1
|
Proma SJ, Biswas B, Noor MY, Allen HC. Nanoplastic-Induced Disruption of DPPC and Palmitic Acid Films: Implications for Membrane Integrity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40400389 DOI: 10.1021/acs.est.5c04793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Nanoplastics are generated from the fragmentation of microplastics under various environmental conditions in the atmosphere. These tiny pollutants are widespread and can enter the human body through the air we breathe and the food and water we consume. Understanding how nanoplastics interact with different membrane lipids is paramount to discerning the kind of threat they pose in terms of lung alveolar destabilization, impaired cell communication, cell wall disruption, diminished nutrient delivery, and neurotoxicity. In this research, we examined the interaction of polystyrene nanoplastics with phosphatidylcholine and palmitic acid at the aqueous interface to identify individual lipid response. Employing a comprehensive experimental approach that includes infrared-reflection absorption spectroscopy, Langmuir isotherms, and Brewster angle microscopy, we investigated chemical and physical changes of the lipid systems with nanoplastics dispersed within the water solution phase. Increasing the concentration of polystyrene nanoplastics in the solution phase led to enhanced interfacial activity; the nanoplastics were observed to incorporate into the lipid films driven by adsorption/complexation. The findings provide insights into the physical mechanisms through which nanoplastics permeate cellular membranes and bioaccumulate.
Collapse
Affiliation(s)
- Shamma Jabeen Proma
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Biswajit Biswas
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mohamed Yaseen Noor
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Judd KD, Parsons SW, Majumder T, Dawlaty JM. Electrostatics, Hydration, and Chemical Equilibria at Charged Monolayers on Water. Chem Rev 2025; 125:2440-2473. [PMID: 39933097 DOI: 10.1021/acs.chemrev.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The chemistry and physics of soft matter interfaces, especially aqueous-organic interfaces, are centrally important to many areas of science and technology. Often, the thermodynamics, kinetics, and selectivity of reactions are modified at interfaces. Here, we review the electrostatics and hydration at charged monolayers on water and their influence on interfacial chemical equilibria. First, we provide an understanding of interfaces as a conceptual continuation of the solvation shell of small molecules, along with recent relevant experimental work. Then, we provide a summary of models for describing the electrostatics of aqueous interfaces. While we will discuss a range of new developments, our focus will be on systems where the electrostatics of the surface is controllable by the choice of relatively simple insoluble surfactants. New insights into the molecular structure of the double layer, with particular attention on the knowledge gained from spectroscopy will be reviewed. Our approach is to familiarize the reader with simple models, followed by discussion of models with further complexity for explaining interfacial phenomena. Experiments that test the limits of such models will also be discussed. Finally, we will provide an outlook on engineering the interfacial environment for tailored reactivity, along with the anticipated experimental advancements and potentials impacts.
Collapse
Affiliation(s)
- Kenneth D Judd
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| | - Sean W Parsons
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| | - Tirthick Majumder
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| | - Jahan M Dawlaty
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Müller S, Fiutowski J, Rasmussen MB, Balic Zunic T, Rubahn HG, Posth NR. Nanoplastic in aqueous environments: The role of chemo-electric properties for nanoplastic-mineral interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178529. [PMID: 39848159 DOI: 10.1016/j.scitotenv.2025.178529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Due to increasing plastic production, the continuous release of primary and secondary nanoplastic particles (NPs, <1 μm) has become an emerging contaminant in terrestrial environments. The fate and transport of NPs in subsurface environments remain poorly understood, largely due to the complex interplay of mineralogical, chemical, biological, and morphological heterogeneity. This study examines interactions between abundant subsurface minerals and NPs under controlled water chemistry (1 mM KCl, pH 5.5). These conditions minimize potential chemical effects from ions in solution, isolating the impact of mineral complexity. Surface-modified polystyrene nanoparticles (-COOH and -NH2 functional groups) are proxies for degradation products and organic associations found in environmental plastics. Experimental results are compared with theoretical predictions using DLVO (Derjaguin-Landau-Verwey-Overbeek) double-layer force models. Despite all studied minerals maintaining negative surface charges across varying pH, electrostatic double-layer (EDL) interactions played a minor role in NP attachment. Instead, mechanisms such as specific ion-binding interactions (mediated by trace metal ions), bridging via divalent ions, and hydrogen bonding were more significant. Evidence suggests that kinetic effects for most mineral-NP combinations persist beyond 24 h. This study highlights the critical role of biogeochemical and mineralogical composition in controlling NP attachment and release in subsurface environments, with implications for their transport and fate in aquifers.
Collapse
Affiliation(s)
- Sascha Müller
- Department of Biology, Functional Ecology, Lund University, Sweden; Department of Geosciences & Natural Resource Management, Geology, University of Copenhagen, Denmark.
| | - Jacek Fiutowski
- Mads Clausen Institute, NanoSYD, University Southern Denmark (SDU), Denmark
| | - Maja Bar Rasmussen
- Department of Geosciences & Natural Resource Management, Geology, University of Copenhagen, Denmark
| | - Tonci Balic Zunic
- Department of Geosciences & Natural Resource Management, Geology, University of Copenhagen, Denmark
| | | | - Nicole R Posth
- Department of Geosciences & Natural Resource Management, Geology, University of Copenhagen, Denmark
| |
Collapse
|
4
|
Li Z, Li S, Zhu M, Liu Q, Zhang Y, Wang Y, Wu L, Jiang X. Interfacial Microenvironment-Regulated Coordinate Structures Dictate the Metal-Organic Framework Facet Orientation toward Efficient CO 2 Cycloaddition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39562176 DOI: 10.1021/acs.langmuir.4c03234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The preparation of high-quality highly oriented metal-organic framework (MOF) thin films is desirable for developing advanced functional devices. However, the pathways for controlling the oriented growth of MOFs are largely unknown, and determining their microcosmic evolution at the complex solid-liquid interface remains a challenge. Herein, we investigate the critical early growth stage of typical HKUST-1 on the COOH-functionalized Au substrate utilizing a combination of in situ surface-enhanced infrared spectroscopy, X-ray photoelectron spectroscopy, and photoinduced force microscopy. Detailed molecular level information indicates that it is not only the COOH-terminated SAM itself but also the distinct interfacial structures of the first metal coordinate layer and second ligand coordinate layer, which can be regulated in aprotic and protic solvents, that dominate the initial growth behavior of MOF and thus lead to the [111], [100], and polycrystal facet-oriented growth of HKUST-1. Moreover, the prepared HKUST-1 films exhibit a crystal facet-dependent catalytic rate in the chemical fixation of CO2 into cyclic carbonate. Our observations provide a reasonable guide for designing MOF-based anisotropic functional equipment.
Collapse
Affiliation(s)
- Zihao Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Shanshan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Manyu Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Qixin Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yuqi Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yiran Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Lie Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Al-Abadleh HA, Smith M, Ogilvie A, Sadiq NW. Quantifying the Effect of Basic Minerals on Acid- and Ligand-Promoted Dissolution Kinetics of Iron in Simulated Dark Atmospheric Aging of Dust and Coal Fly Ash Particles. J Phys Chem A 2024; 128:8198-8208. [PMID: 39285699 DOI: 10.1021/acs.jpca.4c05181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The content and multiphase chemistry of iron (Fe) in multicomponent atmospheric aerosols are important to global climate and oceanic models. To date, reported dissolution rates of Fe span orders of magnitude with no quantifiable dependency on the content of basic minerals that coexist with Fe. Here, we report dissolution rates of Fe in simulated dark atmospheric aging of fully characterized multielement particles under acidic conditions (bulk pH 1 or 3) with and without oxalic acid and pyrocatechol. Our main findings are (a) the total amount of Ca and Mg was higher in coal fly ash than in Arizona test dust, (b) Fe dissolution initial rates increased exponentially with %Ca/Al and %Mg/Al below 50%, (c) a reduction in the Fe dissolution initial rate was observed with %Ca/Al higher than 50%, (d) reactive Ca and Mg minerals increased the calculated initial pH at the liquid/solid interface to values higher by only 1.5-2 units than the measured bulk pH, yet interfacial water remained acidic for Fe dissolution to take place, and (e) reactive Ca and Mg minerals enhanced the deprotonation of organics at the interface, aiding in ligand-promoted dissolution of Fe. The impact of these results is discussed within the context of constraining Fe dissolution kinetic models.
Collapse
Affiliation(s)
- Hind A Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada
| | - Madison Smith
- Department of Chemistry and Physics, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, Alberta T3E 6K6, Canada
| | - Arden Ogilvie
- Department of Chemistry and Physics, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, Alberta T3E 6K6, Canada
| | - Nausheen W Sadiq
- Department of Chemistry and Physics, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, Alberta T3E 6K6, Canada
| |
Collapse
|
6
|
Saeed KH, Strunge K, Pedersen KB, Truelsen SF, Christensen SM, Olsen L, Schiøtt B, Weidner T. Investigating Lipase/Stain Interactions: Determining Interfacial Protein Conformation with Surface Spectroscopy. J Phys Chem B 2024; 128:8162-8169. [PMID: 39158521 DOI: 10.1021/acs.jpcb.4c03173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Conventional bulk protein structure determination methods are not suitable for understanding the distinct and diverse interactions of proteins with interfaces. Notably, interfacial activation is a feature common to many lipases involving movement of a helical "lid" region upon contact with a hydrophobic surface to expose the catalytic site. Here we use the surface specificity of vibrational sum frequency generation spectroscopy (VSFG) spectroscopy to directly probe the conformation of Thermomyces lanuginosus lipase (TLL) at hydrophobic interfaces. The TLL-catalyzed reaction at the air/water interface is monitored by VSFG spectroscopy, showing loss of ester carbonyl modes and appearance of carboxylate stretching modes of the fatty acid products. Furthermore, comparison of experimental and calculated VSFG spectra of the amide I band of TLL allows us to discern the subtle structural changes involved with lid-opening at a hydrophobic surface. Finally, we report a likely orientation of this lid-open state, which interacts with the surface through a loop region away from the lid and active site. This experimental framework for probing protein structure and function at interfaces addresses a significant problem in protein science that is not only impeding the design of better enzymes for biotechnology applications but also drug discovery targeting membrane associated proteins.
