1
|
Dhir R, Kaur M, Malik AK. Porphyrin Metal-organic Framework Sensors for Chemical and Biological Sensing. J Fluoresc 2025; 35:1895-1917. [PMID: 38607529 DOI: 10.1007/s10895-024-03674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Porphyrins and porphyrin derivatives have been intensively explored for a number of applications such as sensing, catalysis, adsorption, and photocatalysis due to their outstanding photophysical properties. Their usage in sensing applications, however, is limited by intrinsic defects such as physiological instability and self-quenching. To reduce self-quenching susceptibility, researchers have developed porphyrin metal-organic frameworks (MOFs). Metal-organic frameworks (MOFs), a unique type of hybrid porous coordination polymers comprised of metal ions linked by organic linkers, are gaining popularity. Porphyrin molecules can be integrated into MOFs or employed as organic linkers in the production of MOFs. Porphyrin-based MOFs are a separate branch of the huge MOF family that combines the distinguishing qualities of porphyrins (e.g., fluorescent nature) and MOFs (e.g., high surface area, high porosity) to enable sensing applications with higher sensitivity, specificity, and extended target range. The key synthesis techniques for porphyrin-based MOFs, such as porphyrin@MOFs, porphyrinic MOFs, and composite porphyrinic MOFs, are outlined in this review article. This review article focuses on current advances and breakthroughs in the field of porphyrin-based MOFs for detecting a variety of targets (for example, metal ions, anions, explosives, biomolecules, pH, and toxins). Finally, the issues and potential future uses of this class of emerging materials for sensing applications are reviewed.
Collapse
Affiliation(s)
- Rupy Dhir
- Department of Chemistry, G.S.S.D.G.S. Khalsa College, Patiala, Punjab, India
| | - Manpreet Kaur
- Department of Applied Sciences, Chandigarh Group of Colleges, Mohali, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
2
|
Cao X, Zhang Z, Chen J, Qi J, Wu Y, Liu Z, Chen Y, Xie X, Su S, Xia C, Chen L, Wang X. Harnessing Octadecyl Trimethylammonium Bromide Stabilized Gold Nanorods as a Sensitive Visual Detection Platform: Detection of p-Aminophenol at nM Levels as a Case. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6335-6344. [PMID: 40011192 DOI: 10.1021/acs.langmuir.5c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Gold nanorods (AuNRs), as versatile sensing materials, have wide analytical applications due to their unique optical properties. Cetyltrimethylammonium bromide (C16TAB), a conventional reagent in AuNR synthesis, also often acts as a stabilizer of AuNRs in applications. However, C16TAB-stabilized AuNRs undergo severe spontaneous aggregation and etching under extreme pH conditions, greatly limiting their optical sensing applications. Herein, we accidentally discovered that octadecyl trimethylammonium bromide (C18TAB), a rarely used surfactant for AuNRs, has a substantially higher stabilizing ability than C16TAB in preventing spontaneous aggregation and etching of AuNRs, which enables C18TAB-stabilized AuNRs as a superior sensing platform, demonstrating a 100-fold higher sensitivity than C16TAB-stabilized AuNRs for detection of model analytes. The excellent stability of C18TAB-stabilized AuNRs can be attributed to the higher surfactant coverage density on the gold surface, evidenced by the red-shifted longitudinal band (5 nm), which is tuned by the metal surface refraction index. The experimental results show that C18TAB-stabilized AuNRs can keep monodispersed and unchanged optical properties at very acidic and alkaline conditions with a low concentration of surfactant (0.05 mM). Moreover, the C18TAB-stabilized AuNRs can prevent spontaneous etching in the acidic sensing system and maintain their unchanged plasmon band, therefore decreasing the intensity of the noise signal. Benefiting from these findings, we established a reliable and ultrasensitive C18TAB-stabilized AuNR sensing platform and achieved the ultrasensitive detection of the model biomarker p-aminophenol (pAP), with a visual detection limit of 8 nM. This sensitivity represents at least a 100-fold improvement over the existing method using C16TAB-stabilized AuNRs. Moreover, C18TAB-stabilized AuNRs were successfully applied to detect pAP in urine samples with satisfactory recovery rates of 99.84-114.91%, further validating its reliability in practical applications. In summary, C18TAB-stabilized AuNRs provide a powerful tool for trace-level visual detection in chemo- and biosensing.
Collapse
Affiliation(s)
- Xin Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Zhiyang Zhang
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Ji Qi
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Yanzhou Wu
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhenyu Liu
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yan Chen
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobo Xie
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shuang Su
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chunlei Xia
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingxin Chen
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
3
|
Yang D, Youden B, Yu N, Carrier AJ, Jiang R, Servos MR, Oakes KD, Zhang X. Surface-Enhanced Raman Spectroscopy for the Detection of Reactive Oxygen Species. ACS NANO 2025; 19:2013-2028. [PMID: 39772468 DOI: 10.1021/acsnano.4c15509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Reactive oxygen species (ROS) play fundamental roles in various biological and chemical processes in nature and industries, including cell signaling, disease development and aging, immune defenses, environmental remediation, pharmaceutical syntheses, metal corrosion, energy production, etc. As such, their detection is of paramount importance, but their accurate identification and quantification are technically challenging due to their transient nature with short lifetimes and low steady-state concentrations. As a highly sensitive and selective analytical technique, surface-enhanced Raman spectroscopy (SERS) is promising for detecting ROS in real-time, enabling in situ monitoring of ROS-involved electrochemical and biochemical events with exceptional resolution. This review provides a comprehensive analysis of the state-of-the-art in the SERS-based detection of ROS. Herein, the principles and ROS sensing mechanisms of SERS have been critically evaluated, highlighting their emerging applications in direct and indirect ROS monitoring in electrochemical and biological systems. The developments and reaction schemes of selective SERS probes for superoxide (•O2-), hydroxyl radicals (•OH), nitric oxide (•NO), peroxynitrite (ONOO-), and hypochlorite (OCl-) are presented. Finally, technical challenges and future research directions are discussed to guide the design of SERS for ROS analysis.
Collapse
Affiliation(s)
- Dongchang Yang
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Brian Youden
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Naizhen Yu
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Runqing Jiang
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ken D Oakes
- Department of Biology, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Xu Zhang
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
4
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024; 9:2085-2166. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
5
|
Afshari Babazad M, Foroozandeh A, Abdouss M, SalarAmoli H, Babazad RA, Hasanzadeh M. Recent progress and challenges in biosensing of carcinoembryonic antigen. Trends Analyt Chem 2024; 180:117964. [DOI: 10.1016/j.trac.2024.117964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Chen W, Mao W, Yin Y, Ma Z, Song M, Ma Z, Li T, Zhu J, Liu C, Yu H, Tang S, Shen W. Endogenous H 2S-activated Ag nanoparticles embedded in programmed DNA-cubes for specific visualization of colorectal cancer cells. Chem Commun (Camb) 2024; 60:4918-4921. [PMID: 38628069 DOI: 10.1039/d4cc00085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
To avoid the unexpected aggregation and reduce the cytotoxicity of nanomaterials as optical probes in cell imaging applications, we propose a programmed DNA-cube as a carrier for silver nanoparticles (Ag NPs) to construct a specific hydrogen sulfide (H2S) responsive platform (Ag NP@DNA-cube) for diagnosing colorectal cancer (CRC) in this study. The DNA-cube maintains good dispersion of Ag NPs while providing excellent biocompatibility. Based on the characteristic overexpression of endogenous H2S in CRC cells, the Ag NPs are etched by H2S within target cells into silver sulfide quantum dots, thereby selectively illuminating the target cells. The Ag NP@DNA-cube exhibits a specific fluorescence response to CRC cells and achieves satisfactory imaging.
