1
|
Liu H, Ren D, Geng H, Tian Y, Li M, Wang N, Yuan S, Hao J, Cui J. Coacervate-Derived Assembly of Poly(ethylene glycol) Nanoparticles for Combinational Tumor Therapy. Adv Healthc Mater 2025; 14:e2403865. [PMID: 39748607 DOI: 10.1002/adhm.202403865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Coacervates have garnered significant attention as potential drug carriers. However, the instability resulting from their intrinsic membrane-free nature restricts the application of coacervates in drug delivery. Herein, the engineering of poly(ethylene glycol) nanoparticles (PEG NPs) is reported using coacervates composed of PEG and polyphenols as the templates, where PEG is subsequently cross-linked based on different chemistries (e.g., thiol-disulfide exchange, click chemistry, and Schiff base reaction). The reported assembly strategy avoids the template removal process and the resultant PEG NPs exhibit excellent stability in the physiological environment compared to coacervates. The presence of polyphenols in PEG NPs enables the loading of various cargos including metal ions (i.e., Ru, Gd, Mn, Fe) and drug molecules (i.e., doxorubicin), which demonstrates their promise in magnetic resonance imaging and combinational tumor therapy. This work provides a promising strategy to promote the development of coacervate-derived NPs as a drug delivery system for biomedical applications.
Collapse
Affiliation(s)
- Hanru Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Dandan Ren
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Ning Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Shiling Yuan
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
2
|
Yang F, Li S, Bi X, Yuan R, Xiang Y. DNA-Assembled Size-Permeable Microcapsule Bioreactor Enables Direct and Rapid Sensing of Trace Circulating MicroRNA Biomarkers in Undiluted Cancer Patient Serum. Anal Chem 2025; 97:2845-2852. [PMID: 39894997 DOI: 10.1021/acs.analchem.4c05330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Sensitive and direct detection of circulating microRNAs (miRNAs) in undiluted human serums can significantly facilitate the diagnosis of different diseases in the early stages; however, the achievement of such a goal is highly challenged by the extremely complex sample matrix nature of serums. Here, we show that sensitive and rapid detection of the circulating let-7a miRNA biomarker in undiluted cancer patient serums can be realized by a new size-permeable microcapsule bioreactor. The Cas13a/crRNA-dsDNA@polyethylene glycol core/shell biomicrocapsules are synthesized by simple encapsulation and etching steps. Such biomicrocapsules exhibit high stability, enhanced protein antifouling capability, and size-selective permeability that only allows short miRNA sequences to enter the core cavities, thereby enabling highly sensitive and direct detection of let-7a miRNA in undiluted serums down to 0.21 pM within 20 min via signal amplification by Cas13a/crRNA and near-infrared (NIR) fluorescence signals. The biomicrocapsule also allows unambiguous discrimination of the clear cell renal cell carcinoma patients from the healthy groups via direct detection of let-7a miRNA in the serum samples, thereby highlighting its robust clinical potential for early disease diagnoses.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Shunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xin Bi
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
3
|
Austria E, Bilek M, Varamini P, Akhavan B. Breaking biological barriers: Engineering polymeric nanoparticles for cancer therapy. NANO TODAY 2025; 60:102552. [DOI: 10.1016/j.nantod.2024.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Tian Y, Lv H, Ju Y, Hao J, Cui J. Zwitterionic Poly(ethylene glycol) Nanoparticles Minimize Protein Adsorption and Immunogenicity for Improved Biological Fate. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6125-6133. [PMID: 39824773 DOI: 10.1021/acsami.4c20890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
We report the assembly of poly(ethylene glycol) nanoparticles (PEG NPs) and optimize their surface chemistry to minimize the formation of protein coronas and immunogenicity for improved biodistribution. PEG NPs cross-linked with disulfide bonds are synthesized utilizing zeolitic imidazolate framework-8 NPs as the templates, which are subsequently modified with PEG molecules with different end groups (carboxyl, methoxy, or amino) to vary the surface chemistry. Among the modifications, the amino and residual carboxyl groups form a pair of zwitterionic structures on the surface of PEG NPs, which minimize the adsorption of proteins (e.g., immunoglobulin, complement proteins) and maximize the blood circulation time. The influence of preexisting PEG antibodies in mice on the pharmacokinetics of zwitterionic PEG NPs is negligible, which demonstrates the resistance of anti-PEG antibodies and inhibition of the accelerated blood clearance phenomenon. This research highlights the importance of the surface chemistry of PEGylated NPs in the design of delivery systems and reveals their translational potential for cancer therapy.
Collapse
Affiliation(s)
- Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Huiyuan Lv
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yi Ju
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
5
|
Liu C, Xu W, Song X, Tian W, Liu F, Wang F. A Nanotheranostic Agent for Synergistic Antitumor Chemo/Phototherapy Prepared by Paclitaxel-Induced Self-Assembly of PEGylated Human Serum Albumin with Prolonged Circulation. ACS OMEGA 2024; 9:51062-51072. [PMID: 39758671 PMCID: PMC11696392 DOI: 10.1021/acsomega.4c05986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 01/07/2025]
Abstract
The integration of different therapies to enhance the efficacy and minimize adverse reactions has become popular recently. This approach leverages the complementary mechanisms of action of different treatments, which can lead to better therapeutic outcomes and reduced side effects. Human serum albumin (HSA) exhibits excellent drug loading ability and is often used for biomimetic tumor delivery in multidrug nanocarriers. However, albumin nanocarriers are often unstable with a short plasma half-life. Therefore, a nanotheranostic agent for synergistic antitumor chemo/phototherapy was designed to improve HSA's pharmacokinetic properties, including prolonged circulation. Cys34-specifically PEGylated HSA (PEG-cys34HSA) was used as the nanocarrier, hydrophobic paclitaxel (PTX) served as the chemotherapeutic drug and self-assembly inducer of nanoparticles (NPs), and near-infrared dye indocyanine green (ICG) was utilized for phototherapy and fluorescence imaging. PEGylation with 20 kDa polyethylene glycol (PEG20kD) promoted the formation of uniform and regular NPs more effectively than PEG5kD. PEG20kD also enhanced the particle size, drug loading, and encapsulation efficiency. Moreover, PEG20kD significantly enhanced tumor targeting without hindering endocytosis, transport, and release of NPs. PEG20kD-cys34HSA/PTX/ICG-mediated combination therapy exhibited synergistic inhibitory effects on tumor growth both in vitro and in vivo. Thus, PEG20kD-cys34HSA shows potential as an alternative nanocarrier. This study provides the foundation for future investigations into PEG-modified nanocarriers and comprehensive tumor treatment.
