1
|
Shukla M, Malik S, Pandya A. Lab on chip for testing of repurposed drugs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:71-90. [PMID: 38789187 DOI: 10.1016/bs.pmbts.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The lab-on-chip technique broadly comprises of microfluidics and aims to progress multidimensionally by changing the outlook of medicine and pharmaceuticals as it finds it roots in miniaturization. Moreover, microfluidics facilitates precise physiological simulation and possesses biological system-mimicking capabilities for drug development and repurposing. Thus, organs on chip could pave a revolutionary pathway in the field of drug development and repurposing by reducing animal testing and improving drug repurposing.
Collapse
Affiliation(s)
- Malvika Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Saloni Malik
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Alok Pandya
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India; Department of Nanoengineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
2
|
Suslick BA, Hemmer J, Groce BR, Stawiasz KJ, Geubelle PH, Malucelli G, Mariani A, Moore JS, Pojman JA, Sottos NR. Frontal Polymerizations: From Chemical Perspectives to Macroscopic Properties and Applications. Chem Rev 2023; 123:3237-3298. [PMID: 36827528 PMCID: PMC10037337 DOI: 10.1021/acs.chemrev.2c00686] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The synthesis and processing of most thermoplastics and thermoset polymeric materials rely on energy-inefficient and environmentally burdensome manufacturing methods. Frontal polymerization is an attractive, scalable alternative due to its exploitation of polymerization heat that is generally wasted and unutilized. The only external energy needed for frontal polymerization is an initial thermal (or photo) stimulus that locally ignites the reaction. The subsequent reaction exothermicity provides local heating; the transport of this thermal energy to neighboring monomers in either a liquid or gel-like state results in a self-perpetuating reaction zone that provides fully cured thermosets and thermoplastics. Propagation of this polymerization front continues through the unreacted monomer media until either all reactants are consumed or sufficient heat loss stalls further reaction. Several different polymerization mechanisms support frontal processes, including free-radical, cat- or anionic, amine-cure epoxides, and ring-opening metathesis polymerization. The choice of monomer, initiator/catalyst, and additives dictates how fast the polymer front traverses the reactant medium, as well as the maximum temperature achievable. Numerous applications of frontally generated materials exist, ranging from porous substrate reinforcement to fabrication of patterned composites. In this review, we examine in detail the physical and chemical phenomena that govern frontal polymerization, as well as outline the existing applications.
Collapse
Affiliation(s)
- Benjamin A Suslick
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Julie Hemmer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brecklyn R Groce
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 United States
| | - Katherine J Stawiasz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Philippe H Geubelle
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Giulio Malucelli
- Department of Applied Science and Technology, Politecnico di Torino, 15121 Alessandria, Italy
| | - Alberto Mariani
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- National Interuniversity Consortium of Materials Science and Technology, 50121 Firenze, Italy
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - John A Pojman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 United States
| | - Nancy R Sottos
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Universal self-scalings in a micro-co-flowing. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
DEGİRMENCİ İ. Role of Initiator Structure on Thiol-Ene Polymerization: A Comprehensive Theoretical Study. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1003469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
5
|
|
6
|
Abstract
Aqueous liquids can be charged effectively by a number of methods for many important applications. Organic liquids, however, cannot be charged effectively by existing methods due to their low conductivities, especially the insulating nonpolar organic liquids; hence, there has not been any significant application developed based on charged organic liquids. This study describes an effective fundamental strategy for charging organic liquids, including nonpolar organic liquids: static charge is simply mixed into the liquid. Analyses suggested that the charged species are molecular ions that reside in the bulk of the liquid after charging. This method is simple and general, and the amount and polarity of charge can be flexibly tunable. The effectiveness of this method gives rise to opportunities for the development of novel applications. Charged organic droplets are manipulated for the first time by an electric field for controlling organic reactions. Particles with charge embedded in their bulk matrices are fabricated for the first time (i.e., via polymerizing the liquid monomers mixed with static charge). The charge in this novel class of bulk-charged particles is stable and permanent, especially when compared to the typical surface-charged particles. Simultaneous bulk-charged and bulk-magnetic particles are fabricated for the first time via simply mixing both the static charge and magnetic nanoparticles into the liquid monomers. These highly versatile particles are responsive to both electric and magnetic fields for practical applications.
Collapse
Affiliation(s)
- Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yajuan Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Wei Chun Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
7
|
Development of Microdroplet Generation Method for Organic Solvents Used in Chemical Synthesis. Molecules 2020; 25:molecules25225360. [PMID: 33212771 PMCID: PMC7697074 DOI: 10.3390/molecules25225360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 01/09/2023] Open
Abstract
Recently, chemical operations with microfluidic devices, especially droplet-based operations, have attracted considerable attention because they can provide an isolated small-volume reaction field. However, analysis of these operations has been limited mostly to aqueous-phase reactions in water droplets due to device material restrictions. In this study, we have successfully demonstrated droplet formation of five common organic solvents frequently used in chemical synthesis by using a simple silicon/glass-based microfluidic device. When an immiscible liquid with surfactant was used as the continuous phase, the organic solvent formed droplets similar to water-in-oil droplets in the device. In contrast to conventional microfluidic devices composed of resins, which are susceptible to swelling in organic solvents, the developed microfluidic device did not undergo swelling owing to the high chemical resistance of the constituent materials. Therefore, the device has potential applications for various chemical reactions involving organic solvents. Furthermore, this droplet generation device enabled control of droplet size by adjusting the liquid flow rate. The droplet generation method proposed in this work will contribute to the study of organic reactions in microdroplets and will be useful for evaluating scaling effects in various chemical reactions.
Collapse
|
8
|
Sohrabi S, Kassir N, Keshavarz Moraveji M. Droplet microfluidics: fundamentals and its advanced applications. RSC Adv 2020; 10:27560-27574. [PMID: 35516933 PMCID: PMC9055587 DOI: 10.1039/d0ra04566g] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/03/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023] Open
Abstract
Droplet-based microfluidic systems have been shown to be compatible with many chemical and biological reagents and capable of performing a variety of operations that can be rendered programmable and reconfigurable. This platform has dimensional scaling benefits that have enabled controlled and rapid mixing of fluids in the droplet reactors, resulting in decreased reaction times. This, coupled with the precise generation and repeatability of droplet operations, has made the droplet-based microfluidic system a potent high throughput platform for biomedical research and applications. In addition to being used as micro-reactors ranging from the nano- to femtoliter (10-15 liters) range; droplet-based systems have also been used to directly synthesize particles and encapsulate many biological entities for biomedicine and biotechnology applications. For this, in the following article we will focus on the various droplet operations, as well as the numerous applications of the system and its future in many advanced scientific fields. Due to advantages of droplet-based systems, this technology has the potential to offer solutions to today's biomedical engineering challenges for advanced diagnostics and therapeutics.