Collapse
Affiliation(s)
- Wenhui Chen
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
| | - Wei Mao
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
- Central-Southern Safety & Environmental Technology Institute Co. Ltd., Wuhan 430071, China
| | - Yuqi Yin
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
| | - Ziyu Ma
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
| | - Meiqi Song
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
| | - Zixiao Ma
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
| | - Tingting Li
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
| | - Jia Zhu
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Hui Yu
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang 212000, Jiangsu Province, P. R. China
| | - Sheng Tang
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wei Shen
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
| |
Collapse
|
7
|
Zhao J, Guo Y, Ma X, Liu S, Sun C, Cai M, Chi Y, Xu K. The Application of Hybridization Chain Reaction in the Detection of Foodborne Pathogens. Foods 2023; 12:4067. [PMID: 38002125 PMCID: PMC10670596 DOI: 10.3390/foods12224067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 11/26/2023] Open
Abstract
Today, with the globalization of the food trade progressing, food safety continues to warrant widespread attention. Foodborne diseases caused by contaminated food, including foodborne pathogens, seriously threaten public health and the economy. This has led to the development of more sensitive and accurate methods for detecting pathogenic bacteria. Many signal amplification techniques have been used to improve the sensitivity of foodborne pathogen detection. Among them, hybridization chain reaction (HCR), an isothermal nucleic acid hybridization signal amplification technique, has received increasing attention due to its enzyme-free and isothermal characteristics, and pathogenic bacteria detection methods using HCR for signal amplification have experienced rapid development in the last five years. In this review, we first describe the development of detection technologies for food contaminants represented by pathogens and introduce the fundamental principles, classifications, and characteristics of HCR. Furthermore, we highlight the application of various biosensors based on HCR nucleic acid amplification technology in detecting foodborne pathogens. Lastly, we summarize and offer insights into the prospects of HCR technology and its application in pathogen detection.
Collapse
Affiliation(s)
- Jinbin Zhao
- School of Medicine, Hunan Normal University, Changsha 410013, China;
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Yulan Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Xueer Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Shitong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Chunmeng Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Ming Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Yuyang Chi
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha 410013, China;
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, China
| |
Collapse
|
8
|
Liu WW, Zhang XL, Wang X, Chai YQ, Yuan R. Self-accelerated DNA walker mediated electrochemical biosensor for rapid and ultrasensitive detection of microRNA. Anal Chim Acta 2023; 1274:341447. [PMID: 37455065 DOI: 10.1016/j.aca.2023.341447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 07/18/2023]
Abstract
Herein, we developed a novel three-dimensional (3D) self-accelerated DNA walker (SADW) which progressively expedite walking rate by unlocking the more walking arm continuously in walker process to construct electrochemical biosensor for ultrasensitive detection of microRNA. Particularly, we skillfully introduced a target analogue sequence in the double-loop hairpin, which could be released in the walking process of SADW, then rapidly activating more silenced walking strands to achieve the continuous self-acceleration, resulting in the expedited reaction rate. Surprisingly, the average reaction rate of SADW was quite higher than that of traditional 3D self-circulating DNA walkers (DW) under pretty low target miRNA concentration, which is ascribed to the outstanding acceleration process of the SADW, readily conquering the major predicaments of DW in detecting target with traces concentration: slow reaction rate and low sensitivity. This way, the elaborated SADW is favorably applied in the ultrasensitive and rapid detection of miRNA-21 in tumor cancer cell lysates with a detection limit down to 5.81 aM which was far from lower than the detection limit of DW. This approach develops the novel generation of widespread strategy for the applications in clinic diagnose, biosensing assay, and DNA nanobiotechnology.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xiao-Long Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
9
|
Silver-Based Surface Plasmon Sensors: Fabrication and Applications. Int J Mol Sci 2023; 24:ijms24044142. [PMID: 36835553 PMCID: PMC9963732 DOI: 10.3390/ijms24044142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
A series of novel phenomena such as optical nonlinear enhancement effect, transmission enhancement, orientation effect, high sensitivity to refractive index, negative refraction and dynamic regulation of low threshold can be generated by the control of surface plasmon (SP) with metal micro-nano structure and metal/material composite structure. The application of SP in nano-photonics, super-resolution imaging, energy, sensor detection, life science, and other fields shows an important prospect. Silver nanoparticles are one of the commonly used metal materials for SP because of their high sensitivity to refractive index change, convenient synthesis, and high controllable degree of shape and size. In this review, the basic concept, fabrication, and applications of silver-based surface plasmon sensors are summarized.
Collapse
|
10
|
Silver Nanoparticle Synthesis via Photochemical Reduction with Sodium Citrate. Int J Mol Sci 2022; 24:ijms24010255. [PMID: 36613702 PMCID: PMC9820713 DOI: 10.3390/ijms24010255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
The aim of this paper is to provide a simple and efficient photoassisted approach to synthesize silver nanoparticles, and to elucidate the role of the key factors (synthesis parameters, such as the concentration of TSC, irradiation time, and UV intensity) that play a major role in the photochemical synthesis of silver nanoparticles using TSC, both as a reducing and stabilizing agent. Concomitantly, we aim to provide an easy way to evaluate the particle size based on Mie theory. One of the key advantages of this method is that the synthesis can be "activated" whenever or wherever silver nanoparticles are needed, by premixing the reactants and irradiating the final solution with UV radiation. UV irradiance was determined by using Keitz's theory. This argument has been verified by premixing the reagents and deposited them in an enclosed space (away from sunlight) at 25 °C, then checking them for three days. Nothing happened, unless the sample was directly irradiated by UV light. Further, obtained materials were monitored for 390 days and characterized using scanning electron microscopy, UV-VIS, and transmission electron microscopy.