Collapse
Affiliation(s)
- Changsong Liu
- Key
Laboratory of Chemical Biology of Natural Products (Ministry of Education),
Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical
Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Wenjia Xu
- Key
Laboratory of Chemical Biology of Natural Products (Ministry of Education),
Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical
Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xinlei Song
- Department
of Pharmacy, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Weilu Tian
- Key
Laboratory of Chemical Biology of Natural Products (Ministry of Education),
Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical
Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Fuyan Liu
- School
of Biological Sciences and Technology, University
of Jinan, Jinan 250022, China
| | - Fengshan Wang
- Key
Laboratory of Chemical Biology of Natural Products (Ministry of Education),
Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical
Sciences, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
6
|
Kuang Y, Luo R, Chen A, Zhang Z, Wang K, Lu J, Luo Y, Liu X, Zhu Y. Vacancy-engineered Mn-doped iron oxide nano-crystals for enhanced sonodynamic therapy through self-supplied oxygen. Colloids Surf B Biointerfaces 2024; 244:114172. [PMID: 39191114 DOI: 10.1016/j.colsurfb.2024.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Sonodynamic therapy (SDT) is a minimally invasive therapeutic approach, that uses ultrasound activating sonosensitizers to generate reactive oxygen species (ROS) for inducing the tumor cell death. However, the SDT is always limited by the dissatisfactory performance of sonosensitizers and hypoxic tumor microenvironment (TME). Nano iron oxide is a narrow bandgap semiconductor material with good biocompatibility. The doping of manganese into iron oxide (Mn-doped iron oxide nano-crystals named Mn-Fe2O3 NCs) not only reduced the band gap of iron oxide and altered the valence band position of iron oxide, but also introduced more oxygen vacancies and inhibited the complexation of electrons (e-) and holes (h+), significantly enhancing the ability to generate ROS. The Mn-Fe2O3 NCs improved the hypoxic TME by self-generating oxygen and consuming endogenous glutathione (GSH), which amplified oxidative stress and further enhanced the SDT. The therapeutic results showed that the prepared Mn-Fe2O3 NCs could efficiently inhibit the triple-negative breast cancer (TNBC) cells by SDT (80.49 % inhibition ratio in vivo). Overall, we propose a simple method to design inorganic sonosensitizers for enhancing efficient sonodynamic therapy.
Collapse
Affiliation(s)
- Yunqi Kuang
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ruixin Luo
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Aihong Chen
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Kaiyang Wang
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yu Luo
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yicheng Zhu
- Department of Ultrasound, Shanghai Pudong New Area People's Hospital, China.
| |
Collapse
|
7
|
Ju Y, Li S, Tan AEQ, Pilkington EH, Brannon PT, Plebanski M, Cui J, Caruso F, Thurecht KJ, Tam C, Kent SJ. Patient-Specific Nanoparticle Targeting in Human Leukemia Blood. ACS NANO 2024; 18:29021-29035. [PMID: 39380440 PMCID: PMC11503784 DOI: 10.1021/acsnano.4c09919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
Antibody-directed targeting of chemotherapeutic nanoparticles to primary human cancers holds promise for improving efficacy and reducing off-target toxicity. However, clinical responses to targeted nanomedicines are highly variable. Herein, we prepared and examined a matrix of 9 particles (organic and inorganic particles of three surface chemistries with and without antibody functionalization) and developed an ex vivo model to study the person-specific targeting of nanoparticles in whole blood of 15 patients with chronic lymphocytic leukemia (CLL). Generally, anti-CD20-functionalized poly(ethylene glycol) (PEG) nanoparticles efficiently targeted CLL cells, leading to low off-target phagocytosis by granulocytes and monocytes in the blood. However, there was up to 164-fold patient-to-patient variability in the CLL targeting. This was further exemplified through using clinically relevant PEGylated doxorubicin-encapsulated liposomes, which showed high interpersonal differences in CLL targeting (up to 234-fold differences) and off-target phagocytosis (up to 65- and 112-fold differences in granulocytes and monocytes, respectively). Off-target phagocytosis led to almost all monocytes being killed within 24 h of treatment. Variance of the off-target association of PEGylated liposomes with granulocytes and monocytes significantly correlated to anti-PEG immunoglobulin G levels in the blood of CLL patients. A negative correlation between CLL targeting of PEG particles and anti-PEG immunoglobulin M levels was found in the blood. Taken together, our study identifies anti-PEG antibodies as key proteins in modulating patient-specific targeting of PEGylated nanoparticles in human leukemia blood. Other factors, such as the antigen expression of targeted cells and fouling properties of nanoparticles, also play an important role in patient-specific targeting. The human leukemia blood assay we developed provides an ex vivo model to evaluate interpersonal variances in response to targeted nanomedicines.
Collapse
Affiliation(s)
- Yi Ju
- School
of Science, RMIT University, Melbourne, Victoria 3000, Australia
- Department
of Microbiology and Immunology, Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Shiyao Li
- School
of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Abigail Er Qi Tan
- Department
of Microbiology and Immunology, Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Emily H. Pilkington
- Department
of Microbiology and Immunology, Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Paul T. Brannon
- Materials
Characterisation and Fabrication Platform, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Magdalena Plebanski
- School
of Health and Biomedical Sciences, RMIT
University, Bundoora, Victoria 3083, Australia
| | - Jiwei Cui
- Key
Laboratory of Colloid and Interface Chemistry of the Ministry of Education,
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Department
of Chemical Engineering, The University
of Melbourne, Parkville, Victoria 3010, Australia
| | - Kristofer J. Thurecht
- Australian
Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia 4072, Australia
| | - Constantine Tam
- Department
of Clinical Haematology, The Royal Melbourne
Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Faculty of
Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Stephen J. Kent
- Department
of Microbiology and Immunology, Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Melbourne
Sexual Health Centre and Department of Infectious Diseases, Alfred
Hospital and Central Clinical School, Monash
University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
8
|
Mohanan S, Guan X, Liang M, Karakoti A, Vinu A. Stimuli-Responsive Silica Silanol Conjugates: Strategic Nanoarchitectonics in Targeted Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301113. [PMID: 36967548 DOI: 10.1002/smll.202301113] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The design of novel drug delivery systems is exceptionally critical in disease treatments. Among the existing drug delivery systems, mesoporous silica nanoparticles (MSNs) have shown profuse promise owing to their structural stability, tunable morphologies/sizes, and ability to load different payload chemistry. Significantly, the presence of surface silanol groups enables functionalization with relevant drugs, imaging, and targeting agents, promoting their utility and popularity among researchers. Stimuli-responsive silanol conjugates have been developed as a novel, more effective way to conjugate, deliver, and release therapeutic drugs on demand and precisely to the selected location. Therefore, it is urgent to summarize the current understanding and the surface silanols' role in making MSN a versatile drug delivery platform. This review provides an analytical understanding of the surface silanols, chemistry, identification methods, and their property-performance correlation. The chemistry involved in converting surface silanols to a stimuli-responsive silica delivery system by endogenous/exogenous stimuli, including pH, redox potential, temperature, and hypoxia, is discussed in depth. Different chemistries for converting surface silanols to stimuli-responsive bonds are discussed in the context of drug delivery. The critical discussion is culminated by outlining the challenges in identifying silanols' role and overcoming the limitations in synthesizing stimuli-responsive mesoporous silica-based drug delivery systems.