Collapse
Affiliation(s)
- Somayeh Sohrabi
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran Polytechnic Iran
| | - Nour Kassir
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran Polytechnic Iran
| | | |
Collapse
|
9
|
Prielaidas Ž, Juodkazis S, Stankevičius E. Thermal control of SZ2080 photopolymerization in four-beam interference lithography. Phys Chem Chem Phys 2020; 22:5038-5045. [PMID: 32073067 DOI: 10.1039/c9cp05168f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photopolymerization by four-beam interference lithography on a preheated SZ2080 sample was explored at different initial temperatures of the sample: 20 °C, 50 °C, 75 °C, 100 °C, 125 °C, and 150 °C, and at exposure times ranging from 0.5 s to 5 s. The average laser power selected was ∼100 mW for the 300 ps duration pulses at a 1 kHz repetition rate. The experimental results demonstrate that the higher initial temperature of the sample positively influences the crosslinking of the patterns. These findings will improve polymerization protocols for multi-beam interference lithography.
Collapse
Affiliation(s)
- Žygimantas Prielaidas
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300, Vilnius, Lithuania.
| | | | | |
Collapse
|
10
|
Sticker D, Geczy R, Häfeli UO, Kutter JP. Thiol-Ene Based Polymers as Versatile Materials for Microfluidic Devices for Life Sciences Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10080-10095. [PMID: 32048822 DOI: 10.1021/acsami.9b22050] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While there is a steady growth in the number of microfluidics applications, the search for an optimal material that delivers the diverse characteristics needed for the numerous tasks is still nowhere close to being settled. Often overlooked and still underrepresented, the thiol-ene family of polymer materials has an enormous potential for applications in organs-on-a-chip, droplet productions, microanalytics, and point of care testing. In this review, the main characteristics of the thiol-ene materials are given, and advantages and drawbacks with respect to their potential in microfluidic chip fabrication are critically assessed. Select applications, which exploit the versatility of the thiol-ene polymers, are presented and discussed. It is concluded that, in particular, the rapid prototyping possibility combined with the material's resulting mechanical strength, solvent resistance, and biocompatibility, as well as the inherently easy surface functionalization, are strong factors to make thiol-ene polymers strong contenders for promising future materials for many biological, clinical, and technical lab-on-a-chip applications.
Collapse
Affiliation(s)
- Drago Sticker
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Reka Geczy
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Urs O Häfeli
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jörg P Kutter
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Experimental Studies of Microchannel Tapering on Droplet Forming Acceleration in Liquid Paraffin/Ethanol Coaxial Flows. MATERIALS 2020; 13:ma13040944. [PMID: 32093232 PMCID: PMC7078719 DOI: 10.3390/ma13040944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 11/24/2022]
Abstract
The formations of micro-droplets are strongly influenced by the local geometries where they are generated. In this paper, through experimental research, we focus on the roles of microchannel tapering in the liquid paraffin/ethanol coaxial flows in their flow patterns, flow regimes, and droplet parameters, i.e., their sizes and forming frequencies. For validity, the non-tapering coaxial flows (the convergence angle α=0∘) are investigated, the experimental methods and experimental data are examined and analyzed by contrasting the details with previous works, and consistent results are obtained. We consider a slightly tapering microchannel (the convergence angle α=2.8∘) and by comparison, the experiments show that the tapering has significant effects on the flow patterns, droplet generation frequencies, and droplet sizes. The regimes of squeezing, dripping, jetting, tubing, and threading are differentiated to shrink toward the coordinate origin of the Cac–Wed space. The closer it is to the origin, the less variations will occur. For the adjacent regimes of the origin, i.e., dripping and squeezing, slight changes have occurred in both flow patterns, as well as the droplet characters. In the dripping and squeezing modes, the liquid droplets are generated near the orifice of the inner tube. Their forming positions (geometry) and flow conditions are almost the same. Therefore, the causes of minute changes in such regimes are physically understandable. While in the jetting regimes, the droplets shrink in size and their forming frequencies increase. The droplet sizes and the frequencies are both linearly related to those of the non-tapering cases with the corresponding relations derived. Furthermore, the threading and the tubing patterns almost did not emerged in the non-tapering data, as it seemed easier to form elongated jets, thinning or widening, in the tapered tubes. This can be explained by the stable analysis of the coaxial jets, which indicates that the reductions in the microchannel diameters can suppress the development of the interface disturbances.
Collapse
|
12
|
Tanaka D, Sawai S, Hattori S, Nozaki Y, Yoon DH, Fujita H, Sekiguchi T, Akitsu T, Shoji S. Microdroplet synthesis of azo compounds with simple microfluidics-based pH control. RSC Adv 2020; 10:38900-38905. [PMID: 35518427 PMCID: PMC9057350 DOI: 10.1039/d0ra06344d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/15/2020] [Indexed: 01/29/2023] Open
Abstract
Conventional solution-phase synthesis of azo compounds is complicated by the need for precise pH and temperature control, high concentrations of pH control reagents, and by-product removal. In this work, we exploited the advantages of microdroplet chemistry to realize the simple and highly efficient synthesis of an azo compound using microfluidics-based pH control. Owing to the small size of microdroplets, heat exchange between a microdroplet and its environment is extremely fast. Furthermore, chemical reactions in microdroplets occur rapidly due to the short diffusion distance and vortex flow. Formation of the azo compound reached completion in less than 3 s at room temperature, compared with 1 h at 0 °C under conventional conditions. pH control was simple, and the pH control reagent concentration could be reduced to less than one-tenth of that used in the conventional method. No by-products were generated, and thus this procedure did not require a recrystallization step. The time course of the chemical reaction was elucidated by observing the growth of azo compound microcrystals in droplets at various locations along the channel corresponding to different mixing times. Conventional solution-phase synthesis of azo compounds is complicated by the need for precise pH and temperature control, high concentrations of pH control reagents, and by-product removal. The microdroplet synthesis method has solved these problems.![]()
Collapse
Affiliation(s)
- Daiki Tanaka
- Research Organization for Nano & Life Innovation
- Waseda University
- Tokyo 162-0041
- Japan
| | - Shunsuke Sawai
- Faculty of Science and Engineering
- Waseda University
- Tokyo
- Japan
| | - Shohei Hattori
- Faculty of Science and Engineering
- Waseda University
- Tokyo
- Japan
| | - Yoshito Nozaki
- Research Organization for Nano & Life Innovation
- Waseda University
- Tokyo 162-0041
- Japan
| | - Dong Hyun Yoon
- Research Organization for Nano & Life Innovation
- Waseda University
- Tokyo 162-0041
- Japan
| | | | - Tetsushi Sekiguchi
- Research Organization for Nano & Life Innovation
- Waseda University
- Tokyo 162-0041
- Japan
| | - Takashiro Akitsu
- Department of Chemistry
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Shuichi Shoji
- Faculty of Science and Engineering
- Waseda University
- Tokyo
- Japan
| |
Collapse
|
13
|
Chao C, Jin X, Fan X. Effect of network structure on the bubble dislodgment and pressure distribution in microfluidic networks with multiple bifurcations. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.115176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Immobilization of proteolytic enzymes on replica-molded thiol-ene micropillar reactors via thiol-gold interaction. Anal Bioanal Chem 2019; 411:2339-2349. [PMID: 30899997 PMCID: PMC6459972 DOI: 10.1007/s00216-019-01674-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
Abstract
We introduce rapid replica molding of ordered, high-aspect-ratio, thiol-ene micropillar arrays for implementation of microfluidic immobilized enzyme reactors (IMERs). By exploiting the abundance of free surface thiols of off-stoichiometric thiol-ene compositions, we were able to functionalize the native thiol-ene micropillars with gold nanoparticles (GNPs) and these with proteolytic α-chymotrypsin (CHT) via thiol-gold interaction. The micropillar arrays were replicated via PDMS soft lithography, which facilitated thiol-ene curing without the photoinitiators, and thus straightforward bonding and good control over the surface chemistry (number of free surface thiols). The specificity of thiol-gold interaction was demonstrated over allyl-rich thiol-ene surfaces and the robustness of the CHT-IMERs at different flow rates and reaction temperatures using bradykinin hydrolysis as the model reaction. The product conversion rate was shown to increase as a function of decreasing flow rate (increasing residence time) and upon heating of the IMER to physiological temperature. Owing to the effective enzyme immobilization onto the micropillar array by GNPs, no further purification of the reaction solution was required prior to mass spectrometric detection of the bradykinin hydrolysis products and no clogging problems, commonly associated with conventional capillary packings, were observed. The activity of the IMER remained stable for at least 1.5 h (continuous use), suggesting that the developed protocol may provide a robust, new approach to implementation of IMER technology for proteomics research. Graphical abstract.
