D, Zhu B, Qin L. In Silico-Predicted Dynamic Oxlipidomics MS/MS Library: High-Throughput Discovery and Characterization of Unknown Oxidized Lipids. Anal Chem 2024; 96:2008-2021. [PMID: 38276876 DOI: 10.1021/acs.analchem.3c04459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Nontargeted lipidomics using liquid chromatography-tandem mass spectrometry can detect thousands of molecules in biological samples. However, the annotation of unknown oxidized lipids is limited to the structures present in libraries, restricting the analysis and interpretation of experimental data. Here, we describe Doxlipid, a computational tool for oxidized lipid annotation that predicts a dynamic MS/MS library for every experiment. Doxlipid integrates three key simulation algorithms to predict libraries and covers 32 subclasses of oxidized lipids from the three main classes. In the evaluation, Doxlipid achieves very high prediction and characterization performance and outperforms the current oxidized lipid annotation methods. Doxlipid, combined with a molecular network, further annotates unknown chemical analogs in the same reaction or pathway. We demonstrate the broad utility of Doxlipid by analyzing oxidized lipids in ferroptosis hepatocellular carcinoma, tissue samples, and other biological samples, substantially advancing the discovery of biological pathways at the trace oxidized lipid level.
Collapse
Affiliation(s)
- Zheng Zhou
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xuhui Huang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Yu-Ying Zhang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Cui
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ying Wang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Meng Dong
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Qin
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
11
|
Pachón-Angona I, Bernard PJ, Simakov A, Maj M, Jozwiak K, Novotna A, Lemke C, Gütschow M, Martin H, Oset-Gasque MJ, Contelles JM, Ismaili L. Design and Synthesis of Multi-Functional Ligands through Hantzsch Reaction: Targeting Ca 2+ Channels, Activating Nrf2 and Possessing Cathepsin S Inhibitory, and Antioxidant Properties. Pharmaceutics 2024; 16:121. [PMID: 38258131 PMCID: PMC10819521 DOI: 10.3390/pharmaceutics16010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
This work relates to the design and synthesis of a series of novel multi-target directed ligands (MTDLs), i.e., compounds 4a-l, via a convenient one-pot three-component Hantzsch reaction. This approach targeted calcium channel antagonism, antioxidant capacity, cathepsin S inhibition, and interference with Nrf2 transcriptional activation. Of these MTDLs, 4i emerged as a promising compound, demonstrating robust antioxidant activity, the ability to activate Nrf2-ARE pathways, as well as calcium channel blockade and cathepsin S inhibition. Dihydropyridine 4i represents the first example of an MTDL that combines these biological activities.
Collapse
Affiliation(s)
- Irene Pachón-Angona
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000 Besançon, France; (I.P.-A.); (P.J.B.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain;
| | - Paul J. Bernard
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000 Besançon, France; (I.P.-A.); (P.J.B.)
| | - Alexey Simakov
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France; (A.S.); (H.M.)
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland; (M.M.); (K.J.)
| | - Krzysztof Jozwiak
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland; (M.M.); (K.J.)
| | - Anna Novotna
- Pharmaceutical Institut, An der Immenburg 4, D-53121 Bonn, Germany; (A.N.); (C.L.); (M.G.)
| | - Carina Lemke
- Pharmaceutical Institut, An der Immenburg 4, D-53121 Bonn, Germany; (A.N.); (C.L.); (M.G.)
| | - Michael Gütschow
- Pharmaceutical Institut, An der Immenburg 4, D-53121 Bonn, Germany; (A.N.); (C.L.); (M.G.)
| | - Helene Martin
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France; (A.S.); (H.M.)
| | - María-Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain;
- Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - José-Marco Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC) C/Juan de la Cierva 3, 28006 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, 28006 Madrid, Spain
| | - Lhassane Ismaili
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000 Besançon, France; (I.P.-A.); (P.J.B.)
| |
Collapse
|
12
|
Bernard PJ, Bellili D, Ismaili L. Calcium channel blockers' contribution to overcoming Current drug discovery challenges in Alzheimer's disease. Expert Opin Drug Discov 2024; 19:21-32. [PMID: 37800853 DOI: 10.1080/17460441.2023.2266994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive, irreversible, and multifactorial brain disorder that gradually and insidiously destroys individual's memory, thinking, and other cognitive abilities. AREAS COVERED In this perspective, the authors examine the complex and multifactorial nature of Alzheimer's disease and believe that the best approach to develop new drugs is the MTDL strategy, which obviously faces several challenges. These challenges include identifying the key combination of targets and their suitability for coordinated actions, as well as developing an acceptable pharmacokinetic and toxicological profile to deliver a drug candidate. EXPERT OPINION Since calcium plays a crucial role in the pathology of AD, a polypharmacological approach with calcium channel blockers reinforced by activities targeting other factors involved in AD is a serious option in our opinion. This is exemplified by a phase III clinical trial using a drug combination approach with Losartan, Amlodipine (a calcium channel blocker), and Atorvastatin, as well as several MTDL-based calcium channel blockade approaches with a promising in vitro and in vivo profile.
Collapse
Affiliation(s)
- Paul J Bernard
- Université de Franche-Comté, LINC, UFR Santé, Pôle de Chimie Médicinale, Besançon, France
| | - Djamila Bellili
- Université de Franche-Comté, LINC, UFR Santé, Pôle de Chimie Médicinale, Besançon, France
| | - Lhassane Ismaili
- Université de Franche-Comté, LINC, UFR Santé, Pôle de Chimie Médicinale, Besançon, France
| |
Collapse
|
13
|
Abstract
Maintaining diversity in drug development in research into Alzheimer's disease (AD) is necessary to avoid over-reliance on targeting AD neuropathology. Treatments that reduce or prevent the generation of oxidative stress, frequently cited for its causal role in the aging process and AD, could be useful in at-risk populations or diagnosed AD patients. However, in this review, it is argued that clinical research into antioxidants in AD could provide more useful feedback as to the therapeutic value of the oxidative stress theory of AD. Improving comparability between randomized controlled trials (RCTs) is vital from a waste-reduction and priority-setting point of view for AD clinical research. For as well as attempting to improve meaningful outcomes for patients, RCTs of antioxidants in AD should strive to maximize the extraction of clinically useful information and actionable feedback from trial outcomes. Solutions to maximize information flow from RCTs of antioxidants in AD are offered here in the form of checklist questions to improve ongoing and future trials centered around the following dimensions: adhesion to reporting guidelines like CONSORT, biomarker enrichment, simple tests of treatment, and innovative trial design.