Collapse
Affiliation(s)
- Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
9
|
Humphries J, Fletcher NL, Sonderegger SE, Bell CA, Kempe K, Thurecht KJ. Mitigating the Effects of Persistent Antipolymer Immune Reactions in Nanomedicine: Evaluating Materials-Based Approaches Using Molecular Imaging. ACS NANO 2024. [PMID: 39037055 DOI: 10.1021/acsnano.4c07317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Poly(ethylene glycol) (PEG) is a hydrophilic polymer ubiquitously used in both medical and nonmedical goods. Recent debate surrounding the observed stimulation of immune responses against PEG has spurred the development of materials that may be suitable replacements for this common polymeric component. The underlying view is that these alternative materials with comparable physicochemical properties can overcome the unfavorable and unpredictable effects of antibody-mediated clearance by being chemically, and therefore antigenically, distinct from PEG. However, this hypothesis has not been thoroughly tested in any defined manner, and the immune response observed against PEG has not been rigorously investigated within the context of these emerging materials. Consequently, it remains unclear whether immunity-mediated discrimination between polymeric entities even occurs in vivo and, if this is the case, how it may be exploited. In this study, we utilize positron emission tomography-computed tomography molecular imaging in mice immunized to develop specific antibody responses to PEG and an alternative polymer in order to visualize and quantify the influence of antipolymer antibodies on the biodistribution of synthetic polymers in vivo as a function of immunization status. Under the conditions of this experiment, mice could be primed to exhibit both innate and adaptive immunity to all of the polymer systems to which they were exposed. We demonstrate that alternating between chemically disparate polymers is a viable approach to extend their efficacy when antipolymer humoral immune responses arise.
Collapse
Affiliation(s)
- James Humphries
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Stefan E Sonderegger
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Craig A Bell
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
10
|
Chen XP, Hsu FC, Huang KY, Hsieh TS, Farn SS, Sheu RJ, Yu CS. Fluorine-18 labeling PEGylated 6-boronotryptophan for PET scanning of mice for assessing the pharmacokinetics for boron neutron capture therapy of brain tumors. Bioorg Med Chem Lett 2024; 105:129744. [PMID: 38614152 DOI: 10.1016/j.bmcl.2024.129744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Two tryptophan compound classes 5- and 6-borono PEGylated boronotryptophan derivatives have been prepared for assessing their aqueous solubility as formulation of injections for boron neutron capture therapy (BNCT). The PEGylation has improved their aqueous solubility thereby increasing their test concentration in 1 mM without suffering from toxicity. In-vitro uptake assay of PEGylated 5- and 6-boronotryptophan showed that the B-10 concentration can reach 15-50 ppm in U87 cell whereas the uptake in LN229 cell varies. Shorter PEG compound 6-boronotryptophanPEG200[18F] was obtained in 1.7 % radiochemical yield and the PET-derived radioradioactivity percentage in 18 % was taken up by U87 tumor at the limb of xenograft mouse. As high as tumor to normal uptake ratio in 170 (T/N) was obtained while an inferior radioactivity uptake of 3 % and T/N of 8 was observed in LN229 xenografted mouse.
Collapse
Affiliation(s)
- Xiang-Ping Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsinghua University, Hsinchu 30013, Taiwan; PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fu-Chun Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsinghua University, Hsinchu 30013, Taiwan
| | - Kwei-Yuan Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsinghua University, Hsinchu 30013, Taiwan
| | - Teng-San Hsieh
- Department of Biomedical Engineering and Environmental Sciences, National Tsinghua University, Hsinchu 30013, Taiwan
| | - Shiou-Shiow Farn
- Department of Isotope Application Research, National Atomic Research Institute, Taoyuan 325207, Taiwan
| | - Rong-Jiun Sheu
- Institute of Nuclear Engineering and Science, National Tsinghua University, Hsinchu 30013, Taiwan
| | - Chung-Shan Yu
- Department of Biomedical Engineering and Environmental Sciences, National Tsinghua University, Hsinchu 30013, Taiwan; Institute of Nuclear Engineering and Science, National Tsinghua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
11
|
Wu M, Shi Y, Zhao J, Kong M. Engineering unactivated platelets for targeted drug delivery. Biomater Sci 2024; 12:2244-2258. [PMID: 38482903 DOI: 10.1039/d4bm00029c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
As a vital component of blood, platelets play crucial roles in hemostasis and maintaining vascular integrity, and actively participate in inflammation and immune regulation. The unique biological properties of natural platelets have enabled their utilization as drug delivery vehicles. The advancement and integration of various techniques, including biological, chemical, and physicochemical methods, have enabled the preparation of engineered platelets. Platelets can serve as drug delivery platforms combined with immunotherapy and chemokine therapy to enhance their therapeutic impact. This review focuses on the recent advancements in the application of unactivated platelets for drug delivery. The construction strategies of engineered platelets are comprehensively summarized, encompassing internal loading, surface modification, and genetic engineering techniques. Engineered platelets hold vast potential for treating cardiovascular diseases, cancers, and infectious diseases. Furthermore, the challenges and potential considerations in creating engineered platelets with natural activity are discussed.
Collapse
Affiliation(s)
- Meng Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Yan Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Jiaxuan Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Ming Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| |
Collapse
|
12
|
Li S, Ma Y, Cui J, Caruso F, Ju Y. Engineering poly(ethylene glycol) particles for targeted drug delivery. Chem Commun (Camb) 2024; 60:2591-2604. [PMID: 38285062 DOI: 10.1039/d3cc06098e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Poly(ethylene glycol) (PEG) is considered to be the "gold standard" among the stealth polymers employed for drug delivery. Using PEG to modify or engineer particles has thus gained increasing interest because of the ability to prolong blood circulation time and reduce nonspecific biodistribution of particles in vivo, owing to the low fouling and stealth properties of PEG. In addition, endowing PEG-based particles with targeting and drug-loading properties is essential to achieve enhanced drug accumulation at target sites in vivo. In this feature article, we focus on recent work on the synthesis of PEG particles, in which PEG is the main component in the particles. We highlight different synthesis methods used to generate PEG particles, the influence of the physiochemical properties of PEG particles on their stealth and targeting properties, and the application of PEG particles in targeted drug delivery.
Collapse
Affiliation(s)
- Shiyao Li
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
13
|
Lim C, Shin Y, Lee S, Lee S, Lee MY, Shin BS, Oh KT. Dynamic drug release state and PEG length in PEGylated liposomal formulations define the distribution and pharmacological performance of drug. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Tian Y, Gao Z, Wang N, Hu M, Ju Y, Li Q, Caruso F, Hao J, Cui J. Engineering Poly(ethylene glycol) Nanoparticles for Accelerated Blood Clearance Inhibition and Targeted Drug Delivery. J Am Chem Soc 2022; 144:18419-18428. [PMID: 36166420 DOI: 10.1021/jacs.2c06877] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface modification with poly(ethylene glycol) (PEGylation) is an effective strategy to improve the colloidal stability of nanoparticles (NPs) and is often used to minimize cellular uptake and clearance of NPs by the immune system. However, PEGylation can also trigger the accelerated blood clearance (ABC) phenomenon, which is known to reduce the circulation time of PEGylated NPs. Herein, we report the engineering of stealth PEG NPs that can avoid the ABC phenomenon and, when modified with hyaluronic acid (HA), show specific cancer cell targeting and drug delivery. PEG NPs cross-linked with disulfide bonds are prepared by using zeolitic imidazolate framework-8 NPs as templates. The reported templating strategy enables the simultaneous removal of the template and formation of PEG NPs under mild conditions (pH 5.5 buffer). Compared to PEGylated liposomes, PEG NPs avoid the secretion of anti-PEG antibodies and the presence of anti-PEG IgM and IgG did not significantly accelerate the blood clearance of PEG NPs, indicating the inhibition of the ABC effect for the PEG NPs. Functionalization of the PEG NPs with HA affords PEG NPs that retain their stealth properties against macrophages, target CD44-expressed cancer cells and, when loaded with the anticancer drug doxorubicin, effectively inhibit tumor growth. The innovation of this study lies in the engineering of PEG NPs that can circumvent the ABC phenomenon and that can be functionalized for the improved and targeted delivery of drugs.