Collapse
|
15
|
Chen TY, Wu ML, Chen YC. Ultrasonication-assisted spray ionization-based micro-reactors for online monitoring of fast chemical reactions by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:26-34. [PMID: 30407688 DOI: 10.1002/jms.4307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 06/08/2023]
Abstract
Microfluidics can be used to handle relatively small volumes of samples and to conduct reactions in microliter-sized volumes. Electrospray ionization can couple microfluidics with mass spectrometry (MS) to monitor chemical reactions online. However, fabricating microfluidic chips is time-consuming. We herein propose the use of a micro-reactor that is sustained by two capillaries and an ultrasonicator. The inlets of the capillaries were individually immersed to two different sample vials that were subjected to the ultrasonicator. The tapered outlets of the two capillaries were placed cross with an angle of ~60° close to the inlet of the mass spectrometer to fuse the eluents. On the basis of capillary action and ultrasonication, the samples from the two capillaries can be continuously directed to the capillary outlets and fuse simultaneously to generate gas phase ions for MS analysis through ultrasonication-assisted spray ionization (UASI). Any electric contact applied on the capillaries is not required. Nevertheless, UASI spray derived from the eluents can readily occur in front of the mass spectrometer. That is, a micro-reactor was created from the fusing of the eluent containing different reactants from these two UASI capillaries, allowing reactions to be conducted in situ. The solvent in the fused droplets was evaporated quickly, and the product ions could be immediately observed by MS because of the extreme rise in the concentration of the reactants. For proof of concept, pyrazole synthesis reaction and cortisone derivatization by Girard T reagent were selected as the model reactions. The results demonstrated the feasibility of using UASI-based micro-reactor for online MS analysis to detect reaction intermediates and products.
Collapse
Affiliation(s)
- Te-Yu Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Min-Li Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan
| |
Collapse
|
16
|
Yang T, Choo J, Stavrakis S, de Mello A. Fluoropolymer‐Coated PDMS Microfluidic Devices for Application in Organic Synthesis. Chemistry 2018; 24:12078-12083. [DOI: 10.1002/chem.201802750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/27/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Tianjin Yang
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesETH Zürich Vladimir Prelog Weg 1 8093 Zürich Switzerland
| | - Jaebum Choo
- Department of Bionano EngineeringHanyang University Ansan 15588 South Korea
| | - Stavros Stavrakis
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesETH Zürich Vladimir Prelog Weg 1 8093 Zürich Switzerland
| | - Andrew de Mello
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesETH Zürich Vladimir Prelog Weg 1 8093 Zürich Switzerland
| |
Collapse
|
17
|
Lopez CG, Watanabe T, Adamo M, Martel A, Porcar L, Cabral JT. Microfluidic devices for small-angle neutron scattering. J Appl Crystallogr 2018; 51:570-583. [PMID: 29896054 PMCID: PMC5988002 DOI: 10.1107/s1600576718007264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
A comparative examination is presented of materials and approaches for the fabrication of microfluidic devices for small-angle neutron scattering (SANS). Representative inorganic glasses, metals, and polymer materials and devices are evaluated under typical SANS configurations. Performance criteria include neutron absorption, scattering background and activation, as well as spatial resolution, chemical compatibility and pressure resistance, and also cost, durability and manufacturability. Closed-face polymer photolithography between boron-free glass (or quartz) plates emerges as an attractive approach for rapidly prototyped microfluidic SANS devices, with transmissions up to ∼98% and background similar to a standard liquid cell (I ≃ 10-3 cm-1). For applications requiring higher durability and/or chemical, thermal and pressure resistance, sintered or etched boron-free glass and silicon devices offer superior performance, at the expense of various fabrication requirements, and are increasingly available commercially.
Collapse
Affiliation(s)
- Carlos G. Lopez
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Takaichi Watanabe
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Marco Adamo
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Institut Laue–Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Anne Martel
- Institut Laue–Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Lionel Porcar
- Institut Laue–Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - João T. Cabral
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
18
|
Li G, Shang M, Song Y, Su Y. Characterization of liquid-liquid mass transfer performance in a capillary microreactor system. AIChE J 2017. [DOI: 10.1002/aic.15973] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guangxiao Li
- Dept. of Chemical Engineering, School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Minjing Shang
- Dept. of Chemical Engineering, School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Yang Song
- Dept. of Chemical Engineering, School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Yuanhai Su
- Dept. of Chemical Engineering, School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| |
Collapse
|
19
|
Mastiani M, Seo S, Jimenez SM, Petrozzi N, Kim MM. Flow regime mapping of aqueous two-phase system droplets in flow-focusing geometries. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.07.083] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Shi HH, Xiao Y, Ferguson S, Huang X, Wang N, Hao HX. Progress of crystallization in microfluidic devices. LAB ON A CHIP 2017; 17:2167-2185. [PMID: 28585942 DOI: 10.1039/c6lc01225f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microfluidic technology provides a unique environment for the investigation of crystallization processes at the nano or meso scale. The convenient operation and precise control of process parameters, at these scales of operation enabled by microfluidic devices, are attracting significant and increasing attention in the field of crystallization. In this paper, developments and applications of microfluidics in crystallization research including: crystal nucleation and growth, polymorph and cocrystal screening, preparation of nanocrystals, solubility and metastable zone determination, are summarized and discussed. The materials used in the construction and the structure of these microfluidic devices are also summarized and methods for measuring and modelling crystal nucleation and growth process as well as the enabling analytical methods are also briefly introduced. The low material consumption, high efficiency and precision of microfluidic crystallizations are of particular significance for active pharmaceutical ingredients, proteins, fine chemicals, and nanocrystals. Therefore, it is increasingly adopted as a mainstream technology in crystallization research and development.
