1
|
Khazaei S, Varela-Calviño R, Rad-Malekshahi M, Quattrini F, Jokar S, Rezaei N, Balalaie S, Haririan I, Csaba N, Garcia-Fuentes M. Self-assembled peptide/polymer hybrid nanoplatform for cancer immunostimulating therapies. Drug Deliv Transl Res 2024; 14:455-473. [PMID: 37721693 PMCID: PMC10761384 DOI: 10.1007/s13346-023-01410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/19/2023]
Abstract
Integrating peptide epitopes in self-assembling materials is a successful strategy to obtain nanovaccines with high antigen density and improved efficacy. In this study, self-assembling peptides containing MAGE-A3/PADRE epitopes were designed to generate functional therapeutic nanovaccines. To achieve higher stability, peptide/polymer hybrid nanoparticles were formulated by controlled self-assembly of the engineered peptides. The nanoparticles showed good biocompatibility to both human red blood- and dendritic cells. Incubation of the nanoparticles with immature dendritic cells triggered immune effects that ultimately activated CD8 + cells. The antigen-specific and IgG antibody responses of healthy C57BL/6 mice vaccinated with the nanoparticles were analyzed. The in vivo results indicate a specific response to the nanovaccines, mainly mediated through a cellular pathway. This research indicates that the immunogenicity of peptide epitope vaccines can be effectively enhanced by developing self-assembled peptide-polymer hybrid nanostructures.
Collapse
Affiliation(s)
- Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ruben Varela-Calviño
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Federico Quattrini
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Noemi Csaba
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcos Garcia-Fuentes
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Burmistrov IA, Veselov MM, Mikheev AV, Borodina TN, Bukreeva TV, Chuev MA, Starchikov SS, Lyubutin IS, Artemov VV, Khmelenin DN, Klyachko NL, Trushina DB. Permeability of the Composite Magnetic Microcapsules Triggered by a Non-Heating Low-Frequency Magnetic Field. Pharmaceutics 2021; 14:65. [PMID: 35056960 PMCID: PMC8777611 DOI: 10.3390/pharmaceutics14010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Nanosystems for targeted delivery and remote-controlled release of therapeutic agents has become a top priority in pharmaceutical science and drug development in recent decades. Application of a low frequency magnetic field (LFMF) as an external stimulus opens up opportunities to trigger release of the encapsulated bioactive substances with high locality and penetration ability without heating of biological tissue in vivo. Therefore, the development of novel microencapsulated drug formulations sensitive to LFMF is of paramount importance. Here, we report the result of LFMF-triggered release of the fluorescently labeled dextran from polyelectrolyte microcapsules modified with magnetic iron oxide nanoparticles. Polyelectrolyte microcapsules were obtained by a method of sequential deposition of oppositely charged poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) on the surface of colloidal vaterite particles. The synthesized single domain maghemite nanoparticles integrated into the polymer multilayers serve as magneto-mechanical actuators. We report the first systematic study of the effect of magnetic field with different frequencies on the permeability of the microcapsules. The in situ measurements of the optical density curves upon the 100 mT LFMF treatment were carried out for a range of frequencies from 30 to 150 Hz. Such fields do not cause any considerable heating of the magnetic nanoparticles but promote their rotating-oscillating mechanical motion that produces mechanical forces and deformations of the adjacent materials. We observed the changes in release of the encapsulated TRITC-dextran molecules from the PAH/PSS microcapsules upon application of the 50 Hz alternating magnetic field. The obtained results open new horizons for the design of polymer systems for triggered drug release without dangerous heating and overheating of tissues.
Collapse
Affiliation(s)
- Ivan A. Burmistrov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Maxim M. Veselov
- Department of Chemical Enzymology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.V.); (N.L.K.)
| | - Alexander V. Mikheev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana N. Borodina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Tatiana V. Bukreeva
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- National Research Centre ‘‘Kurchatov Institute”, 123182 Moscow, Russia
| | - Michael A. Chuev
- Valiev Institute of Physics and Technology of RAS, 117218 Moscow, Russia;
| | - Sergey S. Starchikov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Igor S. Lyubutin
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Vladimir V. Artemov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Dmitry N. Khmelenin
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Natalia L. Klyachko
- Department of Chemical Enzymology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.V.); (N.L.K.)
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia
| | - Daria B. Trushina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- Department of Biomedical Engineering, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Polyelectrolyte Multilayers: An Overview on Fabrication, Properties, and Biomedical and Environmental Applications. MATERIALS 2021; 14:ma14154152. [PMID: 34361346 PMCID: PMC8348132 DOI: 10.3390/ma14154152] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Polyelectrolyte multilayers are versatile materials that are used in a large number of domains, including biomedical and environmental applications. The fabrication of polyelectrolyte multilayers using the layer-by-layer technique is one of the simplest methods to obtain composite functional materials. The properties of the final material can be easily tuned by changing the deposition conditions and the used building blocks. This review presents the main characteristics of polyelectrolyte multilayers, the fabrication methods currently used, and the factors influencing the layer-by-layer assembly of polyelectrolytes. The last section of this paper presents some of the most important applications of polyelectrolyte multilayers, with a special focus on biomedical and environmental applications.
Collapse
|
4
|
Svenskaya Y, Garello F, Lengert E, Kozlova A, Verkhovskii R, Bitonto V, Ruggiero MR, German S, Gorin D, Terreno E. Biodegradable polyelectrolyte/magnetite capsules for MR imaging and magnetic targeting of tumors. Nanotheranostics 2021; 5:362-377. [PMID: 33850694 PMCID: PMC8040826 DOI: 10.7150/ntno.59458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
Rationale: The tireless research for effective drug delivery approaches is prompted by poor target tissue penetration and limited selectivity against diseased cells. To overcome these issues, various nano- and micro-carriers have been developed so far, but some of them are characterized by slow degradation time, thus hampering repeated drug administrations. The aim of this study was to pursue a selective delivery of magnetic biodegradable polyelectrolyte capsules in a mouse breast cancer model, using an external magnetic field. Methods: Four different kinds of magnetic polyelectrolyte capsules were fabricated via layer-by-layer assembly of biodegradable polymers on calcium carbonate templates. Magnetite nanoparticles were embedded either into the capsules' shell (sample S) or both into the shell and the inner volume of the capsules (samples CnS, where n is the number of nanoparticle loading cycles). Samples were first characterized in terms of their relaxometric and photosedimentometric properties. In vitro magnetic resonance imaging (MRI) experiments, carried out on RAW 264.7 cells, allowed the selection of two lead samples that proceeded for the in vivo testing on a mouse breast cancer model. In the set of in vivo experiments, an external magnet was applied for 1 hour following the intravenous injection of the capsules to improve their delivery to tumor, and MRI scans were acquired at different time points post administration. Results: All samples were considered non-cytotoxic as they provided more than 76% viability of RAW 264.7 cells upon 2 h incubation. Sample S appeared to be the most efficient in terms of T2-MRI contrast, but the less sensitive to external magnet navigation, since no difference in MRI signal with and without the magnet was observed. On the other side, sample C6S was efficiently delivered to the tumor tissue, with a three-fold T2-MRI contrast enhancement upon the external magnet application. The effective magnetic targeting of C6S capsules was also confirmed by the reduction in T2-MRI contrast in spleen if compared with the untreated with magnet mice values, and the presence of dense and clustered iron aggregates in tumor histology sections even 48 h after the magnetic targeting. Conclusion: The highlighted strategy of magnetic biodegradable polyelectrolyte capsules' design allows for the development of an efficient drug delivery system, which through an MRI-guided externally controlled navigation may lead to a significant improvement of the anticancer chemotherapy performance.
Collapse
Affiliation(s)
- Yulia Svenskaya
- Remote Controlled Systems for Theranostics laboratory, Research and Educational Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov, Russia
| | - Francesca Garello
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Ekaterina Lengert
- Remote Controlled Systems for Theranostics laboratory, Research and Educational Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov, Russia
| | - Anastasiia Kozlova
- Biomedical Photoacoustics Laboratory, Saratov State University, 410012 Saratov, Russia
| | - Roman Verkhovskii
- Biomedical Photoacoustics Laboratory, Saratov State University, 410012 Saratov, Russia
| | - Valeria Bitonto
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Maria Rosaria Ruggiero
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Sergey German
- Laboratory of Optics and Spectroscopy of Nanoobjects, Institute of Spectroscopy of the RAS, Troitsk 108840, Russia.,Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Dmitry Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
5
|
Abstract
Influenza viruses cause seasonal epidemics and represent a pandemic risk. With current vaccine methods struggling to protect populations against emerging strains, there is a demand for a next-generation flu vaccine capable of providing broad protection. Recombinant biotechnology, combined with nanomedicine techniques, could address this demand by increasing immunogenicity and directing immune responses toward conserved antigenic targets on the virus. Various nanoparticle candidates have been tested for use in vaccines, including virus-like particles, protein and carbohydrate nanoconstructs, antigen-carrying lipid particles, and synthetic and inorganic particles modified for antigen presentation. These methods have yielded some promising results, including protection in animal models against antigenically distinct influenza strains, production of antibodies with broad reactivity, and activation of potent T cell responses. Based on the evidence of current research, it is feasible that the next generation of influenza vaccines will combine recombinant antigens with nanoparticle carriers.
