1
|
Al-Horani RA. Sulfonated Penta-galloyl Glucose (SPGG): The Pharmacological Effects of Promiscuous Glycosaminoglycan Small Molecule Mimetic. Mini Rev Med Chem 2025; 25:365-373. [PMID: 39528449 PMCID: PMC12014344 DOI: 10.2174/0113895575332248241030033106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Sulfated glycosaminoglycans (SGAGs), such as heparin, are complex linear polysaccharides attached to core proteins via covalent bonds to form proteoglycans. SGAGs are crucial in assembling extracellular matrix, the regulation of cell signaling and cell behavior, hemostasis, development, and various diseases, including thrombosis, cancer, infectious diseases, and neurodegenerative disorders, through their binding with diverse proteins. Despite the abundant SGAG-protein interactions provided by nature, the development of small SGAG-like molecules remains underexplored. However, sulfonated penta-galloyl glucose (SPGG) represents a promising, easily synthesized, small-molecule mimetic of SGAGs, capable of harnessing these interactions. This minireview discusses the chemical synthesis and characterization of SPGG, along with its pharmacological effects derived from modulating the SGAG-protein interface.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division of Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, 70125, USA
| |
Collapse
|
2
|
Ouyang Y, Yue Y, Wu N, Wang J, Geng L, Zhang Q. Identification and anticoagulant mechanisms of novel factor XIa inhibitory peptides by virtual screening of a in silico generated deep-sea peptide database. Food Res Int 2024; 197:115308. [PMID: 39577955 DOI: 10.1016/j.foodres.2024.115308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
The objective of this study was to identify novel anticoagulant peptides from the deep-sea using multiple in silico methods, and to investigate their inhibitory activity and molecular mechanisms. A deep-sea peptide database was firstly constructed by performing virtual proteolysis on protein sequences from animals inhabiting deep-sea hydrothermal vents and cold seeps. Candidate anticoagulant peptides were identified through molecular docking and binding free energy screening against FXIa as the target. Two novel anticoagulant peptides, PRNIF (IC50 = 0.67 mM) and GNDRCL (IC50 = 1.52 mM), were identified, and their anticoagulant activities were verified in vitro. PRNIF was demonstrated to be a noncompetitive inhibitor of FXIa, and caused significant prolongation of thrombin time (TT) and activated partial thromboplastin time (APTT), whereas GNDRCL markedly prolonged the APTT only. Molecular dynamics simulations demonstrated considerable conformational shifts of both anticoagulant peptides when bound to the active sites of FXIa. The lowest energy binding poses of the FXIa-peptide complexes for PRNIF and GNDRCL exhibited comparable numbers of hydrogen bonds and binding free energies. However, occupancy analysis revealed completely distinct stability characteristics of the hydrogen bond interactions. The conserved residue Asp569 in the S1 pocket of FXIa formed strong and stable hydrogen bonds as well as a salt bridge with the arginine residues of PRNIF, which were not observed in the FXIa-GNDRCL complex. To our knowledge, PRNIF represented the first FXIa inhibitory peptide derived from the deep-sea, which may contribute to the development and utilization of deep-sea peptides resources. Two deep-sea peptides may potentially serve as an alternative food-derived ingredient that could be utilized for thrombosis prevention.
Collapse
Affiliation(s)
- Yuhong Ouyang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 88 Haijun Road, Qingdao 266000, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 88 Haijun Road, Qingdao 266000, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 88 Haijun Road, Qingdao 266000, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, No. 1 Wenhai Road, Qingdao 266237, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 88 Haijun Road, Qingdao 266000, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, No. 1 Wenhai Road, Qingdao 266237, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 88 Haijun Road, Qingdao 266000, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, No. 1 Wenhai Road, Qingdao 266237, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 88 Haijun Road, Qingdao 266000, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
3
|
Vu K, Kar S, Goyal N, Mottamal M, Afosah DK, Al-Horani RA. Discovery of Heparin Mimetic, Potent, and Selective Inhibitors of Human Clotting Factor XIIIa. ACS OMEGA 2024; 9:31105-31119. [PMID: 39035933 PMCID: PMC11256326 DOI: 10.1021/acsomega.4c04518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Factor XIIIa (FXIIIa) is a cysteine transglutaminase that catalyzes the last step in the coagulation process. An anion-binding site inhibition of FXIIIa is a paradigm-shifting strategy that may offer key advantages of controlled inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We previously reported a flavonoid trimer-based allosteric inhibitor of FXIIIa with moderate potency and selectivity. To further advance this approach, we evaluated a series of 27 variably sulfonated heparin mimetics against human FXIIIa. Only 13 molecules exhibited inhibitory activity at the highest concentration tested with IC50 values of 2-286 μM. Specifically, inhibitor 16 demonstrated an IC50 value of 2.4 ± 0.5 μM in a bisubstrate, fluorescence-based trans-glutamination assay. It also demonstrated a significant selectivity over other clotting factors including thrombin, factor Xa, and factor XIa as well as other cysteine enzymes including papain and tissue transglutaminase 2. Inhibitor 16 did not affect the viability of three human cell lines at a concentration that is 5-fold its FXIIIa-IC50. The molecule had a very weak effect on the activated partial thromboplastin time of human plasma at a concentration of >700 μM, further supporting its functional selectivity. Importantly, molecule 16 inhibited FXIIIa-mediated polymerization of fibrin(ogen) in a concentration-dependent manner as shown by the gel electrophoresis experiment. Michaelis-Menten kinetics revealed that the molecule competes with the Gln-donor protein substrate, i.e., dimethylcasein, but not with the Lys-donor small substrate, i.e., dansylcadaverine. Molecular modeling studies revealed that this type of molecule likely binds to an anion-binding site comprising the basic amino acids of Lys54, Lys61, Lys73, Lys156, and Arg244 among others. Overall, our work puts forward a new anion-binding site, selective, nontoxic, sulfonated heparin mimetic FXIIIa inhibitor 16 for further development as an effective and safer anticoagulant.
Collapse
Affiliation(s)
- Kayla
T. Vu
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Srabani Kar
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Navneet Goyal
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Madhusoodanan Mottamal
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Daniel K. Afosah
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rami A. Al-Horani
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| |
Collapse
|
4
|
Woodland M, Thompson A, Lipford A, Goyal N, Schexnaildre JC, Mottamal M, Afosah DK, Al-Horani RA. New Triazole-Based Potent Inhibitors of Human Factor XIIa as Anticoagulants. ACS OMEGA 2024; 9:10694-10708. [PMID: 38463342 PMCID: PMC10918664 DOI: 10.1021/acsomega.3c09335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Factor XIIa (FXIIa) functions as a plasma serine protease within the contact activation pathway. Various animal models have indicated a substantial role for FXIIa in thromboembolic diseases. Interestingly, individuals and animals with FXII deficiency seem to maintain normal hemostasis. Consequently, inhibiting FXIIa could potentially offer a viable therapeutic approach for achieving effective and safer anticoagulation without the bleeding risks associated with the existing anticoagulants. Despite the potential, only a limited number of small molecule inhibitors targeting human FXIIa have been documented. Thus, we combined a small library of 32 triazole and triazole-like molecules to be evaluated for FXIIa inhibition by using a chromogenic substrate hydrolysis assay under physiological conditions. Initial screening at 200 μM involved 18 small molecules, revealing that 4 molecules inhibited FXIIa more than 20%. In addition to being the most potent inhibitor identified in the first round, inhibitor 8 also exhibited a substantial margin of selectivity against related serine proteases, including factors XIa, Xa, and IXa. However, the molecule also inhibited thrombin with a similar potency. It also prolonged the clotting time of human plasma, as was determined in the activated partial thromboplastin time and prothrombin time assays. Subsequent structure-activity relationship studies led to the identification of several inhibitors with submicromolar activity, among which inhibitor 22 appears to demonstrate significant selectivity not only over factors IXa, Xa, and XIa, but also over thrombin. In summary, this study introduces novel triazole-based small molecules, specifically compounds 8 and 22, identified as potent and selective inhibitors of human FXIIa. The aim is to advance these inhibitors for further development as anticoagulants to provide a more effective and safer approach to preventing and/or treating thromboembolic diseases.
Collapse
Affiliation(s)
- Ma’Lik
D. Woodland
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Anthony Thompson
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Amanda Lipford
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Navneet Goyal
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - John C. Schexnaildre
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Madhusoodanan Mottamal
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Daniel K. Afosah
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rami A. Al-Horani
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| |
Collapse
|
5
|
Ezell J, Al-Horani RA. Chemically Synthesized 1,2,3,4,6-Pentakis-O-Galloyl-β-D-Glucopyranoside Blocks SARS-CoV-2 Spike Interaction with Host ACE-2 Receptor. Med Chem 2024; 20:986-991. [PMID: 39041278 PMCID: PMC11974267 DOI: 10.2174/0115734064302693240711114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND In the search for anti-COVID-19 therapy, 1,2,3,4,6-pentakis-O-galloyl-β- D-glucopyranoside, a natural polyphenolic compound isolated from many traditional medicinal herbs, has been reported as an RBD-ACE2 binding inhibitor and as a broad-spectrum anticoronaviral inhibitor targeting the main protease and RNA-dependent RNA polymerase of SARSCoV- 2. To facilitate the structure-activity relationship studies of 1,2,3,4,6-pentakis-O-galloyl-β-Dglucopyranoside, we describe its chemical synthesis and characterization, as well as its activity towards the SARS-CoV-2 spike interaction with host ACE2 receptor. METHODS 1,2,3,4,6-Pentakis-O-galloyl-β-D-glucopyranoside was synthesized in two quantitative steps from 3,4,5-tribenzyloxybenzoic acid and β-D-glucopyranoside: DCC-mediated esterification and palladium-catalyzed per-debenzylation. The synthesized molecule was evaluated using a SARS-CoV-2 spike trimer (S1 + S2) ACE2 inhibitor screening colorimetric assay kit, SARS-CoV- 2 spike S1 RBD ACE2 inhibitor screening assay kit, and a cellular neutralization assay using the Spike (SARS-CoV-2) Pseudotyped Lentivirus, ACE2-HEK293 recombinant cell line. RESULTS The chemically synthesized product blocked the binding of the spike trimer of SARSCoV- 2 to the human ACE2 receptor with IC50=22±2 μM. It also blocked ACE2: spike RBD binding with IC50=27±3 μM. Importantly, it inhibited the infectivity of SARS2-CoV2-Spike pseudotyped lentivirus on the ACE2 HEK293 cell line with IC50=20±2 μM. CONCLUSION Overall, the chemically synthesized 1,2,3,4,6-pentakis-O-galloyl-β-D-glucopyranoside represents a lead molecule to develop anti-SARS-CoV-2 therapies that block the initial stage of the viral infection by blocking the virus entry to the host cell.