Collapse
Affiliation(s)
- Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Ning Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Ming Hu
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yi Ju
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia.,Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
15
|
Kanamaru T, Sakurai K, Fujii S. Impact of Polyethylene Glycol (PEG) Conformations on the In Vivo Fate and Drug Release Behavior of PEGylated Core-Cross-Linked Polymeric Nanoparticles. Biomacromolecules 2022; 23:3909-3918. [PMID: 35943243 DOI: 10.1021/acs.biomac.2c00730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In cancer chemotherapy, core-cross-linked particles (CCPs) are a promising drug carrier due to their high structural stability in an in vivo environment, resulting in improved tumor delivery. A biocompatible polymer of polyethylene glycol (PEG) is often utilized to coat the surface of CCPs to avoid nonspecific adsorption of proteins in vivo. The PEG density and conformation on the particle surface are important structural factors that determine the in vivo fate of such PEGylated nanoparticles, including their pharmacokinetics and pharmacodynamics. However, contrary to expectations, we found no significant differences in the in vivo pharmacokinetics and pharmacodynamics of the PEGylated CCPs with the different PEG densities including mushroom, brush, and dense brush conformations. On the contrary, the in vivo release kinetics of hydrophilic and hydrophobic model drugs from the PEGylated CCPs was strongly dependent on the PEG conformation and the drug polarity. This may be related to the water-swelling degree in the particle PEG layer, which promotes and inhibits the diffusion of hydrophilic and hydrophobic drugs, respectively, from the particle core to the water phase. Our results provide guidelines for the design of cancer-targeting nanomedicine based on PEGylated CCPs.
Collapse
Affiliation(s)
- Takuma Kanamaru
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
16
|
Gao Z, Li X, Zhao K, Geng H, Zhang P, Ju Y, Huda P, Howard CB, Thurecht KJ, Ashokkumar M, Hao J, Cui J. Confined microemulsion sono-polymerization of poly(ethylene glycol) nanoparticles for targeted delivery. Chem Commun (Camb) 2022; 58:7777-7780. [PMID: 35731091 DOI: 10.1039/d2cc01874h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Confined sono-polymerization is developed to prepare poly(ethylene glycol) nanoparticles within water-in-oil microemulsion, followed by post-functionalization with a bispecific antibody (anti HER2 and anti PEG) for targeted delivery of photosensitizers (i.e., indocyanine green). The nanoparticles could specifically target to breast cancer cells (i.e., SKBR3) that overexpress HER2 receptors for the inhibition of cancer cell growth under 808 nm laser irradiation. This study highlights a facile and controllable method to fabricate therapeutic nanoparticles capable of targeted delivery.
Collapse
Affiliation(s)
- Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China. .,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoyu Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China.
| | - Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China.
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China.
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China.
| | - Yi Ju
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Pie Huda
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China.
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China. .,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
17
|
Fletcher NL, Prior A, Choy O, Humphries J, Huda P, Ghosh S, Houston ZH, Bell CA, Thurecht KJ. Pre-targeting of polymeric nanomaterials to balance tumour accumulation and clearance. Chem Commun (Camb) 2022; 58:7912-7915. [PMID: 35726903 DOI: 10.1039/d2cc02443h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pre-targeting of bispecific antibodies is probed to enhance tumour retention while limiting clearance of administered multifunctional branched PEGylated nanomedicines. The temporal influence of pre-targeting on polymer interaction with tumour cells and tissue is explored using in vitro assays through to preclinical validation.
Collapse
Affiliation(s)
- N L Fletcher
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - A Prior
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - O Choy
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - J Humphries
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - P Huda
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - S Ghosh
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - Z H Houston
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - C A Bell
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - K J Thurecht
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
18
|
Henson JC, Brickell A, Kim JW, Jensen H, Mehta JL, Jensen M. PEGylated Gold Nanoparticle Toxicity in Cardiomyocytes: Assessment of Size, Concentration, and Time Dependency. IEEE Trans Nanobioscience 2022; 21:387-394. [PMID: 35201990 DOI: 10.1109/tnb.2022.3154438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gold Nanoparticles (GNPs) have shown promising capabilities for use in many in-vivo applications such as gene and drug delivery, photothermal ablation of tumors, and tracking in many imaging modalities. Yet GNPs have thus far had limited use in cardiovascular medicine. Polyethylene glycol functionalized (PEGylated) GNPs have been extensively studied in a wide array of in vitro and in vivo models with results showing no apparent toxicity, but to our knowledge an investigation has never been performed to determine direct cardiomyocyte toxicity. In this study, we assessed if PEGylated GNPs exhibited direct toxicity to a primary culture of neonatal rat cardiomyocytes in order to establish PEGylated GNPs for potential future use in cardiovascular medicine applications. We present novel results that demonstrate both a particle size and concentration dependent relationship on cell viability. Cell viability was found to be significantly enhanced for many concentrations and sizes as compared to the control and increased linearly as a function of particle diameter. Additionally, viability increased in a parabolically dependent manner as a function of decreasing particle concentration. These new results could advance understanding of nanoparticle-cell interactions and lead to the development of new applications involving the use of gold nanoparticles in cardiovascular medicine.