Collapse
|
11
|
Mohammadinejad A, Heydari M, Kazemi Oskuee R, Rezayi M. A Critical Systematic Review of Developing Aptasensors for Diagnosis and Detection of Diabetes Biomarkers. Crit Rev Anal Chem 2022; 52:1795-1817. [DOI: 10.1080/10408347.2021.1919986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arash Mohammadinejad
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Heydari
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Synthesis and Analysis of Polymorphic Silver Nanoparticles and Their Incorporation into the Polymer Matrix. Polymers (Basel) 2022; 14:polym14132666. [PMID: 35808712 PMCID: PMC9269157 DOI: 10.3390/polym14132666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
A chemical method was successfully used to synthesize silver nanoparticles (AgNPs) with various shapes. The shape of the nanoparticles affects the color of the colloid (spherical—yellow solution, triangular—blue, a mixture of spherical and triangular—green). The NaBH4, which acts as the main reducing agent and H2O2 have a significant impact on the shape of AgNPs. It has also been shown that the ratio between precursor, reducing, and the stabilizing agent is crucial for the formation of the required nanoparticles. The light sensitivity of AgNPs and the presence of H2O2 lead to a significant change in AgNPs’ shape and size with time and to the formation of the dichroic effect. UV–vis spectrophotometry, TEM, SEM/FIB, and EDX methods were used to analyze the shape, size, and composition of the nanoparticles. Polymer matrix composite with AgNPs was prepared by the “ex-situ” method.
Collapse
|
13
|
Biosynthesis of silver nanoparticle composites based on hesperidin and pectin and their synergistic antibacterial mechanism. Int J Biol Macromol 2022; 214:220-229. [PMID: 35714865 DOI: 10.1016/j.ijbiomac.2022.06.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023]
Abstract
Silver nanoparticles (AgNPs) were widely used in the antibacterial field because of their excellent antibacterial properties. In this study, we used hesperidin and pectin as reductants and stabilizers, and prepared uniform and stable Hesperidin-Pectin AgNPs (HP-AgNPs) by a simple microwave-assisted process. Increasing the proportion of hesperidin, P-AgNPs, HP-AgNPs1, HP-AgNPs2 and H-AgNPs were obtained respectively. With the increase of hesperidin ratio, the mean particle size and zeta potential increased gradually. Fourier transform infrared spectroscopy (FTIR) analysis showed that Ag+ was reduced by hesperidin and pectin. Antibacterial tests showed that HP-AgNPs2 showed the MIC values of 66.7 μg/mL against E. coli. In addition, HP-AgNPs2 was selected to clarify its antibacterial mechanism against E. coli. Morphological experiments showed that HP-AgNPs2 stress caused damage to the cell wall of E. coli, as well as leakage of its contents and an increase in reactive oxygen species (ROS). On the other hand, the release of Ag+ during cell co-culture was studied and the results showed that most of the Ag+ released was taken up by E. coli. The synergistic effect of hesperidin and pectin resulted in a significant enhancement of the antibacterial properties of AgNPs. These preliminary data suggest that HP-AgNPs has good antibacterial activity and may be developed as an effective antibacterial nanomaterial.
Collapse
|
14
|
Zhan L, Li CM, Fu ZF, Zou HY, Huang CZ. Dual-aptamer-based enzyme linked plasmonic assay for pathogenic bacteria detection. Colloids Surf B Biointerfaces 2022; 214:112471. [PMID: 35338966 DOI: 10.1016/j.colsurfb.2022.112471] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/17/2022] [Accepted: 03/18/2022] [Indexed: 01/18/2023]
Abstract
Development of rapid, sensitive, and selective method for pathogenic bacteria detection is of great importance for food safety, medical diagnostic, and environmental monitoring. Currently, most techniques for low numbers of bacteria detection require advanced instrumentation or skilled operators. Herein, we present a facile colorimetric detection platform for bacterial detection using Ag nanoplates as chromogenic substrate, which takes advantages of the high specificity and affinity of aptamer and the ability of catalase to hydrolyze H2O2 that can etch Ag nanoplates. By introducing catalase to the sandwich structure composed by dual-aptamer recognition strategy, bacteria detection signal is converted to the peak shift of LSPR and colorimetric change. This proposed method allows a fast naked-eye detection of S. aureus at the concentration of 60 CFU/mL based on the combination of streptavidin-biotin system and inherent sensitivity of plasmonic Ag nanoplates. Owing to the high selectivity and sensitivity, as well as the low-cost and good adaptability, this plasmonic assay is expected to be suitable for pathogenic bacteria detection in resource-limited settings.
Collapse
Affiliation(s)
- Lei Zhan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Chun Mei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Zhi Feng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Hong Yan Zou
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China; Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
15
|
He M, Li J, Zhao D, Ma Y, Zhang J, Qiao C, Li Z, Huo D, Hou C. One metal-ion-regulated AgTNPs etching sensor array for visual discrimination of multiple organic acids. APPLIED OPTICS 2022; 61:4843-4850. [PMID: 36255968 DOI: 10.1364/ao.456278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/26/2022] [Indexed: 06/16/2023]
Abstract
The detection and discrimination of organic acids (OAs) is of great importance in the early diagnosis of specific diseases. In this study, we established an effective visual sensor array for the identification of OA. This is the first time, to our best knowledge, that metal ions were used to regulate the etching of silver triangular nanoprisms (AgTNPs) in an OA discrimination sensor array. The sensor array was based on the oxidation etching of AgTNPs by three metal ions (Mn2+, Pb2+, and Cr3+) and accelerated etching of AgTNPs by OA. The introduction of metal ions alone led to a slight wavelength shift of the AgTNPs colloid solution, signifying the incomplete etching of the AgTNPs. Nevertheless, when metal ions and OA were introduced simultaneously to the solution, a significant blueshift of the localized surface plasmon resonance peak was detected, and a color change of the AgTNPs was observed, which were the consequences of morphological transitions of the AgTNPs. The addition of different OA accelerated AgTNPs etching in varying degrees, generating diverse colorimetric response patterns (i.e., RGB variations) as "fingerprints" associated with each specific organic acid. Pattern recognition algorithms and neural network simulation were employed to further data analysis, indicating the outstanding discrimination capability of the provided array for eight OA at the 33 µM level. Moreover, excellent results of selective experiments as well as real samples tests demonstrate that our proposed method possesses great potential for practical applications.
Collapse
|
16
|
Xu S, Wang Y, Yao Y, Chen L, Xu J, Qiu B, Guo L. Toehold-mediated strand displacement coupled with single nanoparticle dark-field microscopy imaging for ultrasensitive biosensing. NANOSCALE 2022; 14:3496-3503. [PMID: 35171195 DOI: 10.1039/d1nr08030j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Highly sensitive detection of biomarkers is essential for disease prevention and early diagnosis. Herein, a highly sensitive strategy was proposed for microRNA-21 (miRNA-21) detection by the incorporation of programmable toehold-mediated strand displacement (TMSD) and dark-field microscopy imaging. Firstly, efficient and specific TSMD was carried out via hybridization between the substrate strand (Sub) and two short probe strands (P1, P2). Then, miRNA-21 could specifically hybridize with Sub due to the toehold that existed on its tail, which triggered the amplification with the help of the assist strands, and forming a large number of Sub-assist double-stranded DNA (dsDNA). This process realized the targeted highly specific recognition of miRNA-21 and the amplification of the trace target to high-output dsDNA. Additionally, as glucose oxidase (Gox) was modified on the end of the assist strands in advance, hydrogen peroxide was generated after adding glucose to the system, which further etched gold-silver core-shell nanocubes (Au@Ag NCs). As a result, the size of Au@Ag NCs decreased and the scattering intensity reduced simultaneously. The scattering intensity reduction value of Au@Ag NCs has a linear relationship with miRNA-21 concentration in the range of 1.0 to 100.0 fM with a limit of detection of 1.0 fM. Finally, the proposed method has been successfully demonstrated for the determination of miRNA-21 in lung cancer cell A549 lysate.