Collapse
Affiliation(s)
- Timothy Daly
- Science Norms Democracy UMR 8011, Sorbonne Université, Paris, France
- Bioethics Program, FLACSO Argentina, Buenos Aires, Argentina
| |
Collapse
|
14
|
Srivastava A, Johnson M, Renna HA, Sheehan KM, Ahmed S, Palaia T, Pinkhasov A, Gomolin IH, De Leon J, Reiss AB. Therapeutic Potential of P110 Peptide: New Insights into Treatment of Alzheimer's Disease. Life (Basel) 2023; 13:2156. [PMID: 38004296 PMCID: PMC10672680 DOI: 10.3390/life13112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial degeneration in various neurodegenerative diseases, specifically in Alzheimer's disease, involves excessive mitochondrial fission and reduced fusion, leading to cell damage. P110 is a seven-amino acid peptide that restores mitochondrial dynamics by acting as an inhibitor of mitochondrial fission. However, the role of P110 as a neuroprotective agent in AD remains unclear. Therefore, we performed cell culture studies to evaluate the neuroprotective effect of P110 on amyloid-β accumulation and mitochondrial functioning. Human SH-SY5Y neuronal cells were incubated with 1 µM and 10 µM of P110, and Real-Time PCR and Western blot analysis were done to quantify the expression of genes pertaining to AD and neuronal health. Exposure of SH-SY5Y cells to P110 significantly increased APP mRNA levels at 1 µM, while BACE1 mRNA levels were increased at both 1 µM and 10 µM. However, protein levels of both APP and BACE1 were significantly reduced at 10 µM of P110. Further, P110 treatment significantly increased ADAM10 and Klotho protein levels at 10 µM. In addition, P110 exposure significantly increased active mitochondria and reduced ROS in live SH-SY5Y cells at both 1 µM and 10 µM concentrations. Taken together, our results indicate that P110 might be useful in attenuating amyloid-β generation and improving neuronal health by maintaining mitochondrial function in neurons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.S.); (M.J.); (H.A.R.); (K.M.S.); (S.A.); (T.P.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
15
|
Wang H, Han M, Li J, Hu Y, Chen Y, Li J. Versatile lipoprotein-inspired nanocomposites rescue Alzheimer's cognitive dysfunction by promoting Aβ degradation and lessening oxidative stress. NANOSCALE 2023; 15:15717-15729. [PMID: 37728399 DOI: 10.1039/d3nr03346e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The accumulation of amyloid-β (Aβ) into senile plaques and the resulting continuous oxidative stress are major pathogenic mechanisms in Alzheimer's disease (AD). In this study, we designed a lipoprotein-inspired nanoparticle to facilitate Aβ clearance and alleviate oxidative stress for the treatment of AD. Lipoprotein-like nanocomposites (RLA-rHDL@ANG) were fabricated by assembling reconstituted high density lipoprotein (rHDL) with an apoE-derived peptide (RLA) with Aβ binding and clearance capabilities, and were subsequently camouflaged using reactive oxygen species (ROS)-sensitive DSPE-TK-mPEG2000 and DSPE-TK-PEG3400-ANG with brain penetration as well as ROS scavenging ability. Immunoelectron microscopy, fluorescence colocalization, and enzyme linked immunosorbent assay, together with a thioflavin-T (ThT) fluorescence quantitative test, showed that RLA-rHDL@ANG possessed the ability of high binding affinity to both Aβ monomers and oligomers, and disintegration of pre-formed Aβ aggregates. ROS level monitoring and transmission electron microscopy (TEM) showed that RLA-rHDL@ANG possessed ROS sensitivity and consumption properties. Transcellular assay and in vivo imaging showed that RLA-rHDL@ANG effectively facilitated blood-brain barrier (BBB) penetration and intracerebral accumulation. It promoted the efficient degradation of Aβ by microglia and neurons through lysosomal transport and elimination approaches. Four-week administration of RLA-rHDL@ANG effectively reduced Aβ deposition, decreased the ROS level and improved cognitive functions in AD mice. These findings indicate that multifunctional RLA-rHDL@ANG may serve as a promising and feasible candidate for managing the progression of AD.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Mengmeng Han
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jianfei Li
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yunfeng Hu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yang Chen
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jin Li
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
16
|
Song X, Ding Q, Wei W, Zhang J, Sun R, Yin L, Liu S, Pu Y. Peptide-Functionalized Prussian Blue Nanomaterial for Antioxidant Stress and NIR Photothermal Therapy against Alzheimer's Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206959. [PMID: 37322406 DOI: 10.1002/smll.202206959] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/18/2023] [Indexed: 06/17/2023]
Abstract
Excessive accumulations of reactive oxygen species (ROS) and amyloid-β (Aβ) protein are closely associated with the complex pathogenesis of Alzheimer's disease (AD). Therefore, approaches that synergistically exert elimination of ROS and dissociation of Aβ fibrils are effective therapeutic strategies for correcting the AD microenvironment. Herein, a novel near infrared (NIR) responsive Prussian blue-based nanomaterial (PBK NPs) is established with excellent antioxidant activity and photothermal effect. PBK NPs possess similar activities to multiple antioxidant enzymes, including superoxide dismutase, peroxidase, and catalase, which can eliminate massive ROS and relieve oxidative stress. Under the NIR irradiation, PBK NPs can generate local heat to disaggregate Aβ fibrils efficiently. By modifying CKLVFFAED peptide, PBK NPs display obvious targeting ability for blood-brain barrier penetration and Aβ binding. Furthermore, in vivo studies demonstrate that PBK NPs have outstanding ability to decompose Aβ plaques and alleviate neuroinflammation in AD mouse model. Overall, PBK NPs provide evident neuroprotection by reducing ROS levels and regulating Aβ deposition, and may accelerate the development of multifunctional nanomaterials for delaying the progression of AD.
Collapse
Affiliation(s)
- Xiaolei Song
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Qin Ding
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Wei Wei
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
17
|
Dakhlaoui I, Bernard PJ, Pietrzak D, Simakov A, Maj M, Refouvelet B, Béduneau A, Cornu R, Jozwiak K, Chabchoub F, Iriepa I, Martin H, Marco-Contelles J, Ismaili L. Exploring the Potential of Sulfonamide-Dihydropyridine Hybrids as Multitargeted Ligands for Alzheimer's Disease Treatment. Int J Mol Sci 2023; 24:ijms24119742. [PMID: 37298693 DOI: 10.3390/ijms24119742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease that has a heavy social and economic impact on all societies and for which there is still no cure. Multitarget-directed ligands (MTDLs) seem to be a promising therapeutic strategy for finding an effective treatment for this disease. For this purpose, new MTDLs were designed and synthesized in three steps by simple and cost-efficient procedures targeting calcium channel blockade, cholinesterase inhibition, and antioxidant activity. The biological and physicochemical results collected in this study allowed us the identification two sulfonamide-dihydropyridine hybrids showing simultaneous cholinesterase inhibition, calcium channel blockade, antioxidant capacity and Nrf2-ARE activating effect, that deserve to be further investigated for AD therapy.
Collapse
Affiliation(s)
- Imen Dakhlaoui
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université de Franche-Comté, F-25000 Besançon, France
- Laboratory of Applied Chemistry, Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, B. P 802, Sfax 3000, Tunisia
| | - Paul J Bernard
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université de Franche-Comté, F-25000 Besançon, France
| | - Diana Pietrzak
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Alexey Simakov
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Bernard Refouvelet
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université de Franche-Comté, F-25000 Besançon, France
| | - Arnaud Béduneau
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Raphaël Cornu
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Krzysztof Jozwiak
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Fakher Chabchoub
- Laboratory of Applied Chemistry, Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, B. P 802, Sfax 3000, Tunisia
| | - Isabel Iriepa
- Department of Organic Chemistry and Inorganic Chemistry, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33,6, 28871 Alcalá de Henares, Spain
| | - Helene Martin
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Lhassane Ismaili
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université de Franche-Comté, F-25000 Besançon, France
| |
Collapse
|
18
|
Park E, Li LY, He C, Abbasi AZ, Ahmed T, Foltz WD, O'Flaherty R, Zain M, Bonin RP, Rauth AM, Fraser PE, Henderson JT, Wu XY. Brain-Penetrating and Disease Site-Targeting Manganese Dioxide-Polymer-Lipid Hybrid Nanoparticles Remodel Microenvironment of Alzheimer's Disease by Regulating Multiple Pathological Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207238. [PMID: 36808713 PMCID: PMC10131868 DOI: 10.1002/advs.202207238] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Finding effective disease-modifying treatment for Alzheimer's disease remains challenging due to an array of factors contributing to the loss of neural function. The current study demonstrates a new strategy, using multitargeted bioactive nanoparticles to modify the brain microenvironment to achieve therapeutic benefits in a well-characterized mouse model of Alzheimer's disease. The application of brain-penetrating manganese dioxide nanoparticles significantly reduces hypoxia, neuroinflammation, and oxidative stress; ultimately reducing levels of amyloid β plaques within the neocortex. Analyses of molecular biomarkers and magnetic resonance imaging-based functional studies indicate that these effects improve microvessel integrity, cerebral blood flow, and cerebral lymphatic clearance of amyloid β. These changes collectively shift the brain microenvironment toward conditions more favorable to continued neural function as demonstrated by improved cognitive function following treatment. Such multimodal disease-modifying treatment may bridge critical gaps in the therapeutic treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- Elliya Park
- Leslie Dan Faculty of PharmacyUniversity of Toronto144 College StTorontoONM5S 3M2Canada
| | - Lily Yi Li
- Leslie Dan Faculty of PharmacyUniversity of Toronto144 College StTorontoONM5S 3M2Canada
| | - Chunsheng He
- Leslie Dan Faculty of PharmacyUniversity of Toronto144 College StTorontoONM5S 3M2Canada
| | - Azhar Z. Abbasi
- Leslie Dan Faculty of PharmacyUniversity of Toronto144 College StTorontoONM5S 3M2Canada
| | - Taksim Ahmed
- Leslie Dan Faculty of PharmacyUniversity of Toronto144 College StTorontoONM5S 3M2Canada
| | - Warren D. Foltz
- Department of Radiation OncologyUniversity Health Network149 College StTorontoONM5T 1P5Canada
| | - Regan O'Flaherty
- Tanz Centre for Research in Neurodegenerative DiseasesDepartment of Medical BiophysicsUniversity of Toronto135 Nassau StTorontoONM5T 1M8Canada
| | - Maham Zain
- Leslie Dan Faculty of PharmacyUniversity of Toronto144 College StTorontoONM5S 3M2Canada
| | - Robert P. Bonin
- Leslie Dan Faculty of PharmacyUniversity of Toronto144 College StTorontoONM5S 3M2Canada
| | - Andrew M. Rauth
- Departments of Medical Biophysics and Radiation OncologyUniversity of Toronto101 College StTorontoONM5G 1L7Canada
| | - Paul E. Fraser
- Tanz Centre for Research in Neurodegenerative DiseasesDepartment of Medical BiophysicsUniversity of Toronto135 Nassau StTorontoONM5T 1M8Canada
| | - Jeffrey T. Henderson
- Leslie Dan Faculty of PharmacyUniversity of Toronto144 College StTorontoONM5S 3M2Canada
| | - Xiao Yu Wu
- Leslie Dan Faculty of PharmacyUniversity of Toronto144 College StTorontoONM5S 3M2Canada
| |
Collapse
|
19
|
O’Boyle NM, Helesbeux JJ, Meegan MJ, Sasse A, O’Shaughnessy E, Qaisar A, Clancy A, McCarthy F, Marchand P. 30th Annual GP 2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2023; 16:432. [PMID: 36986531 PMCID: PMC10056312 DOI: 10.3390/ph16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
The Group for the Promotion of Pharmaceutical Chemistry in Academia (GP2A) held their 30th annual conference in August 2022 in Trinity College Dublin, Ireland. There were 9 keynote presentations, 10 early career researcher presentations and 41 poster presentations.