Collapse
Affiliation(s)
- Khezar H Saeed
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Kris Strunge
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Kasper B Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | | | | | - Lars Olsen
- Novonesis A/S Biologiens Vej 2, 2800 Kgs Lyngby, Denmark
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Deal A, Smith AE, Oyala KM, Campolo GH, Rugeley BE, Mose TA, Talley DL, Cooley CB, Rapf RJ. Infrared Reflection-Absorption Spectroscopy of α-Keto Acids at the Air-Water Interface: Effects of Chain Length and Headgroup on Environmentally Relevant Surfactant Films. J Phys Chem A 2023; 127:4137-4151. [PMID: 37103984 PMCID: PMC10184673 DOI: 10.1021/acs.jpca.3c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Indexed: 04/28/2023]
Abstract
A variety of organic surfactants are found at air-water interfaces in natural environments, including on the surfaces of aqueous aerosols. The structure and morphology of these organic films can have profound impacts on material transfer between the gas and condensed phases, the optical properties of atmospheric aerosol, and chemical processing at air-water interfaces. Combined, these effects can have significant impacts on climate via radiative forcing, but our understanding of organic films at air-water interfaces is incomplete. Here, we examine the impact of the polar headgroup and alkyl tail length on the structure and morphology of organic monolayers at the air-water interfaces. First, we focus on the substituted carboxylic acids, α-keto acids, using Langmuir isotherms and infrared reflection absorption spectroscopy (IR-RAS) to elucidate key structures and phase behaviors of α-keto acids with a range of surface activities. We show that the structure of α-keto acids, both soluble and insoluble, at water surfaces is a compromise between van der Waals interactions of the hydrocarbon tail and hydrogen bonding interactions involving the polar headgroup. Then, we use this new data set regarding α-keto acid films at water surfaces to examine the role of the polar headgroup on organic films using a similar substituted carboxylic acid (α-hydroxystearic acid), an unsubstituted carboxylic acid (stearic acid), and an alcohol (stearyl alcohol). We show that the polar headgroup and its hydrogen bonding interactions can significantly affect the orientation of amphiphiles at air-water interfaces. Here, we provide side-by-side comparisons of Langmuir isotherms and IR-RA spectra for a set of environmentally relevant organic amphiphiles with a range of alkyl tail lengths and polar headgroup structures.
Collapse
Affiliation(s)
- Alexandra
M. Deal
- Department
of Chemistry and Cooperative Institute for Research in Environmental
Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Abigail E. Smith
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Krista M. Oyala
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Giovanna H. Campolo
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Burgess E. Rugeley
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Tim A. Mose
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Denver L. Talley
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Christina B. Cooley
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Rebecca J. Rapf
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| |
Collapse
|
8
|
Korotkevich AA, Moll CJ, Versluis J, Bakker HJ. Molecular Orientation of Carboxylate Anions at the Water-Air Interface Studied with Heterodyne-Detected Vibrational Sum-Frequency Generation. J Phys Chem B 2023; 127:4544-4553. [PMID: 36917504 DOI: 10.1021/acs.jpcb.2c08992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The carboxylate anion group plays an important role in many (bio)chemical systems and polymeric materials. In this work, we study the orientation of carboxylate anions with various aliphatic and aromatic substituents at the water-air interface by probing the carboxylate stretch vibrations with heterodyne-detected vibrational sum-frequency generation spectroscopy in different polarization configurations. We find that carboxylate groups with small aliphatic substituents show a large tilt angle with respect to the surface normal and that this angle decreases with increasing size of the substituent. We further use the information about the orientation of the carboxylate group to determine the hyperpolarizability components of this group.
Collapse
Affiliation(s)
| | - Carolyn J Moll
- Ultrafast Spectroscopy, AMOLF, Science Park 104, Amsterdam 1098XG, Netherlands
| | - Jan Versluis
- Ultrafast Spectroscopy, AMOLF, Science Park 104, Amsterdam 1098XG, Netherlands
| | - Huib J Bakker
- Ultrafast Spectroscopy, AMOLF, Science Park 104, Amsterdam 1098XG, Netherlands
| |
Collapse
|
9
|
Ai S, Qin Y, Hong Y, Liu L, Yu W. Low-temperature aerobic carbonization and activation of cellulosic materials for Pb 2+ removal in water source. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120215. [PMID: 36150617 DOI: 10.1016/j.envpol.2022.120215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Targeting the removal of Pb2+ in wastewater, cellulosic materials were carbonized in an aerobic environment and activated via ion exchange. The maximum adsorption capacity reached 243.5 mg/g on an MCC-derived adsorbent activated with sodium acetate. The modified porous properties improved the adsorption capacity. The capacity could be completely recovered five times through elution with EDTA. Because of the negative effects of Ni, Mg, and Ca elements, the adsorption capacities of activated carbonized natural materials were lower than that of pure cellulose. N2 adsorption measurement showed that the adsorbent had a large specific surface area as well as abundant micropores and 4-nm-sized mesopores. FTIR and surface potential results proved that carboxyl group was generated in the aerobic carbonization, and was deprotonated during ion exchange. This adsorbent consisted of C-C bonds as the building blocks and hydrophilic groups on the surface. XPS results demonstrated that the Pb 4f binding energies were reduced by 0.7-0.8 eV due to the interaction between Pb2+ and the activated adsorbent, indicating that the carboxylate groups bonded with Pb2+ through coordination interactions. Pseudo-second-order and Elovich kinetic models were well fitted with the adsorption processes on the pristine and activated carbonized adsorbents, indicative of chemisorption on heterogeneous surfaces. The Freundlich expression agreed well with the data measured, and the pristine and activated adsorbents had weak and strong affinities for Pb2+, respectively. The Pb2+ adsorption process was exothermic and spontaneous, and heat release determined the spontaneity. The adsorption capacity is attributed to the carboxylate groups and pores generated in the aerobic oxidation and ion exchange procedures.
Collapse
Affiliation(s)
- Shuo Ai
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City, 545006, China.
| | - Yue Qin
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City, 545006, China
| | - Yuxiang Hong
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City, 545006, China
| | - Linghui Liu
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City, 545006, China
| | - Wanguo Yu
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City, 545006, China
| |
Collapse
|
10
|
Deal AM, Vaida V. Infrared Reflection–Absorption Spectroscopy of α-Hydroxyacids at the Water–Air Interface. J Phys Chem A 2022; 126:8280-8294. [DOI: 10.1021/acs.jpca.2c04462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexandra M. Deal
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Veronica Vaida
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
11
|
Kusaka R, Watanabe M. Development of Heavy Element Chemistry at Interfaces: Observing Actinide Complexes at the Oil/Water Interface in Solvent Extraction by Nonlinear Vibrational Spectroscopy. J Phys Chem Lett 2022; 13:7065-7071. [PMID: 35900124 PMCID: PMC9358700 DOI: 10.1021/acs.jpclett.2c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Understanding the chemistry of elements at the bottom of the periodic table is a challenging goal in chemistry. Observing actinide species at interfaces by using interface-selective second-order nonlinear optical spectroscopy, such as vibrational sum frequency generation (VSFG) spectroscopy, is a promising route for developing heavy element chemistry; however, such attempts are scarce. Here, we investigated the phase transfer mechanism of uranyl ions (UO22+) in solvent extraction using the di(2-ethylhexyl)phosphoric acid (HDEHP) extractant dissolved in the dodecane organic phase by probing the oil/water liquid-liquid interface using VSFG spectroscopy. The POO- symmetric stretch vibrational signals of the HDEHP ligands clearly demonstrated that uranyl ions form interfacial complexes with HDEHP at the oil/water interface. The interfacial uranyl-HDEHP complexes were formed with uranyl ions coming from both the aqueous and oil phases, strongly suggesting that the interfacial complex is an intermediate to cross the oil/water interface. Density functional theory calculations proposed the molecular structure of the interfacial uranyl-HDEHP complex.
Collapse
|
12
|
Lesnicki D, Wank V, Cyran JD, Backus EHG, Sulpizi M. Lower degree of dissociation of pyruvic acid at water surfaces than in bulk. Phys Chem Chem Phys 2022; 24:13510-13513. [PMID: 35640627 DOI: 10.1039/d2cp01293f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the acid/base behavior of environmentally relevant organic acids is of key relevance for accurate climate modelling. Here we investigate the effect of pH on the (de)protonation state of pyruvic acid at the air-water interface and in bulk by using the analytical techniques surface-specific vibrational sum frequency generation and attenuated total reflection spectroscopy. To provide a molecular interpretation of the observed behavior, simulations are carried out using a free energy perturbation approach in combination with electronic structure-based molecular dynamics. In both the experimental and theoretical results we observe that the protonated form of pyruvic acid is preferred at the air-water interface. The increased proton affinity is the result of the specific microsolvation at the interface.