Collapse
Affiliation(s)
- Huan-Huan Shi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
21
|
Sycks DG, Safranski DL, Reddy NB, Sun E, Gall K. Tough Semicrystalline Thiol–Ene Photopolymers Incorporating Spiroacetal Alkenes. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Dalton G. Sycks
- Department
of Mechanical Engineering and Materials Science, Duke University, Box 90300, Hudson Hall, Durham, North
Carolina 27708, United States
| | - David L. Safranski
- MedShape, Inc., 1575
Northside Drive, NW, Suite 440, Atlanta, Georgia 30318, United States
| | - Neel B. Reddy
- Department
of Mechanical Engineering, University of Texas at Dallas, North Engineering
and Computer Science Building, Richardson, Texas 75080, United States
| | - Eric Sun
- Department
of Biomedical Engineering, Duke University, Fitzpatrick CIEMAS Room 1427, 101
Science Drive, Campus Box 90281, Durham, North Carolina 27708, United States
| | - Ken Gall
- Department
of Mechanical Engineering and Materials Science, Duke University, Box 90300, Hudson Hall, Durham, North
Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Fitzpatrick CIEMAS Room 1427, 101
Science Drive, Campus Box 90281, Durham, North Carolina 27708, United States
- MedShape, Inc., 1575
Northside Drive, NW, Suite 440, Atlanta, Georgia 30318, United States
| |
Collapse
|
22
|
Abstract
Droplet microfluidics generates and manipulates discrete droplets through immiscible multiphase flows inside microchannels. Due to its remarkable advantages, droplet microfluidics bears significant value in an extremely wide range of area. In this review, we provide a comprehensive and in-depth insight into droplet microfluidics, covering fundamental research from microfluidic chip fabrication and droplet generation to the applications of droplets in bio(chemical) analysis and materials generation. The purpose of this review is to convey the fundamentals of droplet microfluidics, a critical analysis on its current status and challenges, and opinions on its future development. We believe this review will promote communications among biology, chemistry, physics, and materials science.
Collapse
Affiliation(s)
- Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| |
Collapse
|
23
|
Trantidou T, Elani Y, Parsons E, Ces O. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. MICROSYSTEMS & NANOENGINEERING 2017; 3:16091. [PMID: 31057854 PMCID: PMC6444978 DOI: 10.1038/micronano.2016.91] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 05/07/2023]
Abstract
Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets, particularly lipid-stabilized droplets, because of its highly hydrophobic nature. However, its key property of hydrophobicity has hindered its use in the microfluidic generation of oil-in-water droplets, which requires channels to have hydrophilic surface properties. In this article, we developed, optimized, and characterized a method to produce PDMS with a hydrophilic surface via the deposition of polyvinyl alcohol following plasma treatment and demonstrated its suitability for droplet generation. The proposed method is simple, quick, effective, and low cost and is versatile with respect to surfactants, with droplets being successfully generated using both anionic surfactants and more biologically relevant phospholipids. This method also allows the device to be selectively patterned with both hydrophilic and hydrophobic regions, leading to the generation of double emulsions and inverted double emulsions.
Collapse
Affiliation(s)
- Tatiana Trantidou
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Yuval Elani
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Edward Parsons
- London Centre for Nanotechnology, University College London, London WC1E 6BT, UK
| | - Oscar Ces
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
24
|
|
25
|
Tähkä SM, Bonabi A, Jokinen VP, Sikanen TM. Aqueous and non-aqueous microchip electrophoresis with on-chip electrospray ionization mass spectrometry on replica-molded thiol-ene microfluidic devices. J Chromatogr A 2017; 1496:150-156. [PMID: 28347516 DOI: 10.1016/j.chroma.2017.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 12/25/2022]
Abstract
This work describes aqueous and non-aqueous capillary electrophoresis on thiol-ene-based microfluidic separation devices that feature fully integrated and sharp electrospray ionization (ESI) emitters. The chip fabrication is based on simple and low-cost replica-molding of thiol-ene polymers under standard laboratory conditions. The mechanical rigidity and the stability of the materials against organic solvents, acids and bases could be tuned by adjusting the respective stoichiometric ratio of the thiol and allyl ("ene") monomers, which allowed us to carry out electrophoresis separation in both aqueous and non-aqueous (methanol- and ethanol-based) background electrolytes. The stability of the ESI signal was generally ≤10% RSD for all emitters. The respective migration time repeatabilities in aqueous and non-aqueous background electrolytes were below 3 and 14% RSD (n=4-6, with internal standard). The analytical performance of the developed thiol-ene microdevices was shown in mass spectrometry (MS) based analysis of peptides, proteins, and small molecules. The theoretical plate numbers were the highest (1.2-2.4×104m-1) in ethanol-based background electrolytes. The ionization efficiency also increased under non-aqueous conditions compared to aqueous background electrolytes. The results show that replica-molding of thiol-enes is a feasible approach for producing ESI microdevices that perform in a stable manner in both aqueous and non-aqueous electrophoresis.
Collapse
Affiliation(s)
- Sari M Tähkä
- Faculty of Pharmacy, Drug Research Programme, Viikinkaari 5E, FI-00014, University of Helsinki, Helsinki, Finland.
| | - Ashkan Bonabi
- Faculty of Pharmacy, Drug Research Programme, Viikinkaari 5E, FI-00014, University of Helsinki, Helsinki, Finland.
| | - Ville P Jokinen
- Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, Tietotie 3, FI-00076 Aalto, Espoo, Finland.
| | - Tiina M Sikanen
- Faculty of Pharmacy, Drug Research Programme, Viikinkaari 5E, FI-00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
26
|
Mastiani M, Mosavati B, Kim M(M. Numerical simulation of high inertial liquid-in-gas droplet in a T-junction microchannel. RSC Adv 2017. [DOI: 10.1039/c7ra09710g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Two new flow regimes named unstable dripping and unstable jetting are identified in aqueous droplet generation within high inertial air flow inside a T-Junction microchannel.
Collapse
Affiliation(s)
- Mohammad Mastiani
- Department of Ocean and Mechanical Engineering
- Florida Atlantic University
- Boca Raton
- USA
| | - Babak Mosavati
- Department of Ocean and Mechanical Engineering
- Florida Atlantic University
- Boca Raton
- USA
| | - Myeongsub (Mike) Kim
- Department of Ocean and Mechanical Engineering
- Florida Atlantic University
- Boca Raton
- USA
| |
Collapse
|
27
|
Nameer S, Semlitsch S, Martinelle M, Johansson M. One-pot enzyme-catalyzed synthesis of dual-functional polyester macromers towards surface-active hydrophobic films. RSC Adv 2017. [DOI: 10.1039/c7ra09828f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Selective enzyme catalysis is a valuable tool for the processing of monomers into value-added materials.