Collapse
Affiliation(s)
- Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Elizabeth O’Shaughnessy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Alina Qaisar
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Aoife Clancy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Florence McCarthy
- School of Chemistry and ABCRF, University College Cork, T12 K8AF Cork, Ireland
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| |
Collapse
|
20
|
Kilic B, Bardakkaya M, Ilıkcı Sagkan R, Aksakal F, Shakila S, Dogruer DS. New thiourea and benzamide derivatives of 2-aminothiazole as multi-target agents against Alzheimer's disease: Design, synthesis, and biological evaluation. Bioorg Chem 2023; 131:106322. [PMID: 36565675 DOI: 10.1016/j.bioorg.2022.106322] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
In this study, two series of compounds were designed and synthesized, bearing thiourea and benzamide derivatives at position 2 of 4-subtituted-2-aminothiazole, respectively. Then, the inhibition potency of all final compounds for cholinesterase enzymes were evaluated. Among the thiourea derivatives, 3c (IC50 = 0.33 μM) was identified as the most potent and selective butyrylcholinesterase inhibitor. Additionally, benzamide derivative 10e (AChE IC50 = 1.47 and BChE IC50 = 11.40 μM) was found as a dual cholinesterase inhibitor. The type of inhibition for both compounds was determined by kinetic studies and the results showed that the compounds were mixed type inhibitors. Moreover, all title compounds were investigated in terms of their antioxidant (DPHH, ORAC) and metal chelator activities. In addition, the neuroprotective effects of selected compounds (3c, 3e, 6c, 6e and 10e) against H2O2-induced damage in the PC12 cell line were tested. The experimental findings demonstrated that thiourea-derived 6e (40.4 %) and benzamide-derived 10e (37.8 %) have a neuroprotective effect of about half as ferulic acid at 10 μM. Subsequently, the cytotoxicity of selected compounds was examined by the MTT assay, and the compounds were found not to have cytotoxic effect on the PC12 cell line in 24 h. Additionally, compounds 6e and 10e were also found to be more effective in inhibiting the release of IL-1β, IL-6, TNF-α and NO compared to other selected compounds in this study.
Collapse
Affiliation(s)
- Burcu Kilic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkiye
| | - Merve Bardakkaya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkiye; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Turkiye
| | - Rahsan Ilıkcı Sagkan
- Department of Medical Biology, Faculty of Medicine, Uşak University, Uşak, Turkiye
| | - Fatma Aksakal
- Department of Chemistry, Hacettepe University, Ankara, Turkiye; Department of Analytical Chemistry, Faculty of Pharmacy, Kocaeli Health and Technology University, Kocaeli, Turkiye
| | - Shakila Shakila
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkiye
| | - Deniz S Dogruer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkiye.
| |
Collapse
|
21
|
Optimizing the Distillation of Greek Oregano-Do Process Parameters Affect Bioactive Aroma Constituents and In Vitro Antioxidant Activity? Molecules 2023; 28:molecules28030971. [PMID: 36770638 PMCID: PMC9921775 DOI: 10.3390/molecules28030971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
The aim of the present work was to optimize the conditions of the distillation process at a pilot scale to maximize the yield of specific bioactive compounds of the essential oil of oregano cultivated in Greece, and subsequently to study the in vitro antioxidant activity of these oils. Steam distillation was conducted at an industrial distillery and a Face-Centered Composite (FCC) experimental design was applied by utilizing three distillation factors: time, steam pressure and temperature. Essential oil composition was determined by static headspace gas chromatography-mass spectrometry (HS-GC/MS). To obtain a comprehensive profile of the essential oils, instrumental parameters were optimized, including sample preparation, incubation conditions, sampling process, injection parameters, column thermal gradient and MS conditions. With the applied GC-MS method, more than 20 volatile compounds were identified in the headspace of the oregano essential oils and their relative percentages were recorded. Carvacrol was the most prominent constituent under all distillation conditions applied. Data processing revealed time as the main factor which most affected the yield. The Desired Space (DSc) was determined by conducting a three-dimensional response surface analysis of the independent and dependent variables, choosing yields of thymol and carvacrol as optimization criteria. The in vitro antioxidant activity of the essential oils of all samples was measured in terms of the interaction with the stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) after 20 and 60 min. The most prominent essential oils at different distillation conditions were also tested as inhibitors of lipid peroxidation. Higher % values of carvacrol and thymol were correlated to higher antioxidant activity. Evaluating the impact of the distillation conditions on the in vitro results, it seems that lower pressure, less time and higher temperature are crucial for enhanced antioxidant activities.
Collapse
|
22
|
Collins AE, Saleh TM, Kalisch BE. VANL-100 Attenuates Beta-Amyloid-Induced Toxicity in SH-SY5Y Cells. Int J Mol Sci 2022; 24:ijms24010442. [PMID: 36613883 PMCID: PMC9820495 DOI: 10.3390/ijms24010442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Antioxidants are being explored as novel therapeutics for the treatment of neurodegenerative diseases such as Alzheimer's disease (AD) through strategies such as chemically linking antioxidants to synthesize novel co-drugs. The main objective of this study was to assess the cytoprotective effects of the novel antioxidant compound VANL-100 in a cellular model of beta-amyloid (Aβ)-induced toxicity. The cytotoxic effects of Aβ in the presence and absence of all antioxidant compounds were measured using the 3-(4,5-dimethylthiazol-2-yl)2-5-diphenyl-2H-tetrazolium bromide (MTT) assay in SH-SY5Y cells in both pre-treatment and co-treatment experiments. In pre-treatment experiments, VANL-100, or one of its parent compounds, naringenin (NAR), alpha-lipoic acid (ALA), or naringenin + alpha-lipoic acid (NAR + ALA), was administrated 24 h prior to an additional 24-h incubation with 20 μM non-fibril or fibril Aβ25-35. Co-treatment experiments consisted of simultaneous treatment with Aβ and antioxidants. Pre-treatment and co-treatment with VANL-100 significantly attenuated Aβ-induced cell death. There were no significant differences between the protective effects of VANL-100, NAR, ALA, and NAR + ALA with either form of Aβ, or in the effect of VANL-100 between 24-h pre-treatment and co-treatment. These results demonstrate that the novel co-drug VANL-100 is capable of eliciting cytoprotective effects against Aβ-induced toxicity.
Collapse
|
23
|
Premkumar T, Sajitha Lulu S. Molecular Mechanisms of Emerging Therapeutic Targets in Alzheimer’s Disease: A Systematic Review. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Polo-Cuadrado E, Rojas-Peña C, Acosta-Quiroga K, Camargo-Ayala L, Brito I, Cisterna J, Moncada F, Trilleras J, Rodríguez-Núñez YA, Gutierrez M. Design, synthesis, theoretical study, antioxidant, and anticholinesterase activities of new pyrazolo-fused phenanthrolines. RSC Adv 2022; 12:33032-33048. [PMID: 36425206 PMCID: PMC9671100 DOI: 10.1039/d2ra05532e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/03/2022] [Indexed: 10/19/2023] Open
Abstract
Pyrazole-fused phenanthroline compounds were obtained through several synthetic routes. NMR, HRMS, and IR techniques were used to characterize and confirm the chemical structures. Crystal structures were obtained from compounds 3a, 5b, 5j, 5k, and 5n and analyzed using X-ray diffraction. Compounds were evaluated as acetyl (AChE) and butyrylcholinesterase (BChE) inhibitors, and the results showed a moderate activity. Compound 5c presented the best activity against AChE (IC50 = 53.29 μM) and compound 5l against BChE enzyme (IC50 = 119.3 μM). Furthermore, the ability of the synthetic compounds to scavenge cationic radicals DPPH and ABTS was evaluated. Compound 5e (EC50 = 26.71 μg mL-1) presented the best results in the DPPH assay, and compounds 5e, 5f and 5g (EC50 = 11.51, 3.10 and <3 μg mL-1, respectively) showed better ABTS cationic radical scavenging results. Finally, in silico analyses indicated that 71% of the compounds show good oral availability and are within the ranges established by the Lipinski criteria.