Collapse
MESH Headings
- Animals
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Disease Models, Animal
- Drug Carriers/chemistry
- Humans
- Immunogenicity, Vaccine
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/pharmacokinetics
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Nanoparticles/chemistry
- Protein Engineering
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacokinetics
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/pharmacokinetics
Collapse
Affiliation(s)
- Zachary R Sia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Diseases Research, McMaster Immunology Research Centre, McMaster University, Ontario, Canada
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
6
|
Froimchuk E, Carey ST, Edwards C, Jewell CM. Self-Assembly as a Molecular Strategy to Improve Immunotherapy. Acc Chem Res 2020; 53:2534-2545. [PMID: 33074649 PMCID: PMC7896133 DOI: 10.1021/acs.accounts.0c00438] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immunotherapies harness an individual's immune system to battle diseases such as cancer and autoimmunity. During cancer, the immune system often fails to detect and destroy cancerous cells, whereas during autoimmune disease, the immune system mistakenly attacks self-tissue. Immunotherapies can help guide more effective responses in these settings, as evidenced by recent advances with monoclonal antibodies and adoptive cell therapies. However, despite the transformative gains of immunotherapies for patients, many therapies are not curative, work only for a small subset of patients, and lack specificity in distinguishing between healthy and diseased cells, which can cause severe side effects. From this perspective, self-assembled biomaterials are promising technologies that could help address some of the limitations facing immunotherapies. For example, self-assembly allows precision control over the combination and relative concentration of immune cues and directed cargo display densities. These capabilities support selectivity and potency that could decrease off-target effects and enable modular or personalized immunotherapies. The underlying forces driving self-assembly of most systems in aqueous solution result from hydrophobic interactions or charge polarity. In this Account, we highlight how these forces are being used to self-assemble immunotherapies for cancer and autoimmune disease.Hydrophobic interactions can create a range of intricate structures, including peptide nanofibers, nanogels, micelle-like particles, and in vivo assemblies with protein carriers. Certain nanofibers with hydrophobic domains uniquely benefit from the ability to elicit immune responses without additional stimulatory signals. This feature can reduce nonspecific inflammation but may also limit the nanofiber's application because of their inherent stimulatory properties. Micelle-like particles have been developed with the ability to incorporate a range of tumor-specific antigens for immunotherapies in mouse models of cancer. Key observations have revealed that both the total dose of antigen and display density of antigen per particle can impact immune response and efficacy of immunotherapies. These developments are promising benchmarks that could reveal design principles for engineering more specific and personalized immunotherapies.There has also been extensive work to develop platforms using electrostatic interactions to drive assembly of oppositely charged immune signals. These strategies benefit from the ability to tune biophysical interactions between components by altering the ratio of cationic to anionic charge during formulation, or the density of charge. Using a layer-by-layer assembly method, our lab developed hollow capsules composed entirely of immune signals for therapies in cancer and autoimmune disease models. This platform allowed for 100% of the immunotherapy to be composed of immune signals and completely prevents the onset of disease in a mouse model of multiple sclerosis. Layer-by-layer assembly has also been used to coat microneedle patches to target signals to immune cells in the dermal layer. As an alternative to layer-by-layer assembly, one step assembly can be achieved by mixing cationic and anionic components in solution. Additional approaches have created molecular structures that leverage hydrogen bonding for self-assembly. The creativity of engineered self-assembly has led to key insights that could benefit future immunotherapies and revealed aspects that require further study. The challenge now remains to utilize these insights to push development of new immunotherapeutics into clinical settings.
Collapse
Affiliation(s)
- Eugene Froimchuk
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742
| | - Sean T. Carey
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742
| | - Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21202
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201
| |
Collapse
|
7
|
Ermakov AV, Verkhovskii RA, Babushkina IV, Trushina DB, Inozemtseva OA, Lukyanets EA, Ulyanov VJ, Gorin DA, Belyakov S, Antipina MN. In Vitro Bioeffects of Polyelectrolyte Multilayer Microcapsules Post-Loaded with Water-Soluble Cationic Photosensitizer. Pharmaceutics 2020; 12:E610. [PMID: 32629864 PMCID: PMC7408512 DOI: 10.3390/pharmaceutics12070610] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022] Open
Abstract
Microencapsulation and targeted delivery of cytotoxic and antibacterial agents of photodynamic therapy (PDT) improve the treatment outcomes for infectious diseases and cancer. In many cases, the loss of activity, poor encapsulation efficiency, and inadequate drug dosing hamper the success of this strategy. Therefore, the development of novel and reliable microencapsulated drug formulations granting high efficacy is of paramount importance. Here we report the in vitro delivery of a water-soluble cationic PDT drug, zinc phthalocyanine choline derivative (Cholosens), by biodegradable microcapsules assembled from dextran sulfate (DS) and poly-l-arginine (PArg). A photosensitizer was loaded in pre-formed [DS/PArg]4 hollow microcapsules with or without exposure to heat. Loading efficacy and drug release were quantitatively studied depending on the capsule concentration to emphasize the interactions between the DS/PArg multilayer network and Cholosens. The loading data were used to determine the dosage for heated and intact capsules to measure their PDT activity in vitro. The capsules were tested using human cervical adenocarcinoma (HeLa) and normal human dermal fibroblast (NHDF) cell lines, and two bacterial strains, Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Our results provide compelling evidence that encapsulated forms of Cholosens are efficient as PDT drugs for both eukaryotic cells and bacteria at specified capsule-to-cell ratios.
Collapse
Affiliation(s)
- Alexey V. Ermakov
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore;
- Saratov State University, Astrakhanskaya St 83, 410012 Saratov, Russia; (R.A.V.); (O.A.I.)
- I.M. Sechenov First Moscow State Medical University, Bol’shaya Pirogovskaya St 19c1, 119146 Moscow, Russia;
| | - Roman A. Verkhovskii
- Saratov State University, Astrakhanskaya St 83, 410012 Saratov, Russia; (R.A.V.); (O.A.I.)
- Yuri Gagarin State Technical University of Saratov, Politehnicheskaya St 77, 410054 Saratov, Russia
| | - Irina V. Babushkina
- Institute of Traumatology and Orthopedics, Saratov Medical State University, Chernyshevskaya St 148, 410002 Saratov, Russia; (I.V.B.); (V.J.U.)
| | - Daria B. Trushina
- I.M. Sechenov First Moscow State Medical University, Bol’shaya Pirogovskaya St 19c1, 119146 Moscow, Russia;
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospekt 59, 119333 Moscow, Russia
| | - Olga A. Inozemtseva
- Saratov State University, Astrakhanskaya St 83, 410012 Saratov, Russia; (R.A.V.); (O.A.I.)
| | - Evgeny A. Lukyanets
- Organic Intermediates and Dyes Institute, B. Sadovaya St ¼, 101999 Moscow, Russia;
| | - Vladimir J. Ulyanov
- Institute of Traumatology and Orthopedics, Saratov Medical State University, Chernyshevskaya St 148, 410002 Saratov, Russia; (I.V.B.); (V.J.U.)
| | - Dmitry A. Gorin
- Skolkovo Institute of Science and Technology, Bolshoy Blvd 30, bld. 1, 121205 Moscow, Russia;
| | - Sergei Belyakov
- Theracross Technologies Pte Ltd, 250p Pasir Panjang Rd, Singapore 117452, Singapore;
| | - Maria N. Antipina
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore;
| |
Collapse
|
8
|
Novoselova MV, Loh HM, Trushina DB, Ketkar A, Abakumova TO, Zatsepin TS, Kakran M, Brzozowska AM, Lau HH, Gorin DA, Antipina MN, Brichkina AI. Biodegradable Polymeric Multilayer Capsules for Therapy of Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5610-5623. [PMID: 31942802 DOI: 10.1021/acsami.9b21381] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Formulated forms of cancer therapeutics enhance the efficacy of treatment by more precise targeting, increased bioavailability of drugs, and an aptitude of some delivery systems to overcome multiple drug resistance of tumors. Drug carriers acquire importance for anti-cancer interventions via targeting tumor-associated macrophages with active molecules capable to either eliminate them or change their polarity. Although several packaged drug forms have reached the market, there is still a high demand for novel carrier systems to hurdle limitations of existing drugs on active molecules, toxicity, bioeffect, and stability. Here, we report a facile assembly and delivery methodology for biodegradable polymeric multilayer capsules (PMC) with the purpose of further use in injectable drug formulations for lung cancer therapy via direct erosion of tumors and suppression of the tumor-promoting function of macrophages in the tumor microenvironment. We demonstrate delivery of low-molecular-weight drug molecules to lung cancer cells and macrophages and provide details on in vivo distribution, cellular uptake, and disintegration of the developed PMC. Poly-l-arginine and dextran sulfate alternately adsorb on a ∼500 nm CaCO3 sacrificial template followed by removal of the inorganic core to obtain hollow capsules for consequent loading with drug molecules, gemcitabine or clodronate. The capsules further compacted upon loading down to ∼250 nm in diameter via heat treatment. A comparative study of the capsule internalization rate in vitro and in vivo reveals the benefits of a diminished carrier size. We show that macrophages and epithelial cells of the lungs and liver internalize capsules with efficacy higher than 75%. Using an in vivo mouse model of lung cancer, we also confirm that tumor lungs better retain smaller capsules than the healthy lung tissue. The pronounced cytotoxic effect of the encapsulated gemcitabine on lung cancer cells and the ability of the encapsulated clodronate to block the tumor-promoting function of macrophages prove the efficacy of the developed capsule loading method in vitro. Our study taken as a whole demonstrates the great potential of the developed PMC for in vivo treatment of cancer via transporting active molecules, including those that are water-soluble with low molecular weight, to both cancer cells and macrophages through the bloodstream.