Collapse
Affiliation(s)
- Samer Nameer
- KTH Royal Institute of Technology
- Department of Fibre and Polymer Technology
- Division of Coating Technology
- Sweden
| | - Stefan Semlitsch
- KTH Royal Institute of Technology
- School of Biotechnology
- Division of Industrial Biotechnology
- Sweden
| | - Mats Martinelle
- KTH Royal Institute of Technology
- School of Biotechnology
- Division of Industrial Biotechnology
- Sweden
| | - Mats Johansson
- KTH Royal Institute of Technology
- Department of Fibre and Polymer Technology
- Division of Coating Technology
- Sweden
| |
Collapse
|
28
|
Prileszky TA, Ogunnaike BA, Furst EM. Statistics of droplet sizes generated by a microfluidic device. AIChE J 2016. [DOI: 10.1002/aic.15246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tamás A. Prileszky
- Dept. of Chemical and Biomolecular Engineering; University of Delaware; Newark DE 19716
| | | | - Eric M. Furst
- Dept. of Chemical and Biomolecular Engineering; University of Delaware; Newark DE 19716
| |
Collapse
|
29
|
Samanipour R, Wang Z, Ahmadi A, Kim K. Experimental and computational study of microfluidic flow-focusing generation of gelatin methacrylate hydrogel droplets. J Appl Polym Sci 2016. [DOI: 10.1002/app.43701] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Roya Samanipour
- School of Engineering; University of British Columbia; Kelowna British Columbia V1V 1V7 Canada
| | - Zongjie Wang
- School of Engineering; University of British Columbia; Kelowna British Columbia V1V 1V7 Canada
| | - Ali Ahmadi
- School of Engineering; University of British Columbia; Kelowna British Columbia V1V 1V7 Canada
| | - Keekyoung Kim
- School of Engineering; University of British Columbia; Kelowna British Columbia V1V 1V7 Canada
| |
Collapse
|
30
|
Goyal S, Economou AE, Papadopoulos T, Horstman EM, Zhang GGZ, Gong Y, Kenis PJA. Solvent compatible microfluidic platforms for pharmaceutical solid form screening. RSC Adv 2016. [DOI: 10.1039/c5ra26426j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The use of SIFEL in the crystallization fluid layers renders the microfluidic crystallization array compatible with solvents such as tetrahydrofuran, acetonitrile, chloroform, hexane, and toluene.
Collapse
Affiliation(s)
- Sachit Goyal
- The Dow Chemical Company
- Polyurethanes R&D
- Freeport
- USA
- Department of Chemical & Biomolecular Engineering
| | - Aristotle E. Economou
- Department of Chemical & Biomolecular Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Theodore Papadopoulos
- Department of Chemical & Biomolecular Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Elizabeth M. Horstman
- Department of Chemical & Biomolecular Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Geoff G. Z. Zhang
- Drug Product Development
- Research and Development
- AbbVie Inc
- North Chicago
- USA
| | - Yuchuan Gong
- Drug Product Development
- Research and Development
- AbbVie Inc
- North Chicago
- USA
| | - Paul J. A. Kenis
- Department of Chemical & Biomolecular Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| |
Collapse
|
31
|
Tanaka D, Kawakubo W, Tsuda E, Mitsumoto Y, Yoon DH, Sekiguchi T, Akitsu T, Shoji S. Microfluidic synthesis of chiral salen Mn( ii) and Co( ii) complexes containing lysozyme. RSC Adv 2016. [DOI: 10.1039/c6ra09975k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Efficient microfluidic synthesis of chiral salen Mn(ii) and Co(ii) complexes containing lysozyme was achieved.
Collapse
Affiliation(s)
- Daiki Tanaka
- Research Organization for Nano & Life Innovation
- Waseda University
- 120-5 Research Development Center
- Tokyo 162-0041
- Japan
| | - Wataru Kawakubo
- Research Organization for Nano & Life Innovation
- Waseda University
- 120-5 Research Development Center
- Tokyo 162-0041
- Japan
| | - Erika Tsuda
- Department of Chemistry
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Yuya Mitsumoto
- Department of Chemistry
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Dong Hyun Yoon
- Research Organization for Nano & Life Innovation
- Waseda University
- 120-5 Research Development Center
- Tokyo 162-0041
- Japan
| | - Tetsushi Sekiguchi
- Research Organization for Nano & Life Innovation
- Waseda University
- 120-5 Research Development Center
- Tokyo 162-0041
- Japan
| | - Takashiro Akitsu
- Department of Chemistry
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Shuichi Shoji
- Research Organization for Nano & Life Innovation
- Waseda University
- 120-5 Research Development Center
- Tokyo 162-0041
- Japan
| |
Collapse
|
32
|
Tähkä SM, Bonabi A, Nordberg ME, Kanerva M, Jokinen VP, Sikanen TM. Thiol-ene microfluidic devices for microchip electrophoresis: Effects of curing conditions and monomer composition on surface properties. J Chromatogr A 2015; 1426:233-40. [PMID: 26654831 DOI: 10.1016/j.chroma.2015.11.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Thiol-ene polymer formulations are raising growing interest as new low-cost fabrication materials for microfluidic devices. This study addresses their feasibility for microchip electrophoresis (MCE) via characterization of the effects of UV curing conditions and aging on the surface charge and wetting properties. A detailed comparison is made between stoichiometric thiol-ene (1:1) and thiol-ene formulations bearing 50% molar excess of allyls ("enes"), both prepared without photoinitiator or other polymer modifiers. Our results show that the surface charge of thiol-ene 1:1 increases along with increasing UV exposure dose until a threshold (here, about 200J/cm(2)), whereas the surface charge of thiol-ene 2:3 decreases as a function of increasing UV dose. However, no significant change in the surface charge upon storage in ambient air was observed over a period of 14 days (independent of the curing conditions). The water contact angles of thiol-ene 2:3 (typically 70-75°) were found to be less dependent on the UV dose and storing time. Instead, water contact angles of thiol-ene 1:1 slightly decrease (from initial 90 to 95° to about 70°) as a function of UV increasing exposure dose and storing time. Most importantly, both thiol-ene formulations remain relatively hydrophilic over extended periods of time, which favors their use in MCE applications. Here, MCE separation of biologically active peptides and selected fluorescent dyes is demonstrated in combination with laser-induced fluorescence detection showing high separation efficiency (theoretical plates 8200 per 4cm for peptides and 1500-2700 per 4cm for fluorescent dyes) and lower limits of detection in the sub-μM (visible range) or low-μM (near-UV range) level.