Collapse
Affiliation(s)
- Efraín Polo-Cuadrado
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Cristian Rojas-Peña
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
- Doctorado en Química, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile Santiago Chile
| | - Karen Acosta-Quiroga
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
- Doctorado en Química, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile Santiago Chile
| | - Lorena Camargo-Ayala
- Doctorado en Ciencias Mención I + D de Productos Bioactivos, Instituto de Química de Recursos Naturales, Laboratorio de Síntesis Orgánica (LSO-Act-Bio), Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Campus Coloso Antofagasta 02800 Chile
| | - Jonathan Cisterna
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Campus Coloso Antofagasta 02800 Chile
| | - Félix Moncada
- Departamento de Química, Universidad Nacional de Colombia Av. Cra 30 # 45-03 Bogotá Colombia
| | - Jorge Trilleras
- Grupo de Investigación en Compuestos Heterocíclicos, Universidad del Atlántico Puerto Colombia 081007 Colombia
| | - Yeray A Rodríguez-Núñez
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andrés Bello Republica 275 Santiago 8370146 Chile
| | - Margarita Gutierrez
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| |
Collapse
|
25
|
Multicomponent reactions as a privileged tool for multitarget-directed ligand strategies in Alzheimer's disease therapy. Future Med Chem 2022; 14:1583-1606. [PMID: 36263996 DOI: 10.4155/fmc-2022-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Among neurodegenerative pathologies affecting the older population, Alzheimer's disease is the most common type of dementia and leads to neurocognitive and behavioral disorders. It is a complex and progressive age-related multifactorial disease characterized by a series of highly interconnected pathophysiological processes. Within the last decade, the multitarget-directed ligand strategy has emerged as a viable approach to developing complex molecules that exhibit several pharmacophores which can target the different enzymes and receptors involved in the pathogenesis of the disease. Herein, we focus on using multicomponent reactions such as Hantzsch, Biginelli and Ugi to develop these biologically active multitopic ligands.
Collapse
|
26
|
Tammareddy T, Keyrouz W, Sriram RD, Pant HC, Cardone A, Klauda JB. Computational Study of the Allosteric Effects of p5 on CDK5-p25 Hyperactivity as Alternative Inhibitory Mechanisms in Neurodegeneration. J Phys Chem B 2022; 126:5033-5044. [PMID: 35771127 DOI: 10.1021/acs.jpcb.2c02868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyclin-dependent kinase (CDK5) forms a stable complex with its activator p25, leading to the hyperphosphorylation of tau proteins and to the formation of plaques and tangles that are considered to be one of the typical causes of Alzheimer's disease (AD). Hence, the pathological CDK5-p25 complex is a promising therapeutic target for AD. Small peptides, obtained from the truncation of CDK5 physiological activator p35, have shown promise in inhibiting the pathological complex effectively while also crossing the blood-brain barrier. One such small 24-residue peptide, p5, has shown selective inhibition toward the pathological complex in vivo. Our previous research focused on the characterization of a computationally predicted CDK5-p5 binding mode and of its pharmacophore, which was consistent with competitive inhibition. In continuation of our previous work, herein, we investigate four additional binding modes to explore other possible mechanisms of interaction between CDK5 and p5. The quantitative description of the pharmacophore is consistent with both competitive and allosteric p5-induced inhibition mechanisms of CDK5-p25 pathology. The gained insights can direct further in vivo/in vitro tests and help design small peptides, linear or cyclic, or peptidomimetic compounds as adjuvants of orthosteric inhibitors or as part of a cocktail of drugs with enhanced effectiveness and lower side effects.
Collapse
Affiliation(s)
- Tejaswi Tammareddy
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States.,Information Systems Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Walid Keyrouz
- Information Systems Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ram D Sriram
- Software and Systems Division, Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Harish C Pant
- Neuronal Cytoskeletal Protein Regulation Section, Laboratory of Neurochemistry, NINDS, Bethesda, Maryland 20892, United States
| | - Antonio Cardone
- Information Systems Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States.,Institute for Physical Science & Technology, Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
27
|
Singh JV, Thakur S, Kumar N, Singh H, Mithu VS, Singh H, Bhagat K, Gulati HK, Sharma A, Singh H, Sharma S, Bedi PMS. Donepezil-Inspired Multitargeting Indanone Derivatives as Effective Anti-Alzheimer's Agents. ACS Chem Neurosci 2022; 13:733-750. [PMID: 35195392 DOI: 10.1021/acschemneuro.1c00535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In continuous efforts to develop anti-Alzheimer's agents, we rationally designed and synthesized a series of multitargeting molecules by incorporating the essential molecular features of the standard drug donepezil. Among the series, compound 4b showed multitargeting properties to act as an anti-Alzheimer's agent, which is better tolerable in vivo than donepezil. Acetylcholinesterase (AChE) inhibition data showed that compound 4b inhibits the enzyme with a half-maximal inhibitory concentration (IC50) value of 0.78 μM and also showed DNA protection, which was confirmed through the DNA nicking assay, suggesting the protective effect of 4b against oxidative DNA damage. Compound 4b also showed 53.04% inhibition against Aβ1-42 aggregations, which was found comparable to that of the standard compound curcumin. Molecular dynamics simulations were performed to check the stability of compound 4b with the enzyme AChE, which showed that the enzyme-ligand complex is stable enough to block the hydrolysis of acetylcholine in the brain. Its higher LD50 cutoff value (50 mg/kg) in comparison to donepezil (LD50: 25 mg/kg) made it safer, suggesting that it can be used in further clinical experiments. To evaluate its anti-Alzheimer property, a mice model with melamine-induced cognitive dysfunction was used, and Morris water maze and Rotarod tests were performed. A significant improvement in memory was observed after the treatment with compound 4b and donepezil. The study postulated that the introduction of important structural features of donepezil (dimethoxyindanone moiety as ring-A) embarked with terminal aromatic ether (ring-B and ring-C) made 4b a multitargeting molecule that offers a way for developing alternative therapeutics in the future against Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harjeet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Venus Singh Mithu
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harpreet Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
28
|
Yao C, Jiang X, Zhao R, Zhong Z, Ge J, Zhu J, Ye XY, Xie Y, Liu Z, Xie T, Bai R. HDAC1/MAO-B dual inhibitors against Alzheimer's disease: Design, synthesis and biological evaluation of N-propargylamine-hydroxamic acid/o-aminobenzamide hybrids. Bioorg Chem 2022; 122:105724. [PMID: 35305483 DOI: 10.1016/j.bioorg.2022.105724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/21/2022] [Accepted: 03/04/2022] [Indexed: 02/09/2023]
Abstract
A series of N-propargylamine-hydroxamic acid/o-aminobenzamide hybrids inhibitors combining the typical pharmacophores of hydroxamic acid/o-aminobenzamide and propargylamine were designed and synthesized as HDAC1/MAO-B dual inhibitors for the treatment of Alzheimer's disease. Most of the hybrids displayed moderate to good MAO-B inhibitory activities. Among them, Hybrid If exhibited the most potent activity against MAO-B and HDAC1 (MAO-B, IC50 = 99.0 nM; HDAC1, IC50 = 21.4 nM) and excellent MAO selectively (MAO-A, IC50 = 9923.0 nM; SI = 100.2). Moreover, compound If significantly reversed Aβ1-42-induced PC12 cell damage and decreased the production of intracellular ROS, exhibiting favorable antioxidant activity. More importantly, hybrid If instantly penetrated the BBB and accumulated in brain tissue as well as markedly ameliorated cognitive dysfunction in a Morris water maze ICR mice model. In summary, HDAC1/MAO-B dual inhibitor If is a promising potential agent for the therapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Chuansheng Yao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhichao Zhong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiamin Ge
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhen Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
29
|
Romanucci V, Pagano R, Lembo A, Capasso D, Di Gaetano S, Zarrelli A, Di Fabio G. Phosphodiester Silybin Dimers Powerful Radical Scavengers: A Antiproliferative Activity on Different Cancer Cell Lines. Molecules 2022; 27:molecules27051702. [PMID: 35268803 PMCID: PMC8911775 DOI: 10.3390/molecules27051702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
Silibinin is the main biologically active component of silymarin extract and consists of a mixture 1:1 of two diastereoisomeric flavonolignans, namely silybin A (1a) and silybin B (1b), which we call here silybins. Despite the high interest in the activity of this flavonolignan, there are still few studies that give due attention to the role of its stereochemistry and, there is still today a strong need to investigate in this area. In this regard, here we report a study concerning the radical scavenger ability and the antiproliferative activity on different cell lines, both of silybins and phosphodiester-linked silybin dimers. An efficient synthetic strategy to obtain silybin dimers in an optical pure form (6aa, 6ab and 6bb) starting from a suitable building block of silybin A and silybin B, obtained by us from natural extract silibinin, was proposed. New dimers show strong antioxidant properties, determined through hydroxyl radical (HO●) scavenging ability, comparable to the value reported for known potent antioxidants such as quercetin. A preliminary screening was performed by treating cells with 10 and 50 μM concentrations for 48 h to identify the most sensitive cell lines. The results show that silibinin compounds were active on Jurkat, A375, WM266, and HeLa, but at the tested concentrations, they did not interfere with the growth of PANC, MCF-7, HDF or U87. In particular, both monomers (1a and 1b) and dimers (6aa, 6ab and 6bb) present selective anti-proliferative activity towards leukemia cells in the mid-micromolar range and are poorly active on normal cells. They exhibit different mechanisms of action in fact all the cells treated with the 1a and 1b go completely into apoptosis, whereas only part of the cells treated with 6aa and 6ab were found to be in apoptosis.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; (V.R.); (R.P.); (A.L.); (A.Z.)
| | - Rita Pagano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; (V.R.); (R.P.); (A.L.); (A.Z.)
| | - Antonio Lembo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; (V.R.); (R.P.); (A.L.); (A.Z.)
| | - Domenica Capasso
- Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II“, Via Mezzocannone 16, 80134 Napoli, Italy; (D.C.); (S.D.G.)