Collapse
Affiliation(s)
- Dominika Lesnicki
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz, Germany.
| | - Veronika Wank
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währinger Straße 42, 1090 Vienna, Austria. .,University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Straße 42, 1090 Vienna, Austria
| | - Jenée D Cyran
- Department of Chemistry and Biochemistry, Baylor University, 76706 Waco, Texas, USA
| | - Ellen H G Backus
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währinger Straße 42, 1090 Vienna, Austria. .,University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Straße 42, 1090 Vienna, Austria
| | - Marialore Sulpizi
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz, Germany. .,Department of Physics, Ruhr Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
13
|
Fellows AP, Casford MTL, Davies PB. Investigating Bénard–Marangoni migration at the air–water interface in the time domain using sum frequency generation (SFG) spectroscopy of palmitic acid monolayers. J Chem Phys 2022; 156:164701. [DOI: 10.1063/5.0090532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sum-frequency generation (SFG) spectroscopy is frequently used to investigate the structure of monolayer films of long-chain fatty acids at the air–water interface. Although labeled a non-invasive technique, introducing intense SFG lasers onto liquid interfaces has the potential to perturb them. In the present work, narrowband picosecond SFG is used to study the structural changes that occur in palmitic acid and per-deuterated palmitic acid monolayers at the air–water interface in response to the high field strengths inherent to SFG spectroscopy. In order to determine structural changes and identify measurement artifacts, the changes in specific resonance intensities were measured in real-time and over a broad range of surface concentrations from films spread onto a stationary Langmuir trough. Using narrowband instead of broadband SFG minimizes the overlap of the incident infrared beam in the lipid C–H stretching region with resonances from the water sub-phase. Nevertheless, narrowband SFG still generates a thermal gradient at the surface, which produces a significant decrease in local concentration in the area of the laser spot caused by Bérnard–Marangoni convection originating in the sub-phase. The decrease in concentration results in an increase in the conformational disorder and a decrease in the tilt angle of lipid tails. Crucially, it is shown that, even at the highest monolayer concentrations, this gives rise to a measurement effect, which manifests itself as a dependence on the spectral acquisition time. This effect should be taken into account when interpreting the structure of monolayer films on liquid surfaces deduced from their SFG spectra.
Collapse
Affiliation(s)
- A. P. Fellows
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - M. T. L. Casford
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - P. B. Davies
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
14
|
Kappes K, Frandsen BN, Vaida V. Infrared spectroscopy of 2-oxo-octanoic acid in multiple phases. Phys Chem Chem Phys 2022; 24:6757-6768. [PMID: 35237773 DOI: 10.1039/d1cp05345k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alpha-keto acids are environmentally and biologically relevant species whose chemistry has been shown to be influenced by their local environment. Vibrational spectroscopy provides useful ways to probe the potential inter- and intramolecular interactions available to them in several phases. We measure and compare the IR spectra of 2-oxo-octanoic acid (2OOA) in the gas phase, solid phase, and at the air-water interface. With theoretical support, we assign many of the vibrational modes in each of the spectra. In the gas phase, two types of conformers are identified and distinguished, with the intramolecularly H-bonded form being the dominant type, while the second conformer type identified does not have an intramolecular hydrogen bond. The van der Waals interactions between molecules in solid 2OOA manifest C-H and CO vibrations lower in energy than in the gas phase and we propose an intermolecular hydrogen bonding scheme for the solid phase. At the air-water interface the hydrocarbon tails of 2OOA do interact with each other while the carbonyls appear to interact with water in the subphase, but not with neighboring 2OOA as might be expected of a closely packed surfactant film.
Collapse
Affiliation(s)
- Keaten Kappes
- Department of Chemistry, University of Colorado-Boulder, UCB 215, Boulder, CO 80309, USA. .,Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder, UCB 216, Boulder, CO 80309, USA
| | - Benjamin N Frandsen
- Department of Chemistry, University of Colorado-Boulder, UCB 215, Boulder, CO 80309, USA. .,Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder, UCB 216, Boulder, CO 80309, USA
| | - Veronica Vaida
- Department of Chemistry, University of Colorado-Boulder, UCB 215, Boulder, CO 80309, USA. .,Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder, UCB 216, Boulder, CO 80309, USA
| |
Collapse
|
15
|
Sthoer A, Adams EM, Sengupta S, Corkery RW, Allen HC, Tyrode EC. La 3+ and Y 3+ interactions with the carboxylic acid moiety at the liquid/vapor interface: Identification of binding complexes, charge reversal, and detection limits. J Colloid Interface Sci 2022; 608:2169-2180. [PMID: 34798383 DOI: 10.1016/j.jcis.2021.10.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Specific interactions of yttrium and lanthanum ions with a fatty acid Langmuir monolayer were investigated using vibrational sum frequency spectroscopy. The trivalent ions were shown to interact with the charged form of the carboxylic acid group from nanomolar concentrations (<300 nM). Analysis of the spectral features from both the symmetric and the asymmetric carboxylate modes reveals the presence of at least three distinct coordination structures linked to specific binding configurations. Although the same species were identified for both La3+ and Y3+, they display a different concentration dependence, highlighting the ion-specificity of the interaction. From the analysis of the response of interfacial water molecules, the reversal of the surface charge, as well as the formation of yttrium hydroxide complexes, were detected upon increasing the amount of salt in solution. The binding interaction and kinetics of absorption are sensitive to the solution pH, showing a distinct ion speciation in the interfacial region when compared to the bulk. Changing the subphase pH or adding a monovalent background electrolyte that promotes deprotonation of the carboxylic acid headgroup could further improve the detection limit of La3+ and Y3+ to concentrations < 100 nM. These findings demonstrate that nM concentrations of trace metals contaminants, typically found on monovalent salts, can significantly influence the binding structure and kinetics in Langmuir monolayers.
Collapse
Affiliation(s)
- Adrien Sthoer
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Ellen M Adams
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Department of Physical Chemistry II, Ruhr-Universität Bochum, 44801 Bochum, Germany(1)
| | - Sanghamitra Sengupta
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; Ultrafast Spectroscopy, AMOLF, 1098 XG Science Park, Amsterdam, The Netherlands(1)
| | - Robert W Corkery
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT0200, Australia
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Eric C Tyrode
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| |
Collapse
|
16
|
Sam S, Krem S, Lee J, Kim D. Recovery of Fatty Acid Monolayers by Salts Investigated by Sum-Frequency Generation Spectroscopy. J Phys Chem B 2022; 126:643-649. [PMID: 35026947 DOI: 10.1021/acs.jpcb.1c08028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Langmuir monolayers consisting of fatty acids with relatively short alkyl chains (C14H29COOH (pentadecanoic acid), C15H31COOH (palmitic acid), and C16H33COOH (heptadecanoic acid)) are stable at a neutral pH (pH ≈ 6) but become unstable at a high pH (pH ≈ 11). Further addition of a small amount of divalent salt in subphase water was found to recover the monolayer at a high pH because binding of the divalent cations to the carboxylic headgroups renders the molecule more stable against dissolution in subphase water. This revival of the monolayer was observed via a pressure-area isotherm measurement and sum-frequency generation spectrum in the CHx and OH ranges. Fatty acids with longer alkyl chains needed less amount of MgCl2 to recover the monolayer at a high pH. A much lower concentration of Mg2+ as compared to Ca2+ is required to revive fatty acid molecules to the surface. Monovalent and trivalent salts were compared with the above divalent salts on the ability to recover the fatty acid monolayers.
Collapse
Affiliation(s)
- Sokhuoy Sam
- Department of Physics, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Sona Krem
- Department of Physics, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Jaejin Lee
- Department of Physics, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Doseok Kim
- Department of Physics, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| |
Collapse
|
17
|
Zhang X, Wu L, Zhen W, Li S, Jiang X. Generation of singlet oxygen via iron-dependent lipid peroxidation and its role in Ferroptosis. FUNDAMENTAL RESEARCH 2022; 2:66-73. [PMID: 38933913 PMCID: PMC11197759 DOI: 10.1016/j.fmre.2021.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis is a cell death pathway mediated by iron-dependent accumulation of lipid peroxide. However, the specific downstream molecular events of iron-dependent lipid peroxidation are yet to be elucidated. In this study, based on various spectral analyses, we have found evidence that singlet oxygen is produced through the Russell mechanism during the self-reaction of lipid peroxyl radicals generated via iron-dependent lipid peroxidation regardless of the presence of cholesterol. Significantly reduced generation of singlet oxygen was observed in the absence of iron. The generated singlet oxygen accelerated the oxidative damage of lipid membranes by propagating lipid peroxidation and facilitated ferroptotic cancer cell death initiated by erastin. In this work, singlet oxygen has been revealed to be a new reactive species that participates in ferroptosis, thus improving the understanding on iron-dependent lipid peroxidation and the mechanism of ferroptosis.
Collapse
Affiliation(s)
- Xiaofei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- Graduate School of University of Science and Technology of China, Anhui 230026, China
- Changchun University, Changchun, Jilin 130022, China
| | - Lie Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
| | - Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- Graduate School of University of Science and Technology of China, Anhui 230026, China
| | - Shanshan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- Graduate School of University of Science and Technology of China, Anhui 230026, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- Graduate School of University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
18
|
Moll CJ, Korotkevich AA, Versluis J, Bakker HJ. Molecular orientation of small carboxylates at the water-air interface. Phys Chem Chem Phys 2022; 24:10134-10139. [DOI: 10.1039/d1cp05471f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study the properties of formate (HCOO−) and acetate (CH3COO−) ions at the surface of water using heterodyne-detected vibrational sum-frequency generation (HD-VSFG) spectroscopy. For both ions we observe a response...
Collapse
|
19
|
Sthoer AA, Tyrode EC. Anion Specific Effects at Negatively Charged Interfaces: Influence of Cl -, Br -, I -, and SCN - on the Interactions of Na + with the Carboxylic Acid Moiety. J Phys Chem B 2021; 125:12384-12391. [PMID: 34705447 PMCID: PMC8591606 DOI: 10.1021/acs.jpcb.1c07758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/10/2021] [Indexed: 11/30/2022]
Abstract
Unlike counterion interactions with charged interfaces, the influence of co-ions is only scarcely reported in the literature. In this work, the effect of SCN- and the halide co-ions in the interactions of Na+ with carboxylic acid Langmuir monolayers is investigated by using vibrational sum frequency spectroscopy. At 1 M concentrations in the subphase, the identity of the anion is shown to have a remarkable influence on the charging behavior and degree of deprotonation of the monolayer, with ions ordering in the sequence I- > SCN- > Cl- ≈ Br-. The same trend is observed at both pH 6 and pH 9 when the monolayer is intrinsically more charged. Spectroscopic evidence is found for both the presence of I- and SCN- in the interfacial region at levels close to their detection limits. The results contradict electrostatic theories on charged interfaces where co-ions are not expected to play any significant role. The higher propensity for the large polarizable anions to deprotonate the monolayer is explained in terms of their ability to modify the cations affinity toward the carboxylic acid groups present at the surface.