Collapse
|
19
|
Liu H, Geng H, Zhang X, Wang X, Hao J, Cui J. Hot Melt Super Glue: Multi-Recyclable Polyphenol-Based Supramolecular Adhesives. Macromol Rapid Commun 2022; 43:e2100830. [PMID: 35106862 DOI: 10.1002/marc.202100830] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Indexed: 11/11/2022]
Abstract
We report the rapid and facile synthesis of hot melt super glue (HMSG) via the formation of adhesive supramolecular networks between catechol or pyrogallol hydroxyl groups (-OH) of polyphenols and repeat units (-CH2 CH2 O-) of poly(ethylene glycol) (PEG) based on hydrogen bonds. The adhesion strength of HMSG, processed by heating-cooling of polyphenols and PEG without additional solvents, can be tuned up to 8.8 MPa via changing the molecular weight of PEG and the ratio of hydrogen bonding donors and receptors. The advantages of the reported HMSG lie in the ease and scalability of the assembly process, rapid adhesion on various substrates with excellent processability, resistance of low temperature and organic solvents, and recyclable adhesion strength. The solvent-free HMSG represents a promising adhesive supramolecular network to expand the versatility and application of polyphenol-based materials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hanru Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiaohui Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
20
|
Yu H, Palazzolo JS, Zhou J, Hu Y, Niego B, Pan S, Ju Y, Wang TY, Lin Z, Hagemeyer CE, Caruso F. Bioresponsive Polyphenol-Based Nanoparticles as Thrombolytic Drug Carriers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3740-3751. [PMID: 35019268 DOI: 10.1021/acsami.1c19820] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thrombolytic (clot-busting) therapies with plasminogen activators (PAs) are first-line treatments against acute thrombosis and ischemic stroke. However, limitations such as narrow therapeutic windows, low success rates, and bleeding complications hinder their clinical use. Drug-loaded polyphenol-based nanoparticles (NPs) could address these shortfalls by delivering a more targeted and safer thrombolysis, coupled with advantages such as improved biocompatibility and higher stability in vivo. Herein, a template-mediated polyphenol-based supramolecular assembly strategy is used to prepare nanocarriers of thrombolytic drugs. A thrombin-dependent drug release mechanism is integrated using tannic acid (TA) to cross-link urokinase-type PA (uPA) and a thrombin-cleavable peptide on a sacrificial mesoporous silica template via noncovalent interactions. Following drug loading and template removal, the resulting NPs retain active uPA and demonstrate enhanced plasminogen activation in the presence of thrombin (1.14-fold; p < 0.05). Additionally, they display lower association with macrophage (RAW 264.7) and monocytic (THP-1) cell lines (43 and 7% reduction, respectively), reduced hepatic accumulation, and delayed blood clearance in vivo (90% clearance at 60 min vs 5 min) compared with the template-containing NPs. Our thrombin-responsive, polyphenol-based NPs represent a promising platform for advanced drug delivery applications, with potential to improve thrombolytic therapies.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jason S Palazzolo
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Jiajing Zhou
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yingjie Hu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Be'eri Niego
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Shuaijun Pan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ting-Yi Wang
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christoph E Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
21
|
Zhao K, Gao Z, Song D, Zhang P, Cui J. Assembly of catechol-modified polymer brushes for drug delivery. Polym Chem 2022. [DOI: 10.1039/d1py00947h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The anticancer drug of Bortezomib conjugated onto catechol-modified bottlebrush block copolymers can be intracellularly released owing to the pH-responsive behavior, resulting in considerable cell death and tumor growth inhibition.
Collapse
Affiliation(s)
- Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Dongpo Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
22
|
Gao Z, Li M, Hao J, Cui J. Tuning the Mechanical Properties of Colloid Particles for Drug Delivery. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Loiseau A, Boudon J, Mirjolet C, Morgand V, Millot N. About the Influence of PEG Spacers on the Cytotoxicity of Titanate Nanotubes-Docetaxel Nanohybrids against a Prostate Cancer Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2733. [PMID: 34685172 PMCID: PMC8539671 DOI: 10.3390/nano11102733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
The association between chemotherapeutic drugs and metal oxide nanoparticles has sparked a rapidly growing interest in cancer nanomedicine. The elaboration of new engineered docetaxel (DTX)-nanocarriers based on titanate nanotubes (TiONts) was reported. The idea was to maintain the drug inside cancer cells and avoid multidrug resistance mechanisms, which often limit drug efficacy by decreasing their intracellular concentrations in tumor cells. HS-PEGn-COOH (PEG: polyethylene glycol, n = 3000, 5000, 10,000) was conjugated, in an organic medium by covalent linkages, on TiONts surface. This study aimed to investigate the influence of different PEG derivatives chain lengths on the TiONts colloidal stability, on the PEGn density and conformation, as well as on the DTX biological activity in a prostate cancer model (human PC-3 prostate adenocarcinoma cells). In vitro tests highlighted significant cytotoxicities of the drug after loading DTX on PEGn-modified TiONts (TiONts-PEGn-DTX). Higher grafting densities for shorter PEGylated chains were most favorable on DTX cytotoxicity by promoting both colloidal stability in biological media and cells internalization. This promising strategy involves a better understanding of nanohybrid engineering, particularly on the PEGylated chain length influence, and can thus become a potent tool in nanomedicine to fight against cancer.
Collapse
Affiliation(s)
- Alexis Loiseau
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS Université Bourgogne Franche-Comté, BP 47870, CEDEX, 21078 Dijon, France;
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS Université Bourgogne Franche-Comté, BP 47870, CEDEX, 21078 Dijon, France;
| | - Céline Mirjolet
- INSERM 1231, Cadir Team, CEDEX, 21078 Dijon, France;
- Radiotherapy Department, Georges-Francois Leclerc Cancer Center, CEDEX, 21079 Dijon, France;
| | - Véronique Morgand
- Radiotherapy Department, Georges-Francois Leclerc Cancer Center, CEDEX, 21079 Dijon, France;
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS Université Bourgogne Franche-Comté, BP 47870, CEDEX, 21078 Dijon, France;
| |
Collapse
|
24
|
Hashemzadeh N, Aghanejad A, Dalir Abdolahinia E, Dolatkhah M, Barzegar-Jalali M, Omidi Y, Barar J, Adibkia K. Targeted combined therapy in 2D and 3D cultured MCF-7 cells using metformin and erlotinib-loaded mesoporous silica magnetic nanoparticles. J Microencapsul 2021; 38:472-485. [PMID: 34511038 DOI: 10.1080/02652048.2021.1979672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM This research aims to develop potential therapeutic nanostructures (NSs) encapsulating metformin (MET) and erlotinib (ER) for combinational therapy in breast cancer. METHODS The ER and MET, both were loaded on mesoporous silica magnetic nanoparticles conjugated with polyethylene glycol and methotrexate to achieve targeted NSs. The developed NSs were characterised using SEM, DLS, and FTIR. Afterward, MTT, Trypan blue, and DNA extraction assays were operated for biological evaluations in the 2D and 3D MCF-7 cells. RESULTS Physicochemical approaches indicated the mean diameter of 69.4 nm ± 9.5 (PDI = 0.64), and neutral charge (2 mv) for the developed NSs. MET and ER-loaded NSs exhibited 62.56% ± 4.41 and 67.73% ± 3.03 drug release amount in pH = 5.4, respectively. MTT assay revealed that ER- and MET-loaded NSs had less metabolic activity (≈ 20%) in comparison with non-targeted NSs. CONCLUSION Overall, our combined ER and MET-loaded targeted NSs result in a synergistic inhibitory impact on MCF-7 cells.