- Center for Life Sciences and Technologies (CESTEV), University of Naples “Federico II“, Via De Amicis 95, 80145 Napoli, Italy
| | - Sonia Di Gaetano
- Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II“, Via Mezzocannone 16, 80134 Napoli, Italy; (D.C.); (S.D.G.)
- Institute of Biostructures and Bioimaging-CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; (V.R.); (R.P.); (A.L.); (A.Z.)
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; (V.R.); (R.P.); (A.L.); (A.Z.)
- AIPRAS Onlus (Associazione Italiana per la Promozione delle Ricerche sull’Ambiente e la Salute umana Onlus), Via Campellone 50, 82030 Dugenta, Italy
- Correspondence: ; Tel.: +39-081674001
| |
Collapse
|
30
|
Liu Y, Uras G, Onuwaje I, Li W, Yao H, Xu S, Li X, Li X, Phillips J, Allen S, Gong Q, Zhang H, Zhu Z, Liu J, Xu J. Novel inhibitors of AChE and Aβ aggregation with neuroprotective properties as lead compounds for the treatment of Alzheimer's disease. Eur J Med Chem 2022; 235:114305. [DOI: 10.1016/j.ejmech.2022.114305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023]
|
31
|
Kou X, Li X, Hu C, Liu J, Chen Y, Zhang Y, Yang A, Shen R. Multifunctional fluorescence sensor as a potential theranostic agent against Alzheimer's disease. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120587. [PMID: 34782268 DOI: 10.1016/j.saa.2021.120587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Metal ions play an important role in the pathogenesis of Alzheimer's disease (AD). Metal dyshomeostasis, β-amyloid (Aβ) accumulation and oxidative stress, etc. are related to metal ions. So, metal therapeutics has aroused increasingly more attention, especially the research of metal-involved theranostic agents. In this work, a highly selective and sensitive multifunctional fluorescence sensor 1 with a naphthol unit based on photoinduced electron transfer (PET) and excited state proton transfer (ESPT) mechanism was synthesized, and its synergistic biological effects on regulating metal dyshomeostasis, modulating Aβ accumulation and scavenging reactive oxygen species (ROS) was evaluated. The results demonstrated that 1 exhibited significant fluorescence enhancement towards Al3+ (the limit was as low as 0.01 ppm), superior chelating abilities with metal ions, even better modulation effect of Cu2+-induced Aβ1-42 accumulation than curcumin, good elimination effect of ROS, clear fluorescence image in living cells, low cytotoxic and appropriate blood brain barrier (BBB) permeability. Overall, these findings revealed that 1 could be used as a potential theranostic agent against AD for further research.
Collapse
Affiliation(s)
- Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xingying Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Chengting Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Juanjuan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuhong Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yang Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
32
|
Phanrang PT, Baruah P, Chandra AK, Mitra S. Auxiliary Therapeutic Role of Cholinergic Agents: Mechanistic Insights into the Antioxidant Behavior of Alzheimer's Disease Drugs. J Phys Chem A 2022; 126:546-556. [PMID: 35050595 DOI: 10.1021/acs.jpca.1c09146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Repurposing of existing drugs toward new therapeutic use(s) has become an emergent area of research in current times. In this context, the antioxidant behavior of eight cholinergic drugs used in the treatment of Alzheimer's disease (AD) was investigated theoretically. The low bond dissociation enthalpy values in all of the compounds advocated for the hydrogen atom transfer mechanism toward the observed antioxidant behavior. The kinetic study for the reaction of the drugs with hydroperoxyl radicals indicated an indirect reaction path owing to the presence of pre- and postreaction complexes. In some cases, the rate constant for the H-abstraction reaction (k = 2.8 × 103 L mol-1 s-1) is found to be close to that of a well-known non-phenolic antioxidant, α-terpinene (k = 4.3 × 103 L mol-1 s-1). Quantification of charge transfer character among the drugs with DNA bases and molecular docking calculations confirmed the groove binding model and predicted the drugs to be safe from DNA damage. A theoretical evaluation of the mechanistic details governing the antioxidant property along with the proven stress reversal ability of these AD drugs provided new insights to design and develop more efficient drugs with dual therapeutic potential.
Collapse
Affiliation(s)
| | - Prayasee Baruah
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Asit K Chandra
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
33
|
Zeng Y, Nie L, Liu L, Niu C, Li Y, Bozorov K, Zhao J, Shen J, Aisa HA. Design, Synthesis, in vitro Evaluation of a New Pyrrolo[1,2‐
a
]thiazolo[5,4‐
d
]pyrimidinone Derivatives as Cholinesterase Inhibitors Against Alzheimer's Disease. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Zeng
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Lifei Nie
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
| | - Liu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
| | - Chao Niu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Yi Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Khurshed Bozorov
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- Faculty of Chemistry Samarkand State University Samarkand Uzbekistan
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Jingshan Shen
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
34
|
Karimian S, Shekouhy M, Pirhadi S, Iraji A, Attarroshan M, Edraki N, Khoshneviszadeh M. Synthesis and biological evaluation of benzimidazoles/1,3,5-triazine-2,4-diamine hybrid compounds: a new class of multifunctional alzheimer targeting agents. NEW J CHEM 2022. [DOI: 10.1039/d2nj00371f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Twelve novel benzimidazole/1,3,5-triazine-2,4-diamine hybrids were synthesized and biologically studied as multifunctional Alzheimer-controlling agents.
Collapse
Affiliation(s)
- Somaye Karimian
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Shekouhy
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Attarroshan
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
From virtual screening hits targeting a cryptic pocket in BACE-1 to a nontoxic brain permeable multitarget anti-Alzheimer lead with disease-modifying and cognition-enhancing effects. Eur J Med Chem 2021; 225:113779. [PMID: 34418785 DOI: 10.1016/j.ejmech.2021.113779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022]
Abstract
Starting from six potential hits identified in a virtual screening campaign directed to a cryptic pocket of BACE-1, at the edge of the catalytic cleft, we have synthesized and evaluated six hybrid compounds, designed to simultaneously reach BACE-1 secondary and catalytic sites and to exert additional activities of interest for Alzheimer's disease (AD). We have identified a lead compound with potent in vitro activity towards human BACE-1 and cholinesterases, moderate Aβ42 and tau antiaggregating activity, and brain permeability, which is nontoxic in neuronal cells and zebrafish embryos at concentrations above those required for the in vitro activities. This compound completely restored short- and long-term memory in a mouse model of AD (SAMP8) relative to healthy control strain SAMR1, shifted APP processing towards the non-amyloidogenic pathway, reduced tau phosphorylation, and increased the levels of synaptic proteins PSD95 and synaptophysin, thereby emerging as a promising disease-modifying, cognition-enhancing anti-AD lead.
Collapse
|
36
|
A review of synthetic bioactive tetrahydro-β-carbolines: A medicinal chemistry perspective. Eur J Med Chem 2021; 225:113815. [PMID: 34479038 DOI: 10.1016/j.ejmech.2021.113815] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/22/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022]
Abstract
1, 2, 3, 4-Tetrahydro-β-carboline (THβC) scaffold is widespread in many natural products (NPs) and synthetic compounds which show a variety of pharmacological activities. In this article, we reviewed the design, structures and biological characteristics of reported synthetic THβC compounds, and structure and activity relationship (SAR) of them were also discussed. This work might provide a reference for subsequent drug development based on THβC.
Collapse
|
37
|
Wu C, Zhang G, Zhang ZW, Jiang X, Zhang Z, Li H, Qin HL, Tang W. Structure-activity relationship, in vitro and in vivo evaluation of novel dienyl sulphonyl fluorides as selective BuChE inhibitors for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2021; 36:1860-1873. [PMID: 34425715 PMCID: PMC8386747 DOI: 10.1080/14756366.2021.1959571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 07/19/2021] [Indexed: 01/08/2023] Open
Abstract
To discover novel scaffolds as leads against dementia, a series of δ-aryl-1,3-dienesulfonyl fluorides with α-halo, α-aryl and α-alkynyl were assayed for ChE inhibitory activity, in which compound A10 was identified as a selective BuChE inhibitor (IC50 = 0.021 μM for eqBChE, 3.62 μM for hBuChE). SAR of BuChE inhibition showed: (i) o- > m- > p-; -OCH3 > -CH3 > -Cl (-Br) for δ-aryl; (ii) α-Br > α-Cl, α-I. Compound A10 exhibited neuroprotective, BBB penetration, mixed competitive inhibitory effect on BuChE (Ki = 29 nM), and benign neural and hepatic safety. Treatment with A10 could almost entirely recover the Aβ1-42-induced cognitive dysfunction to the normal level, and the assessment of total amount of Aβ1-42 confirmed its anti-amyloidogenic profile. Therefore, the potential BuChE inhibitor A10 is a promising effective lead for the treatment of AD.