Collapse
Affiliation(s)
- Jazmine Ezell
- Division of Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, USA
| | - Rami A. Al-Horani
- Division of Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, USA
| |
Collapse
|
6
|
Kellogg GE, Cen Y, Dukat M, Ellis KC, Guo Y, Li J, May AE, Safo MK, Zhang S, Zhang Y, Desai UR. Merging cultures and disciplines to create a drug discovery ecosystem at Virginia commonwealth university: Medicinal chemistry, structural biology, molecular and behavioral pharmacology and computational chemistry. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:255-269. [PMID: 36863508 PMCID: PMC10619687 DOI: 10.1016/j.slasd.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
The Department of Medicinal Chemistry, together with the Institute for Structural Biology, Drug Discovery and Development, at Virginia Commonwealth University (VCU) has evolved, organically with quite a bit of bootstrapping, into a unique drug discovery ecosystem in response to the environment and culture of the university and the wider research enterprise. Each faculty member that joined the department and/or institute added a layer of expertise, technology and most importantly, innovation, that fertilized numerous collaborations within the University and with outside partners. Despite moderate institutional support with respect to a typical drug discovery enterprise, the VCU drug discovery ecosystem has built and maintained an impressive array of facilities and instrumentation for drug synthesis, drug characterization, biomolecular structural analysis and biophysical analysis, and pharmacological studies. Altogether, this ecosystem has had major impacts on numerous therapeutic areas, such as neurology, psychiatry, drugs of abuse, cancer, sickle cell disease, coagulopathy, inflammation, aging disorders and others. Novel tools and strategies for drug discovery, design and development have been developed at VCU in the last five decades; e.g., fundamental rational structure-activity relationship (SAR)-based drug design, structure-based drug design, orthosteric and allosteric drug design, design of multi-functional agents towards polypharmacy outcomes, principles on designing glycosaminoglycans as drugs, and computational tools and algorithms for quantitative SAR (QSAR) and understanding the roles of water and the hydrophobic effect.
Collapse
Affiliation(s)
- Glen E Kellogg
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA.
| | - Yana Cen
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Malgorzata Dukat
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Keith C Ellis
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Aaron E May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA.
| |
Collapse
|
7
|
Chiles R, Afosah DK, Al-Horani RA. Investigation of the anticoagulant activity of cyclic sulfated glycosaminoglycan mimetics. Carbohydr Res 2023; 529:108831. [PMID: 37209666 PMCID: PMC10330556 DOI: 10.1016/j.carres.2023.108831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
Thrombotic disorders are among the leading causes of deaths worldwide. Anticoagulants are frequently prescribed for their prevention and/or treatment. Current anticoagulants, which target either thrombin or factor Xa, are plagued with a number of drawbacks, the most important of which is the increased risk of internal bleeding. To develop better antithrombotic agents, the anticoagulant activity of cyclic glycosaminoglycan mimetics was evaluated. Human plasma clotting assays and enzyme inhibition assays were exploited to evaluate the anticoagulant activity of sulfated β-cyclodextrin (SBCD) and its three analogs: sulfated α-cyclodextrin, β-cyclodextrin, and methylated β-cyclodextrin. In normal human plasma, SBCD selectively doubled the activated partial thromboplastin time (APTT) at ∼9 μg/mL, with no effect on prothrombin time (PT) at the same concentration. Likewise, SBCD doubled APTT at ∼9 μg/mL and at ∼8 μg/mL in antithrombin-deficient plasma and heparin cofactor II-deficient plasma, respectively. Interestingly, the three SBCD derivatives were inactive at the highest concentrations tested which highlighted the importance of the sulfate groups and the size of the molecule. Enzyme assays revealed that SBCD inhibits factor XIa (FXIa) with an IC50 value of ∼20 μg/mL and efficacy of near 100%. SBCD did not inhibit other related proteins including thrombin, factor IXa, factor Xa, factor XIIa, factor XIIIa, plasmin, chymotrypsin, or trypsin at the highest concentrations tested demonstrating a significant selectivity. In Michaelis-Menten kinetics, SBCD decreased the VMAX and increased the KM of FXIa hydrolysis of a tripeptide chromogenic substrate indicating a mixed inhibition mechanism. Together, it appears that SBCD is a potent and selective inhibitor of human FXIa with substantial anticoagulant activity in human plasma. Overall, this study introduces SBCD as a promising lead for further development as a safer anticoagulant.
Collapse
Affiliation(s)
- Raquel Chiles
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| | - Daniel K Afosah
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA.
| |
Collapse
|
8
|
Afosah DK, Fayyad RM, Puliafico VR, Merrell S, Langmia EK, Diagne SR, Al-Horani RA, Desai UR. Homogeneous, Synthetic, Non-Saccharide Glycosaminoglycan Mimetics as Potent Inhibitors of Human Cathepsin G. Biomolecules 2023; 13:760. [PMID: 37238630 PMCID: PMC10216581 DOI: 10.3390/biom13050760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Cathepsin G (CatG) is a pro-inflammatory neutrophil serine protease that is important for host defense, and has been implicated in several inflammatory disorders. Hence, inhibition of CatG holds much therapeutic potential; however, only a few inhibitors have been identified to date, and none have reached clinical trials. Of these, heparin is a well-known inhibitor of CatG, but its heterogeneity and bleeding risk reduce its clinical potential. We reasoned that synthetic small mimetics of heparin, labeled as non-saccharide glycosaminoglycan mimetics (NSGMs), would exhibit potent CatG inhibition while being devoid of bleeding risks associated with heparin. Hence, we screened a focused library of 30 NSGMs for CatG inhibition using a chromogenic substrate hydrolysis assay and identified nano- to micro-molar inhibitors with varying levels of efficacy. Of these, a structurally-defined, octasulfated di-quercetin NSGM 25 inhibited CatG with a potency of ~50 nM. NSGM 25 binds to CatG in an allosteric site through an approximately equal contribution of ionic and nonionic forces. Octasulfated 25 exhibits no impact on human plasma clotting, suggesting minimal bleeding risk. Considering that octasulfated 25 also potently inhibits two other pro-inflammatory proteases, human neutrophil elastase and human plasmin, the current results imply the possibility of a multi-pronged anti-inflammatory approach in which these proteases are likely to simultaneously likely combat important conditions, e.g., rheumatoid arthritis, emphysema, or cystic fibrosis, with minimal bleeding risk.
Collapse
Affiliation(s)
- Daniel K. Afosah
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.M.F.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Rawan M. Fayyad
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.M.F.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Valerie R. Puliafico
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, VA 24450, USA
| | - Spencer Merrell
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, VA 24450, USA
| | - Eltice K. Langmia
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, VA 24450, USA
| | - Sophie R. Diagne
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.M.F.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
9
|
Abdelfadiel E, Gunta R, Villuri BK, Afosah DK, Sankaranarayanan NV, Desai UR. Designing Smaller, Synthetic, Functional Mimetics of Sulfated Glycosaminoglycans as Allosteric Modulators of Coagulation Factors. J Med Chem 2023; 66:4503-4531. [PMID: 37001055 PMCID: PMC10108365 DOI: 10.1021/acs.jmedchem.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 04/03/2023]
Abstract
Natural glycosaminoglycans (GAGs) are arguably the most diverse collection of natural products. Unfortunately, this bounty of structures remains untapped. Decades of research has realized only one GAG-like synthetic, small-molecule drug, fondaparinux. This represents an abysmal output because GAGs present a frontier that few medicinal chemists, and even fewer pharmaceutical companies, dare to undertake. GAGs are heterogeneous, polymeric, polydisperse, highly water soluble, synthetically challenging, too rapidly cleared, and difficult to analyze. Additionally, GAG binding to proteins is not very selective and GAG-binding sites are shallow. This Perspective attempts to transform this negative view into a much more promising one by highlighting recent advances in GAG mimetics. The Perspective focuses on the principles used in the design/discovery of drug-like, synthetic, sulfated small molecules as allosteric modulators of coagulation factors, such as antithrombin, thrombin, and factor XIa. These principles will also aid the design/discovery of sulfated agents against cancer, inflammation, and microbial infection.
Collapse
Affiliation(s)
- Elsamani
I. Abdelfadiel
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rama Gunta
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Bharath Kumar Villuri
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Daniel K. Afosah
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Nehru Viji Sankaranarayanan
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Umesh R. Desai
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
10
|
Xie Z, Meng Z, Yang X, Duan Y, Wang Q, Liao C. Factor XIa Inhibitors in Anticoagulation Therapy: Recent Advances and Perspectives. J Med Chem 2023; 66:5332-5363. [PMID: 37037122 DOI: 10.1021/acs.jmedchem.2c02130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Factor XIa (FXIa) in the intrinsic pathway of the coagulation process has been proven to be an effective and safe target for anticoagulant discovery with limited or no bleeding. Numerous small-molecule FXIa inhibitors (SMFIs) with various scaffolds have been identified in the early stages of drug discovery. They have served as the foundation for the recent discovery of additional promising SMFIs with improved potency, selectivity, and pharmacokinetic profiles, some of which have entered clinical trials for the treatment of thrombosis. After reviewing the coagulation process and structure of FXIa, this perspective discusses the rational or structure-based design, discovery, structure-activity relationships, and development of SMFIs disclosed in recent years. Strategies for identifying more selective and druggable SMFIs are provided, paving the way for the design and discovery of more useful SMFIs for anticoagulation therapy.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Zhiwei Meng
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
11
|
Greco A, Laudani C, Spagnolo M, Agnello F, Faro DC, Finocchiaro S, Legnazzi M, Mauro MS, Mazzone PM, Occhipinti G, Rochira C, Scalia L, Capodanno D. Pharmacology and Clinical Development of Factor XI Inhibitors. Circulation 2023; 147:897-913. [PMID: 36913497 DOI: 10.1161/circulationaha.122.062353] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Therapeutic anticoagulation is indicated for a variety of circumstances and conditions in several fields of medicine to prevent or treat venous and arterial thromboembolism. According to the different mechanisms of action, the available parenteral and oral anticoagulant drugs share the common principle of hampering or blocking key steps of the coagulation cascade, which unavoidably comes at the price of an increased propensity to bleed. Hemorrhagic complications affect patient prognosis both directly and indirectly (ie, by preventing the adoption of an effective antithrombotic strategy). Inhibition of factor XI (FXI) has emerged as a strategy with the potential to uncouple the pharmacological effect and the adverse events of anticoagulant therapy. This observation is based on the differential contribution of FXI to thrombus amplification, in which it plays a major role, and hemostasis, in which it plays an ancillary role in final clot consolidation. Several agents were developed to inhibit FXI at different stages (ie, suppressing biosynthesis, preventing zymogen activation, or impeding the biological action of the active form), including antisense oligonucleotides, monoclonal antibodies, small synthetic molecules, natural peptides, and aptamers. Phase 2 studies of different classes of FXI inhibitors in orthopedic surgery suggested that dose-dependent reductions in thrombotic complications are not paralleled by dose-dependent increases in bleeding compared with low-molecular-weight heparin. Likewise, the FXI inhibitor asundexian was associated with lower rates of bleeding compared with the activated factor X inhibitor apixaban in patients with atrial fibrillation, although no evidence of a therapeutic effect on stroke prevention is available so far. FXI inhibition could also be appealing for patients with other conditions, including end-stage renal disease, noncardioembolic stroke, or acute myocardial infarction, for which other phase 2 studies have been conducted. The balance between thromboprophylaxis and bleeding achieved by FXI inhibitors needs confirmation in large-scale phase 3 clinical trials powered for clinical end points. Several of such trials are ongoing or planned to define the role of FXI inhibitors in clinical practice and to clarify which FXI inhibitor may be most suited for each clinical indication. This article reviews the rationale, pharmacology, results of medium or small phase 2 studies, and future perspectives of drugs inhibiting FXI.