Collapse
Affiliation(s)
- Marina V Novoselova
- Institute of Materials Research and Engineering, A*STAR , 2 Fusionopolis Way , Innovis, #08-03, Singapore , 138634 , Singapore
- Skolkovo Institute of Science and Technology , Bolshoy Boulevard 30, bld. 1 , Moscow 121205 , Russia
| | - Hui Mun Loh
- Institute of Molecular and Cell Biology, A*STAR , 61 Biopolis Drive , Proteos, Singapore 138673 , Singapore
| | - Daria B Trushina
- Institute of Materials Research and Engineering, A*STAR , 2 Fusionopolis Way , Innovis, #08-03, Singapore , 138634 , Singapore
- I.M. Sechenov First Moscow State Medical University , Bol'shaya Pirogovskaya Ulitsa 19c1 Moscow 119146 , Russia
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences , Leninskiy Prospekt, 59 , Moscow 119333 , Russia
| | - Avanee Ketkar
- Institute of Molecular Oncology , Philipps University of Marburg , member of the German Center for Lung Research (DZL), Hans-Meerwein-Str. 3 35043 Marburg , Germany
| | - Tatiana O Abakumova
- Skolkovo Institute of Science and Technology , Bolshoy Boulevard 30, bld. 1 , Moscow 121205 , Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology , Bolshoy Boulevard 30, bld. 1 , Moscow 121205 , Russia
| | - Mitali Kakran
- Institute of Materials Research and Engineering, A*STAR , 2 Fusionopolis Way , Innovis, #08-03, Singapore , 138634 , Singapore
| | - Agata Maria Brzozowska
- Institute of Materials Research and Engineering, A*STAR , 2 Fusionopolis Way , Innovis, #08-03, Singapore , 138634 , Singapore
| | - Hooi Hong Lau
- Institute of Materials Research and Engineering, A*STAR , 2 Fusionopolis Way , Innovis, #08-03, Singapore , 138634 , Singapore
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology , Bolshoy Boulevard 30, bld. 1 , Moscow 121205 , Russia
| | - Maria N Antipina
- Institute of Materials Research and Engineering, A*STAR , 2 Fusionopolis Way , Innovis, #08-03, Singapore , 138634 , Singapore
| | - Anna I Brichkina
- Institute of Molecular and Cell Biology, A*STAR , 61 Biopolis Drive , Proteos, Singapore 138673 , Singapore
- Institute of Molecular Oncology , Philipps University of Marburg , member of the German Center for Lung Research (DZL), Hans-Meerwein-Str. 3 35043 Marburg , Germany
| |
Collapse
|
9
|
Tarakanchikova Y, Muslimov A, Sergeev I, Lepik K, Yolshin N, Goncharenko A, Vasilyev K, Eliseev I, Bukatin A, Sergeev V, Pavlov S, Popov A, Meglinski I, Afanasiev B, Parakhonskiy B, Sukhorukov G, Gorin D. A highly efficient and safe gene delivery platform based on polyelectrolyte core–shell nanoparticles for hard-to-transfect clinically relevant cell types. J Mater Chem B 2020; 8:9576-9588. [DOI: 10.1039/d0tb01359e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The polyelectrolyte nanocarriers’ based on nanosized vaterite particles as a novel tool for genetic material delivery into the clinically relevant cell types and potential application of described technology in gene therapy approaches.
Collapse
|
10
|
Roebuck HS, Bon SAF. Cross-Linked Primer Strategy for Pigment Encapsulation. 1. Encapsulation of Calcium Carbonate by Emulsion Polymerization. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Holly S. Roebuck
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Stefan A. F. Bon
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
11
|
Kordalivand N, Tondini E, Lau CYJ, Vermonden T, Mastrobattista E, Hennink WE, Ossendorp F, Nostrum CFV. Cationic synthetic long peptides-loaded nanogels: An efficient therapeutic vaccine formulation for induction of T-cell responses. J Control Release 2019; 315:114-125. [PMID: 31672626 DOI: 10.1016/j.jconrel.2019.10.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022]
Abstract
Recent studies have shown a high potency of protein-based vaccines for cell-mediated cancer immunotherapy. However, due to their poor cellular uptake, efficient immune responses with soluble protein antigens are often not observed. As a result of superior cellular uptake, nanogels loaded with antigenic peptides were investigated in this study as carrier systems for cancer immunotherapy. Different synthetic long peptides (SLPs) containing the CTL and CD4+ T-helper (Help) epitopes were synthesized and covalently conjugated via disulfide bonds to the polymeric network of cationic dextran nanogels. Cationic nanogels with a size of 210 nm, positive zeta potential (+24 mV) and high peptide loading content (15%) showed triggered release of the loaded peptides under reducing conditions. An in vitro study demonstrated the capability of cationic nanogels to maturate dendritic cells (DCs). Importantly, covalently SLP-loaded nanogels adjuvanted with poly(I:C) showed superior CD8+ T cell responses compared to soluble peptides and nanogel formulations with physically loaded peptides both in vitro and in vivo. In conclusion, covalently SLPs-loaded cationic nanogels are a promising system to provoke immune responses for therapeutic cancer vaccination.
Collapse
Affiliation(s)
- Neda Kordalivand
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Elena Tondini
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Chun Yin Jerry Lau
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
12
|
Song C, Li F, Wang S, Wang J, Wei W, Ma G. Recent Advances in Particulate Adjuvants for Cancer Vaccination. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cui Song
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianghua Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
13
|
Zhao S, Caruso F, Dähne L, Decher G, De Geest BG, Fan J, Feliu N, Gogotsi Y, Hammond PT, Hersam MC, Khademhosseini A, Kotov N, Leporatti S, Li Y, Lisdat F, Liz-Marzán LM, Moya S, Mulvaney P, Rogach AL, Roy S, Shchukin DG, Skirtach AG, Stevens MM, Sukhorukov GB, Weiss PS, Yue Z, Zhu D, Parak WJ. The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Möhwald. ACS NANO 2019; 13:6151-6169. [PMID: 31124656 DOI: 10.1021/acsnano.9b03326] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Layer-by-layer (LbL) assembly is a widely used tool for engineering materials and coatings. In this Perspective, dedicated to the memory of ACS Nano associate editor Prof. Dr. Helmuth Möhwald, we discuss the developments and applications that are to come in LbL assembly, focusing on coatings, bulk materials, membranes, nanocomposites, and delivery vehicles.
Collapse
Affiliation(s)
- Shuang Zhao
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Lars Dähne
- Surflay Nanotec GmbH , 12489 Berlin , Germany
| | - Gero Decher
- CNRS Institut Charles Sadron, Faculté de Chimie , Université de Strasbourg, Int. Center for Frontier Research in Chemistry , Strasbourg F-67034 , France
- Int. Center for Materials Nanoarchitectonics , Ibaraki 305-0044 , Japan
| | - Bruno G De Geest
- Department of Pharmaceutics , Ghent University , 9000 Ghent , Belgium
| | - Jinchen Fan
- Department of Chemical Engineering and Biointerfaces Institute , University of Michigan , Ann Arbor , Michigan 48105 , United States
| | - Neus Feliu
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Yury Gogotsi
- Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Paula T Hammond
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02459 , United States
| | - Mark C Hersam
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208-3108 , United States
| | - Ali Khademhosseini
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Nicholas Kotov
- Department of Chemical Engineering and Biointerfaces Institute , University of Michigan , Ann Arbor , Michigan 48105 , United States
- Michigan Institute for Translational Nanotechnology , Ypsilanti , Michigan 48198 , United States
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia , Italian National Research Council , Lecce 73100 , Italy
| | - Yan Li
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Fred Lisdat
- Biosystems Technology, Institute for Applied Life Sciences , Technical University , D-15745 Wildau , Germany
| | - Luis M Liz-Marzán
- CIC biomaGUNE , San Sebastian 20009 , Spain
- Ikerbasque, Basque Foundation for Science , Bilbao 48013 , Spain
| | | | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP) , City University of Hong Kong , Kowloon Tong , Hong Kong SAR
| | - Sathi Roy
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Dmitry G Shchukin
- Stephenson Institute for Renewable Energy, Department of Chemistry , University of Liverpool , Liverpool L69 7ZF , United Kingdom
| | - Andre G Skirtach
- Nano-BioTechnology group, Department of Biotechnology, Faculty of Bioscience Engineering , Ghent University , 9000 Ghent , Belgium
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science , Queen Mary University of London , London E1 4NS , United Kingdom
| | - Paul S Weiss
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry and Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Zhao Yue
- Department of Microelectronics , Nankai University , Tianjin 300350 , China
| | - Dingcheng Zhu
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
- CIC biomaGUNE , San Sebastian 20009 , Spain
| |
Collapse
|
14
|
Xiong Y, Wang Y, Tiruthani K. Tumor immune microenvironment and nano-immunotherapeutics in colorectal cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102034. [PMID: 31207314 DOI: 10.1016/j.nano.2019.102034] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is predicted to be the second leading cause of cancer-related death in United States in 2019. Immunotherapies such as checkpoint inhibitors have proven efficacy in patients with high level of microsatellite instability and refractory to routine chemotherapy. Despite this, immunotherapy-based treatment is seriously limited by cancer immunogenicity which has evolved to evade immune surveillance in many circumstances. Efforts are made by researchers using nanoparticles (NPs) to override cancer-mediated immunosuppression, induce immune response against cancer cells or even generate memory immune cells for long-term disease control. These engineered NPs offer great opportunities in delivering cancer immunotherapy due to their unique properties, such as a high drug/antigen loading capacity, adjustable particle size, and versatile surface modification. In this review, we will highlight recent researches on the initiation and development of CRC, the immune microenvironment of CRC, and recent trends in engineering novel NPs-based immunotherapies in the treatment of CRC.
Collapse
Affiliation(s)
- Yang Xiong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China..
| | - Ying Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Tang T, Weng T, Jia H, Luo S, Xu Y, Li L, Zhang P. Harnessing the layer-by-layer assembly technique to design biomaterials vaccines for immune modulation in translational applications. Biomater Sci 2019; 7:715-732. [PMID: 30762040 DOI: 10.1039/c8bm01219a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The existence of challenging diseases such as cancers, HIV and Zika requires developing new vaccines that can generate tunable and robust immune responses against the diseases. Biomaterials-based techniques have been broadly explored for designing vaccines that can produce controllable and potent immunity. Among the existing biomaterials-based strategies, the layer-by-layer (LbL) assembly technique is remarkably attractive in vaccine design due to its unique features such as programmed and versatile cargo loading, cargo protection, co-delivery, juxtaposing of immune signals, etc. In this work, we reviewed the existing LbL-based vaccine design techniques for translational applications. Specifically, we discussed nanovaccines constructed by coating polyelectrolyte multilayers (PEMs) on nanoparticles, microcapsule vaccines assembled from PEMs, polyplex/complex vaccines condensed from charged materials and microneedle vaccines deposited with PEMs, highlighting the employment of these techniques to promote immunity against diseases ranging from cancers to infectious and autoimmune diseases (i.e., HIV, influenza, multiple sclerosis, etc.). Additionally, the review specifically emphasized using LbL-based vaccine technologies for tuning the cellular and molecular pathways, demonstrating the unique advantages presented by these vaccination strategies. These studies showed the versatility and potency of using LbL-based techniques for designing the next generation of biomaterials vaccines for translational purposes.