Collapse
Affiliation(s)
- Adrien
P. A. Sthoer
- Department of Chemistry, KTH, Dröttning Kristinas väg 51, SE-10044 Stockholm, Sweden
| | - Eric C. Tyrode
- Department of Chemistry, KTH, Dröttning Kristinas väg 51, SE-10044 Stockholm, Sweden
| |
Collapse
|
20
|
Biswas B, Singh PC. The enhanced dissociation and associated surface structure of the anesthetic propofol at the water interface: vibrational sum frequency generation study. Phys Chem Chem Phys 2021; 23:24646-24651. [PMID: 34704569 DOI: 10.1039/d1cp02838c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propofol, the most administered drug for general anesthesia, affects the acid-base equilibrium at the interfacial region of arterial blood. Hence, the structure of propofol at the water interface under different pH conditions has been measured using the surface-selective vibrational sum frequency generation (VSFG) technique to understand the hydration as well as the dissociation of propofol at the water interface. Propofol remains in its neutral form at pH ≤ 5.8 in which the OH group of propofol forms a hydrogen bond with interfacial water molecules, where a few interfacial water molecules also interact with the π electron density of propofol. By contrast, propofol prefers to be in the deprotonated state at pH ≥ 7, due to which the surface of water becomes negatively charged and hence the interfacial water becomes oriented and the intensity of the OH stretch of water is enhanced. The pKa of propofol at the water interface is ∼three units lower than in the bulk medium indicating that the dissociation of propofol is notably enhanced at the water interface. These VSFG studies suggest that, unlike the bulk, propofol prefers to be in the charged state at the water interface under physiological conditions, which may be important in understanding its diffusion and acid-base equilibrium in the interfacial arterial blood region.
Collapse
Affiliation(s)
- Biswajit Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, Kolkata, West Bengal, 700032, India.
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
21
|
Vazquez de Vasquez MG, Wellen Rudd BA, Baer MD, Beasley EE, Allen HC. Role of Hydration in Magnesium versus Calcium Ion Pairing with Carboxylate: Solution and the Aqueous Interface. J Phys Chem B 2021; 125:11308-11319. [PMID: 34601874 DOI: 10.1021/acs.jpcb.1c06108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding of group II metal cations such as Ca2+ and Mg2+ has been largely categorized as electrostatic or ionic using carboxylate symmetric and asymmetric stretching frequency assignments that have been historically used with little regard for the solvation environment of aqueous solutions. However, given the importance of these cations and their binding mechanisms related to biological function and in revealing surface enrichment factors for ocean to marine aerosol transfer, it is imperative that a deeper understanding be sought to include hydration effects. Here, infrared reflection-absorption and Raman spectra for surface and solution phase carboxylate binding information, respectively, are compared against bare (unbound) carboxylate and bidentate Zn2+:carboxylate spectral signatures. Spectral non-coincidence effect analysis, temperature studies, and spectral and potential of mean force calculations result in a concise interpretation of binding motifs that include the role of mediating water molecules, that is, contact and solvent-shared ion pairs. Calcium directly binds to the carboxylate group in contact ion pairs where magnesium rarely does. Moreover, we reveal the dominance of the solvent-shared ion pair of magnesium with carboxylate at the air-water interface and in solution.
Collapse
Affiliation(s)
| | - Bethany A Wellen Rudd
- Department of Chemistry, Ohio Wesleyan University, Delaware, Ohio 43015, United States
| | - Marcel D Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Emma E Beasley
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
Foster MJ, Carpenter AP, Richmond GL. Dynamic Duo: Vibrational Sum Frequency Scattering Investigation of pH-Switchable Carboxylic Acid/Carboxylate Surfactants on Nanodroplet Surfaces. J Phys Chem B 2021; 125:9629-9640. [PMID: 34402616 DOI: 10.1021/acs.jpcb.1c05508] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Surfactants containing pH-switchable, carboxylic acid moieties are utilized in a variety of environmental, industrial, and biological applications that require controlled stability of hydrophobic droplets in water. For nanoemulsions, kinetically stable oil droplets in water, surface adsorption of the anionic form of the carboxylic acid surfactant stabilizes the droplet, whereas a dominant surface presence of the neutral form leads to destabilization. Through the use of dynamic light scattering, ζ-potential, and vibrational sum frequency scattering spectroscopy (VSFSS), we investigate this mechanism and the relative surface population of the neutral and charged species as pH is adjusted. We find that the relative population of the two surfactant species at the droplet surface is distinctly different than their bulk equilibrium concentrations. The ζ-potential measurements show that the surface concentration of the charged surfactant stays nearly constant throughout the stabilizing pH range. In contrast, VSFSS shows that the neutral carboxylic acid form increasingly adsorbs to the surface with increased acidity. The spectral features of the headgroup vibrational modes confirm this behavior and go further to reveal additional molecular details of their adsorption. A significant hydrogen-bonding interaction occurs between the headgroups that, along with hydrophobic chain-chain interactions, assists in drawing more carboxylic acid surfactant to the interface. The charged surfactant provides the stabilizing force for these droplets, while the neutral surfactant introduces complexity to the interfacial structure as the pH is lowered. The results are significantly different than what has been found for the planar oil/water studies where stabilization of the interface is not a factor.
Collapse
Affiliation(s)
- Marc J Foster
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Andrew P Carpenter
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Geraldine L Richmond
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
23
|
Xu M, Tsona NT, Cheng S, Li J, Du L. Unraveling interfacial properties of organic-coated marine aerosol with lipase incorporation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146893. [PMID: 33848860 DOI: 10.1016/j.scitotenv.2021.146893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Marine aerosols are believed to have an organic surface coating on which fatty acids act as an important component due to their high surface activity. In addition, various kinds of enzyme species are abundantly found in seawater, some of which have been identified to exist in marine aerosols. Herein, from the perspective of marine aerosol interface simulation, we investigate the effect of Burkholderia cepacia lipase on the surface properties of stearic acid (SA) monolayer at the air-water interface by using surface-sensitive techniques of Langmuir trough and Infrared reflection-absorption spectroscopy (IRRAS). Our findings indicate that the stearic acid film undergoes a significant expansion, especially when the lipase concentration is 500 nM, because of the incorporation of lipase as observed from the surface pressure-area (π-A) isotherms. IRRAS spectra also show reduced intensities and ordering in the methylene stretching vibration region of stearic acid as a result of low surface density and disordered packing as the enzyme concentration increases. In particular, when the concentration of lipase is 500 nM, the lowest Ias/Is values are shown on both pure water subphase and artificial seawater subphase, indicating more gauche conformations for SA. Furthermore, SA films with lipase incorporation were also studied at three different pH of subphase environment, considering the decrease of pH caused by the reaction with acidic gases during the aerosol aging process. The results reflect a more pronounced expansion of SA monolayer in acidic environment at pH 2.5, suggesting that hydrophobic interaction plays an important role in the disorder of the SA monolayer. In view of the coexistence of fatty acids and enzymes in the marine environment, this study provides a further understanding of the surface organization and behavior of organic-coated marine aerosols and deepen the knowledge of lipid-enzyme interfacial interactions occurring in the atmosphere.
Collapse
Affiliation(s)
- Minglan Xu
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Shumin Cheng
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Jianlong Li
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| |
Collapse
|
24
|
Carter-Fenk KA, Dommer AC, Fiamingo ME, Kim J, Amaro RE, Allen HC. Calcium bridging drives polysaccharide co-adsorption to a proxy sea surface microlayer. Phys Chem Chem Phys 2021; 23:16401-16416. [PMID: 34318808 DOI: 10.1039/d1cp01407b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Saccharides comprise a significant mass fraction of organic carbon in sea spray aerosol (SSA), but the mechanisms through which saccharides are transferred from seawater to the ocean surface and eventually into SSA are unclear. It is hypothesized that saccharides cooperatively adsorb to other insoluble organic matter at the air/sea interface, known as the sea surface microlayer (SSML). Using a combination of surface-sensitive infrared reflection-absorption spectroscopy and all-atom molecular dynamics simulations, we demonstrate that the marine-relevant, anionic polysaccharide alginate co-adsorbs to an insoluble palmitic acid monolayer via divalent cationic bridging interactions. Ca2+ induces the greatest extent of alginate co-adsorption to the monolayer, evidenced by the ∼30% increase in surface coverage, whereas Mg2+ only facilitates one-third the extent of co-adsorption at seawater-relevant cation concentrations due to its strong hydration propensity. Na+ cations alone do not facilitate alginate co-adsorption, and palmitic acid protonation hinders the formation of divalent cationic bridges between the palmitate and alginate carboxylate moieties. Alginate co-adsorption is largely confined to the interfacial region beneath the monolayer headgroups, so surface pressure, and thus monolayer surface coverage, only changes the amount of alginate co-adsorption by less than 5%. Our results provide physical and molecular characterization of a potentially significant polysaccharide enrichment mechanism within the SSML.
Collapse
Affiliation(s)
- Kimberly A Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Kusaka R, Watanabe M. Stoichiometry of Lanthanide-Phosphate Complexes at the Water Surface Studied Using Vibrational Sum Frequency Generation Spectroscopy and DFT Calculations. J Phys Chem B 2021; 125:6727-6731. [PMID: 34124914 DOI: 10.1021/acs.jpcb.1c04583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the solvent extraction of metal ions, the transport mechanism of metal ions through the liquid-liquid organic/aqueous interface remains unclear. In this study, the adsorption process of trivalent lanthanide ions from the aqueous phase to the interface in the solvent extraction of lanthanides with di(2-ethylhexyl)phosphoric acid (HDEHP) extractant is investigated by using a model interface-water surface covered with HDEHP (air/HDEHP/aqueous interface). As a result, symmetric POO- stretch signals of HDEHP observed by vibrational sum frequency generation spectroscopy and density functional theory calculations show that the stoichiometric ratio of lanthanide-HDEHP complexes formed at the air/HDEHP/aqueous interface is 1:1. The formation of the interfacial 1:1 lanthanide-HDEHP complex could be an elementary chemical process occurring just before the transfer of lanthanide ions to the side of the organic phase.