Collapse
Affiliation(s)
- Sari M Tähkä
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Helsinki, Finland
| | - Ashkan Bonabi
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Helsinki, Finland
| | - Maria-Elisa Nordberg
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Helsinki, Finland
| | - Meeri Kanerva
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Helsinki, Finland
| | - Ville P Jokinen
- Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, Aalto FI-00076, Finland
| | - Tiina M Sikanen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
33
|
Zhang W, Tullier MP, Patel K, Carranza A, Pojman JA, Radadia AD. Microfluidics using a thiol-acrylate resin for fluorescence-based pathogen detection assays. LAB ON A CHIP 2015; 15:4227-4231. [PMID: 26371689 DOI: 10.1039/c5lc00971e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate thiol-acrylate microfluidics prepared via soft lithography for single-step protein immobilization and fluorescence-based pathogen detection. Such microfluidics are formed via room temperature curing, and bonded without oxygen plasma. The background fluorescence of the resin was found to be similar to PDMS for several filter sets. We also show that thiol-acrylate devices are able to bond to gold-coated surfaces, which allows for integration with microfabricated sensors.
Collapse
Affiliation(s)
- W Zhang
- Institute for Micromanufacturing, Louisiana Tech University, 911 Hergot Ave, Ruston, LA 71272, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Li B, Fan J, Li J, Chu J, Pan T. Piezoelectric-driven droplet impact printing with an interchangeable microfluidic cartridge. BIOMICROFLUIDICS 2015; 9:054101. [PMID: 26392833 PMCID: PMC4560724 DOI: 10.1063/1.4928298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/27/2015] [Indexed: 05/07/2023]
Abstract
Microfluidic impact printing has been recently introduced, utilizing its nature of simple device architecture, low cost, non-contamination, and scalable multiplexability and high throughput. In this paper, we have introduced an impact-based droplet printing platform utilizing a simple plug-and-play microfluidic cartridge driven by piezoelectric actuators. Such a customizable printing system allows for ultrafine control of droplet volume from picoliters (∼23 pl) to nanoliters (∼10 nl), a 500 fold variation. The high flexibility of droplet generation can be simply achieved by controlling the magnitude of actuation (e.g., driving voltage) and the waveform shape of actuation pulses, in addition to nozzle size restrictions. Detailed printing characterizations on these parameters have been conducted consecutively. A multiplexed impact printing system has been prototyped and demonstrated to provide the functions of single-droplet jetting and droplet multiplexing as well as concentration gradient generation. Moreover, a generic biological assay has also been tested and validated on this printing platform. Therefore, the microfluidic droplet printing system could be of potential value to establish multiplexed micro reactors for high-throughput life science applications.
Collapse
Affiliation(s)
| | - Jinzhen Fan
- Department of Biomedical Engineering, University of California , Davis 95616, USA
| | - Jiannan Li
- Department of Biomedical Engineering, University of California , Davis 95616, USA
| | - Jiaru Chu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Tingrui Pan
- Department of Biomedical Engineering, University of California , Davis 95616, USA
| |
Collapse
|
35
|
Hennessy MG, Vitale A, Cabral JT, Matar OK. Role of heat generation and thermal diffusion during frontal photopolymerization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022403. [PMID: 26382412 DOI: 10.1103/physreve.92.022403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Indexed: 05/11/2023]
Abstract
Frontal photopolymerization (FPP) is a rapid and versatile solidification process that can be used to fabricate complex three-dimensional structures by selectively exposing a photosensitive monomer-rich bath to light. A characteristic feature of FPP is the appearance of a sharp polymerization front that propagates into the bath as a planar traveling wave. In this paper, we introduce a theoretical model to determine how heat generation during photopolymerization influences the kinetics of wave propagation as well as the monomer-to-polymer conversion profile, both of which are relevant for FPP applications and experimentally measurable. When thermal diffusion is sufficiently fast relative to the rate of polymerization, the system evolves as if it were isothermal. However, when thermal diffusion is slow, a thermal wavefront develops and propagates at the same rate as the polymerization front. This leads to an accumulation of heat behind the polymerization front which can result in a significant sharpening of the conversion profile and acceleration of the growth of the solid. Our results also suggest that a novel way to tailor the dynamics of FPP is by imposing a temperature gradient along the growth direction.
Collapse
Affiliation(s)
- Matthew G Hennessy
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Alessandra Vitale
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - João T Cabral
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Omar K Matar
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
36
|
Hwang JW, Choi JH, Choi B, Lee G, Lee SW, Koo YM, Chang WJ. Microfluidic room temperature ionic liquid droplet generation depending on the hydrophobicity and interfacial tension. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-015-0037-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Hennessy MG, Vitale A, Matar OK, Cabral JT. Controlling frontal photopolymerization with optical attenuation and mass diffusion. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062402. [PMID: 26172720 DOI: 10.1103/physreve.91.062402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 06/04/2023]
Abstract
Frontal photopolymerization (FPP) is a versatile directional solidification process that can be used to rapidly fabricate polymer network materials by selectively exposing a photosensitive monomer bath to light. A characteristic feature of FPP is that the monomer-to-polymer conversion profiles take on the form of traveling waves that propagate into the unpolymerized bulk from the illuminated surface. Practical implementations of FPP require detailed knowledge about the conversion profile and speed of these traveling waves. The purpose of this theoretical study is to (i) determine the conditions under which FPP occurs and (ii) explore how optical attenuation and mass transport can be used to finely tune the conversion profile and propagation kinetics. Our findings quantify the strong optical attenuation and slow mass transport relative to the rate of polymerization required for FPP. The shape of the traveling wave is primarily controlled by the magnitude of the optical attenuation coefficients of the neat and polymerized material. Unexpectedly, we find that mass diffusion can increase the net extent of polymerization and accelerate the growth of the solid network. The theoretical predictions are found to be in excellent agreement with experimental data acquired for representative systems.
Collapse
Affiliation(s)
- Matthew G Hennessy
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Alessandra Vitale
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Omar K Matar
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - João T Cabral
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
38
|
Li J, Wang Y, Chen H, Wan J. Electrowetting-on-dielectrics for manipulation of oil drops and gas bubbles in aqueous-shell compound drops. LAB ON A CHIP 2014; 14:4334-4337. [PMID: 25236507 DOI: 10.1039/c4lc00977k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present the manipulation of oil, organic and gaseous chemicals by electrowetting-on-dielectric (EWOD) technology using aqueous-shell compound drops. We demonstrate that the transport and coalescence of viscous oil drops, the reaction of bromine with styrene in benzene solution, and the reaction of red blood cells with carbon monoxide bubbles can be accomplished using this method.