Collapse
Affiliation(s)
- Nastaran Hashemzadeh
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Dolatkhah
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Chaturvedi R, Kang Y, Eom Y, Torati SR, Kim C. Functionalization of Biotinylated Polyethylene Glycol on Live Magnetotactic Bacteria Carriers for Improved Stealth Properties. BIOLOGY 2021; 10:biology10100993. [PMID: 34681092 PMCID: PMC8533374 DOI: 10.3390/biology10100993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary The development of new approaches in the field of drug delivery systems is primarily based on increasing the accuracy and precision of the targeted site and improving the stability of the drug by preventing the phagocytosis process inside the body. Among many other methods used to fulfill the above-mentioned requirements, the use of magnetotactic bacteria (MTB) is proven to be a promising solution, as it is self-propelling in nature, and can also be controlled by an external magnetic field. For the present work, we developed an MTB/PEG–biotin complex by exploiting the process of covalent bond formation between bacteria and a biotin–PEG–NHS polymer. In addition to this, attachment efficacy and stability were also determined. In biological applications, cytotoxicity assay of THP-1 cells was performed, showing the MTB/PEG–biotin complex to be less harmful to the cells; meanwhile, to explore the stealth properties of the complex, we performed a cell association assay. With these results, we provide a significant contribution to the field of potential drug delivery system development. Abstract The early removal of drug delivery agents before reaching the affected target remains an area of interest to researchers. Several magnetotactic bacteria (MTB) have been used as self-propelled drug delivery agents, and they can also be controlled by an external magnetic field. By attaching the PEG–biotin polymer, the bacteria are turned into a stealth material that can escape from the phagocytosis process and reach the area of interest with the drug load. In the study, we developed a potential drug carrier by attaching the PEG–biotin to the MTB-through-NHS crosslinker to form a MTB/PEG–biotin complex. The attachment stability, efficacy, and bacterial viability upon attachment of the PEG–biotin polymer were investigated. Biological applications were carried out using a cytotoxicity assay of THP-1 cells, and the results indicate that the MTB/PEG–biotin complex is less harmful to cell viability compared to MTB alone. Along with cytotoxicity, an assay for cell association was also evaluated to assess the complex as a potential stealth material. The development of these complexes focuses on an easy, time-saving, and stable technique of polymer attachment with the bacteria, without damaging the cell’s surface, so as to make it a strong and reliable delivery agent.
Collapse
Affiliation(s)
| | | | | | | | - CheolGi Kim
- Correspondence: (S.R.T.); (C.K.); Tel.: +82-537856516 (C.K.); Fax: +82-537856509 (C.K.)
| |
Collapse
|
26
|
Dolatkhah M, Hashemzadeh N, Barar J, Adibkia K, Aghanejad A, Barzegar-Jalali M, Omidian H, Omidi Y. Stimuli-responsive graphene oxide and methotrexate-loaded magnetic nanoparticles for breast cancer-targeted therapy. Nanomedicine (Lond) 2021; 16:2155-2174. [PMID: 34565179 DOI: 10.2217/nnm-2021-0094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Nanocomposites of graphene oxide (GO) loaded with PEGylated superparamagnetic iron oxide nanoparticles and grafted with methotrexate and stimuli-responsive linkers (GO-SPION-MTX) were developed for photothermal and chemotherapy of breast cancer. Methods: PEGylated SPIONs were synthesized and conjugated with chemotherapeutic targeting agent MTX, which were then loaded on GO to prepare GO-SPION-MTX nanocomposites. To evaluate the photothermal effect of the nanocomposites, they were examined in breast cancer cell lines with low doses of near-infrared (NIR) laser radiation with/without acetazolamide. Results: The GO-SPION-MTX nanocomposites were found to be internalized by the folate-receptor-positive cancer cells and induce high cytotoxicity on exposure to NIR laser rays. Conclusion: Our findings suggest that the GO-SPION-MTX nanocomposite can potentially be used as a multimodal nanomedicine/theranostic against breast cancer.
Collapse
Affiliation(s)
- Mitra Dolatkhah
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nastaran Hashemzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
27
|
Hashemzadeh N, Dolatkhah M, Aghanejad A, Barzegar-Jalali M, Omidi Y, Adibkia K, Barar J. Folate receptor-mediated delivery of 1-MDT-loaded mesoporous silica magnetic nanoparticles to target breast cancer cells. Nanomedicine (Lond) 2021; 16:2137-2154. [PMID: 34530630 DOI: 10.2217/nnm-2021-0176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims: The efficiency of mesoporous silica magnetic nanoparticles (MSMNP) as a targeted drug-delivery system was investigated. Methods: The superparamagnetic iron oxide nanoparticles (NP) were synthesized, coated with mesoporous silica and conjugated with polyethylene glycol and methotrexate. Next, 1-methyl-D-tryptophan was loaded into the prepared nanosystems (NS). They were characterized using transmission electron microscopy, scanning electron microscopy, dynamic light scattering, vibrating sample magnetometer, x-ray powder diffraction, Fourier transform-infrared spectroscopy and the Brunauer-Emmett-Teller method and their biological impacts on breast cancer cells were evaluated. Results: The prepared NSs displayed suitable properties and showed enhanced internalization by folate-receptor-expressing cells, exerting efficient cytotoxicity, which was further enhanced by the near-infrared radiation irradiation. Conclusion: On the basis of our findings, the engineered NS is a promising multifunctional nanomedicine/theranostic for solid tumors.
Collapse
Affiliation(s)
- Nastaran Hashemzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.,Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran
| | - Mitra Dolatkhah
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.,Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mohammad Barzegar-Jalali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran
| |
Collapse
|
28
|
Rejinold NS, Piao H, Jin GW, Choi G, Choy JH. Injectable niclosamide nanohybrid as an anti-SARS-CoV-2 strategy. Colloids Surf B Biointerfaces 2021; 208:112063. [PMID: 34482191 PMCID: PMC8383483 DOI: 10.1016/j.colsurfb.2021.112063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 01/04/2023]
Abstract
COVID-19 is a rapidly evolving emergency, which necessitates scientific community to come up with novel formulations that could find quick relief to the millions affected around the globe. Remdesivir being the only injectable drug by FDA for COVID-19, it initially showed promising results, however, later on failed to retain its claims, hence rejected by the WHO. Therefore, it is important to develop injectable formulation that are effective and affordable. Here in this work, we formulated poly ethylene glycol (PEG) coated bovine serum albumin (BSA) stabilized Niclosamide (NIC) nanoparticles (NPs) (∼BSA-NIC-PEG NPs) as an effective injectable formulation. Here, serum albumin mediated strategy was proposed as an effective strategy to specifically target SARS-CoV-2, the virus that causes COVID-19. The in-vitro results showed that the developed readily water dispersible formulation with a particle size <120 nm size were well stable even after 3 weeks. Even though the in-vitro studies showed promising results, the in-vivo pharmaco-kinetic (PK) study in rats demands the need of conducting further experiments to specifically target the SARS-CoV-2 in the virus infected model. We expect that this present formulation would be highly preferred for targeting hypoalbuminemia conditions, which was often reported in elderly COVID-19 patients. Such studies are on the way to summarize its potential applications in the near future.
Collapse
Affiliation(s)
- N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Geun-Woo Jin
- R&D Center, CnPharm Co., LTD., Seoul, 03759, Republic of Korea
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
| |
Collapse
|
29
|
Li S, Ju Y, Zhou J, Noi KF, Mitchell AJ, Zheng T, Kent SJ, Porter CJH, Caruso F. Quantitatively Tracking Bio-Nano Interactions of Metal-Phenolic Nanocapsules by Mass Cytometry. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35494-35505. [PMID: 34288640 DOI: 10.1021/acsami.1c09406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymer nanocapsules, with a hollow structure, are increasingly finding widespread use as drug delivery carriers; however, quantitatively evaluating the bio-nano interactions of nanocapsules remains challenging. Herein, poly(ethylene glycol) (PEG)-based metal-phenolic network (MPN) nanocapsules of three sizes (50, 100, and 150 nm) are engineered via supramolecular template-assisted assembly and the effect of the nanocapsule size on bio-nano interactions is investigated using in vitro cell experiments, ex vivo whole blood assays, and in vivo rat models. To track the nanocapsules by mass cytometry, a preformed gold nanoparticle (14 nm) is encapsulated into each PEG-MPN nanocapsule. The results reveal that decreasing the size of the PEG-MPN nanocapsules from 150 to 50 nm leads to reduced association (up to 70%) with phagocytic blood cells in human blood and prolongs in vivo systemic exposure in rat models. The findings provide insights into MPN-based nanocapsules and represent a platform for studying bio-nano interactions.