Collapse
Affiliation(s)
- Ryoji Kusaka
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Masayuki Watanabe
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| |
Collapse
|
26
|
Krem S, Lee M, Sam S, Sung W, Kim D. Structure of Electric Double Layer under Cationic Langmuir Monolayer: Charge Condensation Effect. J Phys Chem Lett 2021; 12:3417-3423. [PMID: 33789054 DOI: 10.1021/acs.jpclett.1c00401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Langmuir monolayers consisting of mixtures of 1-hexadecanol (HD) and 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP) (having quaternary amine headgroup) at different molar ratios were prepared to investigate the effect of the surface charge density on the structure of an electric double layer. The fatty alcohol molecules worked as passive spacers to widen the distance between the amine groups in the monolayer, to vary the surface charge density of the monolayer, and these mixture monolayer systems were probed by surface-sensitive sum-frequency vibrational spectroscopy. A strong sum-frequency signal in the OH range for a pure DPTAP monolayer (with a surface charge density of ∼0.4 C/m2) hardly decreased as the surface charge density was reduced up to ∼0.12 C/m2 (1 e per 140 Å2) and afterward decreased monotonically as more HD occupied the monolayer. The Gouy-Chapman theory incorporating a charged-condensed layer in which the counterion concentration is limited by a close packing of the counterions could account for the above saturation behavior in the sum-frequency spectra.
Collapse
Affiliation(s)
- Sona Krem
- Department of Physics, Sogang University, Seoul, Korea
| | - Minho Lee
- Department of Physics, Sogang University, Seoul, Korea
| | - Sokhuoy Sam
- Department of Physics, Sogang University, Seoul, Korea
| | - Woongmo Sung
- Department of Physics, Sogang University, Seoul, Korea
| | - Doseok Kim
- Department of Physics, Sogang University, Seoul, Korea
| |
Collapse
|
27
|
Chen R, Chen HB, Xue PP, Yang WG, Luo LZ, Tong MQ, Zhong B, Xu HL, Zhao YZ, Yuan JD. HA/MgO nanocrystal-based hybrid hydrogel with high mechanical strength and osteoinductive potential for bone reconstruction in diabetic rats. J Mater Chem B 2021; 9:1107-1122. [PMID: 33427267 DOI: 10.1039/d0tb02553d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone repair and regeneration processes are markedly impaired in diabetes mellitus (DM). Intervening approaches similar to those developed for normal healing conditions have been adopted to combat DM-associated bone regeneration. However, limited outcomes were achieved for these approaches. Hence, together with osteoconductive hydroxyapatite (HA) nanocrystals, osteoinductive magnesium oxide (MgO) nanocrystals were uniformly mounted into the network matrix of an organic hydrogel composed of cysteine-modified γ-polyglutamic acid (PGA-Cys) to construct a hybrid and rough hydrogel scaffold. It was hypothesized that the HA/MgO nanocrystal hybrid hydrogel (HA/MgO-H) scaffold can significantly promote bone repair in DM rats via the controlled release of Mg2+. The HA/MgO-H scaffold exhibited a sponge-like morphology with porous 3D networks inside it and displayed higher mechanical strength than a PGA-Cys scaffold. Meanwhile, the HA/MgO-H scaffold gradually formed a tough hydrogel with G' of more than 1000 Pa after hydration, and its high hydration swelling ratio was still retained. Moreover, after the chemical degradation of the dispersed MgO nanocrystals, slow release of Mg2+ from the hydrogel matrix was achieved for up to 8 weeks because of the chelation between Mg2+ and the carboxyl groups of PGA-Cys. In vitro cell studies showed that the HA/MgO-H scaffold could not only effectively promote the migration and proliferation of BMSCs but could also induce osteogenic differentiation. Moreover, in the 8th week after implanting the HA/MgO-H scaffold into femur bone defect zones of DM rats, more effective bone repair was presented by micro-CT imaging. The bone mineral density (397.22 ± 16.36 mg cm-3), trabecular thickness (0.48 ± 0.07 mm), and bone tissue volume/total tissue volume (79.37 ± 7.96%) in the HA/MgO-H group were significantly higher than those in the other groups. Moreover, higher expression of COL-I and OCN after treatment with HA/MgO-H was also displayed. The bone repair mechanism of the HA/MgO-H scaffold was highly associated with reduced infiltration of pro-inflammatory macrophages (CD80+) and higher angiogenesis (CD31+). Collectively, the HA/MgO-H scaffold without the usage of bioactive factors may be a promising biomaterial to accelerate bone defect healing under diabetes mellitus.
Collapse
Affiliation(s)
- Rui Chen
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Luo M, Shemesh D, Sullivan MN, Alves MR, Song M, Gerber RB, Grassian VH. Impact of pH and NaCl and CaCl2 Salts on the Speciation and Photochemistry of Pyruvic Acid in the Aqueous Phase. J Phys Chem A 2020; 124:5071-5080. [DOI: 10.1021/acs.jpca.0c01016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Man Luo
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Dorit Shemesh
- Institute of Chemistry and Fritz Haber Research Center, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael N. Sullivan
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Michael R. Alves
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Meishi Song
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - R. Benny Gerber
- Institute of Chemistry and Fritz Haber Research Center, Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Chemistry, University of California, Irvine, California 92617, United States
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
- Scripps Institution of Oceanography, University of California, San Diego, California 92037, United States
| |
Collapse
|
29
|
Zhang P, Pham T, Zheng X, Liu C, Plata PL, Král P, Bu W, Lin B, Liu Y. Spontaneous collapse of palmitic acid films on an alkaline buffer containing calcium ions. Colloids Surf B Biointerfaces 2020; 193:111100. [PMID: 32408262 DOI: 10.1016/j.colsurfb.2020.111100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
Understanding the interaction of ions with fatty acids is important to identify their roles in various bioprocesses and to build novel biomimetic systems. In this study, the molecular organization of palmitic acid (PA) films on alkaline buffer solutions (pH 7.4) with and without divalent Ca2+ was measured at a constant surface area using Langmuir troughs coupled with microscopy and X-ray interfacial techniques. Without Ca2+, PA molecules remained a monolayer organization; however, with Ca2+, formation of the inverted bilayers of PA-Ca2+ superstructures caused a spontaneous 2D to 3D transformation under no compression due to the strong interaction between PA and the divalent cation. Self-assembly of this highly-organized inverted bilayer superstructure involved a two-step process of nucleation and nuclei growth. During nucleation, densely packed PA and Ca2+ monolayer firstly corrugated and some of PA and Ca2+ molecules ejected out from the monolayer; the ejected molecules then reorganized and formed the inverted bilayer nuclei. Nucleation was followed by nuclei growth, during which PA and Ca2+ in the monolayer kept integrating into the inverted bilayer structure through molecule migration and PA rotation around Ca2+.
Collapse
Affiliation(s)
- Pin Zhang
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, United States
| | - Tiep Pham
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, United States
| | - Xin Zheng
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Chang Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, United States
| | - Paola Leon Plata
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, United States
| | - Petr Král
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, United States; Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States; Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, United States; Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Wei Bu
- NSF's ChemMatCARS, University of Chicago, IL 60637, United States
| | - Binhua Lin
- NSF's ChemMatCARS, University of Chicago, IL 60637, United States
| | - Ying Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, United States; Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, United States; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, United States.
| |
Collapse
|
30
|
Zhang C, Gao J, Hankett J, Varanasi P, Borst J, Shirazi Y, Zhao S, Chen Z. Corn Oil-Water Separation: Interactions of Proteins and Surfactants at Corn Oil/Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4044-4054. [PMID: 32212710 DOI: 10.1021/acs.langmuir.0c00338] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purification and collection of industrial products from oil-water mixtures are commonly implemented processes. However, the efficiencies of such processes can be severely influenced by the presence of emulsifiers that induce the formation of small oil droplets dispersed in the mixtures. Understanding of this emulsifying effect and its counteractions which occur at the oil/water interface is therefore necessary for the improvement of designs of these processes. In this paper, we investigated the interfacial mechanisms of protein-induced emulsification and the opposing surfactant-induced demulsification related to corn oil refinement. At corn oil/water interfaces, the pH-dependent emulsifying function of zein protein, which is the major storage protein of corn, was elucidated by the surface/interface-sensitive sum frequency generation (SFG) vibrational spectroscopy technique. The effective stabilization of corn oil droplets by zein protein was illustrated and correlated to its ordered amide I group at the oil/water interface. Substantial decrease of this ordering with the addition of three industrial surfactants to corn oil-zein solution mixtures was also observed using SFG, which explains the surfactant-induced destabilization and coalescence of small oil droplets. Surfactant-protein interaction was then demonstrated to be the driving force for the disordering of interfacial proteins, either by disrupting protein layers or partially excluding protein molecules from the interface. The ordered zein proteins at the interface were therefore revealed to be the critical factor for the formation of corn oil-water emulsion.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jinpeng Gao
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jeanne Hankett
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Prabodh Varanasi
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Joseph Borst
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Yaser Shirazi
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Shouxun Zhao
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
Andino RS, Liu J, Miller CM, Chen X, Devlin SW, Hong MK, Rajagopal R, Erramilli S, Ziegler LD. Anomalous pH-Dependent Enhancement of p-Methyl Benzoic Acid Sum-Frequency Intensities: Cooperative Surface Adsorption Effects. J Phys Chem A 2020; 124:3064-3076. [DOI: 10.1021/acs.jpca.9b10809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Richard S. Andino
- Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Jian Liu
- Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Christina M. Miller
- Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Xin Chen
- Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Shane W. Devlin
- Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - M. K. Hong
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - R. Rajagopal
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - S. Erramilli
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - L. D. Ziegler
- Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
32
|
Tyrode E, Sengupta S, Sthoer A. Identifying Eigen-like hydrated protons at negatively charged interfaces. Nat Commun 2020; 11:493. [PMID: 31980619 PMCID: PMC6981112 DOI: 10.1038/s41467-020-14370-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/06/2020] [Indexed: 11/24/2022] Open
Abstract
Despite the importance of the hydrogen ion in a wide range of biological, chemical, and physical processes, its molecular structure in solution remains lively debated. Progress has been primarily hampered by the extreme diffuse nature of the vibrational signatures of hydrated protons in bulk solution. Using the inherently surface-specific vibrational sum frequency spectroscopy technique, we show that at selected negatively charged interfaces, a resolved spectral feature directly linked to the H3O+ core in an Eigen-like species can be readily identified in a biologically compatible pH range. Centered at ~2540 cm−1, the band is seen to shift to ~1875 cm−1 when forming D3O+ upon isotopic substitution. The results offer the possibility of tracking and understanding from a molecular perspective the behavior of hydrated protons at charged interfaces. Hydrated protons are always present in aqueous solution, but their molecular structure remains under debate. Here the authors use vibrational sum frequency spectroscopy to show that at negatively charged liquid–vapor interfaces, protons adopt a specific configuration characteristic of Eigen-like species.