Collapse
Affiliation(s)
- Antonio Greco
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | - Claudio Laudani
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | - Marco Spagnolo
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | - Federica Agnello
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | | | - Simone Finocchiaro
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | - Marco Legnazzi
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | - Maria Sara Mauro
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | | | | | - Carla Rochira
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | - Lorenzo Scalia
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | - Davide Capodanno
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| |
Collapse
|
12
|
Al-Horani RA, Afosah DK, Kar S, Aliter KF, Mottamal M. Sulphated penta-galloyl glucopyranoside (SPGG) is glycosaminoglycan mimetic allosteric inhibitor of cathepsin G. RPS PHARMACY AND PHARMACOLOGY REPORTS 2023; 2:rqad001. [PMID: 36844783 PMCID: PMC9942669 DOI: 10.1093/rpsppr/rqad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Objective Cathepsin G (CatG) is a cationic serine protease with wide substrate specificity. CatG is reported to play a role in several inflammatory pathologies. Thus, we aimed at identifying a potent and allosteric inhibitor of CatG to be used as a platform in further drug development opportunities. Methods Chromogenic substrate hydrolysis assays were used to evaluate the inhibition potency and selectivity of SPGG towards CatG. Salt-dependent studies, Michaelis-Menten kinetics and SDS-PAGE were exploited to decipher the mechanism of CatG inhibition by SPGG. Molecular modelling was also used to identify a plausible binding site. Key findings SPGG displayed an inhibition potency of 57 nM against CatG, which was substantially selective over other proteases. SPGG protected fibronectin and laminin against CatG-mediated degradation. SPGG reduced VMAX of CatG hydrolysis of a chromogenic substrate without affecting KM, suggesting an allosteric mechanism. Resolution of energy contributions indicated that non-ionic interactions contribute ~91% of binding energy, suggesting a substantial possibility of specific recognition. Molecular modelling indicated that SPGG plausibly binds to an anion-binding sequence of 109SRRVRRNRN117. Conclusion We present the discovery of SPGG as the first small molecule, potent, allosteric glycosaminoglycan mimetic inhibitor of CatG. SPGG is expected to open a major route to clinically relevant allosteric CatG anti-inflammatory agents.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, USA
| | - Daniel K Afosah
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Srabani Kar
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, USA
| | - Kholoud F Aliter
- Department of Chemistry, School of STEM, Dillard University, New Orleans, LA, USA
| | | |
Collapse
|
13
|
Li T, Liu J, Wu W. Factor XI, a potential target for anticoagulation therapy for venous thromboembolism. Front Cardiovasc Med 2022; 9:975767. [PMID: 36386334 PMCID: PMC9659736 DOI: 10.3389/fcvm.2022.975767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Venous thromboembolism (VTE) is a common cause of mortality and disability in hospitalized patients, and anticoagulation is an essential therapeutic option. Despite the increasing use of direct oral anticoagulants, complications and adverse drug reactions still occur in patients with VTE. Within 5 years, 20% of patients with VTE experience recurrence, and 50% of patients with deep vein thrombosis develop post-thrombotic syndrome. Furthermore, bleeding due to anticoagulants is a side effect that must be addressed. Therefore, safer and more effective anticoagulant strategies with higher patient compliance are urgently needed. Available epidemiological evidence and animal studies have shown that factor XI (FXI) inhibitors can reduce thrombus size and loosen the thrombus structure with a relatively low risk of bleeding, suggesting that FXI has an important role in thrombus stabilization and is a safer target for anticoagulation. Recent clinical trial data have also shown that FXI inhibitors are as effective as enoxaparin and apixaban in preventing VTE, but with a significantly lower incidence of bleeding. Furthermore, FXI inhibitors can be administered daily or monthly; therefore, the monitoring interval can be longer. Additionally, FXI inhibitors can prolong the activated partial thromboplastin time without affecting prothrombin time, which is an easy and common test used in clinical testing, providing a cost-effective monitoring routine for patients. Consequently, the inhibition of FXI may be an effective strategy for the prevention and treatment of VTE. Enormous progress has been made in the research strategies for FXI inhibitors, with abelacimab already in phase III clinical trials and most other inhibitors in phase I or II trials. In this review, we discuss the challenges of VTE therapy, briefly describe the structure and function of FXI, summarize the latest FXI/activated FXI (FXIa) inhibitor strategies, and summarize the latest developments in clinical trials of FXI/FXIa inhibitors.
Collapse
Affiliation(s)
- Tingting Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Liu
- Department of Nephrology, Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Weihua Wu
- Department of Nephrology, Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Weihua Wu
| |
Collapse
|
14
|
Nowotny B, Thomas D, Schwers S, Wiegmann S, Prange W, Yassen A, Boxnick S. First randomized evaluation of safety, pharmacodynamics, and pharmacokinetics of BAY 1831865, an antibody targeting coagulation factor XI and factor XIa, in healthy men. J Thromb Haemost 2022; 20:1684-1695. [PMID: 35490404 PMCID: PMC9320929 DOI: 10.1111/jth.15744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bleeding is a clinically significant issue with all current anticoagulants. Safer antithrombotic strategies are required. OBJECTIVES To investigate the safety, pharmacodynamics, and pharmacokinetics of BAY 1831865, a humanized, factor XI (FXI)-directed monoclonal antibody, after single intravenous (i.v.) or subcutaneous (s.c.) doses in healthy volunteers. PATIENTS/METHODS In a first-in-human, phase I study, 70 volunteers were randomly assigned (4:1) to receive single-dose BAY 1831865 (3.5, 7, 17, 35, 75, or 150 mg i.v. or 150 mg s.c.) or placebo. Adverse events, pharmacodynamics, and pharmacokinetics were evaluated. RESULTS In this study, no hemorrhage, or hypersensitivity or infusion-/injection-related reactions were reported. Drug-related adverse events occurred in 3 (5.4%) of 56 volunteers; all were mild and self-limited. Dose-dependent prolongation of activated partial thromboplastin time (aPTT) and inhibition of FXI clotting activity was observed with BAY 1831865 i.v. (geometric mean maximum ratio-to-baseline: aPTT, range, 1.09-3.11 vs. 1.05 with placebo; FXI, range, 0.70-0.04 vs. 0.91 with placebo). Onset of effect was rapid after i.v. administration, with duration of effect (up to 55 days) determined by dose. BAY 1831865 s.c. had similar pharmacodynamic effects but a slower onset of action. Terminal half-life increased continuously with increasing i.v. dose (range, 28-208 h), leading to strong and continuous increases in systemic exposure to BAY 1831865. Absolute bioavailability of BAY 1831865 s.c. was 47.2% (95% confidence interval, 30.2-73.7). CONCLUSIONS BAY 1831865 i.v. or s.c. was well tolerated, with no evidence of bleeding in healthy volunteers. BAY 1831865 exhibited pronounced, sustained dose-dependent prolongation of aPTT and duration of FXI inhibition.
Collapse
Affiliation(s)
- Bettina Nowotny
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Dirk Thomas
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Stephan Schwers
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Sara Wiegmann
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Wolfgang Prange
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Ashraf Yassen
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | | |
Collapse
|
15
|
Boothello RS, Sankaranarayanan NV, Afosah DK, Karuturi R, Al-Horani RA, Desai UR. Studies on fragment-based design of allosteric inhibitors of human factor XIa. Bioorg Med Chem 2020; 28:115762. [PMID: 32992249 DOI: 10.1016/j.bmc.2020.115762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/24/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022]
Abstract
Human factor XIa (hFXIa) has emerged as an attractive target for development of new anticoagulants that promise higher level of safety. Different strategies have been adopted so far for the design of anti-hFXIa molecules including competitive and non-competitive inhibition. Of these, allosteric dysfunction of hFXIa's active site is especially promising because of the possibility of controlled reduction in activity that may offer a route to safer anticoagulants. In this work, we assess fragment-based design approach to realize a group of novel allosteric hFXIa inhibitors. Starting with our earlier discovery that sulfated quinazolinone (QAO) bind in the heparin-binding site of hFXIa, we developed a group of two dozen dimeric sulfated QAOs with intervening linkers that displayed a progressive variation in inhibition potency. In direct opposition to the traditional wisdom, increasing linker flexibility led to higher potency, which could be explained by computational studies. Sulfated QAO 19S was identified as the most potent and selective inhibitor of hFXIa. Enzyme inhibition studies revealed that 19S utilizes a non-competitive mechanism of action, which was supported by fluorescence studies showing a classic sigmoidal binding profile. Studies with selected mutants of hFXIa indicated that sulfated QAOs bind in heparin-binding site of the catalytic domain of hFXIa. Overall, the approach of fragment-based design offers considerable promise for designing heparin-binding site-directed allosteric inhibitors of hFXIa.
Collapse
Affiliation(s)
- Rio S Boothello
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States; Hunter Holmes McGuire Medical Center, Richmond, VA 23249, United States
| | - Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Daniel K Afosah
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Rajesh Karuturi
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Rami A Al-Horani
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States; Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States.
| |
Collapse
|
16
|
Morla S, Desai UR. Discovery of Sulfated Small Molecule Inhibitors of Matrix Metalloproteinase-8. Biomolecules 2020; 10:biom10081166. [PMID: 32784891 PMCID: PMC7465109 DOI: 10.3390/biom10081166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022] Open
Abstract
Elevated matrix metalloproteinase-8 (MMP-8) activity contributes to the etiology of many diseases, including atherosclerosis, pulmonary fibrosis, and sepsis. Yet, very few small molecule inhibitors of MMP-8 have been identified. We reasoned that the synthetic non-sugar mimetics of glycosaminoglycans may inhibit MMP-8 because natural glycosaminoglycans are known to modulate the functions of various MMPs. The screening a library of 58 synthetic, sulfated mimetics consisting of a dozen scaffolds led to the identification of only two scaffolds, including sulfated benzofurans and sulfated quinazolinones, as promising inhibitors of MMP-8. Interestingly, the sulfated quinazolinones displayed full antagonism of MMP-8 and sulfated benzofuran appeared to show partial antagonism. Of the two, sulfated quinazolinones exhibited a >10-fold selectivity for MMP-8 over MMP-9, a closely related metalloproteinase. Molecular modeling suggested the plausible occupancy of the S1′ pocket on MMP-8 as the distinguishing feature of the interaction. Overall, this work provides the first proof that the sulfated mimetics of glycosaminoglycans could lead to potent, selective, and catalytic activity-tunable, small molecular inhibitors of MMP-8.