Collapse
Affiliation(s)
- Shaohua Xu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.
- Integrated Chinese and Western Medicine Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Yueliang Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Yuanyuan Yao
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Lifen Chen
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Jiahui Xu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
17
|
Gold nanorods etching as a powerful signaling process for plasmonic multicolorimetric chemo-/biosensors: Strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Xia M, Zhou F, Feng X, Sun J, Wang L, Li N, Wang X, Wang G. A DNAzyme-Based Dual-Stimuli Responsive Electrochemiluminescence Resonance Energy Transfer Platform for Ultrasensitive Anatoxin-a Detection. Anal Chem 2021; 93:11284-11290. [PMID: 34342436 DOI: 10.1021/acs.analchem.1c02417] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An effective and precise electrochemiluminescence resonance energy transfer (ECL-RET), including the efficient regulation over the proximity of a donor and an acceptor and the reliable stimuli responsive as well as the avoidance of undesirable probes leakage, etc., is significant for the development of an accurate and sensitive ECL detection method; yet, the current literature in documentation involves only a limited range of such ECL-RET systems. Herein, we propose an ECL-RET strategy with dually quenched ultralow background signals and a dual-stimuli responsive, accurate signal output for the ultrasensitive and reliable detection of anatoxin-a (ATX-a). The dual quenching is accomplished by an integrated ECL-RET probe of metal organic frameworks (MOFs) encapsulated into Ru(bpy)32+ (Ru-MOF) (donor) coated with silver nanoparticles (AgNPs) shell (acceptor 1) and close proximity with DNA-ferrocene (Fc) (acceptor 2). Multistimuli responsive DNAzyme facilitated the accurate signal switch by both target ATX-a and hydrogen peroxide (H2O2). Because of the specific recognition of the aptamer toward ATX-a, an intricate design of the DNA sequence enabled the exposure of the Ag+-dependent DNAzyme sequence and H2O2 in situ generated Ag+ triggering a catalytic cleavage reaction to freely release the two ECL-RET energy acceptors, thus switching the ECL signal significantly and achieving ultrasensitive detection. It is noteworthy that AgNPs are key in this ECL-RET strategy, serving both as the gate-keepers for avoiding ECL probes leakage and also the ECL energy acceptors, and mostly importantly serving as the redox substrate for the subsequent DNAzyme catalytic signal switch. The proposed ECL-RET aptasensor for ATX-a detection displayed splendid monitoring performance with a quite low detection limit of 0.00034 mg mL-1. This sensor not only led to the development of a dual-quenching ECL-RET system but also provided meaningful multistimuli responsive ECL biosensing platform construction, which shows a promising application prospect in complicated sample analysis.
Collapse
Affiliation(s)
- Mengmeng Xia
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fu Zhou
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiuyun Feng
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Jiahui Sun
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Li Wang
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Na Li
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, P. R. China
| | - Guangfeng Wang
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
19
|
Yi Y, Liu L, Wu Y, Zhu G. Fluorescent and Colorimetric Dual-signal Enantiomers Recognition via Enzyme Catalysis: The Case of Glucose Enantiomers Using Nitrogen-doped Silicon Quantum Dots/Silver Probe Coupled with β-D-Glucose Oxidase. ANAL SCI 2021; 37:275-281. [PMID: 32863333 DOI: 10.2116/analsci.20p228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chiral enantiomer recognition is important but facing tough challenges in the direct quantitative determination for complex samples. In this work, via chosing nitrogen-doped silicon quantum dots (N-SiQD) as optical nanoprobe and constructing N-SiQD/silver (N-SiQD/Ag NPs) complex, β-D-GOx as model enzyme and glucose enantiomers as analytes, a fluorescent and colorimetric dual-signal chiral sensing strategy was proposed herein for chiral recognition based on specific enzyme-catalyzed reaction. N-SiQD can exhibit intense fluorescence, while it can be quenched by Ag NPs owing to the formation of N-SiQD/Ag NPs. In the presence of glucose isomer, D-glucose is catalytically hydrolyzed by β-D-GOx to form H2O2 owing to the specific enzyme catalyzed reaction between D-glucose and β-D-GOx, and H2O2 can etch Ag NPs from the N-SiQD/Ag NPs probe to change the solution color from brown to colorless and restore the N-SiQD fluorescence; while these phenomena cannot be caused by L-glucose, a dual-signal sensing method was thus constructed for recognizing glucose enantiomers. It is believed that the chiral enantiomers recognition strategy via enzyme catalysis has great application for selective and quantificational detection of enantiomers in the complex sample system.
Collapse
Affiliation(s)
- Yinhui Yi
- School of the Environment and Safety Engineering, Jiangsu University.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
| | - Lirong Liu
- School of the Environment and Safety Engineering, Jiangsu University
| | - Yuntao Wu
- School of the Environment and Safety Engineering, Jiangsu University
| | - Gangbing Zhu
- School of the Environment and Safety Engineering, Jiangsu University.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
| |
Collapse
|
20
|
Zhao Y, Zuo X, Li Q, Chen F, Chen YR, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu ZS, Xia F, Xu C, Yang Y, Yuan BF, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang XB, Yang H, Tan W, Fan C. Nucleic Acids Analysis. Sci China Chem 2020; 64:171-203. [PMID: 33293939 PMCID: PMC7716629 DOI: 10.1007/s11426-020-9864-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis. During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs. In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fujian Huang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Yanyi Huang
- College of Chemistry and Molecular Engineering, Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071 China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Libing Liu
- Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Chunhua Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology (ICSB), Chinese Institute for Brain Research (CIBR), Tsinghua University, Beijing, 100084 China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Shu Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Yang Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Bi-Feng Yuan
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Quan Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Huanghao Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Weihong Tan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
21
|
Chen S, Liu C, Liu Y, Liu Q, Lu M, Bi S, Jing Z, Yu Q, Peng W. Label-Free Near-Infrared Plasmonic Sensing Technique for DNA Detection at Ultralow Concentrations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000763. [PMID: 33304743 PMCID: PMC7709993 DOI: 10.1002/advs.202000763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/05/2020] [Indexed: 06/12/2023]
Abstract
Biomolecular detection at a low concentration is usually the most important criterion for biological measurement and early stage disease diagnosis. In this paper, a highly sensitive nanoplasmonic biosensing approach is demonstrated by achieving near-infrared plasmonic excitation on a continuous gold-coated nanotriangular array. Near-infrared incident light at a small incident angle excites surface plasmon resonance with much higher spectral sensitivity compared with traditional configuration, due to its greater interactive volume and the stronger electric field intensity. By introducing sharp nanotriangular metallic tips, intense localization of plasmonic near-fields is realized to enhance the molecular perception ability on sensing surface. This approach with an enhanced sensitivity (42103.8 nm per RIU) and a high figure of merit (367.812) achieves a direct assay of ssDNA at nanomolar level, which is a further step in label-free ultrasensitive sensing technique. Considerable improvement is recorded in the detection limit of ssDNA as 1.2 × 10-18 m based on the coupling effect between nanotriangles and gold nanoparticles. This work combines high bulk- and surface-sensitivities, providing a simple way toward label-free ultralow-concentration biomolecular detection.