Collapse
Affiliation(s)
- Tan Tang
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Roy S, Elbaz NM, Parak WJ, Feliu N. Biodegradable Alginate Polyelectrolyte Capsules As Plausible Biocompatible Delivery Carriers. ACS APPLIED BIO MATERIALS 2019; 2:3245-3256. [DOI: 10.1021/acsabm.9b00203] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sathi Roy
- Faculty of Physics, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Hamburg, Germany
| | - Nancy M. Elbaz
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Wolfgang J. Parak
- Faculty of Physics, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Hamburg, Germany
| | - Neus Feliu
- Faculty of Physics, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Hamburg, Germany
| |
Collapse
|
17
|
Zyuzin MV, Timin AS, Sukhorukov GB. Multilayer Capsules Inside Biological Systems: State-of-the-Art and Open Challenges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4747-4762. [PMID: 30840473 DOI: 10.1021/acs.langmuir.8b04280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There are many reports about the interaction of multilayer capsules with biological systems in the literature. A majority of them are devoted to the in vitro study with two-dimensional cell cultures. Multilayer capsule fabrication had been under intensive investigation from 1990s and 2000s by Prof. Helmuth Möhwald, and many of his followers further developed their own research directions, focusing on capsule implementation in various fields of biology and medicine. The aim of this future article is to consistently consider the most recent advances in cell-capsule interactions for different biomedical applications, including functionalization of clinically relevant cells, nonviral gene delivery, magnetization of cells to control their movement, and in vivo drug delivery. Finally, the description and discussion of the new trends and perspectives for improved functionalities of capsules in design and functionalization of cell-assisted drug vehicles are the major topics of this work.
Collapse
Affiliation(s)
- Mikhail V Zyuzin
- Faculty of Physics and Engineering , ITMO University , Lomonosova 9 , 191002 St. Petersburg , Russia
| | - Alexander S Timin
- National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
- First I. P. Pavlov State Medical University of St. Petersburg , Lev Tolstoy Street, 6/8 , 197022 St. Petersburg , Russian Federation
| | - Gleb B Sukhorukov
- National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
- School of Engineering and Materials Science , Queen Mary University of London , Mile End Road , E1 4NS London , U.K
| |
Collapse
|
18
|
Huang P, Wang X, Liang X, Yang J, Zhang C, Kong D, Wang W. Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy. Acta Biomater 2019; 85:1-26. [PMID: 30579043 DOI: 10.1016/j.actbio.2018.12.028] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/05/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022]
Abstract
Immunotherapy is moving to the frontier of cancer treatment. Drug delivery systems (DDSs) have greatly advanced the development of cancer immunotherapeutic regimen and combination treatment. DDSs can spatiotemporally present tumor antigens, drugs, immunostimulatory molecules, or adjuvants, thus enabling the modulation of immune cells including dendritic cells (DCs) or T-cells directly in vivo and thereby provoking robust antitumor immune responses. Cancer vaccines, immune checkpoint blockade, and adoptive cell transfer have shown promising therapeutic efficiency in clinic, and the incorporation of DDSs may further increase antitumor efficiency while decreasing adverse side effects. This review focuses on the use of nano-, micro-, and macroscale DDSs for co-delivery of different immunostimulatory factors to reprogram the immune system to combat cancer. Regarding to nanoparticle-based DDSs, we emphasize the nanoparticle-based tumor immune environment modulation or as an addition to gene therapy, photodynamic therapy, or photothermal therapy. For microparticle or capsule-based DDSs, an overview of the carrier type, fabrication approach, and co-delivery of tumor vaccines and adjuvants is introduced. Finally, macroscale DDSs including hydrogels and scaffolds are also included and their role in personalized vaccine delivery and adoptive cell transfer therapy are described. Perspective and clinical translation of DDS-based cancer immunotherapy is also discussed. We believe that DDSs hold great potential in advancing the fundamental research and clinical translation of cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Immunotherapy is moving to the frontier of cancer treatment. Drug delivery systems (DDSs) have greatly advanced the development of cancer immunotherapeutic regimen and combination treatment. In this comprehensive review, we focus on the use of nano-, micro-, and macroscale DDSs for the co-delivery of different immunostimulatory factors to reprogram the immune system to combat cancer. We also propose the perspective on the development of next-generation DDS-based cancer immunotherapy. This review indicates that DDSs can augment the antitumor T-cell immunity and hold great potential in advancing the fundamental research and clinical translation of cancer immunotherapy by simultaneously delivering dual or multiple immunostimulatory drugs.
Collapse
|
19
|
Lee ES, Shin JM, Son S, Ko H, Um W, Song SH, Lee JA, Park JH. Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Adv Healthc Mater 2019; 8:e1801320. [PMID: 30666822 DOI: 10.1002/adhm.201801320] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy has emerged as a promising approach to treat cancer, since it facilitates eradication of cancer by enhancing innate and/or adaptive immunity without using cytotoxic drugs. Of the immunotherapeutic approaches, significant clinical potentials are shown in cancer vaccination, immune checkpoint therapy, and adoptive cell transfer. Nevertheless, conventional immunotherapies often involve immune-related adverse effects, such as liver dysfunction, hypophysitis, type I diabetes, and neuropathy. In an attempt to address these issues, polymeric nanomedicines are extensively investigated in recent years. In this review, recent advances in polymeric nanomedicines for cancer immunotherapy are highlighted and thoroughly discussed in terms of 1) antigen presentation, 2) activation of antigen-presenting cells and T cells, and 3) promotion of effector cells. Also, the future perspectives to develop ideal nanomedicines for cancer immunotherapy are provided.
Collapse
Affiliation(s)
- Eun Sook Lee
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jung Min Shin
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Soyoung Son
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Hyewon Ko
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Wooram Um
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Ah Lee
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Hyung Park
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| |
Collapse
|
20
|
Sabu C, Mufeedha P, Pramod K. Yeast-inspired drug delivery: biotechnology meets bioengineering and synthetic biology. Expert Opin Drug Deliv 2018; 16:27-41. [DOI: 10.1080/17425247.2019.1551874] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Chinnu Sabu
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, India
| | - Panakkal Mufeedha
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, India
| | - Kannissery Pramod
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, India
| |
Collapse
|
21
|
Lybaert L, Vermaelen K, De Geest BG, Nuhn L. Immunoengineering through cancer vaccines – A personalized and multi-step vaccine approach towards precise cancer immunity. J Control Release 2018; 289:125-145. [DOI: 10.1016/j.jconrel.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
|
22
|
Yanina IY, Svenskaya YI, Prikhozhdenko ES, Bratashov DN, Lomova MV, Gorin DA, Sukhorukov GB, Tuchin VV. Optical monitoring of adipose tissue destruction under encapsulated lipase action. JOURNAL OF BIOPHOTONICS 2018; 11:e201800058. [PMID: 29900686 DOI: 10.1002/jbio.201800058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Enzymatic destruction of adipose tissue has been achieved by encapsulation of lipase into the polymeric microcapsules. Adipose tissue destruction was delayed while lipase is encapsulated comparing with the direct lipase action as demonstrated by optical microscopy and optical coherence tomography in in vitro studies. Raman spectroscopy confirms that triglycerides in fat tissue were cleaved into free fatty acids, glycerol, and possible di- and monoglyceride residues. The results underpin the concept of local and controlled treatment of tissues via encapsulation. Effect of lipase encapsulation into the polymeric microcapsules on adipose tissue destruction compared to free lipase application.
Collapse
Affiliation(s)
- Irina Yu Yanina
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, Russia
- Education and Research Institution of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
| | - Yulia I Svenskaya
- Education and Research Institution of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Ekaterina S Prikhozhdenko
- Education and Research Institution of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Daniil N Bratashov
- Education and Research Institution of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Maria V Lomova
- Education and Research Institution of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Dmitry A Gorin
- Education and Research Institution of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
- Skoltech Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Gleb B Sukhorukov
- Education and Research Institution of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
- Queen Mary University of London, London, UK
| | - Valery V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
23
|
Bookstaver ML, Hess KL, Jewell CM. Self-Assembly of Immune Signals Improves Codelivery to Antigen Presenting Cells and Accelerates Signal Internalization, Processing Kinetics, and Immune Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802202. [PMID: 30146797 PMCID: PMC6252008 DOI: 10.1002/smll.201802202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/15/2018] [Indexed: 04/14/2023]
Abstract
Vaccines and immunotherapies that elicit specific types of immune responses offer transformative potential to tackle disease. The mechanisms governing the processing of immune signals-events that determine the type of response generated-are incredibly complex. Understanding these processes would inform more rational vaccine design by linking carrier properties, processing mechanisms, and relevant timescales to specific impacts on immune response. This goal is pursued using nanostructured materials-termed immune polyelectrolyte multilayers-built entirely from antigens and stimulatory toll-like receptors agonists (TLRas). This simplicity allows isolation and quantification of the rates and mechanisms of intracellular signal processing, and the link to activation of distinct immune pathways. Each vaccine component is internalized in a colocalized manner through energy-dependent caveolae-mediated endocytosis. This process results in trafficking through endosome/lysosome pathways and stimulation of TLRs expressed on endosomes/lysosomes. The maximum rates for these events occur within 4 h, but are detectable in minutes, ultimately driving downstream proimmune functions. Interestingly, these uptake, processing, and activation kinetics are significantly faster for TLRas in particulate form compared with free TLRa. Our findings provide insight into specific mechanisms by which particulate vaccines enhance initiation of immune response, and highlight quantitative strategies to assess other carrier technologies.