Collapse
Affiliation(s)
- Shravan Morla
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Drug Discovery and Development, Institute for Structural Biology, Virginia Commonwealth University, Richmond 23219, VA, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Drug Discovery and Development, Institute for Structural Biology, Virginia Commonwealth University, Richmond 23219, VA, USA
- Correspondence: ; Tel.: +804-828-7575; Fax: +804-827-3664
| |
Collapse
|
17
|
Inhibitors of blood coagulation factor XIII. Anal Biochem 2020; 605:113708. [PMID: 32335064 DOI: 10.1016/j.ab.2020.113708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
The blood coagulation factor XIII (FXIII) plays an essential role in the stabilization of fibrin clots. This factor, belonging to the class of transglutaminases, catalyzes the final step of secondary hemostasis, i.e. the crosslinking of fibrin polymers. These crosslinks protect the clots against premature fibrinolysis. Consequently, FXIII is an interesting target for the therapeutic treatment of cardiovascular diseases. In this context, inhibitors can influence FXIII in the activation process of the enzyme itself or in its catalytic activity. To date, there is no FXIII inhibitor in medical application, but several studies have been conducted in the past. These studies provided a better understanding of FXIII and identified new lead structures for FXIII inhibitors. Next to small molecule inhibitors, the most promising candidates for the development of clinically applicable FXIII inhibitors are the peptide inhibitors tridegin and transglutaminase-inhibiting Michael acceptors (TIMAs) due to their selectivity towards activated FXIII (FXIIIa). In this review, select FXIII inhibitors and their pharmacological potential are discussed.
Collapse
|
18
|
Elste J, Kaltenbach D, Patel VR, Nguyen MT, Sharthiya H, Tandon R, Mehta SK, Volin MV, Fornaro M, Tiwari V, Desai UR. Inhibition of Human Cytomegalovirus Entry into Host Cells Through a Pleiotropic Small Molecule. Int J Mol Sci 2020; 21:ijms21051676. [PMID: 32121406 PMCID: PMC7084493 DOI: 10.3390/ijms21051676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) infections are wide-spread among the general population with manifestations ranging from asymptomatic to severe developmental disabilities in newborns and life-threatening illnesses in individuals with a compromised immune system. Nearly all current drugs suffer from one or more limitations, which emphasizes the critical need to develop new approaches and new molecules. We reasoned that a ‘poly-pharmacy’ approach relying on simultaneous binding to multiple receptors involved in HCMV entry into host cells could pave the way to a more effective therapeutic outcome. This work presents the study of a synthetic, small molecule displaying pleiotropicity of interactions as a competitive antagonist of viral or cell surface receptors including heparan sulfate proteoglycans and heparan sulfate-binding proteins, which play important roles in HCMV entry and spread. Sulfated pentagalloylglucoside (SPGG), a functional mimetic of heparan sulfate, inhibits HCMV entry into human foreskin fibroblasts and neuroepithelioma cells with high potency. At the same time, SPGG exhibits no toxicity at levels as high as 50-fold more than its inhibition potency. Interestingly, cell-ELISA assays showed downregulation in HCMV immediate-early gene 1 and 2 (IE 1&2) expression in presence of SPGG further supporting inhibition of viral entry. Finally, HCMV foci were observed to decrease significantly in the presence of SPGG suggesting impact on viral spread too. Overall, this work offers the first evidence that pleiotropicity, such as demonstrated by SPGG, may offer a new poly-therapeutic approach toward effective inhibition of HCMV.
Collapse
Affiliation(s)
- James Elste
- Department of Microbiology & Immunology, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (V.R.P.); (M.T.N.); (M.V.V.)
| | - Dominik Kaltenbach
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Vraj R. Patel
- Department of Microbiology & Immunology, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (V.R.P.); (M.T.N.); (M.V.V.)
| | - Max T. Nguyen
- Department of Microbiology & Immunology, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (V.R.P.); (M.T.N.); (M.V.V.)
| | - Harsh Sharthiya
- Department of Anatomy, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (H.S.); (M.F.)
| | - Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA;
| | | | - Michael V. Volin
- Department of Microbiology & Immunology, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (V.R.P.); (M.T.N.); (M.V.V.)
| | - Michele Fornaro
- Department of Anatomy, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (H.S.); (M.F.)
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (V.R.P.); (M.T.N.); (M.V.V.)
- Correspondence: (V.T.); (U.R.D.)
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
- Correspondence: (V.T.); (U.R.D.)
| |
Collapse
|
19
|
Afosah DK, Al-Horani RA. Sulfated Non-Saccharide Glycosaminoglycan Mimetics as Novel Drug Discovery Platform for Various Pathologies. Curr Med Chem 2020; 27:3412-3447. [PMID: 30457046 PMCID: PMC6551317 DOI: 10.2174/0929867325666181120101147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 01/14/2023]
Abstract
Glycosaminoglycans (GAGs) are very complex, natural anionic polysaccharides. They are polymers of repeating disaccharide units of uronic acid and hexosamine residues. Owing to their template-free, spatiotemporally-controlled, and enzyme-mediated biosyntheses, GAGs possess enormous polydispersity, heterogeneity, and structural diversity which often translate into multiple biological roles. It is well documented that GAGs contribute to physiological and pathological processes by binding to proteins including serine proteases, serpins, chemokines, growth factors, and microbial proteins. Despite advances in the GAG field, the GAG-protein interface remains largely unexploited by drug discovery programs. Thus, Non-Saccharide Glycosaminoglycan Mimetics (NSGMs) have been rationally developed as a novel class of sulfated molecules that modulate GAG-protein interface to promote various biological outcomes of substantial benefit to human health. In this review, we describe the chemical, biochemical, and pharmacological aspects of recently reported NSGMs and highlight their therapeutic potentials as structurally and mechanistically novel anti-coagulants, anti-cancer agents, anti-emphysema agents, and anti-viral agents. We also describe the challenges that complicate their advancement and describe ongoing efforts to overcome these challenges with the aim of advancing the novel platform of NSGMs to clinical use.
Collapse
Affiliation(s)
- Daniel K. Afosah
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219
| | - Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| |
Collapse
|
20
|
Al-Horani RA. Factor XI(a) inhibitors for thrombosis: an updated patent review (2016-present). Expert Opin Ther Pat 2019; 30:39-55. [PMID: 31847619 DOI: 10.1080/13543776.2020.1705783] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Anticoagulation without bleeding is an ideal goal in treating thrombosis, however, this goal has not been achieved. All current anticoagulants are associated with significant bleeding which limits their safe use. Genetic and pharmacological findings indicate that factor XIa is a key player in thrombosis, yet it is a relatively marginal one in hemostasis. Thus, factor XIa and its zymogen offer a unique opportunity to develop anticoagulants with low bleeding risk.Areas covered: A survey of patent literature has retrieved more than 50 patents on the discovery of novel therapeutics targeting factor XI(a) since 2016. Small molecules, monoclonal antibodies, oligonucleotides, and polypeptides have been developed to inhibit factor XI(a). Many inhibitors are in early development and few have been evaluated in clinical trials.Expert opinion: Factor XI(a) is being actively pursued as a drug target for the development of effective and safer anticoagulants. Although many patents claiming factor XI(a) inhibitors were filed prior to 2016, recent literature reveals a moderately declining trend. Nevertheless, more agents have entered different levels of clinical trials. These agents exploit diverse mechanistic strategies for inhibition. Although further development is warranted, reaching one or more of these agents to the clinic will transform the anticoagulation therapy.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, USA
| |
Collapse
|
21
|
Al-Horani RA, Abdelfadiel EI, Afosah DK, Morla S, Sistla JC, Mohammed B, Martin EJ, Sakagami M, Brophy DF, Desai UR. A synthetic heparin mimetic that allosterically inhibits factor XIa and reduces thrombosis in vivo without enhanced risk of bleeding. J Thromb Haemost 2019; 17:2110-2122. [PMID: 31397071 PMCID: PMC6893084 DOI: 10.1111/jth.14606] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/15/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Human factor XIa (FXIa) is an actively pursued target for development of safer anticoagulants. Our long-standing hypothesis has been that allosterism originating from heparin-binding site(s) on coagulation enzymes is a promising approach to yield safer agents. OBJECTIVES To develop a synthetic heparin mimetic as an inhibitor of FXIa so as to reduce clot formation in vivo but not carry high bleeding risk. METHODS We employed a gamut of methods involving synthetic chemistry, biophysical biochemistry, enzyme assays, blood and plasma coagulation assays, and in vivo thrombosis models in this work. RESULTS Sulfated chiro-inositol (SCI), a non-saccharide mimetic of heparin, was synthesized in three steps in overall yields of >50%. SCI inhibited FXIa with potency of 280 nmol/L and preferentially engaged FXIa's heparin-binding site to conformationally alter its active site. SCI inhibition of FXIa could be rapidly reversed by common antidotes, such as protamine. SCI preferentially prolonged plasma clotting initiated with recalcification, rather than thromboplastin, alluding to its intrinsic pathway-based mechanism. Human blood thromboelastography indicated good ex vivo anticoagulation properties of SCI. Rat tail bleeding and maximum-dose-tolerated studies indicated that no major bleeding or toxicity concerns for SCI suggesting a potentially safer anticoagulation outcome. FeCl3 -induced arterial and thromboplastin-induced venous thrombosis model studies in the rat showed reduced thrombus formation by SCI at 250 μg/animal, which matched enoxaparin at 2500 μg/animal. CONCLUSIONS Overall, SCI is a highly promising, allosteric inhibitor of FXIa that induces potent anticoagulation in vivo. Further studies are necessary to assess SCI in animal models mimicking human clinical indications.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219
| | - Elsamani I. Abdelfadiel
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Daniel K. Afosah
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219
| | - Shravan Morla
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219
| | - Jyothi C. Sistla
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219
| | - Bassem Mohammed
- Department of Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, VA 23298
| | - Erika J. Martin
- Department of Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, VA 23298
| | - Masahiro Sakagami
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298
| | - Donald F. Brophy
- Department of Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, VA 23298
| | - Umesh R. Desai
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219
| |
Collapse
|
22
|
Abstract
Recent advances in our understanding of the contribution of thrombin generation to arterial thrombosis and the role of platelets in venous thrombosis have prompted new treatment paradigms. Nonetheless, bleeding remains the major side effect of such treatments spurring the quest for new antithrombotic regimens with better benefit-risk profiles and for safer anticoagulants for existing and new indications. The aims of this article are to review the results of recent trials aimed at enhancing the benefit-risk profile of antithrombotic therapy and explain how these findings are changing our approach to the management of arterial and venous thrombosis. Focusing on these 2 aspects of thrombosis management, this article discusses 4 advances: (1) the observation that in some indications, lowering the dose of some direct oral anticoagulants reduces the risk of bleeding without compromising efficacy, (2) the recognition that aspirin is not only effective for secondary prevention of atherothrombosis but also for prevention of venous thromboembolism, (3) the finding that dual pathway inhibition with the combination of low-dose rivaroxaban to attenuate thrombin generation plus aspirin to reduce thromboxane A2-mediated platelet activation is superior to aspirin or rivaroxaban alone for prevention of atherothrombosis in patients with coronary or peripheral artery disease, and (4) the development of inhibitors of factor XI or XII as potentially safer anticoagulants.