Collapse
Affiliation(s)
- Shimeng Chen
- School of Optoelectronic Engineering and Instrumentation ScienceDalian University of TechnologyDalian116024China
| | - Chuan Liu
- State Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of TechnologyDalian116024China
| | - Yun Liu
- School of PhysicsDalian University of TechnologyDalian116024China
| | - Qiang Liu
- School of PhysicsDalian University of TechnologyDalian116024China
| | - Mengdi Lu
- School of PhysicsDalian University of TechnologyDalian116024China
| | - Sheng Bi
- Key Laboratory for Precision and Non‐traditional MachiningTechnology of the Ministry of EducationDalian University of TechnologyDalian116024China
| | - Zhenguo Jing
- School of PhysicsDalian University of TechnologyDalian116024China
| | - Qingxu Yu
- School of Optoelectronic Engineering and Instrumentation ScienceDalian University of TechnologyDalian116024China
| | - Wei Peng
- School of PhysicsDalian University of TechnologyDalian116024China
| |
Collapse
|
22
|
Clinical Applications of Visual Plasmonic Colorimetric Sensing. SENSORS 2020; 20:s20216214. [PMID: 33143365 PMCID: PMC7663786 DOI: 10.3390/s20216214] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Colorimetric analysis has become of great importance in recent years to improve the operationalization of plasmonic-based biosensors. The unique properties of nanomaterials have enabled the development of a variety of plasmonics applications on the basis of the colorimetric sensing provided by metal nanoparticles. In particular, the extinction of localized surface plasmon resonance (LSPR) in the visible range has permitted the exploitation of LSPR colorimetric-based biosensors as powerful tools for clinical diagnostics and drug monitoring. This review summarizes recent progress in the biochemical monitoring of clinical biomarkers by ultrasensitive plasmonic colorimetric strategies according to the distance- or the morphology/size-dependent sensing modes. The potential of colorimetric nanosensors as point of care devices from the perspective of naked-eye detection is comprehensively discussed for a broad range of analytes including pharmaceuticals, proteins, carbohydrates, nucleic acids, bacteria, and viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The practical suitability of plasmonic-based colorimetric assays for the rapid visual readout in biological samples, considering current challenges and future perspectives, is also reviewed.
Collapse
|
23
|
Xue J, Jia Y, Yang L, Feng J, Wu D, Ren X, Du Y, Ju H, Wei Q. Etching Triangular Silver Nanoparticles by Self-generated Hydrogen Peroxide to Initiate the Response of an Electrochemiluminescence Sensing Platform. Anal Chem 2020; 92:14203-14209. [DOI: 10.1021/acs.analchem.0c03398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jingwei Xue
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Yue Jia
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Lei Yang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Jinhui Feng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
24
|
Development of biosensors for detection of alpha-fetoprotein: As a major biomarker for hepatocellular carcinoma. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115961] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
25
|
Recent advances in optical biosensors for the detection of cancer biomarker α-fetoprotein (AFP). Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Tao Y, Li M, Liu X, Leong KW, Gautier J, Zha S. Dual-Color Plasmonic Nanosensor for Radiation Dosimetry. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22499-22506. [PMID: 32337977 PMCID: PMC7346094 DOI: 10.1021/acsami.0c03001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Radiation dosimeters are critical for accurately assessing the levels of radiation exposure of tumor sites and surrounding tissues and for optimizing therapeutic interventions as well as for monitoring environmental exposure. To fill the need for a simple, user-friendly, and inexpensive dosimeter, we designed an innovative colorimetric nanosensor-based assay for detecting ionizing radiation. We show that hydroxyl radicals generated by ionizing radiation can be used to etch gold nanorods (AuNRs) and silver nanoprisms (AgNPRs), yielding reproducible color changes for radiation dose detection in the range of 50-2000 rad, broad enough to cover doses used in hyperfractionated, conventional, and hypofractionated radiotherapy. This range of doses detected by this assay correlates with radiation-induced DNA damage response in mammalian cells. Furthermore, this AuNR- and AgNPR-based sensing platform has been established in a paper format that can be readily adopted for a wide range of applications and translation.
Collapse
Affiliation(s)
- Yu Tao
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, United States
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiangyu Liu
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, United States
- Department of Genetics and Development, Columbia University, New York, New York 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, United States
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, United States
- Department of Pediatrics, Pathology and Cell Biology, Immunology and Microbiology, Columbia University, New York, New York 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, United States
| |
Collapse
|
27
|
Abstract
The detection of biomarkers is critical for enabling early disease diagnosis, monitoring the progression, and tracking the effectiveness of therapeutic intervention. Plasmonic sensors exhibit a broad range of analytical capabilities, from the rapid generation of colorimetric readouts to single-molecule sensitivity in ultralow sample volumes, which have led to their increased exploration in bioanalysis and point-of-care applications. This perspective presents selected accounts of recent developments on the different types of plasmonic sensing platforms, the pervasive challenges, and outlook on the pathway to translation. We highlight the sensing of upcoming biomarkers, including microRNA, circulating tumor cells, exosomes, and cell-free DNA, and discuss the opportunity of utilizing plasmonic nanomaterials and tools for biomarker detection beyond biofluids, such as in tissues, organs, and disease sites. The integration of plasmonic biosensors with established and upcoming technologies of instrumentation, sample pretreatment, and data analysis will help realize their translation to clinical settings for improving healthcare and enhancing the quality of life.