Collapse
Affiliation(s)
- Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiajing Zhou
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ka Fung Noi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Andrew J Mitchell
- Department of Chemical Engineering, Materials Characterisation and Fabrication Platform, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tian Zheng
- Department of Chemical Engineering, Materials Characterisation and Fabrication Platform, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
30
|
LI ZH, QIAN K, Ozioma-Udochukwu A, PAN CS, MA XH, HAN YY, ZHENG JJ, CUI P, WEI G, SHEN ZY, WU AG. A Smart Glutathione and H2O2 Dual-Responsive Signal Inversion Magnetic Resonance Imaging Contrast Agent for Tumor Diagnosis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Zhang M, Gao S, Yang D, Fang Y, Lin X, Jin X, Liu Y, Liu X, Su K, Shi K. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm Sin B 2021; 11:2265-2285. [PMID: 34522587 PMCID: PMC8424218 DOI: 10.1016/j.apsb.2021.03.033] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/05/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
The administration of nanoparticles (NPs) first faces the challenges of evading renal filtration and clearance of reticuloendothelial system (RES). After that, NPs infiltrate through the expanded endothelial space and penetrated the dense stroma of tumor microenvironment to tumor cells. As long as possible to prolong the time of NPs remaining in tumor tissue, NPs release active agent and induce pharmacological action. This review provides a comprehensive summary of the physical and chemical properties of NPs and the influence of various biological factors in tumor microenvironment, and discusses how to improve the final efficacy through adjusting the characteristics and structure of NPs. Perspectives and future directions are also provided.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kai Shi
- Corresponding author. Tel./fax: +86 24 43520557.
| |
Collapse
|
32
|
Ballesteros S, Domenech J, Velázquez A, Marcos R, Hernández A. Ex vivo exposure to different types of graphene-based nanomaterials consistently alters human blood secretome. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125471. [PMID: 33647622 DOI: 10.1016/j.jhazmat.2021.125471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The biomedical applications of graphene-based nanomaterials (GBN) have significantly grown in the last years. Many of these applications suppose their intravenous exposure and, in this way, GBN could encounter blood cells triggering an immunological response of unknown effects. Consequently, understanding the relationships between GBN and the immune system response should be a prerequisite for its adequate use in biomedicine. In the present study, we have conducted a little explored ex vivo exposure method in order to study the complexity of the secretome given by the interactions between GBN and blood cells. Blood samples from different healthy donors were exposed to three different types of GBN widely used in the biomedical field. In this sense, graphene oxide (GO), graphene nanoplatelets (GNPs), graphene nanoribbons (GNRs) and a panel of 105 proteins representatives of the blood secretome were evaluated. The results show broad changes in both the cytokines number and the expression levels, with important changes in inflammatory response markers. Furthermore, the indirect soft-agar assay was used as a tool to unravel the global functional impact of the found secretome changes. Our results indicate that the GBN-induced altered secretome can modify the natural anchorage-independent growth capacity of HeLa cells, used as a model. As a conclusion, this study describes an innovative approach to study the potential harmful effects of GBN, providing relevant data to be considered in the biomedical context when GBN are planned to be used in patients.
Collapse
Affiliation(s)
- Sandra Ballesteros
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain
| | - Josefa Domenech
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain
| | - Antonia Velázquez
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
33
|
Song J, Ju Y, Amarasena TH, Lin Z, Mettu S, Zhou J, Rahim MA, Ang CS, Cortez-Jugo C, Kent SJ, Caruso F. Influence of Poly(ethylene glycol) Molecular Architecture on Particle Assembly and Ex Vivo Particle-Immune Cell Interactions in Human Blood. ACS NANO 2021; 15:10025-10038. [PMID: 34009935 DOI: 10.1021/acsnano.1c01642] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Poly(ethylene glycol) (PEG) is widely used in particle assembly to impart biocompatibility and stealth-like properties in vivo for diverse biomedical applications. Previous studies have examined the effect of PEG molecular weight and PEG coating density on the biological fate of various particles; however, there are few studies that detail the fundamental role of PEG molecular architecture in particle engineering and bio-nano interactions. Herein, we engineered PEG particles using a mesoporous silica (MS) templating method and investigated how the PEG building block architecture impacted the physicochemical properties (e.g., surface chemistry and mechanical characteristics) of the PEG particles and subsequently modulated particle-immune cell interactions in human blood. Varying the PEG architecture from 3-arm to 4-arm, 6-arm, and 8-arm generated PEG particles with a denser, stiffer structure, with increasing elastic modulus from 1.5 to 14.9 kPa, inducing an increasing level of immune cell association (from 15% for 3-arm to 45% for 8-arm) with monocytes. In contrast, the precursor PEG particles with the template intact (MS@PEG) were stiffer and generally displayed higher levels of immune cell association but showed the opposite trend-immune cell association decreased with increasing PEG arm numbers. Proteomics analysis demonstrated that the biomolecular corona that formed on the PEG particles minimally influenced particle-immune cell interactions, whereas the MS@PEG particle-cell interactions correlated with the composition of the corona that was abundant in histidine-rich glycoproteins. Our work highlights the role of PEG architecture in the design of stealth PEG-based particles, thus providing a link between the synthetic nature of particles and their biological behavior in blood.
Collapse
Affiliation(s)
- Jiaying Song
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Thakshila H Amarasena
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhixing Lin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Srinivas Mettu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiajing Zhou
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Md Arifur Rahim
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
34
|
Leiske MN, Lai M, Amarasena T, Davis TP, Thurecht KJ, Kent SJ, Kempe K. Interactions of core cross-linked poly(2-oxazoline) and poly(2-oxazine) micelles with immune cells in human blood. Biomaterials 2021; 274:120843. [PMID: 33984635 DOI: 10.1016/j.biomaterials.2021.120843] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
Water-soluble poly(cyclic imino ether)s (PCIEs) have emerged as promising biocompatible polymers for nanomedicine applications in recent years. Despite their generally accepted stealth properties, there has been no comprehensive evaluation of their interactions with primary immune cells in human blood. Here we present a library of core cross-linked micelles (CCMs) containing various PCIE shells. Well-defined high molar mass CCMs (Mn > 175 kDa, Ð < 1.2) of similar diameter (~20 nm) were synthesised using a cationic ring-opening polymerisation (CROP) - surfactant-free reversible addition-fragmentation chain-transfer (RAFT) emulsion polymerisation strategy. The stealth properties of the different PCIE CCMs were assessed employing a whole human blood assay simulating the complex blood environment. Cell association studies revealed lower associations of poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx) CCMs with blood immune cells compared to the respective poly(2-oxazine) (POz) CCMs. Noteworthy, PMeOx CCMs outperformed all other reported CCMs, showing overall low associations and only negligible differences in the presence and absence of serum proteins. This study highlights the importance of investigating individual nanomaterials under physiologically relevant conditions and further strengthens the position of PMeOx as a highly promising stealth material for biomedical applications.