Collapse
Affiliation(s)
- Noel C Chan
- From the Thrombosis and Atherosclerosis Research Institute and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I Weitz
- From the Thrombosis and Atherosclerosis Research Institute and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
Schaefer M, Buchmueller A, Dittmer F, Straßburger J, Wilmen A. Allosteric Inhibition as a New Mode of Action for BAY 1213790, a Neutralizing Antibody Targeting the Activated Form of Coagulation Factor XI. J Mol Biol 2019; 431:4817-4833. [PMID: 31655039 DOI: 10.1016/j.jmb.2019.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/26/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Factor XI (FXI), the zymogen of activated FXI (FXIa), is an attractive target for novel anticoagulants because FXI inhibition offers the potential to reduce thrombosis risk while minimizing the risk of bleeding. BAY 1213790, a novel anti-FXIa antibody, was generated using phage display technology. Crystal structure analysis of the FXIa-BAY 1213790 complex demonstrated that the tyrosine-rich complementarity-determining region 3 loop of the heavy chain of BAY 1213790 penetrated deepest into the FXIa binding epitope, forming a network of favorable interactions including a direct hydrogen bond from Tyr102 to the Gln451 sidechain (2.9 Å). The newly discovered binding epitope caused a structural rearrangement of the FXIa active site, revealing a novel allosteric mechanism of FXIa inhibition by BAY 1213790. BAY 1213790 specifically inhibited FXIa with a binding affinity of 2.4 nM, and in human plasma, prolonged activated partial thromboplastin time and inhibited thrombin generation in a concentration-dependent manner.
Collapse
Affiliation(s)
- Martina Schaefer
- Bayer AG, Research and Development, Pharmaceuticals, Structural Biology, 13342 Berlin, Germany.
| | - Anja Buchmueller
- Bayer AG, Research and Development, Pharmaceuticals, Cardiovascular, 42096 Wuppertal, Germany
| | - Frank Dittmer
- Bayer AG, Product Supply, Pharmaceuticals, Quality Control, 51368 Leverkusen, Germany
| | - Julia Straßburger
- Bayer AG, Research and Development, Pharmaceuticals, Cardiovascular, 42096 Wuppertal, Germany
| | - Andreas Wilmen
- Bayer AG, Research and Development, Pharmaceuticals, Protein Engineering and Assays, 50829 Cologne, Germany
| |
Collapse
|
24
|
Morla S, Sankaranarayanan NV, Afosah DK, Kumar M, Kummarapurugu AB, Voynow JA, Desai UR. On the Process of Discovering Leads That Target the Heparin-Binding Site of Neutrophil Elastase in the Sputum of Cystic Fibrosis Patients. J Med Chem 2019; 62:5501-5511. [PMID: 31074986 DOI: 10.1021/acs.jmedchem.9b00379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cystic fibrosis (CF) is a disease of dysregulated salt and fluid homeostasis that results in the massive accumulation of neutrophil elastase, resulting in lung degradation and death. The current CF therapy relies on inhaled deoxyribonuclease and hypertonic saline but does not address the elastolytic degradation of the lung. We reasoned that allosteric agents targeting the heparin-binding site of neutrophil elastase would offer a therapeutic paradigm. Screening a library of 60 nonsaccharide glycosaminoglycan mimetics (NSGMs) led to the discovery of 23 hits against neutrophil elastase. To identify a lead NSGM that works in sync with the current CF-relieving agents, we developed a rigorous protocol based on fundamental computational, biochemical, mechanistic, and adverse effect studies. The lead NSGM so identified neutralized neutrophil elastase present in the sputum of CF patients in the presence of deoxyribonuclease and high-salt conditions. Our work presents the process for discovering potent, small, synthetic, allosteric, anti-CF agents, while also identifying a novel lead for further studies in animal models of CF.
Collapse
Affiliation(s)
- Shravan Morla
- Department of Medicinal Chemistry , Virginia Commonwealth University , Richmond , Virginia 23298 , United States.,Institute for Structural Biology, Drug Discovery and Development , Virginia Commonwealth University , Richmond , Virginia 23219 , United States
| | - Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry , Virginia Commonwealth University , Richmond , Virginia 23298 , United States.,Institute for Structural Biology, Drug Discovery and Development , Virginia Commonwealth University , Richmond , Virginia 23219 , United States
| | - Daniel K Afosah
- Department of Medicinal Chemistry , Virginia Commonwealth University , Richmond , Virginia 23298 , United States.,Institute for Structural Biology, Drug Discovery and Development , Virginia Commonwealth University , Richmond , Virginia 23219 , United States
| | - Megh Kumar
- Department of Medicinal Chemistry , Virginia Commonwealth University , Richmond , Virginia 23298 , United States.,Institute for Structural Biology, Drug Discovery and Development , Virginia Commonwealth University , Richmond , Virginia 23219 , United States
| | - Apparao B Kummarapurugu
- Children's Hospital of Richmond at Virginia Commonwealth University , Richmond , Virginia 23298 , United States
| | - Judith A Voynow
- Children's Hospital of Richmond at Virginia Commonwealth University , Richmond , Virginia 23298 , United States
| | - Umesh R Desai
- Department of Medicinal Chemistry , Virginia Commonwealth University , Richmond , Virginia 23298 , United States.,Institute for Structural Biology, Drug Discovery and Development , Virginia Commonwealth University , Richmond , Virginia 23219 , United States
| |
Collapse
|
25
|
Gallegos KM, Taylor CR, Rabulinski DJ, Del Toro R, Girgis DE, Jourha D, Tiwari V, Desai UR, Ramsey KH. A Synthetic, Small, Sulfated Agent Is a Promising Inhibitor of Chlamydia spp. Infection in vivo. Front Microbiol 2019; 9:3269. [PMID: 30700982 PMCID: PMC6343517 DOI: 10.3389/fmicb.2018.03269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/17/2018] [Indexed: 01/19/2023] Open
Abstract
Chlamydia is the most frequently reported sexually transmitted bacteria causing 2.9 million infections annually in the United States. Diagnosis, treatment, and sequelae of chlamydial disease cost billions of dollars each year in the United States alone. Considering that a heparin sulfate-like cell surface receptor is involved in Chlamydia infections, we reasoned that sulfated and sulfonated mimics of heparin sulfate would be useful in topical prophylactic prevention of Chlamydia. In this study, we tested a small, synthetic sulfated agent sulfated pentagalloyl glucoside (SPGG) and three synthetic sulfonated polymers PSS and SPS with average molecular weight in the range of 11 to 1000 kDa for inhibition against Chlamydia. Infection of HeLa cells with C. muridarum or C. trachomatis in the presence of increasing concentrations of SPGG or sulfonated polymers were quantified by immunofluorescence of Chlamydia inclusions. To determine whether in vitro pre-treatment of SPGG inhibits infection of C. muridarum, HeLa monolayers were incubated with SPGG-containing media, and then infected with Chlamydia. Our in vitro results show that SPGG pre-treatment inhibits Chlamydia infection in a dose-dependent manner. In addition, we further determined if SPGG treatment has an inhibitory effect during infection, therefore cell monolayers were infected with C. muridarum in the concurrent presence of SPGG. Our results show that SPGG inhibits C. muridarum infection with an IC50 at 10 μg/ml levels. We also tested the inhibitory effect of synthetic polymers PSS and SPS against Chlamydia and found inhibition of C. muridarum and C. trachomatis infections with IC50 ranging from 0.3 to 0.8 μg/ml. SPGG, PSS, and SPS inhibit formation of Chlamydia inclusions in a concentration-dependent manner. For evaluation of in vivo efficacy of the most effective agent in blocking C. muridarum, SPGG, we intravaginally pre-treated mice with SPGG before infection with C. muridarum. Cervical swabs were collected post-infection to quantify Chlamydia inclusions in vitro. Our in vivo data show that the SPGG-treated group has a statistically significant reduction of infection compared to the no-treatment control. Overall, our results show that SPGG could serve as a promising topical inhibitor for preventing Chlamydia infection.
Collapse
Affiliation(s)
- Karen M. Gallegos
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Christopher R. Taylor
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
- Department of Dermatology, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado – Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel J. Rabulinski
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Rosalinda Del Toro
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Danielle E. Girgis
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Dapinder Jourha
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Kyle H. Ramsey
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
26
|
Abstract
Thrombosis remains a major cause of morbidity and mortality. Consequently, advances in antithrombotic therapy are needed to reduce the disease burden. This article focuses on 2 such advances. First, the prevention of atherothrombosis in patients with coronary or peripheral artery disease, which has been enhanced by the finding that the combination of low-dose rivaroxaban plus aspirin is superior to aspirin alone for prevention of recurrent ischemic events. However, this benefit comes at the cost of increased bleeding albeit not fatal bleeding. To overcome this problem, the second advance is the identification of factor XI as a target for new anticoagulants that are potentially safer than those currently available.