Collapse
Affiliation(s)
- Eric Tyrode
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden.
| | - Sanghamitra Sengupta
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
| | - Adrien Sthoer
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
| |
Collapse
|
33
|
Kubincová A, Riniker S, Hünenberger PH. Reaction-field electrostatics in molecular dynamics simulations: development of a conservative scheme compatible with an atomic cutoff. Phys Chem Chem Phys 2020; 22:26419-26437. [DOI: 10.1039/d0cp03835k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Shifting and switching schemes are developed to enable strict energy conservation in molecular dynamics simulations relying on reaction-field electrostatic (as well as Lennard-Jones) interactions with an atom-based cutoff truncation.
Collapse
Affiliation(s)
| | - Sereina Riniker
- Laboratory of Physical Chemistry
- ETH Zurich
- 8093 Zurich
- Switzerland
| | | |
Collapse
|
34
|
Mendes de Oliveira D, Zukowski SR, Palivec V, Hénin J, Martinez-Seara H, Ben-Amotz D, Jungwirth P, Duboué-Dijon E. Binding of divalent cations to acetate: molecular simulations guided by Raman spectroscopy. Phys Chem Chem Phys 2020; 22:24014-24027. [DOI: 10.1039/d0cp02987d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We combine Raman-MCR vibrational spectroscopy experiments with ab initio and classical MD simulations to gain molecular insights into carboxylate–cation binding.
Collapse
Affiliation(s)
| | | | - Vladimir Palivec
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Flemingovo nám. 2
- 16610 Prague 6
- Czech Republic
| | - Jérôme Hénin
- CNRS, Université de Paris
- UPR 9080
- Laboratoire de Biochimie Théorique
- 13 Rue Pierre et Marie Curie
- Paris
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Flemingovo nám. 2
- 16610 Prague 6
- Czech Republic
| | - Dor Ben-Amotz
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Flemingovo nám. 2
- 16610 Prague 6
- Czech Republic
| | - Elise Duboué-Dijon
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Flemingovo nám. 2
- 16610 Prague 6
- Czech Republic
| |
Collapse
|
35
|
Richert ME, Gochev GG, Braunschweig B. Specific Ion Effects of Trivalent Cations on the Structure and Charging State of β-Lactoglobulin Adsorption Layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11299-11307. [PMID: 31398284 DOI: 10.1021/acs.langmuir.9b01803] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The properties of proteins at interfaces are important to many processes as well as in soft matter materials such as aqueous foam. Particularly, the protein interfacial behavior is strongly linked to different factors like the solution pH or the presence of electrolytes. Here, the nature of the electrolyte ions can significantly modify the interfacial properties of proteins. Therefore, molecular level studies on interfacial structures and charging states are needed. In this work, we addressed the effects of Y3+ and Nd3+ cations on the adsorption of the whey protein β-lactoglobulin (BLG) at air-water interfaces as the function of electrolyte concentration. Both cations caused very similar but dramatic changes at the interface and in the bulk solution. Here, measurements of the electrophoretic mobility and with vibrational sum-frequency generation (SFG) spectroscopy were applied and consistently showed a reversal of the BLG net charge at remarkably low ion concentrations of 30 (bulk) and 40 (interface) μM of Y3+ or Nd3+ for a BLG concentration of 15 μM. SFG spectra of carboxylate stretching vibrations from Asp or Glu residues of interfacial BLG showed significant changes in the resonance frequency, which we associate to specific and efficient binding of Y3+ or Nd3+ ions to the proteins carboxylate groups. Characteristic reentrant condensation for BLG moieties with bound trivalent ions was found in a broad concentration range around the point of zero net charge. The highest colloidal stability of BLG was found for ion concentrations <20 μM and >50 μM. Investigations on macroscopic foams from BLG solutions revealed the existence of structure-property relations between the interfacial charging state and the foam stability. In fact, a minimum in foam stability at 20 μM ion concentration was found when the interfacial net charge was negligible. At this concentration, we propose that the persistent BLG molecules and weakly charged BLG aggregates drive foam stability, while outside the bulk reentrant zone the electrostatic disjoining pressure inside foam lamellae dominates foam stability. Our results provide new information on the charge reversal at the liquid-gas interface of protein/ion dispersions. Therefore, we see our findings as an important step in the clarification of reentrant condensation effects at interfaces and their relevance to foam stability.
Collapse
Affiliation(s)
- Manuela E Richert
- Institute of Physical Chemistry and Center for Soft Nanoscience , Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 , 48149 Münster , Germany
| | - Georgi G Gochev
- Institute of Physical Chemistry and Center for Soft Nanoscience , Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 , 48149 Münster , Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry and Center for Soft Nanoscience , Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 , 48149 Münster , Germany
| |
Collapse
|
36
|
Denton JK, Kelleher PJ, Johnson MA, Baer MD, Kathmann SM, Mundy CJ, Wellen Rudd BA, Allen HC, Choi TH, Jordan KD. Molecular-level origin of the carboxylate head group response to divalent metal ion complexation at the air-water interface. Proc Natl Acad Sci U S A 2019; 116:14874-14880. [PMID: 31278149 PMCID: PMC6660762 DOI: 10.1073/pnas.1818600116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We exploit gas-phase cluster ion techniques to provide insight into the local interactions underlying divalent metal ion-driven changes in the spectra of carboxylic acids at the air-water interface. This information clarifies the experimental findings that the CO stretching bands of long-chain acids appear at very similar energies when the head group is deprotonated by high subphase pH or exposed to relatively high concentrations of Ca2+ metal ions. To this end, we report the evolution of the vibrational spectra of size-selected [Ca2+·RCO2-]+·(H2O) n=0to12 and RCO2-·(H2O) n=0to14 cluster ions toward the features observed at the air-water interface. Surprisingly, not only does stepwise hydration of the RCO2- anion and the [Ca2+·RCO2-]+ contact ion pair yield solvatochromic responses in opposite directions, but in both cases, the responses of the 2 (symmetric and asymmetric stretching) CO bands to hydration are opposite to each other. The result is that both CO bands evolve toward their interfacial asymptotes from opposite directions. Simulations of the [Ca2+·RCO2-]+·(H2O) n clusters indicate that the metal ion remains directly bound to the head group in a contact ion pair motif as the asymmetric CO stretch converges at the interfacial value by n = 12. This establishes that direct metal complexation or deprotonation can account for the interfacial behavior. We discuss these effects in the context of a model that invokes the water network-dependent local electric field along the C-C bond that connects the head group to the hydrocarbon tail as the key microscopic parameter that is correlated with the observed trends.
Collapse
Affiliation(s)
- Joanna K Denton
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520
| | | | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520;
| | - Marcel D Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Shawn M Kathmann
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195
| | - Bethany A Wellen Rudd
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210
- Department of Chemistry, Ohio Wesleyan University, Delaware, OH 43015
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Tae Hoon Choi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
| | - Kenneth D Jordan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
37
|
Luo M, Dommer AC, Schiffer JM, Rez DJ, Mitchell AR, Amaro RE, Grassian VH. Surfactant Charge Modulates Structure and Stability of Lipase-Embedded Monolayers at Marine-Relevant Aerosol Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9050-9060. [PMID: 31188612 DOI: 10.1021/acs.langmuir.9b00689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipases, as well as other enzymes, are present and active within the sea surface microlayer (SSML). Upon bubble bursting, lipases partition into sea spray aerosol (SSA) along with surface-active molecules such as lipids. Lipases are likely to be embedded in the lipid monolayer at the SSA surface and thus have the potential to influence SSA interfacial structure and chemistry. Elucidating the structure of the lipid monolayer at SSA interfaces and how this structure is altered upon interaction with a protein system like lipase is of interest, given the importance of how aerosols interact with sunlight, influence cloud formation, and provide surfaces for chemical reactions. Herein, we report an integrated experimental and computational study of Burkholderia cepacia lipase (BCL) embedded in a lipid monolayer and highlight the important role of electrostatic, rather than hydrophobic, interactions as a driver for monolayer stability. Specifically, we combine Langmuir film experiments and molecular dynamics (MD) simulations to examine the detailed interactions between the zwitterionic dipalmitoylphosphatidylcholine (DPPC) monolayer and BCL. Upon insertion of BCL from the underlying subphase into the lipid monolayer, it is shown that BCL permeates and largely disorders the monolayer while strongly interacting with zwitterionic DPPC molecules, as experimentally observed by Langmuir adsorption curves and infrared reflectance absorbance spectroscopy. Explicitly solvated, all-atom MD is then used to provide insights into inter- and intramolecular interactions that drive these observations, with specific attention to the formation of salt bridges or ionic-bonding interactions. We show that after insertion into the DPPC monolayer, lipase is maintained at high surface pressures and in large BCL concentrations by forming a salt-bridge-stabilized lipase-DPPC complex. In comparison, when embedded in an anionic monolayer at low surface pressures, BCL preferentially forms intramolecular salt bridges, reducing its total favorable interactions with the surfactant and partitioning out of the monolayer shortly after injection. Overall, this study shows that the structure and dynamics of lipase-embedded SSA surfaces vary based on surface charge and pressure and that these variations have the potential to differentially modulate the properties of marine aerosols.