Collapse
Affiliation(s)
- Jiang Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | | | | | | |
Collapse
|
39
|
Kim JO, Kim H, Ko DH, Min KI, Im DJ, Park SY, Kim DP. A monolithic and flexible fluoropolymer film microreactor for organic synthesis applications. LAB ON A CHIP 2014; 14:4270-4276. [PMID: 25220762 DOI: 10.1039/c4lc00748d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A photocurable and viscous fluoropolymer with chemical stability is a highly desirable material for fabrication of microchemical devices. Lack of a reliable fabrication method, however, limits actual applications for organic reactions. Herein, we report fabrication of a monolithic and flexible fluoropolymer film microreactor and its use as a new microfluidic platform. The fabrication involves facile soft lithography techniques that enable partial curing of thin laminates, which can be readily bonded by conformal contact without any external forces. We demonstrate fabrication of various functional channels (~300 μm thick) such as those embedded with either a herringbone micromixer pattern or a droplet generator. Organic reactions under strongly acidic and basic conditions can be carried out in this film microreactor even at elevated temperature with excellent reproducibility. In particular, the transparent film microreactor with good deformability could be wrapped around a light-emitting lamp for close contact with the light source for efficient photochemical reactions with visible light, which demonstrates easy integration with optical components for functional miniaturized systems.
Collapse
Affiliation(s)
- Jin-Oh Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Korea.
| | | | | | | | | | | | | |
Collapse
|
40
|
Miura S, Banno T, Tonooka T, Osaki T, Takeuchi S, Toyota T. pH-induced motion control of self-propelled oil droplets using a hydrolyzable gemini cationic surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7977-7985. [PMID: 24934718 DOI: 10.1021/la5018032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Self-propelled motion of micrometer-sized substances has drawn much attention as an autonomous transportation system. One candidate vehicle is a chemically driven micrometer-sized oil droplet. However, to the best of our knowledge, there has been no report of a chemical reaction system controlling the three-dimensional motion of oil droplets underwater. In this study, we developed a molecular system that controlled the self-propelled motion of 4-heptyloxybenzaldehyde oil droplets by using novel gemini cationic surfactants containing carbonate linkages (2G12C). We found that, in emulsions containing sodium hydroxide, the motion time of the self-propelled oil droplets was longer in the presence of 2G12C than in the presence of gemini cationic surfactants without carbonate linkages. Moreover, in 2G12C solution, oil droplets at rest underwent unidirectional, self-propelled motion in a gradient field toward a higher concentration of sodium hydroxide. Even though they stopped within several seconds, they restarted in the same direction. 2G12C was gradually hydrolyzed under basic conditions to produce a pair of the corresponding monomeric surfactants, which exhibit different interfacial properties from 2G12C. The prolonged and restart motion of the oil droplets were explained by the increase in the heterogeneity of the interfacial tension of the oil droplets.
Collapse
Affiliation(s)
- Shingo Miura
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo , 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Abolhasani M, Günther A, Kumacheva E. Microfluidic studies of carbon dioxide. Angew Chem Int Ed Engl 2014; 53:7992-8002. [PMID: 24961230 DOI: 10.1002/anie.201403719] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Indexed: 11/11/2022]
Abstract
Carbon dioxide (CO2) sequestration, storage and recycling will greatly benefit from comprehensive studies of physical and chemical gas-liquid processes involving CO2. Over the past five years, microfluidics emerged as a valuable tool in CO2-related research, due to superior mass and heat transfer, reduced axial dispersion, well-defined gas-liquid interfacial areas and the ability to vary reagent concentrations in a high-throughput manner. This Minireview highlights recent progress in microfluidic studies of CO2-related processes, including dissolution of CO2 in physical solvents, CO2 reactions, the utilization of CO2 in materials science, and the use of supercritical CO2 as a "green" solvent.
Collapse
Affiliation(s)
- Milad Abolhasani
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto M5S 3G8, Ontario (Canada)
| | | | | |
Collapse
|
43
|
Watanabe T, G Lopez C, Douglas JF, Ono T, Cabral JT. Microfluidic approach to the formation of internally porous polymer particles by solvent extraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:2470-9. [PMID: 24568261 DOI: 10.1021/la404506b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We report the controlled formation of internally porous polyelectrolyte particles with diameters ranging from tens to hundreds of micrometers through selective solvent extraction using microfluidics. Solvent-resistant microdevices, fabricated by frontal photopolymerization, encapsulate binary polymer (P)/solvent (S1) mixtures by a carrier solvent phase (C) to form plugs with well-defined radii and low polydispersity; the suspension is then brought into contact with a selective extraction solvent (S2) that is miscible with C and S1 but not P, leading to the extraction of S1 from the droplets. The ensuing phase inversion yields polymer capsules with a smooth surface but highly porous internal structure. Depending on the liquid extraction time scale, this stage can be carried out in situ, within the chip, or ex situ, in an external S2 bath. Bimodal polymer plugs are achieved using asymmetrically inverted T junctions. For this demonstration, we form sodium poly(styrenesulfonate) (P) particles using water (S1), hexadecane (C), and methyl ethyl ketone (S2). We measure droplet extraction rates as a function of drop size and polymer concentration and propose a simple scaling model to guide particle formation. We find that the extraction time required to form particles from liquid droplets does not depend on the initial polymer concentration but is rather proportional to the initial droplet size. The resulting particle size follows a linear relationship with the initial droplet size for all polymer concentrations, allowing for the precise control of particle size. The internal particle porous structure exhibits a polymer density gradient ranging from a dense surface skin toward an essentially hollow core. Average particle porosities between 10 and 50% are achieved by varying the initial droplet compositions up to 15 wt % polymer. Such particles have potential applications in functional, optical, and coating materials.
Collapse
Affiliation(s)
- Takaichi Watanabe
- Department of Chemical Engineering, Imperial College London , London SW7 2AZ, U.K
| | | | | | | | | |
Collapse
|
44
|
Aeinehvand MM, Ibrahim F, Harun SW, Al-Faqheri W, Thio THG, Kazemzadeh A, Madou M. Latex micro-balloon pumping in centrifugal microfluidic platforms. LAB ON A CHIP 2014; 14:988-97. [PMID: 24441792 PMCID: PMC4254353 DOI: 10.1039/c3lc51116b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-step processes on a single microfluidic disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping mechanisms have been designed to study the pump performance at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data show that the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, a desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon.
Collapse
Affiliation(s)
- Mohammad Mahdi Aeinehvand
- Center for Innovation in Medical Engineering (CIME), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | |
Collapse
|
45
|
Retailleau M, Ibrahim A, Allonas X. Dual-cure photochemical/thermal polymerization of acrylates: a photoassisted process at low light intensity. Polym Chem 2014. [DOI: 10.1039/c4py00548a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergistic effect in dual-cure polymerization.