Collapse
Affiliation(s)
- Michelle L. Bookstaver
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Krystina L. Hess
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
- United States Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, Maryland 21201
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201
- Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201
| |
Collapse
|
24
|
Dong X, Sun Z, Liang J, Wang H, Zhu D, Leng X, Wang C, Kong D, Lv F. A visible fluorescent nanovaccine based on functional genipin crosslinked ovalbumin protein nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1087-1098. [DOI: 10.1016/j.nano.2018.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/29/2018] [Accepted: 02/10/2018] [Indexed: 01/11/2023]
|
25
|
Wang S, Ni D, Yue H, Luo N, Xi X, Wang Y, Shi M, Wei W, Ma G. Exploration of Antigen Induced CaCO 3 Nanoparticles for Therapeutic Vaccine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704272. [PMID: 29468827 DOI: 10.1002/smll.201704272] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/09/2018] [Indexed: 05/23/2023]
Abstract
Therapeutic vaccines possess particular advantages and show promising potential to combat burdening diseases, such as acquired immunodeficiency syndrome, hepatitis, and even cancers. An efficient therapeutic vaccine would strengthen the immune system and eventually eliminate target cells through cytotoxic T lymphocytes (CTLs). Unfortunately, insufficient efficacy in triggering such an adaptive immune response is a problem that remains unsolved. To achieve efficient cellular immunity, antigen-presenting cells must capture and further cross-present disease-associated antigens to CD8 T cells via major histocompatibility complex I molecules. Here, a biomimetic strategy is developed to fabricate hierarchical ovalbumin@CaCO3 nanoparticles (OVA@NP, ≈500 nm) under the templating effect of antigen OVA. Taking advantage of the unique physicochemical properties of crystalline vaterite, cluster structure, and high loading, OVA@NP can efficiently ferry cargo antigen to dendritic cells and blast lysosomes for antigen escape to the cytoplasm. In addition, the first evidence that the physical stress from generated CO2 induces autophagy through the LC3/Beclin 1 pathways is presented. These outcomes cooperatively promote antigen cross-presentation, elicit CD8 T cell proliferation, ignite a potent and specific CTL response, and finally achieve prominent tumor therapy effects.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dezhi Ni
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Nana Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaobo Xi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yugang Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| | - Min Shi
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 211816, P. R. China
| |
Collapse
|
26
|
Abstract
Biomaterials-based strategies to engineer the immune system have gathered considerable attention the past decade and have opened new avenues for vaccine delivery and for modulating the immune system to fight cancer. This review highlights some of these strategies that involve well-defined particle-based delivery systems that are constructed in a multistep fashion. Particular attention is devoted to the design of micro and nanoparticles to deliver antigen and molecular adjuvants to antigen presenting immune cell subsets in lymphatic tissue.
Collapse
|
27
|
Borvinskaya E, Gurkov A, Shchapova E, Baduev B, Meglinski I, Timofeyev M. Distribution of PEG-coated hollow polyelectrolyte microcapsules after introduction into the circulatory system and muscles of zebrafish. Biol Open 2018; 7:bio030015. [PMID: 29305467 PMCID: PMC5829502 DOI: 10.1242/bio.030015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/24/2017] [Indexed: 12/31/2022] Open
Abstract
The use of polyelectrolyte multilayer microcapsules as carriers for fluorescent molecular probes is a prospective technique for monitoring the physiological characteristics of animal vasculature and interstitial environment in vivo Polyelectrolyte microcapsules have many features that favor their use as implantable carriers of optical sensors, but little information is available on their interactions with complex living tissues, distribution or residence time following different routes of administration in the body of vertebrates. Using the common fish model, the zebrafish Danio rerio, we studied in vivo the distribution of non-biodegradable microcapsules covered with polyethylene glycol (PEG) over time in the adults and evaluated potential side effects of their delivery into the fish bloodstream and muscles. Fluorescent microcapsules administered into the bloodstream and interstitially (in concentrations that were sufficient for visualization and spectral signal recording) both showed negligible acute toxicity to the fishes during three weeks of observation. The distribution pattern of microcapsules delivered into the bloodstream was stable for at least one week, with microcapsules prevalent in capillaries-rich organs. However, after intramuscular injection, the phagocytosis of the microcapsules by immune cells was manifested, indicating considerable immunogenicity of the microcapsules despite PEG coverage. The long-term negative effects of chronic inflammation were also investigated in fish muscles by histological analysis.
Collapse
Affiliation(s)
- Ekaterina Borvinskaya
- Institute of Biology at Irkutsk State University, Irkutsk 664003, Russia
- Institute of Biology at Karelian Research Centre of Russian Academy of Sciences, Petrozavodsk 185035, Russia
| | - Anton Gurkov
- Institute of Biology at Irkutsk State University, Irkutsk 664003, Russia
- Baikal Research Centre, Irkutsk 664003, Russia
| | | | - Boris Baduev
- Institute of Biology at Irkutsk State University, Irkutsk 664003, Russia
- Baikal Research Centre, Irkutsk 664003, Russia
| | - Igor Meglinski
- Institute of Biology at Irkutsk State University, Irkutsk 664003, Russia
- University of Oulu, Optoelectronics and Measurement Techniques Laboratory, Oulu 90570, Finland
| | - Maxim Timofeyev
- Institute of Biology at Irkutsk State University, Irkutsk 664003, Russia
| |
Collapse
|
28
|
Sarvestani ST, McAuley JL. The role of the NLRP3 inflammasome in regulation of antiviral responses to influenza A virus infection. Antiviral Res 2017; 148:32-42. [PMID: 29097227 DOI: 10.1016/j.antiviral.2017.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 12/25/2022]
Abstract
The innate immune system provides the host with both a dynamic barrier to prevent infection and a means to which rapid anti-microbial responses can be mounted. The inflammasome pathway is a critical host early response mechanism that enables detection of pathogens and initiates production of inflammatory cytokines, inducing recruitment of effector cells to the site of infection. The complete mechanism of inflammasome activation requires two signals: an initial priming step upon detection of pathogen, followed by activation of intracellular pattern recognition receptors critical to the formation of the inflammasome complex. The inflammasome complex is made of intracellular multiprotein oligomers which includes a sensor protein such as the nucleotide-binding oligomerization domain (NOD) like receptor proteins (NLRP), and an adapter protein, ASC, which critically activates pro-caspase-1. The mature caspase-1 then proteolytically cleaves cytosolic pro-IL-1β and pro-IL-18, which are then secreted as inflammatory cytokines that activate the inflammatory arm of the immune response to infection. Active caspase-1 also results in pyroptosis, which is a form of cell death triggered by inflammation. The induction and activation of IL-1β and IL-18 are considered critical signatures for inflammasome activation. With focus upon influenza A virus infection, this review will address present knowledge on the mechanisms of inflammasome complex activation, particularly how the viral components modulate activation of the cytosolic NOD-like receptor protein-3 (NLRP3)-dependent inflammasome complex. We also discuss potential therapeutic strategies that target the inflammasome to ameliorate illness, as well as novel methods of vaccination that target inflammasome stimulation with the aim to increase efficacy.
Collapse
Affiliation(s)
- Soroush T Sarvestani
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Julie L McAuley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
29
|
Quarta A, Rodio M, Cassani M, Gigli G, Pellegrino T, del Mercato LL. Multilayered Magnetic Nanobeads for the Delivery of Peptides Molecules Triggered by Intracellular Proteases. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35095-35104. [PMID: 28858466 PMCID: PMC6091500 DOI: 10.1021/acsami.7b05709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
In this work, the versatility of layer-by-layer technology was combined with the magnetic response of iron oxide nanobeads to prepare magnetic mesostructures with a degradable multilayer shell into which a dye quenched ovalbumin conjugate (DQ-OVA) was loaded. The system was specifically designed to prove the protease sensitivity of the hybrid mesoscale system and the easy detection of the ovalbumin released. The uptake of the nanostructures in the breast cancer cells was followed by the effective release of DQ-OVA upon activation via the intracellular proteases degradation of the polymer shells. Monitoring the fluorescence rising due to DQ-OVA digestion and the cellular dye distribution, together with the electron microscopy studying, enabled us to track the shell degradation and the endosomal uptake pathway that resulted in the release of the digested fragments of DQ ovalbumin in the cytosol.
Collapse
Affiliation(s)
- Alessandra Quarta
- CNR NANOTEC, Institute of Nanotechnology c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Marina Rodio
- Italian Institute
of Technology (IIT), via Morego 30, 16163 Genova, Italy
| | - Marco Cassani
- Italian Institute
of Technology (IIT), via Morego 30, 16163 Genova, Italy
- Department of Chemistry, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Giuseppe Gigli
- CNR NANOTEC, Institute of Nanotechnology c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
- Department
of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy
| | - Teresa Pellegrino
- Italian Institute
of Technology (IIT), via Morego 30, 16163 Genova, Italy
| | - Loretta L. del Mercato
- CNR NANOTEC, Institute of Nanotechnology c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
30
|
Hollow microneedle-mediated intradermal delivery of model vaccine antigen-loaded PLGA nanoparticles elicits protective T cell-mediated immunity to an intracellular bacterium. J Control Release 2017; 266:27-35. [PMID: 28917531 DOI: 10.1016/j.jconrel.2017.09.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 02/08/2023]
Abstract
The skin is an attractive organ for immunization due to the presence of a large number of epidermal and dermal antigen-presenting cells. Hollow microneedles allow for precise and non-invasive intradermal delivery of vaccines. In this study, ovalbumin (OVA)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles with and without TLR3 agonist poly(I:C) were prepared and administered intradermally by hollow microneedles. The capacity of the PLGA nanoparticles to induce a cytotoxic T cell response, contributing to protection against intracellular pathogens, was examined. We show that a single injection of OVA-loaded PLGA nanoparticles, compared to soluble OVA, primed both adoptively transferred antigen-specific naïve transgenic CD8+ and CD4+ T cells with markedly high efficiency. Applying a triple immunization protocol, PLGA nanoparticles primed also endogenous OVA-specific CD8+ T cells. Immune response, following immunization with in particular anionic PLGA nanoparticles co-encapsulated with OVA and poly(I:C), provided protection against a recombinant strain of the intracellular bacterium Listeria monocytogenes, secreting OVA. Taken together, we show that PLGA nanoparticle formulation is an excellent delivery system for protein antigen into the skin and that protective cellular immune responses can be induced using hollow microneedles for intradermal immunizations.