Collapse
Affiliation(s)
- Man Luo
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Abigail C Dommer
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Jamie M Schiffer
- Janssen Pharmaceuticals , 3210 Merryfield Row , San Diego , California 92093 , United States
| | - Donald J Rez
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Andrew R Mitchell
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
- Scripps Institution of Oceanography , University of California , San Diego , California 92037 , United States
| |
Collapse
|
38
|
Zhang P, Villanueva V, Kalkowski J, Liu C, Donovan AJ, Bu W, Schlossman ML, Lin B, Liu Y. Molecular interactions of phospholipid monolayers with a model phospholipase. SOFT MATTER 2019; 15:4068-4077. [PMID: 30958491 DOI: 10.1039/c8sm01154k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The intrinsic overexpression of secretory phospholipase A2 (sPLA2) in various pro-inflammatory diseases and cancers has the potential to be exploited as a therapeutic strategy for diagnostics and treatment. To explore this potential and advance our knowledge of the role of sPLA2 in related diseases, it is necessary to systematically investigate the molecular interaction of the enzyme with lipids. By employing a Langmuir trough integrated with X-ray reflectivity and grazing incidence X-ray diffraction techniques, this study examined the molecular packing structure of 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) films before and after enzyme adsorption and enzyme-catalyzed degradation. Molecular interaction of sPLA2 (from bee venom) with the DPPC monolayer exhibited Ca2+ dependence. DPPC molecules at the interface without Ca2+ retained a monolayer organization; upon adsorption of sPLA2 to the monolayer the packing became tighter. In contrast, sPLA2-catalyzed degradation of DPPC occurred in the presence of Ca2+, leading to disruption of the ordered monolayer structure of DPPC. The interfacial film became a mixture of highly ordered multilayer domains of palmitic acid (PA) and loosely packed monolayer phase of 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPC) that potentially contained the remaining un-degraded DPPC. The redistribution of lipid degradation products into the third dimension, which produced multilayer PA domains, damaged the structural integrity of the original lipid layer and may explain the bursting of liposomes observed in other studies after a latency period of mixing liposomes with sPLA2. A quantitative understanding of the lipid packing and lipid-enzyme interaction provides an intuitive means of designing and optimizing lipid-related drug delivery systems.
Collapse
Affiliation(s)
- Pin Zhang
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sthoer A, Hladílková J, Lund M, Tyrode E. Molecular insight into carboxylic acid-alkali metal cations interactions: reversed affinities and ion-pair formation revealed by non-linear optics and simulations. Phys Chem Chem Phys 2019; 21:11329-11344. [PMID: 31107479 DOI: 10.1039/c9cp00398c] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Specific interactions between the carboxylic acid moiety and the monovalent salts CsCl, NaCl, and LiCl, have been investigated in Langmuir monolayers using vibrational sum frequency spectroscopy (VSFS) and complemented with coarse grained and all-atom molecular dynamics simulations. By exploiting VSFS's intrinsic surface specificity, an emphasis was made on targeting headgroup vibrations of both its charged and uncharged forms as well as water molecules in the interfacial layer. The degree of deprotonation of the monolayer as a function of cation concentration and pH was experimentally determined and theoretically rationalized. Starting from 100 mM, the surface charge was overestimated by the Gouy-Chapman model and varied depending on the identity of the cation, highlighting the appearance of ion specific effects. Agreement could be found using a modified Poisson-Boltzmann model that takes into account steric effects, with a fitted effective ion-size compatible with the hydrated ion diameters. The relative affinity of the cations to the carboxylic acid moiety was pH dependent: at pH 4.5 they arranged in the order Cs+ > Na+ > Li+, but fully reversed (Li+ > Na+ > Cs+) at pH 9. Simulations yielded microscopic insight into the origin of this behavior, with the cations showing contrasting interaction preferences for either the uncharged carboxylic acid or the charged carboxylate. Sum frequency spectra also provided evidence that all cations remained hydrated when interacting with the charged headgroup, forming solvent-separated or solvent-shared ion pairs. However, for the specific case of 1 M Li+ at pH 9, contact ion pairs were formed. Finally, the remarkable effect of trace metal multivalent cations in the interpretation of experiments is briefly discussed. The results provide exciting new insights into the complex interactions of alkali metal cations with the biophysically relevant carboxylic acid moiety.
Collapse
Affiliation(s)
- Adrien Sthoer
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| | - Jana Hladílková
- Division of Theoretical Chemistry, Lund University, P.O.B. 124, SE-22100 Lund, Sweden
| | - Mikael Lund
- Division of Theoretical Chemistry, Lund University, P.O.B. 124, SE-22100 Lund, Sweden
| | - Eric Tyrode
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| |
Collapse
|
40
|
Ma Y, Hou J, Hao W, Liu J, Meng L, Lu Z. Influence of riboflavin on the oxidation kinetics of unsaturated fatty acids at the air/aqueous interface revealed by sum frequency generation vibrational spectroscopy. Phys Chem Chem Phys 2019; 20:17199-17207. [PMID: 29900453 DOI: 10.1039/c8cp00975a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Riboflavin, a common nutrient also known as vitamin B2, is known to potentially play important roles in preventing lipid peroxidations. However, the detailed antioxidant mechanisms, especially the influence of riboflavin on lipid oxidations at biological interfaces, have not yet been fully explored. In the current study, the effect of riboflavin molecules on the oxidation kinetics of monounsaturated cis-11-eicosenoic acid (EA) at the air/water interface was systematically investigated using sum frequency generation vibrational spectroscopy (SFG-VS). It was discovered that the oxidation rates of the interfacial EA molecules can be reduced by about two to three times in the presence of riboflavin in the aqueous subphase. Further SFG-VS measurements under the protection of nitrogen purging gas showed that more tightly packed and ordered monolayer structures were formed by the surface adsorption of riboflavin molecules, making the C[double bond, length as m-dash]C bonds less accessible to the gas phase oxidative species. These results suggested that the antioxidant mechanism for riboflavin in the vicinity of biomembranes may not necessarily involve other reducing agents. They also show the great importance of interfacial molecular structures in biologically relevant chemical reactions.
Collapse
Affiliation(s)
- Yingxue Ma
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
41
|
The Impact of Divalent Cations on the Enrichment of Soluble Saccharides in Primary Sea Spray Aerosol. ATMOSPHERE 2018. [DOI: 10.3390/atmos9120476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Field measurements have shown that sub-micrometer sea spray aerosol (SSA) is significantly enriched in organic material, of which a large fraction has been attributed to soluble saccharides. Existing mechanistic models of SSA production struggle to replicate the observed enhancement of soluble organic material. Here, we assess the role for divalent cation mediated co-adsorption of charged surfactants and saccharides in the enrichment of soluble organic material in SSA. Using measurements of particle supersaturated hygroscopicity, we calculate organic volume fractions for molecular mimics of SSA generated from a Marine Aerosol Reference Tank. Large enhancements in SSA organic volume fractions (Xorg > 0.2) were observed for 50 nm dry diameter (dp) particles in experiments where cooperative ionic interactions were favorable (e.g., palmitic acid, Mg2+, and glucuronic acid) at seawater total organic carbon concentrations (<1.15 mM C) and ocean pH. Significantly smaller SSA organic volume fractions (Xorg < 1.5 × 10−3) were derived from direct measurements of soluble saccharide concentrations in collected SSA with dry diameters <250 nm, suggesting that organic enrichment is strongly size dependent. The results presented here indicate that divalent cation mediated co-adsorption of soluble organics to insoluble surfactants at the ocean surface may contribute to the enrichment of soluble saccharides in SSA. The extent to which this mechanism explains the observed enhancement of saccharides in nascent SSA depends strongly on the concentration, speciation, and charge of surfactants and saccharides in the sea surface microlayer.
Collapse
|
42
|
Sung W, Krem S, Kim D. Binding of trivalent ions on fatty acid Langmuir monolayer: Fe3+ versus La3+. J Chem Phys 2018; 149:163304. [DOI: 10.1063/1.5028296] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Woongmo Sung
- Department of Physics, Sogang University, Seoul 121-742, South Korea
| | - Sona Krem
- Department of Physics, Sogang University, Seoul 121-742, South Korea
| | - Doseok Kim
- Department of Physics, Sogang University, Seoul 121-742, South Korea
| |
Collapse
|
43
|
Metal Ion Interactions with Crude Oil Components: Specificity of Ca2+ Binding to Naphthenic Acid at an Oil/Water Interface. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2030040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
On the basis of dynamic interfacial tension measurements, Ca2+ has been shown specifically to interact with naphthenic acid (NA) at the n-heptane/water interface, consistent with NA adsorption followed by interfacial complexation and formation of a more ordered interfacial film. Optimum concentrations of Ca2+ and NA have been found to yield lower, time-dependent interfacial tensions, not evident for Mg2+ and Sr2+ or for several alkali metal ions studied. The results reflect the specific hydration and coordination chemistry of Ca2+ seen in biology. Owing to the ubiquitous presence of Ca2+ in oilfield waters, this finding has potential relevance to the surface chemistry underlying crude oil recovery. For example, “locking” acidic components at water/oil interfaces may be important for crude oil emulsion stability, or in bonding bulk oil to mineral surfaces through an aqueous phase, potentially relevant for carbonate reservoirs. The relevance of the present results to low salinity waterflooding as an enhanced crude oil recovery technique is also discussed.