Collapse
Affiliation(s)
- Nicole Cathcart
- Department of Chemistry, York University, 4700 Keele Street Toronto, Ontario, Canada M3J 1P3
| | - Jennifer I L Chen
- Department of Chemistry, York University, 4700 Keele Street Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
28
|
Du P, Niu Q, Chen J, Chen Y, Zhao J, Lu X. “Switch-On” Fluorescence Detection of Glucose with High Specificity and Sensitivity Based on Silver Nanoparticles Supported on Porphyrin Metal–Organic Frameworks. Anal Chem 2020; 92:7980-7986. [DOI: 10.1021/acs.analchem.0c01651] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Peiyao Du
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R. China
| | - Qixia Niu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Jing Chen
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Yang Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R. China
| | - Jie Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| |
Collapse
|
29
|
Yuan M, Xiong Q, Zhang G, Xiong Z, Liu D, Duan H, Lai W. Silver nanoprism-based plasmonic ELISA for sensitive detection of fluoroquinolones. J Mater Chem B 2020; 8:3667-3675. [PMID: 32039414 DOI: 10.1039/c9tb02776a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluoroquinolones are synthetic antibiotics that are commonly used in animal husbandry, and the consumption of animal products with fluoroquinolone residues has imposed a serious threat to human health. Here, we report a plasmonic enzyme-linked immunosorbent assay (pELISA) method based on oxidative etching of silver nanoprisms (AgNPRs) for the quantitative and qualitative detection of danofloxacin (DAN), a fluoroquinolone antibiotic. AgNPRs that undergo colorimetric changes upon oxidative etching by H2O2 serve as the signal transducer in our design. An indirect competitive pELISA was constructed by introducing biotinylated monoclonal antibody (mAb), streptavidin and biotinylated glucose oxidase, which catalyzes the generation of H2O2 for etching AgNPRs. The quantitative detection limit of the proposed method was 0.24 ng mL-1 for DAN. The qualitative detection limit for DAN reached 0.32 ng mL-1, which was 32-fold lower than that of the assay using 3,3',5,5'-tetramethylbenzidine (TMB) as the signal transducer. The average recoveries of DAN in milk ranged from 103% to 121%, with a coefficient of variation of 0.6-3.41%. The recovery results were further confirmed using liquid chromatography-tandem mass spectrometry. In summary, the proposed AgNPR-etching pELISA exhibits high sensitivity, good accuracy and excellent reliability for the quantitative and qualitative detection of DAN in milk.
Collapse
Affiliation(s)
- Meifang Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Bodulev OL, Sakharov IY. Isothermal Nucleic Acid Amplification Techniques and Their Use in Bioanalysis. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:147-166. [PMID: 32093592 PMCID: PMC7223333 DOI: 10.1134/s0006297920020030] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
Abstract
Recently, there has been a rapid progress in the development of techniques for isothermal amplification of nucleic acids as an alternative to polymerase chain reaction (PCR). The advantage of these methods is that the nucleic acids amplification can be carried out at constant temperature, unlike PCR, which requires cyclic temperature changes. Moreover, isothermal amplification can be conducted directly in living cells. This review describes the principles of isothermal amplification techniques and demonstrates their high efficiency in designing new highly sensitive detection methods of nucleic acids and enzymes involved in their modifications. The data on successful application of isothermal amplification methods for the analysis of cells and biomolecules with the use of DNA/RNA aptamers are presented.
Collapse
Affiliation(s)
- O L Bodulev
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia
| | - I Yu Sakharov
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| |
Collapse
|
31
|
Zhu L, Li G, Shao X, Huang K, Luo Y, Xu W. A colorimetric zinc(II) assay based on the use of hairpin DNAzyme recycling and a hemin/G-quadruplex lighted DNA nanoladder. Mikrochim Acta 2019; 187:26. [DOI: 10.1007/s00604-019-3996-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/03/2019] [Indexed: 11/28/2022]
|
32
|
Xie S, Fu T, He L, Qiu L, Liu H, Tan W. DNA-Capped Silver Nanoflakes as Fluorescent Nanosensor for Highly Sensitive Imaging of Endogenous H2S in Cell Division Cycles. Anal Chem 2019; 91:15404-15410. [DOI: 10.1021/acs.analchem.9b02527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sitao Xie
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Lei He
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Honglin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
- School of Food and Biological Engineering, Hefei University of Technology, Anhui 230009, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Tarannum N, Divya, Gautam YK. Facile green synthesis and applications of silver nanoparticles: a state-of-the-art review. RSC Adv 2019; 9:34926-34948. [PMID: 35530673 PMCID: PMC9074700 DOI: 10.1039/c9ra04164h] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
In the field of nanotechnology, the development of reliable and eco-friendly methods for the synthesis of NPs is crucial. The conventional methods for the synthesis of NPs are costly, toxic, and not ecofriendly. To overcome these issues, natural sources such as plant, bacteria, fungi, and biopolymers have been used to synthesize AgNPs. These natural sources act as reducing and capping agents. The shape, size, and applications of AgNPs are prominently affected by the reaction parameters under which they are synthesized. Accessible distributed data on the synthesis of AgNPs include the impact of different parameters (temperature and pH), characterization techniques (DLS, UV-vis, FTIR, XRD, SEM, TEM and EDX), properties and their applications. This review paper discusses all the natural sources such as plants, bacteria, fungi, and biopolymers that have been used for the synthesis of AgNPs in the last ten years. AgNPs synthesized by green methods have found potential applications in a wide spectrum of areas including drug delivery, DNA analysis and gene therapy, cancer treatment, antimicrobial agents, biosensors, catalysis, SERS and magnetic resonance imaging (MRI). The current limitations and future prospects for the synthesis of inorganic nanoparticles by green methods are also discussed herein.
Collapse
Affiliation(s)
- Nazia Tarannum
- Department of Chemistry, Chaudhary Charan Singh University Meerut 250004 India
| | - Divya
- Department of Chemistry, Chaudhary Charan Singh University Meerut 250004 India
| | - Yogendra K Gautam
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University Meerut 250004 India
| |
Collapse
|
34
|
Liu SG, Mo S, Han L, Li N, Fan YZ, Li NB, Luo HQ. Oxidation etching induced dual-signal response of carbon dots/silver nanoparticles system for ratiometric optical sensing of H2O2 and H2O2-related bioanalysis. Anal Chim Acta 2019; 1055:81-89. [DOI: 10.1016/j.aca.2018.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/08/2018] [Indexed: 11/16/2022]
|
35
|
Ma X, He S, Qiu B, Luo F, Guo L, Lin Z. Noble Metal Nanoparticle-Based Multicolor Immunoassays: An Approach toward Visual Quantification of the Analytes with the Naked Eye. ACS Sens 2019; 4:782-791. [PMID: 30896159 DOI: 10.1021/acssensors.9b00438] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Noble metal nanoparticle-based colorimetric sensors have become powerful tools for the detection of different targets with convenient readout. Among the many types of nanomaterials, noble metal nanoparticles exhibit extraordinary optical responses mainly due to their excellent localized surface plasmon resonance (LSPR) properties. The absorption spectrum of the noble metal nanoparticles was mostly in the visible range. This property enables the visual detection of various analytes with the naked eye. Among numerous color change modes, the way that different concentrations of targets represent vivid color changes has been brought to the forefront because the color distinction capability of normal human eyes is usually better than the intensity change capability. We review the state of the art in noble metal nanoparticle-based multicolor colorimetric strategies adopted for visual quantification by the naked eye. These multicolor strategies based on different means of morphology transformation are classified into two categories, namely, the etching of nanoparticles and the growth of nanoparticles. We highlight recent progress on the different means by which biocatalytic reactions mediated LSPR modulation signal generation and their applications in the construction of multicolor immunoassays. We also discuss the current challenges associated with multicolor colorimetric sensors during actual sample detection and propose the future development of next-generation multicolor qualification strategies.