Collapse
Affiliation(s)
- Jeffrey I. Weitz
- From the Thrombosis and Atherosclerosis Research Institute and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Noel C. Chan
- From the Thrombosis and Atherosclerosis Research Institute and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
27
|
Majmudar H, Hao M, Sankaranarayanan NV, Zanotti B, Volin MV, Desai UR, Tiwari V. A synthetic glycosaminoglycan mimetic blocks HSV-1 infection in human iris stromal cells. Antiviral Res 2018; 161:154-162. [PMID: 30481525 DOI: 10.1016/j.antiviral.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 11/26/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) is a significant pathogen that affects vision by targeting multiple regions in the human eye including iris. Using a focused library of synthetic non-saccharide glycosaminoglycan mimetics (NSGMs), we identified sulfated pentagalloylglucoside (SPGG) as a potent inhibitor of HSV-1 entry and cell-to-cell spread in the primary cultures of human iris stromal (HIS) cells isolated from eye donors. Using in vitro β-galactosidase reporter assay and plaque reduction assay, SPGG was found to inhibit HSV-1 entry in a dosage-dependent manner (IC50 ∼6.0 μM). Interestingly, a pronounced inhibition in HSV-1 entry and spread was observed in HIS cells, or a cell line expressing specific gD-receptor, when virions were pre-treated with mimetics suggesting a possible interaction between SPGG and the HSV-1 glycoprotein. To examine the significance of gD-SPGG interaction, HIS cells were pretreated with SPGG, which showed a significant reduction in gD binding. Taken together, our results provide strong evidence of SPGG being a novel viral entry inhibitor against ocular HSV infection.
Collapse
Affiliation(s)
- Hardik Majmudar
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Meng Hao
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Brian Zanotti
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Michael V Volin
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA.
| |
Collapse
|
28
|
Kaltenbach DD, Jaishankar D, Hao M, Beer JC, Volin MV, Desai UR, Tiwari V. Sulfotransferase and Heparanase: Remodeling Engines in Promoting Virus Infection and Disease Development. Front Pharmacol 2018; 9:1315. [PMID: 30555321 PMCID: PMC6282075 DOI: 10.3389/fphar.2018.01315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
An extraordinary binding site generated in heparan sulfate (HS) structures, during its biosynthesis, provides a unique opportunity to interact with multiple protein ligands including viral proteins, and therefore adds tremendous value to this master molecule. An example of such a moiety is the sulfation at the C3 position of glucosamine residues in HS chain via 3-O sulfotransferase (3-OST) enzymes, which generates a unique virus-cell fusion receptor during herpes simplex virus (HSV) entry and spread. Emerging evidence now suggests that the unique patterns in HS sulfation assist multiple viruses in invading host cells at various steps of their life cycles. In addition, sulfated-HS structures are known to assist in invading host defense mechanisms and initiating multiple inflammatory processes; a critical event in the disease development. All these processes are detrimental for the host and therefore raise the question of how HS-sulfation is regulated. Epigenetic modulations have been shown to be implicated in these reactions during HSV infection as well as in HS modifying enzyme sulfotransferases, and therefore pose a critical component in answering it. Interestingly, heparanase (HPSE) activity is shown to be upregulated during virus infection and multiple other diseases assisting in virus replication to promote cell and tissue damage. These phenomena suggest that sulfotransferases and HPSE serve as key players in extracellular matrix remodeling and possibly generating unique signatures in a given disease. Therefore, identifying the epigenetic regulation of OST genes, and HPSE resulting in altered yet specific sulfation patterns in HS chain during virus infection, will be a significant a step toward developing potential diagnostic markers and designing novel therapies.
Collapse
Affiliation(s)
- Dominik D Kaltenbach
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Dinesh Jaishankar
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Meng Hao
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Jacob C Beer
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Michael V Volin
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
29
|
Al-Horani RA, Afosah DK. Recent advances in the discovery and development of factor XI/XIa inhibitors. Med Res Rev 2018; 38:1974-2023. [PMID: 29727017 PMCID: PMC6173998 DOI: 10.1002/med.21503] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Factor XIa (FXIa) is a serine protease homodimer that belongs to the intrinsic coagulation pathway. FXIa primarily catalyzes factor IX activation to factor IXa, which subsequently activates factor X to factor Xa in the common coagulation pathway. Growing evidence suggests that FXIa plays an important role in thrombosis with a relatively limited contribution to hemostasis. Therefore, inhibitors targeting factor XI (FXI)/FXIa system have emerged as a paradigm-shifting strategy so as to develop a new generation of anticoagulants to effectively prevent and/or treat thromboembolic diseases without the life-threatening risk of internal bleeding. Several inhibitors of FXI/FXIa proteins have been discovered or designed over the last decade including polypeptides, active site peptidomimetic inhibitors, allosteric inhibitors, antibodies, and aptamers. Antisense oligonucleotides (ASOs), which ultimately reduce the hepatic biosynthesis of FXI, have also been introduced. A phase II study, which included patients undergoing elective primary unilateral total knee arthroplasty, revealed that a specific FXI ASO effectively protects patients against venous thrombosis with a relatively limited risk of bleeding. Initial findings have also demonstrated the potential of FXI/FXIa inhibitors in sepsis, listeriosis, and arterial hypertension. This review highlights various chemical, biochemical, and pharmacological aspects of FXI/FXIa inhibitors with the goal of advancing their development toward clinical use.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Daniel K. Afosah
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219
| |
Collapse
|
30
|
Gangji RN, Sankaranarayanan NV, Elste J, Al-Horani RA, Afosah DK, Joshi R, Tiwari V, Desai UR. Inhibition of Herpes Simplex Virus-1 Entry into Human Cells by Nonsaccharide Glycosaminoglycan Mimetics. ACS Med Chem Lett 2018; 9:797-802. [PMID: 30128070 DOI: 10.1021/acsmedchemlett.7b00364] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 07/16/2018] [Indexed: 01/29/2023] Open
Abstract
Although heparan sulfate (HS) has been implicated in facilitating entry of enveloped viruses including herpes simplex virus (HSV), small molecules that effectively compete with this abundant, cell surface macromolecule remain unknown. We reasoned that entry of HSV-1 involving its glycoprotein D (gD) binding to HS could be competitively targeted through small, synthetic, nonsaccharide glycosaminoglycan mimetics (NSGMs). Screening a library of NSGMs identified a small, distinct group that bound gD with affinities of 8-120 nM. Studies on HSV-1 entry into HeLa, HFF-1, and VK2/E6E7 cells identified inhibitors with potencies in the range of 0.4-1.0 μM. These synthetic NSGMs are likely to offer promising chemical biology probes and/or antiviral drug discovery opportunities.
Collapse
Affiliation(s)
- Rahaman Navaz Gangji
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Nehru Viji Sankaranarayanan
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - James Elste
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515, United States
| | - Rami A. Al-Horani
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Daniel K. Afosah
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Rachel Joshi
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515, United States
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
31
|
Quan ML, Pinto DJP, Smallheer JM, Ewing WR, Rossi KA, Luettgen JM, Seiffert DA, Wexler RR. Factor XIa Inhibitors as New Anticoagulants. J Med Chem 2018; 61:7425-7447. [PMID: 29775297 DOI: 10.1021/acs.jmedchem.8b00173] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
With the introduction of thrombin and factor Xa inhibitors to the oral anticoagulant market, significant improvements in both efficacy and safety have been achieved. Early clinical and preclinical data suggest that inhibitors of factor XIa can provide a still safer alternative, with expanded efficacy for arterial indications. This Perspective provides an overview of target rationale and details of the discovery and development of inhibitors of factor XIa as next generation antithrombotic agents.
Collapse
Affiliation(s)
- Mimi L Quan
- Research and Development , Bristol-Myers Squibb Company , P.O. Box 5400, Princeton , New Jersey 08543 , United States
| | - Donald J P Pinto
- Research and Development , Bristol-Myers Squibb Company , P.O. Box 5400, Princeton , New Jersey 08543 , United States
| | - Joanne M Smallheer
- Research and Development , Bristol-Myers Squibb Company , P.O. Box 5400, Princeton , New Jersey 08543 , United States
| | - William R Ewing
- Research and Development , Bristol-Myers Squibb Company , P.O. Box 5400, Princeton , New Jersey 08543 , United States
| | - Karen A Rossi
- Research and Development , Bristol-Myers Squibb Company , P.O. Box 5400, Princeton , New Jersey 08543 , United States
| | - Joseph M Luettgen
- Research and Development , Bristol-Myers Squibb Company , P.O. Box 5400, Princeton , New Jersey 08543 , United States
| | - Dietmar A Seiffert
- Research and Development , Bristol-Myers Squibb Company , P.O. Box 5400, Princeton , New Jersey 08543 , United States
| | - Ruth R Wexler
- Research and Development , Bristol-Myers Squibb Company , P.O. Box 5400, Princeton , New Jersey 08543 , United States
| |
Collapse
|
32
|
Weitz JI, Fredenburgh JC. 2017 Scientific Sessions Sol Sherry Distinguished Lecture in Thrombosis: Factor XI as a Target for New Anticoagulants. Arterioscler Thromb Vasc Biol 2018; 38:304-310. [PMID: 29269514 DOI: 10.1161/atvbaha.117.309664] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/05/2017] [Indexed: 01/08/2023]
Abstract
The goal of anticoagulant therapy is to attenuate thrombosis without compromising hemostasis. Although the direct oral anticoagulants are associated with less intracranial hemorrhage than vitamin K antagonists, bleeding remains their major side effect. Factor XI has emerged as a promising target for anticoagulants that may be safer than those currently available. The focus on factor XI stems from epidemiological evidence of its role in thrombosis, the observation of attenuated thrombosis in factor XI-deficient mice, identification of novel activators, and the fact that factor XI deficiency is associated with only a mild bleeding diathesis. Proof-of-concept comes from the demonstration that compared with enoxaparin, factor XI knockdown reduces venous thromboembolism without increasing bleeding after elective knee arthroplasty. This article rationalizes the selection of factor XI as a target for new anticoagulants, reviews the agents under development, and outlines a potential path forward for their development.