Collapse
|
31
|
Nam J, Son S, Moon JJ. Adjuvant-Loaded Spiky Gold Nanoparticles for Activation of Innate Immune Cells. Cell Mol Bioeng 2017; 10:341-355. [PMID: 29270238 DOI: 10.1007/s12195-017-0505-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Gold nanoparticles are versatile carriers for delivery of biomacromolecules. Here, we have developed spiky gold nanoparticles (SGNPs) that can efficiently deliver immunostimulatory agents. OBJECTIVES Our goal was to develop a platform technology for co-delivery of multiple adjuvant molecules for synergistic stimulation and maturation of innate immune cells. METHODS SGNPs were synthesized by a seed-mediated, surfactant-free synthesis method and incorporated with polyinosinic-polycytidylic acid (pIC) and DNA oligonucleotide containing unmethylated CpG motif (CpG) by an electrostatic layer-by-layer approach. Adjuvant-loaded SGNP nano-complexes were examined for their biophysical and biochemical properties and studied for immune activation using bone marrow-derived dendritic cells (BMDCs). RESULTS We have synthesized SGNPs with branched nano-spikes layered with pIC and/or CpG. Adjuvant-loaded SGNP nano-complexes promoted cellular uptake of the adjuvants. Importantly, we achieved spatio-temporal control over co-delivery of pIC and CpG via SGNPs, which produced synergistic enhancement in cytokine release (IL-6, TNF-α) and upregulation of co-stimulatory markers (CD40, CD80, CD86) in BMDCs, compared with pIC, CpG, or their admixtures. CONCLUSION SGNPs serve as a versatile delivery platform that allows flexible and on-demand cargo fabrication for strong activation of innate immune cells.
Collapse
Affiliation(s)
- Jutaek Nam
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sejin Son
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Lau HH, Murney R, Yakovlev NL, Novoselova MV, Lim SH, Roy N, Singh H, Sukhorukov GB, Haigh B, Kiryukhin MV. Protein-tannic acid multilayer films: A multifunctional material for microencapsulation of food-derived bioactives. J Colloid Interface Sci 2017; 505:332-340. [PMID: 28601742 DOI: 10.1016/j.jcis.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
The benefits of various functional foods are often negated by stomach digestion and poor targeting to the lower gastrointestinal tract. Layer-by-Layer assembled protein-tannic acid (TA) films are suggested as a prospective material for microencapsulation of food-derived bioactive compounds. Bovine serum albumin (BSA)-TA and pepsin-TA films demonstrate linear growth of 2.8±0.1 and 4.2±0.1nm per bi-layer, correspondingly, as shown by ellipsometry. Both multilayer films are stable in simulated gastric fluid but degrade in simulated intestinal fluid. Their corresponding degradation constants are 0.026±0.006 and 0.347±0.005nm-1min-1. Milk proteins possessing enhanced adhesion to human intestinal surface, Immunoglobulin G (IgG) and β-Lactoglobulin (BLG), are explored to tailor targeting function to BSA-TA multilayer film. BLG does not adsorb onto the multilayer while IgG is successfully incorporated. Microcapsules prepared from the multilayer demonstrate 2.7 and 6.3 times higher adhesion to Caco-2 cells when IgG is introduced as an intermediate and the terminal layer, correspondingly. This developed material has a great potential for oral delivery of numerous active food-derived ingredients.
Collapse
Affiliation(s)
- Hooi Hong Lau
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore
| | - Regan Murney
- AgResearch Limited, Ruakura Research Centre, Bisley Road, Private Bag 3123, Hamilton 3240, New Zealand
| | - Nikolai L Yakovlev
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore
| | - Marina V Novoselova
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore; N.G. Chernyshevsky Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Su Hui Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore
| | - Nicole Roy
- AgResearch Limited, Ruakura Research Centre, Bisley Road, Private Bag 3123, Hamilton 3240, New Zealand; Riddet Institute, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Brendan Haigh
- AgResearch Limited, Ruakura Research Centre, Bisley Road, Private Bag 3123, Hamilton 3240, New Zealand
| | - Maxim V Kiryukhin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore.
| |
Collapse
|
33
|
Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. J Control Release 2017; 256:56-67. [DOI: 10.1016/j.jconrel.2017.04.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/19/2017] [Accepted: 04/17/2017] [Indexed: 01/05/2023]
|
34
|
Tostanoski LH, Jewell CM. Engineering self-assembled materials to study and direct immune function. Adv Drug Deliv Rev 2017; 114:60-78. [PMID: 28392305 PMCID: PMC6262758 DOI: 10.1016/j.addr.2017.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/19/2022]
Abstract
The immune system is an awe-inspiring control structure that maintains a delicate and constantly changing balance between pro-immune functions that fight infection and cancer, regulatory or suppressive functions involved in immune tolerance, and homeostatic resting states. These activities are determined by integrating signals in space and time; thus, improving control over the densities, combinations, and durations with which immune signals are delivered is a central goal to better combat infectious disease, cancer, and autoimmunity. Self-assembly presents a unique opportunity to synthesize materials with well-defined compositions and controlled physical arrangement of molecular building blocks. This review highlights strategies exploiting these capabilities to improve the understanding of how precisely-displayed cues interact with immune cells and tissues. We present work centered on fundamental properties that regulate the nature and magnitude of immune response, highlight pre-clinical and clinical applications of self-assembled technologies in vaccines, cancer, and autoimmunity, and describe some of the key manufacturing and regulatory hurdles facing these areas.
Collapse
Key Words
- Autoimmunity and tolerance
- Biomaterial
- Cancer
- Immunomodulation
- Manufacturing, regulatory approval and FDA
- Nanoparticle, microparticle, micelle, liposome, polyplex, lipoplex, polyelectrolyte multilayer
- Nanotechnology
- Non-covalent, hydrophobic, hydrogen bonding, and electrostatic interaction
- Self-assembly
- Sensor, diagnostic, and theranostic
- Vaccine and immunotherapy
Collapse
Affiliation(s)
- Lisa H Tostanoski
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene St., Baltimore, MD 21201, USA; United States Department of Veterans Affairs, 10 North Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
35
|
Rad-Malekshahi M, Fransen MF, Krawczyk M, Mansourian M, Bourajjaj M, Chen J, Ossendorp F, Hennink WE, Mastrobattista E, Amidi M. Self-Assembling Peptide Epitopes as Novel Platform for Anticancer Vaccination. Mol Pharm 2017; 14:1482-1493. [PMID: 28088862 PMCID: PMC5415879 DOI: 10.1021/acs.molpharmaceut.6b01003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/29/2016] [Accepted: 01/14/2017] [Indexed: 12/17/2022]
Abstract
The aim of the present study was to improve the immunogenicity of peptide epitope vaccines using novel nanocarriers based on self-assembling materials. Several studies demonstrated that peptide antigens in nanoparticulate form induce stronger immune responses than their soluble forms. However, several issues such as poor loading and risk of inducing T cell anergy due to premature release of antigenic epitopes have challenged the clinical success of such systems. In the present study, we developed two vaccine delivery systems by appending a self-assembling peptide (Ac-AAVVLLLW-COOH) or a thermosensitive polymer poly(N-isopropylacrylamide (pNIPAm) to the N-terminus of different peptide antigens (OVA250-264, HPV-E743-57) to generate self-assembling peptide epitopes (SAPEs). The obtained results showed that the SAPEs were able to form nanostructures with a diameter from 20 to 200 nm. The SAPEs adjuvanted with CpG induced and expanded antigen-specific CD8+ T cells in mice. Furthermore, tumor-bearing mice vaccinated with SAPEs harboring the HPV E743-57 peptide showed a delayed tumor growth and an increased survival compared to sham-treated mice. In conclusion, self-assembling peptide based systems increase the immunogenicity of peptide epitope vaccines and therefore warrants further development toward clinical use.
Collapse
Affiliation(s)
- Mazda Rad-Malekshahi
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department
of Pharmaceutical Biomaterials and Medical Biomaterials Research Center,
Faculty of Pharmacy, Tehran University of
Medical Sciences, Tehran, Iran
| | - Marieke F. Fransen
- Department
of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Małgorzata Krawczyk
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mercedeh Mansourian
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Meriem Bourajjaj
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jian Chen
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ferry Ossendorp
- Department
of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maryam Amidi
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
36
|
Formulation for Oral Delivery of Lactoferrin Based on Bovine Serum Albumin and Tannic Acid Multilayer Microcapsules. Sci Rep 2017; 7:44159. [PMID: 28281573 PMCID: PMC5344998 DOI: 10.1038/srep44159] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/02/2017] [Indexed: 12/18/2022] Open
Abstract
Lactoferrin (Lf) has considerable potential as a functional ingredient in food, cosmetic and pharmaceutical applications. However, the bioavailability of Lf is limited as it is susceptible to digestive enzymes in gastrointestinal tract. The shells comprising alternate layers of bovine serum albumin (BSA) and tannic acid (TA) were tested as Lf encapsulation system for oral administration. Lf absorption by freshly prepared porous 3 μm CaCO3 particles followed by Layer-by-Layer assembly of the BSA-TA shells and dissolution of the CaCO3 cores was suggested as the most efficient and harmless Lf loading method. The microcapsules showed high stability in gastric conditions and effectively protected encapsulated proteins from digestion. Protective efficiency was found to be 76 ± 6% and 85 ± 2%, for (BSA-TA)4 and (BSA-TA)8 shells, respectively. The transit of Lf along the gastrointestinal tract (GIT) of mice was followed in vivo and ex vivo using NIR luminescence. We have demonstrated that microcapsules released Lf in small intestine allowing 6.5 times higher concentration than in control group dosed with the same amount of free Lf. Significant amounts of Lf released from microcapsules were then absorbed into bloodstream and accumulated in liver. Suggested encapsulation system has a great potential for functional foods providing lactoferrin.