Collapse
Affiliation(s)
- Xiaoming Ma
- School of Chemistry and Chemical Engineering, Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China
| | - Shan He
- School of Chemistry and Chemical Engineering, Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China
| | | | | | | | | |
Collapse
|
36
|
Tang S, Qi T, Xia D, Xu M, Xu M, Zhu A, Shen W, Lee HK. Smartphone Nanocolorimetric Determination of Hydrogen Sulfide in Biosamples after Silver-Gold Core-Shell Nanoprism-Based Headspace Single-Drop Microextraction. Anal Chem 2019; 91:5888-5895. [PMID: 30985100 DOI: 10.1021/acs.analchem.9b00255] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, the sensitive detection of hydrogen sulfide (H2S) was realized at low cost and high efficiency through the application of silver-gold core-shell nanoprism (Ag@Au-np) combined with headspace single-drop microextraction (HS-SDME). After SDME, smartphone nanocolorimetry (SNC), with the aid of a smartphone camera and color picker software, was used to detect and quantify the H2S. The method took advantage of the inhibition of the ultraviolet-visible (UV-vis) signal caused by H2S etching of the Ag@Au-np preadded to the SDME solvent to measure the H2S concentration. The coating of the gold layer not only ensured the high stability of the nanomaterial but also enhanced the selectivity toward H2S. The HS-SDME method was simple to process and required only a droplet of solvent for analysis to be realized. This HS-SDME-SCN approach exhibited a calibration graph linearity of between 0.1 and 100 μM and a limit of detection of 65 nM (relative standard deviations of N% ( n = 3) < 4.80). A comparison with UV-vis spectrophotometry was conducted. The practical applicability of HS-SDME-SNC was successfully demonstrated by determining H2S in genuine biosamples (egg and milk).
Collapse
Affiliation(s)
- Sheng Tang
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212003 , Jiangsu Province , PR China
| | - Tong Qi
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212003 , Jiangsu Province , PR China
| | - Dasha Xia
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212003 , Jiangsu Province , PR China
| | - Mengchan Xu
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212003 , Jiangsu Province , PR China
| | - Mengyuan Xu
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212003 , Jiangsu Province , PR China
| | - Anni Zhu
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212003 , Jiangsu Province , PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212003 , Jiangsu Province , PR China
| | - Hian Kee Lee
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore.,National University of Singapore Environmental Research Institute , T-Lab Building #02-01, 5A Engineering Drive 1 , Singapore 117411 , Singapore.,Tropical Marine Science Institute, National University of Singapore , S2S Building, 18 Kent Ridge Road , Singapore 119227 , Singapore
| |
Collapse
|
37
|
Hao N, Nie Y, Xu Z, Zhang JXJ. Ultrafast microfluidic synthesis of hierarchical triangular silver core-silica shell nanoplatelet toward enhanced cellular internalization. J Colloid Interface Sci 2019; 542:370-378. [PMID: 30771632 DOI: 10.1016/j.jcis.2019.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/20/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022]
Abstract
Microfluidic reactors represent a new frontier in the rational design and controllable synthesis of functional micro-/nanomaterials. Herein, we develop a continuous and ultrafast flow synthesis method to obtain triangular silver (tAg) nanoplatelet using a short range two-loop spiral-shaped laminar flow microfluidic reactor, with one inlet flow containing AgNO3, trisodium citrate, and H2O2 and the other NaBH4. The effect of the reactant concentration and flow rate on the structural changes of tAg is examined. Through the same miniaturized microreactor, hierarchical core-shell Ag@SiO2 can be produced with tunable silica shell thickness using one inlet flow containing the as-synthesized Ag nanoparticles together with tetraethyl orthosilicate and the other ammonia. The enhanced cellular internalization efficiency of triangular nanoplatelets by PANC-1 and MCF-7 cells is further confirmed in comparison with the spherical ones. These results not only bring new insights for engineering nanomaterials from microreactors but also facilitate the rational design of functional nanostructures for enhancing their biological performance.
Collapse
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| | - Zhe Xu
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States.
| |
Collapse
|
38
|
Guo J, Mingoes C, Qiu X, Hildebrandt N. Simple, Amplified, and Multiplexed Detection of MicroRNAs Using Time-Gated FRET and Hybridization Chain Reaction. Anal Chem 2019; 91:3101-3109. [DOI: 10.1021/acs.analchem.8b05600] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jiajia Guo
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91400 Orsay, France
| | - Carlos Mingoes
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91400 Orsay, France
| | - Xue Qiu
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91400 Orsay, France
| | - Niko Hildebrandt
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91400 Orsay, France
| |
Collapse
|
39
|
Quantitative Determination of Urine Glucose: Combination of Laminar Flow in Microfluidic Chip with SERS Probe Technique. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8163-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Zhou C, Zou H, Sun C, Ren D, Chen J, Li Y. Signal amplification strategies for DNA-based surface plasmon resonance biosensors. Biosens Bioelectron 2018; 117:678-689. [DOI: 10.1016/j.bios.2018.06.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
|
41
|
Park CR, Park SJ, Lee WG, Hwang BH. Biosensors Using Hybridization Chain Reaction - Design and Signal Amplification Strategies of Hybridization Chain Reaction. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0182-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Zhu S, Li H, Yang M, Pang SW. Label-free detection of live cancer cells and DNA hybridization using 3D multilayered plasmonic biosensor. NANOTECHNOLOGY 2018; 29:365503. [PMID: 29848789 DOI: 10.1088/1361-6528/aac8fb] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Three-dimensional (3D) multilayered plasmonic nanostructures consisting of Au nanosquares on top of SU-8 nanopillars, Au asymmetrical nanostructures in the middle, and Au asymmetrical nanoholes at the bottom were fabricated through reversal nanoimprint technology. Compared with two-dimensional and quasi-3D plasmonic nanostructures, the 3D multilayered plasmonic nanostructures showed higher electromagnetic field intensity, longer plasmon decay length and larger plasmon sensing area, which are desirable for highly sensitive localized surface plasmonic resonance biosensors. The sensitivity and resonance peak wavelength of the 3D multilayered plasmonic nanostructures could be adjusted by varying the offset between the top and bottom SU-8 nanopillars from 31% to 56%, and the highest sensitivity of 382 and 442 nm/refractive index unit were observed for resonance peaks at 581 and 805 nm, respectively. Live lung cancer A549 cells with a low concentration of 5 × 103 cells ml-1 and a low sample volume of 2 μl could be detected by the 3D multilayered plasmonic nanostructures integrated in a microfluidic system. The 3D plasmonic biosensors also had the advantages of detecting DNA hybridization by capturing the complementary target DNA in the low concentration range of 10-14-10-7 M, and providing a large peak shift of 82 nm for capturing 10-7 M complementary target DNA without additional signal amplification.