Collapse
Affiliation(s)
- Jeffrey I Weitz
- From the Department of Medicine (J.I.W., J.C.F.) and Department of Biochemistry and Biomedical Sciences (J.I.W.), McMaster University, Hamilton, Ontario, Canada; and Thrombosis and Atherosclerosis Research Institute (J.I.W., J.C.F.), Hamilton, Ontario, Canada.
| | - James C Fredenburgh
- From the Department of Medicine (J.I.W., J.C.F.) and Department of Biochemistry and Biomedical Sciences (J.I.W.), McMaster University, Hamilton, Ontario, Canada; and Thrombosis and Atherosclerosis Research Institute (J.I.W., J.C.F.), Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Pinto DJP, Orwat MJ, Smith LM, Quan ML, Lam PYS, Rossi KA, Apedo A, Bozarth JM, Wu Y, Zheng JJ, Xin B, Toussaint N, Stetsko P, Gudmundsson O, Maxwell B, Crain EJ, Wong PC, Lou Z, Harper TW, Chacko SA, Myers JE, Sheriff S, Zhang H, Hou X, Mathur A, Seiffert DA, Wexler RR, Luettgen JM, Ewing WR. Discovery of a Parenteral Small Molecule Coagulation Factor XIa Inhibitor Clinical Candidate (BMS-962212). J Med Chem 2017; 60:9703-9723. [DOI: 10.1021/acs.jmedchem.7b01171] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Donald J. P. Pinto
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Michael J. Orwat
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Leon M. Smith
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Mimi L. Quan
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Patrick Y. S. Lam
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Karen A. Rossi
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Atsu Apedo
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Jeffrey M. Bozarth
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Yiming Wu
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Joanna J. Zheng
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Baomin Xin
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Nathalie Toussaint
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Paul Stetsko
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Olafur Gudmundsson
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Brad Maxwell
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Earl J. Crain
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Pancras C. Wong
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Zhen Lou
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Timothy W. Harper
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Silvi A. Chacko
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Joseph E. Myers
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Steven Sheriff
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Huiping Zhang
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Xiaoping Hou
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Dietmar A. Seiffert
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Ruth R. Wexler
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Joseph M. Luettgen
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - William R. Ewing
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| |
Collapse
|
34
|
Weitz JI, Harenberg J. New developments in anticoagulants: Past, present and future. Thromb Haemost 2017; 117:1283-1288. [DOI: 10.1160/th16-10-0807] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
Abstract
SummaryThrombosis is a leading cause of death and disability worldwide, and anticoagulants are the mainstay of its prevention and treatment. Starting with unfractionated heparin (UFH) and vitamin K antagonists (VKAs) such as warfarin, the choices of anticoagulants have exploded in the past 20 years. With over 90% subcutaneous bioavailability, no need for coagulation monitoring and dose adjustment, and a lower risk of heparin-induced thrombocytopenia, low-molecular-weight heparin and fondaparinux have replaced UFH for prevention and initial treatment of venous thromboembolism and for secondary prevention in cancer patients. In patients undergoing percutaneous interventions, bivalirudin is often used instead of UFH. Oral anticoagulation therapy has advanced with the introduction of the non-vitamin K antagonist oral anticoagulants (NOACs), which include dabigatran, rivaroxaban, apixaban and edoxaban. With efficacy at least equal to that of VKAs but with greater safety and convenience, the NOACs are now replacing VKAs for many indications. This paper a) highlights these advances, b) outlines how specific reversal agents for the NOACs will enhance their safety, c) reviews some of the ongoing trials with the NOACs, and d) describes the inhibitors of factor XII and XI that are under investigation as anticoagulants.
Collapse
|
35
|
Abstract
Although the non-vitamin antagonist oral anticoagulants produce less intracranial bleeding than warfarin, serious bleeding still occurs. Therefore, the search for safer anticoagulants continues. Factor XII and factor XI have emerged as promising targets whose inhibition has the potential to prevent thrombosis with little or no disruption of hemostasis. Thus, thrombosis is attenuated in mice deficient in factor XII or factor XI and patients with congenital factor XII deficiency do not bleed and those with factor XI deficiency rarely have spontaneous bleeding. Strategies targeting factor XII and XI include antisense oligonucleotides to decrease their synthesis, inhibitory antibodies or aptamers, and small molecule inhibitors. These strategies attenuate thrombosis in various animal models and factor XI knockdown with an antisense oligonucleotide in patients undergoing knee replacement surgery reduced postoperative venous thromboembolism to a greater extent than enoxaparin without increasing bleeding. Therefore, current efforts are focused on evaluating the efficacy and safety of factor XII and factor XI directed anticoagulant strategies.
Collapse
Affiliation(s)
- Jeffrey I Weitz
- Departments of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Thrombosis and Atherosclerosis Research Institute, Hamilton, Canada.
| |
Collapse
|
36
|
Weitz JI, Fredenburgh JC. Factors XI and XII as Targets for New Anticoagulants. Front Med (Lausanne) 2017; 4:19. [PMID: 28286749 PMCID: PMC5323386 DOI: 10.3389/fmed.2017.00019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
Compared with vitamin K antagonists, the direct oral anticoagulants (DOACs) are simpler to administer and are associated with less intracranial bleeding. Nonetheless, even with the DOACs, bleeding still occurs and many patients with atrial fibrillation fail to receive anticoagulant thromboprophylaxis because of the fear of bleeding. Therefore, there is an urgent need for safer anticoagulants. Recent investigations into the biochemistry of hemostasis and thrombosis have identified new targets for development of novel anticoagulants. Using data from complementary sources, including epidemiological studies and investigations in various animal models, the contact pathway has emerged as a potential mediator of thrombosis that plays a minor part in hemostasis. Consequently, factor (F) XII of the contact system and FXI in the intrinsic pathway have been identified as potentially safer targets of anticoagulation than thrombin or FXa. However, further studies are needed to identify which is the better target for the appropriate indication. This review highlights the evidence for focusing on FXI and FXII and examines the novel approaches directed at these new targets. These emerging strategies should address current unmet medical needs and provide new avenues by which to improve anticoagulant therapy by reducing the risk of bleeding.
Collapse
Affiliation(s)
- Jeffrey I. Weitz
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- The Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
- *Correspondence: Jeffrey I. Weitz,
| | - James C. Fredenburgh
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- The Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
37
|
Nagarajan B, Sankaranarayanan NV, Patel BB, Desai UR. A molecular dynamics-based algorithm for evaluating the glycosaminoglycan mimicking potential of synthetic, homogenous, sulfated small molecules. PLoS One 2017; 12:e0171619. [PMID: 28182755 PMCID: PMC5300208 DOI: 10.1371/journal.pone.0171619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/23/2017] [Indexed: 01/06/2023] Open
Abstract
Glycosaminoglycans (GAGs) are key natural biopolymers that exhibit a range of biological functions including growth and differentiation. Despite this multiplicity of function, natural GAG sequences have not yielded drugs because of problems of heterogeneity and synthesis. Recently, several homogenous non-saccharide glycosaminoglycan mimetics (NSGMs) have been reported as agents displaying major therapeutic promise. Yet, it remains unclear whether sulfated NSGMs structurally mimic sulfated GAGs. To address this, we developed a three-step molecular dynamics (MD)-based algorithm to compare sulfated NSGMs with GAGs. In the first step of this algorithm, parameters related to the range of conformations sampled by the two highly sulfated molecules as free entities in water were compared. The second step compared identity of binding site geometries and the final step evaluated comparable dynamics and interactions in the protein-bound state. Using a test case of interactions with fibroblast growth factor-related proteins, we show that this three-step algorithm effectively predicts the GAG structure mimicking property of NSGMs. Specifically, we show that two unique dimeric NSGMs mimic hexameric GAG sequences in the protein-bound state. In contrast, closely related monomeric and trimeric NSGMs do not mimic GAG in either the free or bound states. These results correspond well with the functional properties of NSGMs. The results show for the first time that appropriately designed sulfated NSGMs can be good structural mimetics of GAGs and the incorporation of a MD-based strategy at the NSGM library screening stage can identify promising mimetics of targeted GAG sequences.
Collapse
Affiliation(s)
- Balaji Nagarajan
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Nehru Viji Sankaranarayanan
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Bhaumik B. Patel
- Hunter Holmes Muire VA Medical Center, Richmond, Virginia, United States of America
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
38
|
Corte JR, Fang T, Osuna H, Pinto DJP, Rossi KA, Myers JE, Sheriff S, Lou Z, Zheng JJ, Harper TW, Bozarth JM, Wu Y, Luettgen JM, Seiffert DA, Decicco CP, Wexler RR, Quan ML. Structure-Based Design of Macrocyclic Factor XIa Inhibitors: Discovery of the Macrocyclic Amide Linker. J Med Chem 2017; 60:1060-1075. [DOI: 10.1021/acs.jmedchem.6b01460] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- James R. Corte
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| | - Tianan Fang
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| | - Honey Osuna
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| | - Donald J. P. Pinto
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| | - Karen A. Rossi
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| | - Joseph E. Myers
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| | - Steven Sheriff
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| | - Zhen Lou
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| | - Joanna J. Zheng
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| | - Timothy W. Harper
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| | - Jeffrey M. Bozarth
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| | - Yiming Wu
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| | - Joseph M. Luettgen
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| | - Dietmar A. Seiffert
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| | - Carl P. Decicco
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| | - Ruth R. Wexler
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| | - Mimi L. Quan
- Research and Development, Bristol-Myers Squibb Company, P.O. Box
5400, Princeton, New Jersey 08543, United States
| |
Collapse
|
39
|
Afosah DK, Al-Horani RA, Sankaranarayanan NV, Desai UR. Potent, Selective, Allosteric Inhibition of Human Plasmin by Sulfated Non-Saccharide Glycosaminoglycan Mimetics. J Med Chem 2017; 60:641-657. [DOI: 10.1021/acs.jmedchem.6b01474] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daniel K. Afosah
- Department of Medicinal Chemistry,
and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rami A. Al-Horani
- Department of Medicinal Chemistry,
and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry,
and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Umesh R. Desai
- Department of Medicinal Chemistry,
and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
40
|
Abstract
INTRODUCTION Anticoagulants are the mainstay for prevention and/or treatment of thrombotic disorders. Each clinically used anticoagulant is associated with significant adverse consequences, especially bleeding. Factor XIa (FXIa), a key factor involved in the amplification of procoagulation signal, has been suggested as a major target for anticoagulant drug discovery because of reduced risk of bleeding. AREAS COVERED Our literature search uncovered dozens of industrial and academic patents on the discovery of novel FXIa/FXI inhibitors. Small peptidomimetics, sulfated glycosaminoglycan mimetics, polypeptides, antisense oligonucleotides, and monoclonal antibodies have been developed as inhibitors of FXIa. Although many agents are in early discovery/development phases, the activity and safety of a few have been evaluated in various animal models and in humans. EXPERT OPINION FXIa is a promising drug target for development of effective anticoagulants with limited bleeding complications. Literature reveals a major trend in the number of patent applications over the last three years. These inhibitors exploit different approaches for target inhibition. Allosteric modulation of FXIa and biosynthetic inhibition of FXI are mechanistically unique. Despite initial results in patients undergoing knee anthroplasty as with antisense oligonucleotides, major advances should be realized, particularly with respect to pharmacokinetics, for FXI/FXIa inhibitors to enter the clinic.
Collapse
Affiliation(s)
- Rami A Al-Horani
- a Department of Medicinal Chemistry & Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA 23219 , USA
| | - Umesh R Desai
- a Department of Medicinal Chemistry & Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA 23219 , USA
| |
Collapse
|
41
|
Abstract
Despite the introduction of direct oral anticoagulants (DOACs), the search for more effective and safer antithrombotic strategies continues. Better understanding of the pathogenesis of thrombosis has fostered 2 new approaches to achieving this goal. First, evidence that thrombin may be as important as platelets to thrombosis at sites of arterial injury and that platelets contribute to venous thrombosis has prompted trials comparing anticoagulants with aspirin for secondary prevention in arterial thrombosis and aspirin with anticoagulants for primary and secondary prevention of venous thrombosis. These studies will help identify novel treatment strategies. Second, emerging data that naturally occurring polyphosphates activate the contact system and that this system is critical for thrombus stabilization and growth have identified factor XII (FXII) and FXI as targets for new anticoagulants that may be even safer than the DOACs. Studies are needed to determine whether FXI or FXII is the better target and to compare the efficacy and safety of these new strategies with current standards of care for the prevention or treatment of thrombosis. Focusing on these advances, this article outlines how treatment strategies for thrombosis are evolving and describes the rationale and approaches to targeting FXII and FXI. These emerging anticoagulant strategies should address unmet needs and reduce the systemic underuse of anticoagulation because of the fear of bleeding.