Collapse
Affiliation(s)
- Chengyao Wu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Guijuan Zhang
- Management Center of Anhui Continuing Education Network Park, Anhui Open University, Hefei, China
| | - Zai-Wei Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Xia Jiang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Ziwen Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Huanhuan Li
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| |
Collapse
|
38
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
39
|
Dakhlaoui I, Maalej E, Martin H, Lucht A, Iriepa I, Moraleda I, Marco‐Contelles J, Chabchoub F, Ismaili L. Synthesis and Biological Assessment of PyrimidoTacrines as Promising Agents for Alzheimer's Disease Therapy. ChemistrySelect 2021. [DOI: 10.1002/slct.202102363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Imen Dakhlaoui
- Laboratoire de Chimie Appliquée: Hétérocycles Corps Gras et Polymères Faculté des Sciences de Sfax Université de Sfax. B. P 802.3000 Sfax Tunisie
- UR Neurosciences Medicinal chemistry group Univ. Bourgogne Franche-Comté, UFR Santé 19, rue Ambroise Paré F-25000 Besançon France
| | - Emna Maalej
- Laboratoire Matériaux Traitement et Analyse (LMTA) Institut National de Recherche et d'Analyse Physico-chimique Technopole Ariana Tunisia
| | - Helene Martin
- PEPITE EA4267 Laboratoire de Toxicologie Cellulaire Univ. Bourgogne Franche-Comté F-25000 Besançon France
| | - Aurélia Lucht
- UR Neurosciences Medicinal chemistry group Univ. Bourgogne Franche-Comté, UFR Santé 19, rue Ambroise Paré F-25000 Besançon France
| | - Isabel Iriepa
- Organic and Inorganic Chemistry Department. Ctra. Madrid-Barcelona, Km. 33, 6 University of Alcala 28871 Madrid Spain
| | - Ignacio Moraleda
- Organic and Inorganic Chemistry Department. Ctra. Madrid-Barcelona, Km. 33, 6 University of Alcala 28871 Madrid Spain
| | - Jose Marco‐Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC) Juan de la Cierva, 3 28006 Madrid Spain
| | - Fakher Chabchoub
- Laboratoire de Chimie Appliquée: Hétérocycles Corps Gras et Polymères Faculté des Sciences de Sfax Université de Sfax. B. P 802.3000 Sfax Tunisie
| | - Lhassane Ismaili
- UR Neurosciences Medicinal chemistry group Univ. Bourgogne Franche-Comté, UFR Santé 19, rue Ambroise Paré F-25000 Besançon France
| |
Collapse
|
40
|
de Andrade Ramos G, Souza de Oliveira A, Bartolini M, Naldi M, Liparulo I, Bergamini C, Uliassi E, Wu L, Fraser PE, Abreu M, Kiametis AS, Gargano R, Silveira ER, Brand GD, Prchal L, Soukup O, Korábečný J, Bolognesi ML, Soares Romeiro LA. Discovery of sustainable drugs for Alzheimer's disease: cardanol-derived cholinesterase inhibitors with antioxidant and anti-amyloid properties. RSC Med Chem 2021; 12:1154-1163. [PMID: 34355181 PMCID: PMC8293282 DOI: 10.1039/d1md00046b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/29/2021] [Indexed: 01/21/2023] Open
Abstract
As part of our efforts to develop sustainable drugs for Alzheimer's disease (AD), we have been focusing on the inexpensive and largely available cashew nut shell liquid (CNSL) as a starting material for the identification of new acetylcholinesterase (AChE) inhibitors. Herein, we decided to investigate whether cardanol, a phenolic CNSL component, could serve as a scaffold for improved compounds with concomitant anti-amyloid and antioxidant activities. Ten new derivatives, carrying the intact phenolic function and an aminomethyl functionality, were synthesized and first tested for their inhibitory potencies towards AChE and butyrylcholinesterase (BChE). 5 and 11 were found to inhibit human BChE at a single-digit micromolar concentration. Transmission electron microscopy revealed the potential of five derivatives to modulate Aβ aggregation, including 5 and 11. In HORAC assays, 5 and 11 performed similarly to standard antioxidant ferulic acid as hydroxyl scavenging agents. Furthermore, in in vitro studies in neuronal cell cultures, 5 and 11 were found to effectively inhibit reactive oxygen species production at a 10 μM concentration. They also showed a favorable initial ADME/Tox profile. Overall, these results suggest that CNSL is a promising raw material for the development of potential disease-modifying treatments for AD.
Collapse
Affiliation(s)
- Giselle de Andrade Ramos
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Andressa Souza de Oliveira
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Irene Liparulo
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Ling Wu
- Tanz Centre for Research in Neurodegenerative Diseases and Dept. of Medical Biophysics, University of Toronto Krembil Discovery Tower, 60 Leonard Avenue, 6KD-402 M5T 2S8 Toronto ON Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Dept. of Medical Biophysics, University of Toronto Krembil Discovery Tower, 60 Leonard Avenue, 6KD-402 M5T 2S8 Toronto ON Canada
| | - Monica Abreu
- Physics Institute, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Alessandra Sofia Kiametis
- Physics Institute, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Ricardo Gargano
- Physics Institute, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Edilberto Rocha Silveira
- CENAUREMN, Department of Organic and Inorganic Chemistry, Federal University of Ceará 60021-970 Fortaleza CE Brazil
| | - Guilherme D Brand
- Chemistry Institute, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove Sokolska 581, 500 05 Hradec Kralove Czech Republic
| | - Ondřej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove Sokolska 581, 500 05 Hradec Kralove Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence Trebesska 1575, 500 01 Hradec Kralove Czech Republic
| | - Jan Korábečný
- Biomedical Research Centre, University Hospital Hradec Kralove Sokolska 581, 500 05 Hradec Kralove Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence Trebesska 1575, 500 01 Hradec Kralove Czech Republic
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Luiz Antonio Soares Romeiro
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| |
Collapse
|
41
|
Wang M, Fang L, Liu T, Chen X, Zheng Y, Zhang Y, Chen S, Li Z. Discovery of 7-O-1, 2, 3-triazole hesperetin derivatives as multi-target-directed ligands against Alzheimer's disease. Chem Biol Interact 2021; 342:109489. [PMID: 33905740 DOI: 10.1016/j.cbi.2021.109489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
The development of multi-target-directed ligands (MTDLs) may improve complex central nervous system diseases such as Alzheimer's disease (AD). Here, a series of 7-O-1, 2, 3-triazole hesperetin derivatives was evaluated for their inhibition of cholinesterase, anti-neuroinflammatory, and neuroprotective activity. Among the hesperetin derivatives, compound a8 (7-O-((1-(3-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)hesperetin) possessed excellent anti-butyrylcholinesterase activity (IC50 = 3.08 ± 0.29 μM) and exhibited good anti-neuroinflammatory activity (IC50 = 2.91 ± 0.47 μM) against NO production through remarkably blocking the NF-κB signaling pathway and inhibiting the phosphorylation of P65. In addition, a8 showed a remarkable neuroprotective effect and lacked neurotoxicity up to 50 μM concentration. Furthermore, possessing significant self-mediated Aβ1-42 aggregation inhibitory activity, chelated biometals and reduced ROS production were found in compound a8. In the bi-directional transport assay, a8 exhibited a blood-brain barrier penetrating ability. In this study, the Morris water maze task showed that compound a8 significantly improved the learning and memory impairment of the scopolamine-induced AD mice model. Results highlighted the potential of compound a8 to be a potential MTDL for the development of anti-AD agents.