Collapse
Affiliation(s)
- M. Retailleau
- Laboratory of Macromolecular Photochemistry and Engineering
- University of Haute Alsace
- 68093 Mulhouse, France
| | - A. Ibrahim
- Laboratory of Macromolecular Photochemistry and Engineering
- University of Haute Alsace
- 68093 Mulhouse, France
| | - X. Allonas
- Laboratory of Macromolecular Photochemistry and Engineering
- University of Haute Alsace
- 68093 Mulhouse, France
| |
Collapse
|
46
|
Goyal S, Desai AV, Lewis RW, Ranganathan DR, Li H, Zeng D, Reichert DE, Kenis PJ. Thiolene and SIFEL-based Microfluidic Platforms for Liquid-Liquid Extraction. SENSORS AND ACTUATORS. B, CHEMICAL 2014; 190:634-644. [PMID: 25246730 PMCID: PMC4167834 DOI: 10.1016/j.snb.2013.09.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Microfluidic platforms provide several advantages for liquid-liquid extraction (LLE) processes over conventional methods, for example with respect to lower consumption of solvents and enhanced extraction efficiencies due to the inherent shorter diffusional distances. Here, we report the development of polymer-based parallel-flow microfluidic platforms for LLE. To date, parallel-flow microfluidic platforms have predominantly been made out of silicon or glass due to their compatibility with most organic solvents used for LLE. Fabrication of silicon and glass-based LLE platforms typically requires extensive use of photolithography, plasma or laser-based etching, high temperature (anodic) bonding, and/or wet etching with KOH or HF solutions. In contrast, polymeric microfluidic platforms can be fabricated using less involved processes, typically photolithography in combination with replica molding, hot embossing, and/or bonding at much lower temperatures. Here we report the fabrication and testing of microfluidic LLE platforms comprised of thiolene or a perfluoropolyether-based material, SIFEL, where the choice of materials was mainly guided by the need for solvent compatibility and fabrication amenability. Suitable designs for polymer-based LLE platforms that maximize extraction efficiencies within the constraints of the fabrication methods and feasible operational conditions were obtained using analytical modeling. To optimize the performance of the polymer-based LLE platforms, we systematically studied the effect of surface functionalization and of microstructures on the stability of the liquid-liquid interface and on the ability to separate the phases. As demonstrative examples, we report (i) a thiolene-based platform to determine the lipophilicity of caffeine, and (ii) a SIFEL-based platform to extract radioactive copper from an acidic aqueous solution.
Collapse
Affiliation(s)
- Sachit Goyal
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Amit V. Desai
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Robert W. Lewis
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - David R. Ranganathan
- Radiological Sciences Division, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hairong Li
- Radiological Sciences Division, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dexing Zeng
- Radiological Sciences Division, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David E. Reichert
- Radiological Sciences Division, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul J.A. Kenis
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
47
|
Krishna KS, Li Y, Li S, Kumar CS. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications. Adv Drug Deliv Rev 2013; 65:1470-95. [PMID: 23726944 DOI: 10.1016/j.addr.2013.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
The past two decades have seen a dramatic raise in the number of investigations leading to the development of Lab-on-a-Chip (LOC) devices for synthesis of nanomaterials. A majority of these investigations were focused on inorganic nanomaterials comprising of metals, metal oxides, nanocomposites and quantum dots. Herein, we provide an analysis of these findings, especially, considering the more recent developments in this new decade. We made an attempt to bring out the differences between chip-based as well as tubular continuous flow systems. We also cover, for the first time, various opportunities the tools from the field of computational fluid dynamics provide in designing LOC systems for synthesis inorganic nanomaterials. Particularly, we provide unique examples to demonstrate that there is a need for concerted effort to utilize LOC devices not only for synthesis of inorganic nanomaterials but also for carrying out superior in vitro studies thereby, paving the way for faster clinical translation. Even though LOC devices with the possibility to carry out multi-step syntheses have been designed, surprisingly, such systems have not been utilized for carrying out simultaneous synthesis and bio-functionalization of nanomaterials. While traditionally, LOC devices are primarily based on microfluidic systems, in this review article, we make a case for utilizing millifluidic systems for more efficient synthesis, bio-functionalization and in vitro studies of inorganic nanomaterials tailor-made for biomedical applications. Finally, recent advances in the field clearly point out the possibility for pushing the boundaries of current medical practices towards personalized health care with a vision to develop automated LOC-based instrumentation for carrying out simultaneous synthesis, bio-functionalization and in vitro evaluation of inorganic nanomaterials for biomedical applications.
Collapse
|
48
|
Goyal S, Thorson MR, Schneider CL, Zhang GGZ, Gong Y, Kenis PJA. A microfluidic platform for evaporation-based salt screening of pharmaceutical parent compounds. LAB ON A CHIP 2013; 13:1708-1723. [PMID: 23478750 DOI: 10.1039/c3lc41271g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We describe a microfluidic platform to screen for salt forms of pharmaceutical compounds (PCs) via controlled evaporation. The platform enables on-chip combinatorial mixing of PC and salt former solutions in a 24-well array (~200 nL/well), which is a drastic reduction in the amount of PC needed per condition screened compared to traditional screening approaches that require ~100 μL/well. The reduced sample needs enable salt screening at a much earlier stage in the drug development process, when only limited quantities of PCs are available. Compatibility with (i) solvents commonly used in the pharmaceutical industry, and (ii) Raman spectroscopy for solid form identification was ensured by using a hybrid microfluidic platform. A thin layer of elastomeric PDMS was utilized to retain pneumatic valving capabilities. This layer is sandwiched between layers of cyclic-olefin copolymer, a material with low air and solvent permeability and low Raman background to yield a physically rigid and Raman compatible chip. A solvent-impermeable thiolene layer patterned with evaporation channels permits control over the rate of solvent evaporation. Control over the rate of solvent evaporation (2-15 nL h(-1)) results in consistent, known rates of increase in the supersaturation levels attained on-chip, and increases the probability for crystalline solids to form. The modular nature of the platform enables on-chip Raman and birefringence analysis of the solid forms. Model compounds, tamoxifen and ephedrine, were used to validate the platform's ability to screen for salts. On-chip Raman analysis helped to identify six different salts each of tamoxifen and ephedrine.
Collapse
Affiliation(s)
- Sachit Goyal
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
49
|
Maan AA, Sahin S, Mujawar LH, Boom R, Schroën K. Effect of surface wettability on microfluidic EDGE emulsification. J Colloid Interface Sci 2013; 403:157-9. [PMID: 23684220 DOI: 10.1016/j.jcis.2013.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/21/2013] [Accepted: 04/12/2013] [Indexed: 11/25/2022]
Abstract
The effect of wettability on microfluidic EDGE emulsification was investigated at dispersed phase contact angles between 90° and 160°. The highest contact angle (160°) produced monodispersed emulsions with droplet size 5.0 μm and coefficient of variation <10%; however, pressure stability was very low. This was greatly enhanced at contact angles <150°; the plateaus filled completely, and the droplet generation frequencies increased up to a factor of 2.0 and 3.5 for Tween20 and Tween60 respectively at the same pressures. The emulsion became highly polydispersed at contact angles <100° due to wetting with the dispersed phase.
Collapse
Affiliation(s)
- Abid Aslam Maan
- Wageningen University, Food Process Engineering Group, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Fukuyama T, Rahman MT, Kamata N, Tokizane M, Fukuda Y, Ryu I. Continuous Microflow Bromination of Alkenes Combined with a Circulatory Recycling of a Fluorous Polyether as a Bromine Support. J Flow Chem 2013. [DOI: 10.1556/jfc-d-12-00023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|