Collapse
|
37
|
Selby LI, Cortez-Jugo CM, Such GK, Johnston APR. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [PMID: 28160452 DOI: 10.1002/wnan.1452] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/07/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
Abstract
Using nanoparticles to deliver drugs to cells has the potential to revolutionize the treatment of many diseases, including HIV, cancer, and diabetes. One of the major challenges facing this field is controlling where the drug is trafficked once the nanoparticle is taken up into the cell. In particular, if drugs remain localized in an endosomal or lysosomal compartment, the therapeutic can be rendered completely ineffective. To ensure the design of more effective delivery systems we must first develop a better understanding of how nanoparticles and their cargo are trafficked inside cells. This needs to be combined with an understanding of what characteristics are required for nanoparticles to achieve endosomal escape, along with methods to detect endosomal escape effectively. This review is focused into three sections: first, an introduction to the mechanisms governing internalization and trafficking in cells, second, a discussion of methods to detect endosomal escape, and finally, recent advances in controlling endosomal escape from polymer- and lipid-based nanoparticles, with a focus on engineering materials to promote endosomal escape. WIREs Nanomed Nanobiotechnol 2017, 9:e1452. doi: 10.1002/wnan.1452 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Laura I Selby
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Christina M Cortez-Jugo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia.,Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Georgina K Such
- Department of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
38
|
Zyuzin MV, Díez P, Goldsmith M, Carregal-Romero S, Teodosio C, Rejman J, Feliu N, Escudero A, Almendral MJ, Linne U, Peer D, Fuentes M, Parak WJ. Comprehensive and Systematic Analysis of the Immunocompatibility of Polyelectrolyte Capsules. Bioconjug Chem 2017; 28:556-564. [DOI: 10.1021/acs.bioconjchem.6b00657] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Meir Goldsmith
- Laboratory
of PrecisonNanoMedicine, Department of Cell Research and Immunology,
George S. Wise Faculty of Life Sciences, Department of Materials Science
and Engineering, The Iby and Aladar Fleischman Faculty of Engineering,
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | | | | | | | - Alberto Escudero
- Instituto
de Ciencia de Materiales de Sevilla, CSIC − Universidad de Sevilla, C. Américo Vespucio 49, E-41092, Seville, Spain
| | - María Jesús Almendral
- Department
of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain
| | | | - Dan Peer
- Laboratory
of PrecisonNanoMedicine, Department of Cell Research and Immunology,
George S. Wise Faculty of Life Sciences, Department of Materials Science
and Engineering, The Iby and Aladar Fleischman Faculty of Engineering,
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Wolfgang J. Parak
- CIC biomaGUNE, Paseo de Miramón
182, 20014 Donostia
− San Sebastián, Spain
| |
Collapse
|
39
|
Li D, Chen Y, Mastrobattista E, van Nostrum CF, Hennink WE, Vermonden T. Reduction-Sensitive Polymer-Shell-Coated Nanogels for Intracellular Delivery of Antigens. ACS Biomater Sci Eng 2016; 3:42-48. [DOI: 10.1021/acsbiomaterials.6b00651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dandan Li
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Yinan Chen
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
40
|
Cui W, Wang A, Zhao J, Li J. Biomacromolecules based core/shell architecture toward biomedical applications. Adv Colloid Interface Sci 2016; 237:43-51. [PMID: 27773338 DOI: 10.1016/j.cis.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 01/17/2023]
Abstract
Polyelectrolyte multilayer capsules have become a novel and promising class of hybrid materials with great potential since they can be applied in various areas, such as pharmaceutical sciences, biotechnology, and biomedicine. The concept of using such carriers for biology application is diagnosis and treatment of diseases for convenience, safety and specific targeting. Therefore, the development of biocompatible, biodegradable and specific characteristic nanostructure material is highly desirable. Much effort has been devoted to exploring innovative and effective techniques to fabricate such materials. Among the available techniques, layer-by-layer (LbL) assembly capsules have attracted considerable attention attributing to the flexibly controlled size, shape, composition, wall thickness and functions. Protein, as the large class of biomacromolecules, was incorporated into capsules for improving the biocompatibility and specific function. In this review we provide an overview of the recent progress in biomacromolecular capsules or core/shell architecture with different diameters for the variety of purposes. The size ranging from micro-, sub-micro to nano scale based on the choice of the template. Their advantages are discussed here. The applications of these biomacromolecular capsules in biotechnological fields have also been summarized, for instance blood substitute, ATP carriers, photodynamic therapy and nanomedicines.
Collapse
|
41
|
Correa S, Dreaden EC, Gu L, Hammond PT. Engineering nanolayered particles for modular drug delivery. J Control Release 2016; 240:364-386. [PMID: 26809005 PMCID: PMC6450096 DOI: 10.1016/j.jconrel.2016.01.040] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/07/2023]
Abstract
Layer-by-layer (LbL) based self-assembly of nanoparticles is an emerging and powerful method to develop multifunctional and tissue responsive nanomedicines for a broad range of diseases. This unique assembly technique is able to confer a high degree of modularity, versatility, and compositional heterogeneity to nanoparticles via the sequential deposition of alternately charged polyelectrolytes onto a colloidal template. LbL assembly can provide added functionality by directly incorporating a range of functional materials within the multilayers including nucleic acids, synthetic polymers, polypeptides, polysaccharides, and functional proteins. These materials can be used to generate hierarchically complex, heterogeneous thin films on an extensive range of both traditional and novel nanoscale colloidal templates, providing the opportunity to engineer highly precise systems capable of performing the numerous tasks required for systemic drug delivery. In this review, we will discuss the recent advancements towards the development of LbL nanoparticles for drug delivery and diagnostic applications, with a special emphasis on the incorporation of biostability, active targeting, desirable drug release kinetics, and combination therapies into LbL nanomaterials. In addition to these topics, we will touch upon the next steps for the translation of these systems towards the clinic.
Collapse
Affiliation(s)
- Santiago Correa
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Erik C Dreaden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Li Gu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
42
|
Chesson CB, Ekpo-Otu S, Endsley JJ, Rudra JS. Biomaterials-Based Vaccination Strategies for the Induction of CD8 +T Cell Responses. ACS Biomater Sci Eng 2016; 3:126-143. [PMID: 33450791 DOI: 10.1021/acsbiomaterials.6b00412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural and synthetic biomaterials are increasingly being used for the development of vaccines and immunotherapies as alternatives to traditional live-attenuated formulations due to their improved safety profiles and no risk of reversion to virulence. Polymeric materials in particular enjoy attention due to the ease of fabrication, control over physicochemical properties, and their wide range of immunogenicity. While the majority of studies focus on inducing protective antibody responses, in recent years, materials-based strategies for the delivery of antigens and immunomodulators to improve CD8+T cell immunity against infectious and non-infectious diseases have gained momentum. Notably, platforms based on polymeric nanoparticles, liposomes, micelles, virus-like particles, self-assembling peptides and peptidomimetics, and multilayer thin films show considerable promise in preclinical studies. In this Review, we first introduce the concepts of CD8+T cell activation, effector and memory functions, and cytotoxic activity, followed by vaccine design for eliciting robust and protective long-lived CD8+T cell immunity. We then discuss different materials-based vaccines developed in the past decade to elicit CD8+T cell responses based on molecular composition or fabrication methods and conclude with a summary and glimpse at the future trends in this area.
Collapse
Affiliation(s)
- Charles B Chesson
- Department of Pharmacology & Toxicology, ‡Department of Microbiology & Immunology, and §Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Shaunte Ekpo-Otu
- Department of Pharmacology & Toxicology, Department of Microbiology & Immunology, and §Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Janice J Endsley
- Department of Pharmacology & Toxicology, Department of Microbiology & Immunology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jai S Rudra
- Department of Pharmacology & Toxicology, Department of Microbiology & Immunology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
43
|
Selby LI, Kongkatigumjorn N, Such GK, Johnston APR. HD Flow Cytometry: An Improved Way to Quantify Cellular Interactions with Nanoparticles. Adv Healthc Mater 2016; 5:2333-8. [PMID: 27377570 DOI: 10.1002/adhm.201600445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/02/2016] [Indexed: 11/12/2022]
Abstract
Histogram deconvolution flow cytometry enables improved quantification of nanomaterial-cell interactions. The algorithm identifies the positive cells in highly overlapped populations and calculates the fluorescence intensity of the positive population. This technique performs better than commercially available methods with the additional benefit of visualizing the output.
Collapse
Affiliation(s)
- Laura I. Selby
- Drug Delivery, Disposition and Dynamics; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
| | | | - Georgina K. Such
- Department of Chemistry; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Angus P. R. Johnston
- Drug Delivery, Disposition and Dynamics; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
| |
Collapse
|
44
|
|
45
|
Mahadevan K, Patthipati VS, Han S, Swanson RJ, Whelan EC, Osgood C, Balasubramanian R. Highly fluorescent resorcinarene cavitand nanocapsules with efficient renal clearance. NANOTECHNOLOGY 2016; 27:335101. [PMID: 27378394 DOI: 10.1088/0957-4484/27/33/335101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanomaterial based imaging approaches hold substantial promise in addressing current diagnostic and therapeutic challenges. One of the key requirements for the successful clinical translation of nanomaterials is their complete clearance from the body within a reasonable time period preferably via the renal filtration route. This article describes the synthesis of highly fluorescent, water soluble, resorcinarene cavitand nanocapsules and demonstrates their effective renal clearance in mice. The synthesis and functionalization of nanocapsules was accomplished in a one-pot operation via thiol-ene reactions without involving self-assembly, sacrificial templates or emulsions. Water soluble resorcinarene cavitand nanocapsules obtained by this approach were covalently functionalized with Alexa Fluor 750. Highly fluorescent nanocapsules with hydrodynamic diameters of 122 nm and 68 nm and extinction coefficients of 1.3 × 10(9) M(-1) cm(-1) and 1.5 × 10(8) M(-1) cm(-1) respectively were prepared by varying the reaction conditions. The in vivo biodistribution and clearance of these nanocapsules in mice followed by whole-body fluorescence imaging showed that they were both cleared renally within a few hours. Given the inherent encapsulation capabilities of nanocapsules, the renal clearance demonstrated in this work opens up new opportunities for their theranostic applications especially for targeting and treating the urinary tract.