Collapse
Affiliation(s)
- Min Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Longji Fang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Tongtong Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xuejie Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yan Zheng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yilong Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Shiming Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
42
|
Ismaili L, Monnin J, Etievant A, Arribas RL, Viejo L, Refouvelet B, Soukup O, Janockova J, Hepnarova V, Korabecny J, Kucera T, Jun D, Andrys R, Musilek K, Baguet A, García-Frutos EM, De Simone A, Andrisano V, Bartolini M, de los Ríos C, Marco-Contelles J, Haffen E. (±)- BIGI-3h: Pentatarget-Directed Ligand combining Cholinesterase, Monoamine Oxidase, and Glycogen Synthase Kinase 3β Inhibition with Calcium Channel Antagonism and Antiaggregating Properties for Alzheimer's Disease. ACS Chem Neurosci 2021; 12:1328-1342. [PMID: 33797877 DOI: 10.1021/acschemneuro.0c00803] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multitarget-directed ligands (MTDLs) are considered a promising therapeutic strategy to address the multifactorial nature of Alzheimer's disease (AD). Novel MTDLs have been designed as inhibitors of human acetylcholinesterases/butyrylcholinesterases, monoamine oxidase A/B, and glycogen synthase kinase 3β and as calcium channel antagonists via the Biginelli multicomponent reaction. Among these MTDLs, (±)-BIGI-3h was identified as a promising new hit compound showing in vitro balanced activities toward the aforementioned recognized AD targets. Additional in vitro studies demonstrated antioxidant effects and brain penetration, along with the ability to inhibit the aggregation of both τ protein and β-amyloid peptide. The in vivo studies have shown that (±)-BIGI-3h (10 mg/kg intraperitoneally) significantly reduces scopolamine-induced cognitive deficits.
Collapse
Affiliation(s)
- Lhassane Ismaili
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Julie Monnin
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Adeline Etievant
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Raquel L. Arribas
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
- Instituto Teofilo Hernando, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Lucía Viejo
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
- Instituto Teofilo Hernando, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Bernard Refouvelet
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic, University of Defence, 50003 Hradec Kralove, Czech Republic
| | - Jana Janockova
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic, University of Defence, 50003 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, 66210 Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic, University of Defence, 50003 Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, 66210 Brno, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, 66210 Brno, Czech Republic
| | - Rudolf Andrys
- Faculty of Science, Department of Chemistry, University Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Aurelie Baguet
- Université Bourgogne Franche Comté, INSERM, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Eva M. García-Frutos
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Angela De Simone
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Corso di Augusto, 237, 47921 Rimini, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Corso di Augusto, 237, 47921 Rimini, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Cristóbal de los Ríos
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
- Instituto Teofilo Hernando, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Emmanuel Haffen
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| |
Collapse
|
43
|
Jiang MY, Han C, Zhang C, Zhou Q, Zhang B, Le ML, Huang MX, Wu Y, Luo HB. Discovery of effective phosphodiesterase 2 inhibitors with antioxidant activities for the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2021; 41:128016. [PMID: 33838306 DOI: 10.1016/j.bmcl.2021.128016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 01/11/2023]
Abstract
The multi-target-directed-ligand (MTDL) strategy has been widely applied in the discovery of novel drugs for the treatment of Alzheimer's disease (AD) because of the multifactorial pathological mechanisms of AD. Phosphodiesterase-2 (PDE2) has been identified to be a novel and promising target for AD. However, MTDL combining with the inhibitory activity against PDE2A and other anti-AD factors such as antioxidants has not been developed yet. Herein, a novel series of PDE2 inhibitors with antioxidant capacities were designed, synthesized, and evaluated. Most compounds showed remarkable inhibitory activities against PDE2A as well as antioxidant activities. Compound 6d was selected, which showed good IC50 of 6.1 nM against PDE2A, good antioxidant activity (ORAC (Trolox) = 8.4 eq.) and no cytotoxicity to SH-SY5Y cells. Molecular docking and dynamics simulations were applied for the rational design and explanation of structure-activity relationship (SAR) of lead compounds.
Collapse
Affiliation(s)
- Mei-Yan Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Chuan Han
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Chen Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Qian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Bei Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Mei-Ling Le
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Meng-Xing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| |
Collapse
|
44
|
Chavarria D, Da Silva O, Benfeito S, Barreiro S, Garrido J, Cagide F, Soares P, Remião F, Brazzolotto X, Nachon F, Oliveira PJ, Dias J, Borges F. Fine-Tuning the Biological Profile of Multitarget Mitochondriotropic Antioxidants for Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:antiox10020329. [PMID: 33672269 PMCID: PMC7926627 DOI: 10.3390/antiox10020329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/04/2023] Open
Abstract
Neurotransmitter depletion and mitochondrial dysfunction are among the multiple pathological events that lead to neurodegeneration. Following our previous studies related with the development of multitarget mitochondriotropic antioxidants, this study aims to evaluate whether the π-system extension on the chemical scaffolds of AntiOXCIN2 and AntiOXCIN3 affects their bioactivity and safety profiles. After the synthesis of four triphenylphosphonium (TPP+) conjugates (compounds 2–5), we evaluated their antioxidant properties and their effect on neurotransmitter-metabolizing enzymes. All compounds were potent equine butyrylcholinesterase (eqBChE) and moderate electric eel acetylcholinesterase (eeAChE) inhibitors, with catechols 4 and 5 presenting lower IC50 values than AntiOXCIN2 and AntiOXCIN3, respectively. However, differences in the inhibition potency and selectivity of compounds 2–5 towards non-human and human cholinesterases (ChEs) were observed. Co-crystallization studies with compounds 2–5 in complex with human ChEs (hChEs) showed that these compounds exhibit different binging modes to hAChE and hBChE. Unlike AntiOXCINs, compounds 2–5 displayed moderate human monoamine oxidase (hMAO) inhibitory activity. Moreover, compounds 4 and 5 presented higher ORAC-FL indexes and lower oxidation potential values than the corresponding AntiOXCINs. Catechols 4 and 5 exhibited broader safety windows in differentiated neuroblastoma cells than benzodioxole derivatives 2 and 3. Compound 4 is highlighted as a safe mitochondria-targeted antioxidant with dual ChE/MAO inhibitory activity. Overall, this work is a contribution for the development of dual therapeutic agents addressing both mitochondrial oxidative stress and neurotransmitter depletion.
Collapse
Affiliation(s)
- Daniel Chavarria
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (D.C.); (S.B.); (J.G.); (F.C.); (P.S.)
| | - Ophelie Da Silva
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223 Brétigny-sur-Orge, France; (O.D.S.); (X.B.); (F.N.); (J.D.)
| | - Sofia Benfeito
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (D.C.); (S.B.); (J.G.); (F.C.); (P.S.)
| | - Sandra Barreiro
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.B.); (F.R.)
| | - Jorge Garrido
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (D.C.); (S.B.); (J.G.); (F.C.); (P.S.)
- CIQUP/Department of Chemical Engineering, School of Engineering (ISEP), Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Fernando Cagide
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (D.C.); (S.B.); (J.G.); (F.C.); (P.S.)
| | - Pedro Soares
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (D.C.); (S.B.); (J.G.); (F.C.); (P.S.)
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.B.); (F.R.)
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223 Brétigny-sur-Orge, France; (O.D.S.); (X.B.); (F.N.); (J.D.)
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223 Brétigny-sur-Orge, France; (O.D.S.); (X.B.); (F.N.); (J.D.)
| | - Paulo J. Oliveira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal;
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223 Brétigny-sur-Orge, France; (O.D.S.); (X.B.); (F.N.); (J.D.)
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (D.C.); (S.B.); (J.G.); (F.C.); (P.S.)
- Correspondence:
| |
Collapse
|
45
|
Zaout S, Chafaa S, Hellal A, Boukhemis O, Khattabi L, Merazig H, Chafai N, Bensouici C, Bendjeddou L. Hydroxyphenylamine phosphonate derivatives: Synthesis, X-ray crystallographic analysis, and evaluation of theirs anti-Alzheimer effects and antioxidant activities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
46
|
Zhang L, Sun H, Chen Y, Wei M, Lee J, Li F, Ling D. Functional nanoassemblies for the diagnosis and therapy of Alzheimer's diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1696. [PMID: 33463089 DOI: 10.1002/wnan.1696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects populations around the world. Many therapeutics have been investigated for AD diagnosis and/or therapy, but the efficacy is largely limited by the poor bioavailability of drugs and by the presence of the blood-brain barrier. Recently, the development of nanomedicines enables efficient drug delivery to the brain, but the complex pathological mechanism of AD prevents them from successful treatment. As a type of advanced nanomedicine, multifunctional nanoassemblies self-assembled from nanoscale imaging or therapeutic agents can simultaneously target multiple pathological factors, showing great potential in the diagnosis and therapy of AD. To help readers better understand this emerging field, in this review, we first introduce the pathological mechanisms and the potential drug candidates of AD, as well as the design strategies of nanoassemblies for improving AD targeting efficiency. Moreover, the progress of dynamic nanoassemblies that can diagnose and/or treat AD in response to the endogenous or exogenous stimuli will be described. Finally, we conclude with our perspectives on the future development in this field. The objective of this review is to outline the latest progress of using nanoassemblies to overcome the complex pathological environment of AD for improved diagnosis and therapy, in hopes of accelerating the future development of intelligent AD nanomedicines. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Heng Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Wang M, Liu T, Chen S, Wu M, Han J, Li Z. Design and synthesis of 3-(4-pyridyl)-5-(4-sulfamido-phenyl)-1,2,4-oxadiazole derivatives as novel GSK-3β inhibitors and evaluation of their potential as multifunctional anti-Alzheimer agents. Eur J Med Chem 2021; 209:112874. [PMID: 33017743 DOI: 10.1016/j.ejmech.2020.112874] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
Pleiotropic intervention has prominent advantages for complex pathomechanisms, such as Alzheimer's disease (AD). In this study, a series of novel 3-(4-pyridyl)-5-(4- sulfamido-phenyl)-1,2,4-oxadiazole derivatives were designed and synthesized following the multitarget-directed ligand-based strategy. All compounds were evaluated for glycogen synthase kinase 3β (GSK-3β) inhibition and antineuroinflammatory and neuroprotective activities. Given that abnormal glucose metabolism plays an important role in AD occurrence and development, the effects of all compounds on glucose consumption in HepG2 cells was evaluated. Compounds 5e and 10b showed good dual potency in GSK-3β inhibition (IC50: 5e = 1.52 μM, 10b = 0.19 μM) and antineuroinflammatory potency (IC50: 5e = 0.47 ± 0.64 μM, 10b = 6.94 ± 2.33 μM). The effect of compound 10b on glucose consumption was higher than that of positive drug metformin. These compounds exerted a certain neuroprotective effect. Compound 10b dramatically reduced Aβ-induced Tau hyperphosphorylation, thus inhibiting GSK-3β at the cellular level. Notably, compounds 5e and 10b exhibited good inhibitory effects on the formation of intracellular reactive oxygen species (ROS). Moreover, these compounds displayed proper blood-brain barrier permeability and lacked neurotoxicity up to 50 μM concentration. Finally, in vivo experiments revealed that compound 10b improved cognitive impairment in scopolamine-induced mouse models. Results indicated that compound 10b deserves further study as a multifunctional lead compound.