Collapse
|
42
|
Al-Horani RA, Karuturi R, Lee M, Afosah DK, Desai UR. Allosteric Inhibition of Factor XIIIa. Non-Saccharide Glycosaminoglycan Mimetics, but Not Glycosaminoglycans, Exhibit Promising Inhibition Profile. PLoS One 2016; 11:e0160189. [PMID: 27467511 PMCID: PMC4965010 DOI: 10.1371/journal.pone.0160189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022] Open
Abstract
Factor XIIIa (FXIIIa) is a transglutaminase that catalyzes the last step in the coagulation process. Orthostery is the only approach that has been exploited to design FXIIIa inhibitors. Yet, allosteric inhibition of FXIIIa is a paradigm that may offer a key advantage of controlled inhibition over orthosteric inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We reasoned that targeting a collection of basic amino acid residues distant from FXIIIa’s active site by using sulfated glycosaminoglycans (GAGs) or non-saccharide GAG mimetics (NSGMs) would lead to the discovery of the first allosteric FXIIIa inhibitors. We tested a library of 22 variably sulfated GAGs and NSGMs against human FXIIIa to discover promising hits. Interestingly, although some GAGs bound to FXIIIa better than NSGMs, no GAG displayed any inhibition. An undecasulfated quercetin analog was found to inhibit FXIIIa with reasonable potency (efficacy of 98%). Michaelis-Menten kinetic studies revealed an allosteric mechanism of inhibition. Fluorescence studies confirmed close correspondence between binding affinity and inhibition potency, as expected for an allosteric process. The inhibitor was reversible and at least 9-fold- and 26-fold selective over two GAG-binding proteins factor Xa (efficacy of 71%) and thrombin, respectively, and at least 27-fold selective over a cysteine protease papain. The inhibitor also inhibited the FXIIIa-mediated polymerization of fibrin in vitro. Overall, our work presents the proof-of-principle that FXIIIa can be allosterically modulated by sulfated non-saccharide agents much smaller than GAGs, which should enable the design of selective and safe anticoagulants.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Rajesh Karuturi
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael Lee
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Daniel K. Afosah
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Umesh R. Desai
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
43
|
Corte JR, Fang T, Pinto DJ, Orwat MJ, Rendina AR, Luettgen JM, Rossi KA, Wei A, Ramamurthy V, Myers JE, Sheriff S, Narayanan R, Harper TW, Zheng JJ, Li YX, Seiffert DA, Wexler RR, Quan ML. Orally bioavailable pyridine and pyrimidine-based Factor XIa inhibitors: Discovery of the methyl N-phenyl carbamate P2 prime group. Bioorg Med Chem 2016; 24:2257-72. [DOI: 10.1016/j.bmc.2016.03.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022]
|
44
|
Gailani D, Bane CE, Gruber A. Factor XI and contact activation as targets for antithrombotic therapy. J Thromb Haemost 2015; 13:1383-95. [PMID: 25976012 PMCID: PMC4516614 DOI: 10.1111/jth.13005] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/01/2015] [Indexed: 11/26/2022]
Abstract
The most commonly used anticoagulants produce therapeutic antithrombotic effects either by inhibiting thrombin or factor Xa (FXa) or by lowering the plasma levels of the precursors of these key enzymes, prothrombin and FX. These drugs do not distinguish between thrombin generation contributing to thrombosis from thrombin generation required for hemostasis. Thus, anticoagulants increase bleeding risk, and many patients who would benefit from therapy go untreated because of comorbidities that place them at unacceptable risk for hemorrhage. Studies in animals demonstrate that components of the plasma contact activation system contribute to experimentally induced thrombosis, despite playing little or no role in hemostasis. Attention has focused on FXII, the zymogen of a protease (FXIIa) that initiates contact activation when blood is exposed to foreign surfaces, and FXI, the zymogen of the protease FXIa, which links contact activation to the thrombin generation mechanism. In the case of FXI, epidemiologic data indicate this protein contributes to stroke and venous thromboembolism, and perhaps myocardial infarction, in humans. A phase 2 trial showing that reduction of FXI may be more effective than low molecular weight heparin at preventing venous thrombosis during knee replacement surgery provides proof of concept for the premise that an antithrombotic effect can be uncoupled from an anticoagulant effect in humans by targeting components of contact activation. Here, we review data on the role of FXI and FXII in thrombosis and results of preclinical and human trials for therapies targeting these proteins.
Collapse
Affiliation(s)
- David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Charles E. Bane
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Andras Gruber
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| |
Collapse
|
45
|
Schmaier AH. Medically-induced hemophilia C to treat thrombosis. Thromb Res 2015; 136:185-6. [PMID: 26024825 DOI: 10.1016/j.thromres.2015.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 11/25/2022]
Affiliation(s)
- Alvin H Schmaier
- Division of Hematology and Oncology, Department of Medicine Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH 44106.
| |
Collapse
|
46
|
Al-Horani RA, Gailani D, Desai UR. Allosteric inhibition of factor XIa. Sulfated non-saccharide glycosaminoglycan mimetics as promising anticoagulants. Thromb Res 2015; 136:379-87. [PMID: 25935648 DOI: 10.1016/j.thromres.2015.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/25/2015] [Accepted: 04/15/2015] [Indexed: 12/30/2022]
Abstract
Recent development of sulfated non-saccharide glycosaminoglycan mimetics, especially sulfated pentagalloyl glucopyranoside (SPGG), as potent inhibitors of factor XIa (FXIa) (J. Med. Chem. 2013; 56:867-878 and J. Med. Chem. 2014; 57:4805-4818) has led to a strong possibility of developing a new line of factor XIa-based anticoagulants. In fact, SPGG represents the first synthetic, small molecule inhibitor that appears to bind in site remote from the active site. Considering that allosteric inhibition of FXIa is a new mechanism for developing a distinct line of anticoagulants, we have studied SPGG's interaction with FXIa with a goal of evaluating its pre-clinical relevance. Comparative inhibition studies with several glycosaminoglycans revealed the importance of SPGG's non-saccharide backbone. SPGG did not affect the activity of plasma kallikrein, activated protein C and factor XIIIa suggesting that SPGG-based anticoagulation is unlikely to affect other pathways connected with coagulation factors. SPGG's effect on APTT of citrated human plasma was also not dependent on antithrombin or heparin cofactor II. Interestingly, SPGG's anticoagulant potential was diminished by serum albumin as well as factor XI, while it could be reversed by protamine or polybrene, which implies possible avenues for developing antidote strategy. Studies with FXIa mutants indicated that SPGG engages Lys529, Arg530 and Arg532, but not Arg250, Lys252, Lys253 and Lys255. Finally, SPGG competes with unfractionated heparin, but not with polyphosphates and/or glycoprotein Ibα, for binding to FXIa. These studies enhance understanding on the first allosteric inhibitor of FXIa and highlight its value as a promising anticoagulant.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - David Gailani
- Departments of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, United States.
| |
Collapse
|
47
|
Corte JR, Fang T, Hangeland JJ, Friends TJ, Rendina AR, Luettgen JM, Bozarth JM, Barbera FA, Rossi KA, Wei A, Ramamurthy V, Morin PE, Seiffert DA, Wexler RR, Quan ML. Pyridine and pyridinone-based factor XIa inhibitors. Bioorg Med Chem Lett 2015; 25:925-30. [DOI: 10.1016/j.bmcl.2014.12.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/24/2022]
|
48
|
Plasmin regulation through allosteric, sulfated, small molecules. Molecules 2015; 20:608-24. [PMID: 25569517 PMCID: PMC6272155 DOI: 10.3390/molecules20010608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/26/2014] [Indexed: 01/16/2023] Open
Abstract
Plasmin, a key serine protease, plays a major role in clot lysis and extracellular matrix remodeling. Heparin, a natural polydisperse sulfated glycosaminoglycan, is known to allosterically modulate plasmin activity. No small allosteric inhibitor of plasmin has been discovered to date. We screened an in-house library of 55 sulfated, small glycosaminoglycan mimetics based on nine distinct scaffolds and varying number and positions of sulfate groups to discover several promising hits. Of these, a pentasulfated flavonoid-quinazolinone dimer 32 was found to be the most potent sulfated small inhibitor of plasmin (IC50 = 45 μM, efficacy = 100%). Michaelis-Menten kinetic studies revealed an allosteric inhibition of plasmin by these inhibitors. Studies also indicated that the most potent inhibitors are selective for plasmin over thrombin and factor Xa, two serine proteases in coagulation cascade. Interestingly, different inhibitors exhibited different levels of efficacy (40%–100%), an observation alluding to the unique advantage offered by an allosteric process. Overall, our work presents the first small, synthetic allosteric plasmin inhibitors for further rational design.
Collapse
|
49
|
Hangeland JJ, Friends TJ, Rossi KA, Smallheer JM, Wang C, Sun Z, Corte JR, Fang T, Wong PC, Rendina AR, Barbera FA, Bozarth JM, Luettgen JM, Watson CA, Zhang G, Wei A, Ramamurthy V, Morin PE, Bisacchi GS, Subramaniam S, Arunachalam P, Mathur A, Seiffert DA, Wexler RR, Quan ML. Phenylimidazoles as Potent and Selective Inhibitors of Coagulation Factor XIa with in Vivo Antithrombotic Activity. J Med Chem 2014; 57:9915-32. [DOI: 10.1021/jm5010607] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jon J. Hangeland
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Todd J. Friends
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Karen A. Rossi
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Joanne M. Smallheer
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Cailan Wang
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Zhong Sun
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - James R. Corte
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Tianan Fang
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Pancras C. Wong
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Alan R. Rendina
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Frank A. Barbera
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Jeffrey M. Bozarth
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Joseph M. Luettgen
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Carol A. Watson
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Ge Zhang
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Anzhi Wei
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Vidhyashankar Ramamurthy
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Paul E. Morin
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Gregory S. Bisacchi
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Srinath Subramaniam
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Piramanayagam Arunachalam
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Dietmar A. Seiffert
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Ruth R. Wexler
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Mimi L. Quan
- Research and Development, Bristol-Myers Squibb,
P.O. Box 5400, Princeton, New Jersey 08543, United States
| |
Collapse
|