Collapse
Affiliation(s)
- Shuyan Zhu
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong. Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
43
|
Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications. Biosens Bioelectron 2018; 114:52-65. [DOI: 10.1016/j.bios.2018.05.015] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/27/2018] [Accepted: 05/09/2018] [Indexed: 01/13/2023]
|
44
|
Yu T, Wei Q. Plasmonic molecular assays: Recent advances and applications for mobile health. NANO RESEARCH 2018; 11:5439-5473. [PMID: 32218913 PMCID: PMC7091255 DOI: 10.1007/s12274-018-2094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 05/15/2023]
Abstract
Plasmonics-based biosensing assays have been extensively employed for biomedical applications. Significant advancements in use of plasmonic assays for the construction of point-of-care (POC) diagnostic methods have been made to provide effective and urgent health care of patients, especially in resourcelimited settings. This rapidly progressive research area, centered on the unique surface plasmon resonance (SPR) properties of metallic nanostructures with exceptional absorption and scattering abilities, has greatly facilitated the development of cost-effective, sensitive, and rapid strategies for disease diagnostics and improving patient healthcare in both developed and developing worlds. This review highlights the recent advances and applications of plasmonic technologies for highly sensitive protein and nucleic acid biomarker detection. In particular, we focus on the implementation and penetration of various plasmonic technologies in conventional molecular diagnostic assays, and discuss how such modification has resulted in simpler, faster, and more sensitive alternatives that are suited for point-of-use. Finally, integration of plasmonic molecular assays with various portable POC platforms for mobile health applications are highlighted.
Collapse
Affiliation(s)
- Tao Yu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| |
Collapse
|
45
|
Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosens Bioelectron 2018; 117:75-83. [PMID: 29886189 DOI: 10.1016/j.bios.2018.06.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/23/2018] [Accepted: 06/01/2018] [Indexed: 11/21/2022]
Abstract
Current techniques for the detection of multi-pesticides are limited by technical complexity, sensitivity and cost. There is an urgent demand of developing new specific recognition elements and sensitive signal readouts for on-site monitoring. In this work, we developed a fluorescent aptamer-based lateral flow biosensor (apta-LFB) integrated with fluorophore-quencher nano-pairs and a smartphone spectrum reader to accomplish triple-target detection of chlorpyrifos, diazinon, and malathion. Aptamers serve as alternative recognition elements instead of antibodies in LFB, offering better specificity and stability. A novel fluorophore-quencher nano-pair (quantum dots nanobeads and gold nanostars) was implemented to perform "signal-on" instead of "signal-off". After optimization, detection limit of chlorpyrifos, diazinon, and malathion were determined to be 0.73 ng/mL, 6.7 ng/mL, and 0.74 ng/mL, respectively. Greatly increased sensitivity may come from the combination of improved signal and zero background. This innovative cascade strategy allowed to lower the detection limit of pesticides residue level in food, which is largely considered satisfactory. The accuracy and practicality of this design for effective on-site quantification of multi-pesticides were further confirmed using 12 vegetable and fruit samples. The estimated recoveries were between 82.4% and 112.8% in spiked vegetable samples, which indicated that the developed method is capable for detecting multi-pesticides in food samples. This sensitive handheld-system is promising to become a powerful tool for practical on-site application of multi-pesticide quantification procedures.
Collapse
|
46
|
Liu Y, Wang YM, Sedano S, Jiang Q, Duan Y, Shen W, Jiang JH, Zhong W. Encapsulation of ionic nanoparticles produces reactive oxygen species (ROS)-responsive microgel useful for molecular detection. Chem Commun (Camb) 2018; 54:4329-4332. [PMID: 29637948 DOI: 10.1039/c8cc01432a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Encapsulation of ionic nanoparticles in a hydrogel microparticle, i.e. microgel, produces a target-stimulated probe for molecular detection. Selective reactive oxygen species (ROS) release the enclosed cations from the microgel which subsequently turn on the fluorogenic dyes to emit intense fluorescence, permitting rapid detection of ROS or ROS-producing molecules. The ROS-responsive microgel provides the advantages of simple fabrication, bright and stable signals, easy handling, and rapid response, carrying great promise in biomedical applications.
Collapse
Affiliation(s)
- Yang Liu
- Environmental Toxicology Program, University of California, Riverside 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Wu Z, Yang R, Zu D, Sun S. Microscopic Differentiation of Plasmonic Nanoparticles for the Ratiometric Read-out of Target DNA. Sci Rep 2017; 7:14742. [PMID: 29116199 PMCID: PMC5677009 DOI: 10.1038/s41598-017-15256-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/23/2017] [Indexed: 01/09/2023] Open
Abstract
The development of highly sensitive and rapid methods for detecting DNA is of critical importance. Here, we describe a strategy for the digital detection of target DNA at the femto-molar level. Individual DNA molecules were encoded with a single gold nanorod (AuNR), separated and enriched by magnetic immune-separation. The coding gold nanorods were then de-hybridized and dispersed into a gold nanosphere (AuNS) solution at a certain concentration, and both gold nanoparticles were immobilized on glass slides for dark-field microscopic imaging. Using an in-house Matlab program, the concentration of the target DNA was calculated based on the ratio of the coding gold nanorods to gold nanospheres. By combining the coding of individual biomolecules with a single gold nanorod and the use of gold nanospheres as an internal standard, a method for the rapid and accurate digital detection of target DNA to the femto-molar level was developed.
Collapse
Affiliation(s)
- Zhenjie Wu
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, People's Republic of China.,Department of Physics, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Rui Yang
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Di Zu
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, People's Republic of China.,Department of Physics, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Shuqing Sun
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, People's Republic of China. .,Department of Physics, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
49
|
Terenteva EA, Apyari VV, Kochuk EV, Dmitrienko SG, Zolotov YA. Use of silver nanoparticles in spectrophotometry. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817110107] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Huang Y, Ding M, Guo T, Hu D, Cao Y, Jin L, Guan BO. A fiber-optic sensor for neurotransmitters with ultralow concentration: near-infrared plasmonic electromagnetic field enhancement using raspberry-like meso-SiO 2 nanospheres. NANOSCALE 2017; 9:14929-14936. [PMID: 28952636 DOI: 10.1039/c7nr05032a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The feasibility of a localized surface plasmon resonance (LSPR) enhanced sensor based on raspberry-like nanosphere functionalized silica microfibers has been proposed and experimentally demonstrated. The extinction of single Ag (or Au) nanoparticles usually occurs at visible wavelengths. Nevertheless, a LSPR enhancement at near infrared wavelengths has been achieved by constructing raspberry-like meso-SiO2 nanospheres with noble metal nanoparticle cluster coating. The nanosphere coating captures γ-amino-butyric acid (GABA) targets through size selectivity and enhances the sensitivity by the LSPR effect. The gathering of GABA on the sensor surface translates the concentration signal to the information of refractive index (RI). Silica microfiber perceives the RI change and translates it to optical signal. The LSPR effect enhances the optical sensitivity by enhancing the evanescent field on the microfiber surface. This combination presents the lowest limit of detection (LOD) of 10-15 M (three orders lower than that without LSPR enhancement). It could fully afford the detection of ultra-low GABA concentration fluctuation (which is important for determining a variety of neurological and psychiatric disorders). The inherent advantages of the proposed sensors, including their ultra-sensitivity, low cost, light weight, small size and remote operation ability, provide the potential to fully incorporate them into various biomedical applications.
Collapse
Affiliation(s)
- Yunyun Huang
- Guangdong Provincial Key laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 210632, China.
| | | | | | | | | | | | | |
Collapse
|