Collapse
Affiliation(s)
- Min Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Llaboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Tongtong Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Llaboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Shiming Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Llaboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Mingfei Wu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Llaboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jianfei Han
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Llaboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Llaboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
48
|
Viayna E, Coquelle N, Cieslikiewicz-Bouet M, Cisternas P, Oliva CA, Sánchez-López E, Ettcheto M, Bartolini M, De Simone A, Ricchini M, Rendina M, Pons M, Firuzi O, Pérez B, Saso L, Andrisano V, Nachon F, Brazzolotto X, García ML, Camins A, Silman I, Jean L, Inestrosa NC, Colletier JP, Renard PY, Muñoz-Torrero D. Discovery of a Potent Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase with Antioxidant Activity that Alleviates Alzheimer-like Pathology in Old APP/PS1 Mice. J Med Chem 2020; 64:812-839. [PMID: 33356266 DOI: 10.1021/acs.jmedchem.0c01775] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combination of the scaffolds of the cholinesterase inhibitor huprine Y and the antioxidant capsaicin results in compounds with nanomolar potencies toward human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) that retain or improve the antioxidant properties of capsaicin. Crystal structures of their complexes with AChE and BChE revealed the molecular basis for their high potency. Brain penetration was confirmed by biodistribution studies in C57BL6 mice, with one compound (5i) displaying better brain/plasma ratio than donepezil. Chronic treatment of 10 month-old APP/PS1 mice with 5i (2 mg/kg, i.p., 3 times per week, 4 weeks) rescued learning and memory impairments, as measured by three different behavioral tests, delayed the Alzheimer-like pathology progression, as suggested by a significantly reduced Aβ42/Aβ40 ratio in the hippocampus, improved basal synaptic efficacy, and significantly reduced hippocampal oxidative stress and neuroinflammation. Compound 5i emerges as an interesting anti-Alzheimer lead with beneficial effects on cognitive symptoms and on some underlying disease mechanisms.
Collapse
Affiliation(s)
- Elisabet Viayna
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Nicolas Coquelle
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS UMR 5075, F-38054 Grenoble, France.,Large Scale Structures Group, Institut Laue-Langevin, F-38042 Grenoble Cedex 9, France
| | | | - Pedro Cisternas
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, P.O. Box 114, 8331150 Santiago, Chile
| | - Carolina A Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, P.O. Box 114, 8331150 Santiago, Chile
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University Rovira i Virgili, E-43201 Reus, Spain
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Angela De Simone
- Department of Drug Science and Technology, University of Turin, I-10125 Torino, Italy
| | - Mattia Ricchini
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Marisa Rendina
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Mégane Pons
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, PO Box 3288, 71345 Shiraz, Iran
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Autonomous University of Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, Corso d'Augusto 237, I-47921 Rimini, Italy
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées BP73, 91993 Brétigny sur Orge, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées BP73, 91993 Brétigny sur Orge, France
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain
| | - Antoni Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Israel Silman
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ludovic Jean
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Nibaldo C Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, P.O. Box 114, 8331150 Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 6200000 Punta Arenas, Chile
| | - Jacques-Philippe Colletier
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS UMR 5075, F-38054 Grenoble, France
| | - Pierre-Yves Renard
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| |
Collapse
|
49
|
Liu Z, Zhang B, Xia S, Fang L, Gou S. ROS-responsive and multifunctional anti-Alzheimer prodrugs: Tacrine-ibuprofen hybrids via a phenyl boronate linker. Eur J Med Chem 2020; 212:112997. [PMID: 33189440 DOI: 10.1016/j.ejmech.2020.112997] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Current drugs available in clinic for Alzheimer's disease (AD) treatment can only alleviate disease symptoms without clearly curing or delaying the process of AD. And some AD drugs failed in Phase III clinical trials are only focused on targeting amyloid-β (Aβ). Therefore, an alternative strategy in AD drug design is meaningful to be involved in the multiple pathogenic factors which can affect each other at multiple levels. Herein, we report a series of ROS-responsive prodrugs based on multi-target-directed ligands (MTDLs) approach, which can specifically release tacrine derivatives and ibuprofen under oxidation of ROS and show acetylcholinesterase (AChE)-inhibiting, neuron-protective and anti-inflammatory effects in extracellular or intracellular assays. Related biological study illustrated that compound 22 was able to permeate blood-brain-barrier (BBB) showing little hepatotoxicity in comparison to tacrine. Besides, 22 hinted a therapeutic clue in AD-treatment by regulating proinflammatory factors (IL-1β and TNF-α) and apoptosis related proteins (Bax, Bcl-2 and cleaved caspase-3). Further spatial memory assays in Aβ-induced AD model showed that 22 enhanced the ability of learning and memory. Our study proves that the strategy of ROS-responsive prodrugs has promise for AD treatments in future and offers a way for AD drug development.
Collapse
Affiliation(s)
- Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Bin Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Shengjin Xia
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
50
|
Patel DV, Patel NR, Kanhed AM, Teli DM, Patel KB, Gandhi PM, Patel SP, Chaudhary BN, Shah DB, Prajapati NK, Patel KV, Yadav MR. Further Studies on Triazinoindoles as Potential Novel Multitarget-Directed Anti-Alzheimer's Agents. ACS Chem Neurosci 2020; 11:3557-3574. [PMID: 33073564 DOI: 10.1021/acschemneuro.0c00448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The inadequate clinical efficacy of the present anti-Alzheimer's disease (AD) drugs and their low impact on the progression of Alzheimer's disease in patients have revised the research focus from single targets to multitarget-directed ligands. A novel series of substituted triazinoindole derivatives were obtained by introducing various substituents on the indole ring for the development of multitarget-directed ligands as anti-AD agents. The experimental data indicated that some of these compounds exhibited significant anti-AD properties. Among them, 8-(piperidin-1-yl)-N-(6-(pyrrolidin-1-yl)hexyl)-5H-[1,2,4]triazino[5,6-b]indol-3-amine (60), the most potent cholinesterase inhibitor (AChE, IC50 value of 0.32 μM; BuChE, IC50 value of 0.21 μM), was also found to possess significant self-mediated Aβ1-42 aggregation inhibitory activity (54% at 25 μM concentration). Additionally, compound 60 showed strong antioxidant activity. In the PAMPA assay, compound 60 exhibited blood-brain barrier penetrating ability. An acute toxicity study in rats demonstrated no sign of toxicity at doses up to 2000 mg/kg. Furthermore, compound 60 significantly restored the cognitive deficits in the scopolamine-induced mice model and Aβ1-42-induced rat model. In the in silico ADMET prediction studies, the compound satisfied all the parameters of CNS acting drugs. These results highlighted the potential of compound 60 to be a promising multitarget-directed ligand for the development of potential anti-AD drugs.
Collapse
Affiliation(s)
- Dushyant V. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Nirav R. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Ashish M. Kanhed
- Shobhaben Pratapbhai Patel - School of Pharmacy & Technology Management, SVKM’s NMIMS University, Vile Parle, Mumbai 400056, India
| | - Divya M. Teli
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380009 Gujarat, India
| | - Kishan B. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Pallav M. Gandhi
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Sagar P. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Bharat N. Chaudhary
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Dharti B. Shah
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Navnit K. Prajapati
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Kirti V. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
- Director (R & D), Centre of Research for Development, Parul University, Limbda, Waghodia Road, Vadodara, 391760 Gujarat, India
| |
Collapse
|