Collapse
|
44
|
Shrestha M, Luo M, Li Y, Xiang B, Xiong W, Grassian VH. Let there be light: stability of palmitic acid monolayers at the air/salt water interface in the presence and absence of simulated solar light and a photosensitizer. Chem Sci 2018; 9:5716-5723. [PMID: 30079180 PMCID: PMC6050592 DOI: 10.1039/c8sc01957f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/04/2018] [Indexed: 01/13/2023] Open
Abstract
Long-chain fatty acid monolayers are known surfactants present at air/water interfaces. However, little is known about the stability of these long-chain fatty acid monolayers in the presence of solar radiation. Here we have investigated, for the first time, the stability of palmitic acid monolayers on salt water interfaces in the presence and absence of simulated solar light with and without a photosensitizer in the underlying salt subphase. Using surface sensitive probes to measure changes in the properties of these monolayers upon irradiation, we found that the monolayers become less stable in the presence of light and a photosensitizer, in this case humic acid, in the salt solution. The presence of the photosensitizer is essential in significantly reducing the stability of the monolayer upon irradiation. The mechanism for this loss of stability is due to interfacial photochemistry involving electronically excited humic acid and molecular oxygen reacting with palmitic acid at the interface to form more oxygenated and less surface-active species. These oxygenated species can then more readily partition into the underlying solution.
Collapse
Affiliation(s)
- Mona Shrestha
- Department of Chemistry & Biochemistry , University of California , La Jolla , San Diego , CA 92093 , USA .
| | - Man Luo
- Department of Chemistry & Biochemistry , University of California , La Jolla , San Diego , CA 92093 , USA .
| | - Yingmin Li
- Materials Science and Engineering Program , University of California , La Jolla , San Diego , CA 92093 , USA
| | - Bo Xiang
- Materials Science and Engineering Program , University of California , La Jolla , San Diego , CA 92093 , USA
| | - Wei Xiong
- Department of Chemistry & Biochemistry , University of California , La Jolla , San Diego , CA 92093 , USA .
- Materials Science and Engineering Program , University of California , La Jolla , San Diego , CA 92093 , USA
| | - Vicki H Grassian
- Department of Chemistry & Biochemistry , University of California , La Jolla , San Diego , CA 92093 , USA .
- Scripps Institution of Oceanography , University of California , La Jolla , San Diego , CA 92093 , USA
- Department of Nanoengineering , University of California , La Jolla , San Diego , CA 92093 , USA
| |
Collapse
|
45
|
Parashar S, Lesnicki D, Sulpizi M. Increased Acid Dissociation at the Quartz/Water Interface. J Phys Chem Lett 2018; 9:2186-2189. [PMID: 29634900 DOI: 10.1021/acs.jpclett.8b00686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As shown by a quite significant amount of literature, acids at the water surface tend to be "less" acid, meaning that their associated form is favored over the conjugated base. What happens at the solid/liquid interface? In the case of the silica/water interface, we show how the acidity of adsorbed molecules can instead increase. Using a free energy perturbation approach in combination with electronic structure-based molecular dynamics simulations, we show how the acidity of pyruvic acid at the quartz/water interface is increased by almost two units. Such increased acidity is the result of the specific microsolvation at the interface and, in particular, of the stabilization of the deprotonated form by the silanols on the quartz surface and the special interfacial water layer.
Collapse
Affiliation(s)
- Shivam Parashar
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Dominika Lesnicki
- Institute of Physics , Johannes Gutenberg University Mainz , Staudingerweg 7 , 55099 Mainz , Germany
| | - Marialore Sulpizi
- Institute of Physics , Johannes Gutenberg University Mainz , Staudingerweg 7 , 55099 Mainz , Germany
| |
Collapse
|
46
|
Li S, Du L, Tsona NT, Wang W. The interaction of trace heavy metal with lipid monolayer in the sea surface microlayer. CHEMOSPHERE 2018; 196:323-330. [PMID: 29310068 DOI: 10.1016/j.chemosphere.2017.12.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/17/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Lipid molecules and trace heavy metals are enriched in sea surface microlayer and can be transferred into the sea spray aerosol. To better understand their impact on marine aerosol generation and evolution, we investigated the interaction of trace heavy metals including Fe3+, Pb2+, Zn2+, Cu2+, Ni2+, Cr3+, Cd2+, and Co2+, with dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface. Phase behavior of the DPPC monolayer on heavy metal solutions was probed with surface pressure-area (π-A) isotherms. The conformation order and orientation of DPPC alkyl chains were characterized by infrared reflection-absorption spectroscopy (IRRAS). The π-A isotherms show that Zn2+ and Fe3+ strongly interact with DPPC molecules, and induce condensation of the monolayers in a concentration-dependent manner. IRRAS spectra show that the formation of cation-DPPC complex gives rise to conformational changes and immobilization of the headgroups. The current results suggest that the enrichment of Zn2+ in sea spray aerosols is due to strong binding to the DPPC film. The interaction of Fe3+ with DPPC monolayers can significantly influence their surface organizations through the formation of lipid-coated particles. These results suggest that the sea surface microlayer is capable of accumulating much higher amounts of these metals than the subsurface water. The organic and metal pollutants may transfer into the atmosphere by this interaction.
Collapse
Affiliation(s)
- Siyang Li
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100 Shandong, China
| | - Lin Du
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100 Shandong, China.
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100 Shandong, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100 Shandong, China
| |
Collapse
|
47
|
Zhang T, Brantley SL, Verreault D, Dhankani R, Corcelli SA, Allen HC. Effect of pH and Salt on Surface pK a of Phosphatidic Acid Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:530-539. [PMID: 29207248 DOI: 10.1021/acs.langmuir.7b03579] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The pH-induced surface speciation of organic surfactants such as fatty acids and phospholipids in monolayers and coatings is considered to be an important factor controlling their interfacial organization and properties. Yet, correctly predicting the surface speciation requires the determination of the surface dissociation constants (surface pKa) of the protic functional group(s) present. Here, we use three independent methods-compression isotherms, surface tension pH titration, and infrared reflection-absorption spectroscopy (IRRAS)-to study the protonation state of dipalmitoylphosphatidic acid (DPPA) monolayers on water and NaCl solutions. By examining the molecular area expansion at basic pH, the pKa to remove the second proton of DPPA (surface pKa2) at the aqueous interface is estimated. In addition, utilizing IRRAS combined with density functional theory calculations, the vibrational modes of the phosphate headgroup were directly probed and assigned to understand DPPA charge speciation with increasing pH. We find that all three experimental techniques give consistent surface pKa2 values in good agreement with each other. Results show that a condensed DPPA monolayer has a surface pKa2 of 11.5, a value higher than previously reported (∼7.9-8.5). This surface pKa2 was further altered by the presence of Na+ cations in the aqueous subphase, which reduced the surface pKa2 from 11.5 to 10.5. It was also found that the surface pKa2 value of DPPA is modulated by the packing density (i.e., the surface charge density) of the monolayer, with a surface pKa2 as low as 9.2 for DPPA monolayers in the two-dimensional gaseous phase over NaCl solutions. The experimentally determined surface pKa2 values are also found to be in agreement with those predicted by Gouy-Chapman theory, validating these methods and proving that surface charge density is the driving factor behind changes to the surface pKa2.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Chemistry & Biochemistry, The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shelby L Brantley
- Department of Chemistry and Biochemistry, University of Notre Dame , 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Dominique Verreault
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Raja Dhankani
- Department of Chemistry & Biochemistry, The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame , 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
48
|
Wellen Rudd BA, Vidalis AS, Allen HC. Thermodynamic versus non-equilibrium stability of palmitic acid monolayers in calcium-enriched sea spray aerosol proxy systems. Phys Chem Chem Phys 2018; 20:16320-16332. [DOI: 10.1039/c8cp01188e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Calcium ions bind to palmitic acid monolayers at the air–aqueous interface resulting in changes of both thermodynamic and non-equilibrium stability.
Collapse
Affiliation(s)
| | - Andrew S. Vidalis
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Heather C. Allen
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
49
|
Gong Z, Sun H. A Coarse-Grained Force Field Parameterized for MgCl2 and CaCl2 Aqueous Solutions. J Chem Inf Model 2017; 57:1599-1608. [DOI: 10.1021/acs.jcim.7b00206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Zheng Gong
- School of Chemistry and Chemical
Engineering and Ministry of Education Key Laboratory of Scientific
and Engineering Computing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huai Sun
- School of Chemistry and Chemical
Engineering and Ministry of Education Key Laboratory of Scientific
and Engineering Computing, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
50
|
Strazdaite S, Meister K, Bakker HJ. Reduced Acid Dissociation of Amino-Acids at the Surface of Water. J Am Chem Soc 2017; 139:3716-3720. [PMID: 28177623 PMCID: PMC5355887 DOI: 10.1021/jacs.6b12079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We use surface-specific intensity vibrational sum-frequency generation and attenuated total reflection spectroscopy to probe the ionization state of the amino-acids l-alanine and l-proline at the air/water surface and in the bulk. The ionization state is determined by probing the vibrational signatures of the carboxylic acid group, representing the nondissociated acid form, and the carboxylate anion group, representing the dissociated form, over a wide range of pH values. We find that the carboxylic acid group deprotonates at a significantly higher pH at the surface than in the bulk.
Collapse
Affiliation(s)
| | - Konrad Meister
- Amolf , Science Park 102, Amsterdam 1098XG, The Netherlands
| | - Huib J Bakker
- Amolf , Science Park 102, Amsterdam 1098XG, The Netherlands
| |
Collapse
|