Collapse
Affiliation(s)
- Kalpana Mahadevan
- Department of Chemistry and Biochemistry, Old Dominion University,4541 Hampton Blvd, Norfolk, VA 23529, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Moyano DF, Liu Y, Ayaz F, Hou S, Puangploy P, Duncan B, Osborne BA, Rotello VM. Immunomodulatory effects of coated gold nanoparticles in LPS-stimulated in vitro and in vivo murine model systems. Chem 2016; 1:320-327. [PMID: 28255579 PMCID: PMC5328597 DOI: 10.1016/j.chempr.2016.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability of nanoparticle surface functionalities to regulate immune responses during an immunological challenge (i. e. inflammation) would open new doors for their use in non-prophylactic therapeutics. We report here the use of functionalized 2 nm core gold nanoparticles to control the immunological responses of in vitro and in vivo systems presented with an inflammatory challenge. The results showed that NPs bearing a hydrophobic zwitterionic functionality boost inflammatory outcomes while hydrophilic zwitterionic NPs generate minimal immunological responses. Surprisingly, tetra(ethylene glycol) headgroups generate a significant anti-inflammatory response both in vitro and in vivo. These results demonstrate the ability of simple surface ligands to provide immunomodulatory properties, making them promising leads for the therapeutic usage of nanomaterials in diseases involving inflammation.
Collapse
Affiliation(s)
- Daniel F. Moyano
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Furkan Ayaz
- Department of Veterinary and Animals Sciences, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Singyuk Hou
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Premsak Puangploy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Bradley Duncan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Barbara A. Osborne
- Department of Veterinary and Animals Sciences, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
47
|
Chiu YC, Gammon J, Andorko JI, Tostanoski LH, Jewell CM. Assembly and Immunological Processing of Polyelectrolyte Multilayers Composed of Antigens and Adjuvants. ACS APPLIED MATERIALS & INTERFACES 2016; 8:18722-31. [PMID: 27380137 PMCID: PMC4965838 DOI: 10.1021/acsami.6b06275] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
While biomaterials provide a platform to control the delivery of vaccines, the recently discovered intrinsic inflammatory characteristics of many polymeric carriers can also complicate rational design because the carrier itself can alter the response to other vaccine components. To address this challenge, we recently developed immune-polyelectrolyte multilayer (iPEMs) capsules electrostatically assembled entirely from peptide antigen and molecular adjuvants. Here, we use iPEMs built from SIINFEKL model antigen and polyIC, a stimulatory toll-like receptor agonist, to investigate the impact of pH on iPEM assembly, the processing and interactions of each iPEM component with primary immune cells, and the role of these interactions during antigen-specific T cell responses in coculture and mice. We discovered that iPEM assembly is pH dependent with respect to both the antigen and adjuvant component. Controlling the pH also allows tuning of the relative loading of SIINFEKL and polyIC in iPEM capsules. During in vitro studies with primary dendritic cells (DCs), iPEM capsules ensure that greater than 95% of cells containing at least one signal (i.e., antigen, adjuvant) also contained the other signal. This codelivery leads to DC maturation and SIINFEKL presentation via the MHC-I antigen presentation pathway, resulting in antigen-specific T cell proliferation and pro-inflammatory cytokine secretion. In mice, iPEM capsules potently expand antigen-specific T cells compared with equivalent admixed formulations. Of note, these enhancements become more pronounced with successive booster injections, suggesting that iPEMs functionally improve memory recall response. Together our results reveal some of the features that can be tuned to modulate the properties of iPEM capsules, and how these modular vaccine structures can be used to enhance interactions with immune cells in vitro and in mice.
Collapse
Affiliation(s)
- Yu-Chieh Chiu
- Fischell Department of Bioengineering, University of Maryland, College Park, 8228 Paint Branch Drive, Room 2212 Jeong H. Kim Building, College Park, Maryland 20742, United States
| | - Joshua
M. Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park, 8228 Paint Branch Drive, Room 2212 Jeong H. Kim Building, College Park, Maryland 20742, United States
| | - James I. Andorko
- Fischell Department of Bioengineering, University of Maryland, College Park, 8228 Paint Branch Drive, Room 2212 Jeong H. Kim Building, College Park, Maryland 20742, United States
| | - Lisa H. Tostanoski
- Fischell Department of Bioengineering, University of Maryland, College Park, 8228 Paint Branch Drive, Room 2212 Jeong H. Kim Building, College Park, Maryland 20742, United States
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8228 Paint Branch Drive, Room 2212 Jeong H. Kim Building, College Park, Maryland 20742, United States
- Department
of Microbiology and Immunology, University
of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer
Center, 22 S. Greene
Street, Suite N9E17, Baltimore, Maryland 21201, United
States
- Phone: 301-405-9628. Fax: 301-405-9953. E-mail: . Web: jewell.umd.edu
| |
Collapse
|
48
|
Poojari R, Kini S, Srivastava R, Panda D. Intracellular interactions of electrostatically mediated layer-by-layer assembled polyelectrolytes based sorafenib nanoparticles in oral cancer cells. Colloids Surf B Biointerfaces 2016; 143:131-138. [PMID: 26998875 DOI: 10.1016/j.colsurfb.2016.03.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022]
Abstract
In this paper, we report the preparation of LbL-nanoSraf (100-300nm) comprising of layer-by-layer (LbL) assembled polyelectrolytes dextran-sulfate/poly-l-arginine, with a multikinase inhibitor sorafenib (Sraf) encapsulated calcium carbonate (CaCO3) nanoparticles for oral cancer therapy in vitro. The zeta potential of LbL-nanoSraf exhibited a negative charge of the polyanionic dextran sulfate, which alternated with a positive charge of polycationic poly-l-arginine indicating a successful LbL assembly of the two polyelectrolyte bilayers on the CaCO3 nanoparticles. The LbL-nanoSraf exhibited an encapsulation efficiency of 61±4%. The LbL-nanoSraf was characterized using field-emission gun scanning electron microscopy, X-ray powder diffraction, atomic force microscopy and confocal laser scanning microscopy. Confocal laser scanning microscopy, flow cytometry and transmission electron microscopic investigations showed the internalization of LbL-nanoSraf in human oral cancer (KB) cells. The LbL-nanoSraf exhibited more potent antiproliferative, apoptotic and antimigratory activities in KB cells than the free drug Sraf. The findings could promote the application of nano-sized LbL assembled polyelectrolytes for the delivery of Raf-kinase inhibitors and provide mechanistic insights for oral cancer therapy.
Collapse
Affiliation(s)
- Radhika Poojari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Sudarshan Kini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
49
|
Cui J, Richardson JJ, Björnmalm M, Faria M, Caruso F. Nanoengineered Templated Polymer Particles: Navigating the Biological Realm. Acc Chem Res 2016; 49:1139-48. [PMID: 27203418 DOI: 10.1021/acs.accounts.6b00088] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nanoengineered materials offer tremendous promise for developing the next generation of therapeutics. We are transitioning from simple research questions, such as "can this particle eradicate cancer cells?" to more sophisticated ones like "can we design a particle to preferentially deliver cargo to a specific cancer cell type?" These developments are poised to usher in a new era of nanoengineered drug delivery systems. We primarily work with templating methods for engineering polymer particles and investigate their biological interactions. Templates are scaffolds that facilitate the formation of particles with well-controlled size, shape, structure, stiffness, stability, and surface chemistry. In the past decade, breakthroughs in engineering new templates, combined with advances in coating techniques, including layer-by-layer (LbL) assembly, surface polymerization, and metal-phenolic network (MPN) coordination chemistry, have enabled particles with specific physicochemical properties to be engineered. While materials science offers an ever-growing number of new synthesis techniques, a central challenge of therapeutic delivery has become understanding how nanoengineered materials interact with biological systems. Increased collaboration between chemists, biologists, and clinicians has resulted in a vast research output on bio-nano interactions. Our understanding of cell-particle interactions has grown considerably, but conventional in vitro experimentation provides limited information, and understanding how to bridge the in vitro/in vivo gap is a continuing challenge. As has been demonstrated in other fields, there is now a growing interest in applying computational approaches to advance this area. A considerable knowledge base is now emerging, and with it comes new and exciting opportunities that are already being capitalized on through the translation of materials into the clinic. In this Account, we outline our perspectives gained from a decade of work at the interface between polymer particle engineering and bio-nano interactions. We divide our research into three areas: (i) biotrafficking, including cellular association, intracellular transport, and biodistribution; (ii) biodegradation and how to achieve controlled, responsive release of therapeutics; and (iii) applications, including drug delivery, controlling immunostimulatory responses, biosensing, and microreactors. There are common challenges in these areas for groups developing nanoengineered therapeutics. A key "lesson-learned" has been the considerable challenge of staying informed about the developments relevant to this field. There are a number of reasons for this, most notably the interdisciplinary nature of the work, the large numbers of researchers and research outputs, and the limited standardization in technique nomenclature. Additionally, a large body of work is being generated with limited central archiving, other than vast general databases. To help address these points, we have created a web-based tool to organize our past, present, and future work [Bio-nano research knowledgebase, http://bionano.eng.unimelb.edu.au/knowledge_base/ (accessed May 2, 2016)]. This tool is intended to serve as a first step toward organizing results in this large, complex area. We hope that this will inspire researchers, both in generating new ideas and also in collecting, collating, and sharing their experiences to guide future research.
Collapse
Affiliation(s)
- Jiwei Cui
- Australian Research Council (ARC) Centre
of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Richardson
- Australian Research Council (ARC) Centre
of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mattias Björnmalm
- Australian Research Council (ARC) Centre
of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Matthew Faria
- Australian Research Council (ARC) Centre
of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- ARC Centre of Excellence
in Convergent Bio-Nano Science and Technology and the Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- Australian Research Council (ARC) Centre
of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
50
|
De Coen R, Vanparijs N, Risseeuw MDP, Lybaert L, Louage B, De Koker S, Kumar V, Grooten J, Taylor L, Ayres N, Van Calenbergh S, Nuhn L, De Geest BG. pH-Degradable Mannosylated Nanogels for Dendritic Cell Targeting. Biomacromolecules 2016; 17:2479-88. [DOI: 10.1021/acs.biomac.6b00685] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Leeanne Taylor
- Department
of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Neil Ayres
- Department
of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | | | | | | |
Collapse
|