Collapse
Affiliation(s)
- Meike N Leiske
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - May Lai
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Thakshila Amarasena
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, The University of Melbourne, Melbourne, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia; Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, The University of Melbourne, Melbourne, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, 3800, Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia; Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
35
|
Lai WF, Wong WT. Nanoparticulate Systems for Bioactive Agent Delivery: What Is the Missing Link in Research for Real Applications? ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hong Kong Special Administrative Region China
- School of Life and Health Sciences The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hong Kong Special Administrative Region China
| |
Collapse
|
36
|
Zhang L, Li Z, Ye X, Chen Z, Chen ZS. Mechanisms of thrombosis and research progress on targeted antithrombotic drugs. Drug Discov Today 2021; 26:2282-2302. [PMID: 33895314 DOI: 10.1016/j.drudis.2021.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022]
Abstract
Globally, the incidence of thromboembolic diseases has increased in recent years, accompanied by an increase in patient mortality. Currently, several targeting delivery strategies have been developed to treat thromboembolic diseases. In this review, we discuss the mechanisms of thrombolysis and current anticoagulant drugs, particularly those with targeting capability, highlighting advances in the accurate treatment of thrombolysis with fewer adverse effects. Such approaches include magnetic drug-loading systems combined with molecular imaging to recanalize blood vessels and systems based on chimeric Arg-Gly-Asp (RGD) sequences that can target platelet glycoprotein receptor. With such progress in targeted antithrombotic drugs, targeted thrombolysis treatment shows significant potential benefit for patients.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- Fujian Cancer Hospital, Fujian Provincial Cancer Hospital of Fujian Medical University, Fuzhou 350014, China
| | - Xianren Ye
- Fujian Cancer Hospital, Fujian Provincial Cancer Hospital of Fujian Medical University, Fuzhou 350014, China.
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, NY 11439, USA.
| |
Collapse
|
37
|
Sun Q, Wu J, Jin L, Hong L, Wang F, Mao Z, Wu M. Cancer cell membrane-coated gold nanorods for photothermal therapy and radiotherapy on oral squamous cancer. J Mater Chem B 2021; 8:7253-7263. [PMID: 32638824 DOI: 10.1039/d0tb01063d] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The combination of different modalities greatly enhances the anticancer efficacy of each treatment by combining their merits, showing promising potential in clinical translation. Herein, we fabricated cancer cell membrane-coated gold nanorods (GNR@Mem) possessing excellent photothermal transfer ability in the second near-infrared window and radiosensitizing ability under X-ray irradiation. The cancer cell membrane coating endowed the nanomedicine with stability in the physiological environment and selective homotypic targeting to specific cancer cells in vitro. Under NIR light and X-ray irradiation, the gold nanorods induced a temperature increase, reactive oxygen generation, and subsequent damage to the DNA helix structure, leading to enhanced cell apoptosis. Benefitting from its relative long circulation time in the blood and homotypic targeting effect, the tumor accumulation of GNR@Mem significantly increased. The in vivo results demonstrate that the combination of photothermal therapy and radiotherapy effectively suppresses tumor growth without noticeable systemic toxicity.
Collapse
Affiliation(s)
- Qiang Sun
- The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University, Hangzhou, People's Republic of China
| | - Jinggen Wu
- Department of Reproductive Medicine Center, Department of Urology and Andrology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Liangjie Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Fang Wang
- The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Mengjie Wu
- The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
38
|
Cevaal PM, Ali A, Czuba-Wojnilowicz E, Symons J, Lewin SR, Cortez-Jugo C, Caruso F. In Vivo T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design. ACS NANO 2021; 15:3736-3753. [PMID: 33600163 DOI: 10.1021/acsnano.0c09514] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
T cells play an important role in immunity and repair and are implicated in diseases, including blood cancers, viral infections, and inflammation, making them attractive targets for the treatment and prevention of diseases. Over recent years, the advent of nanomedicine has shown an increase in studies that use nanoparticles as carriers to deliver therapeutic cargo to T cells for ex vivo and in vivo applications. Nanoparticle-based delivery has several advantages, including the ability to load and protect a variety of drugs, control drug release, improve drug pharmacokinetics and biodistribution, and site- or cell-specific targeting. However, the delivery of nanoparticles to T cells remains a major technological challenge, which is primarily due to the nonphagocytic nature of T cells. In this review, we discuss the physiological barriers to effective T cell targeting and describe the different approaches used to deliver cargo-loaded nanoparticles to T cells for the treatment of disease such as T cell lymphoma and human immunodeficiency virus (HIV). In particular, engineering strategies that aim to improve nanoparticle internalization by T cells, including ligand-based targeting, will be highlighted. These nanoparticle engineering approaches are expected to inspire the development of effective nanomaterials that can target or manipulate the function of T cells for the treatment of T cell-related diseases.
Collapse
Affiliation(s)
| | | | - Ewa Czuba-Wojnilowicz
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Sharon R Lewin
- Victorian Infectious Diseases, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3004, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
39
|
Georgieva M, Gospodinova Z, Keremidarska-Markova M, Kamenska T, Gencheva G, Krasteva N. PEGylated Nanographene Oxide in Combination with Near-Infrared Laser Irradiation as a Smart Nanocarrier in Colon Cancer Targeted Therapy. Pharmaceutics 2021; 13:pharmaceutics13030424. [PMID: 33809878 PMCID: PMC8004270 DOI: 10.3390/pharmaceutics13030424] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Anti-cancer therapies that integrate smart nanomaterials are the focus of cancer research in recent years. Here, we present our results with PEGylated nanographene oxide particles (nGO-PEG) and have studied their combined effect with near-infrared (NIR) irradiation on low and high invasive colorectal carcinoma cells. The aim is to develop nGO-PEG as a smart nanocarrier for colon cancer-targeted therapy. For this purpose, nGO-PEG nanoparticles' size, zeta potential, surface morphology, dispersion stability, aggregation, and sterility were determined and compared with pristine nGO nanoparticles (NPs). Our results show that PEGylation increased the particle sizes from 256.7 nm (pristine nGO) to 324.6 nm (nGO-PEG), the zeta potential from -32.9 to -21.6 mV, and wrinkled the surface of the nanosheets. Furthermore, nGO-PEG exhibited higher absorbance in the NIR region, as compared to unmodified nGO. PEGylated nGO demonstrated enhanced stability in aqueous solution, improved dispensability in the culture medium, containing 10% fetal bovine serum (FBS) and amended biocompatibility. A strong synergic effect of nGO-PEG activated with NIR irradiation for 5 min (1.5 W/cm-2 laser) was observed on cell growth inhibition of low invasive colon cancer cells (HT29) and their wound closure ability while the effect of NIR on cellular morphology was relatively weak. Our results show that PEGylation of nGO combined with NIR irradiation holds the potential for a biocompatible smart nanocarrier in colon cancer cells with enhanced physicochemical properties and higher biological compatibility. For that reason, further optimization of the irradiation process and detailed screening of nGO-PEG in combination with NIR and chemotherapeutics on the fate of the colon cancer cells is a prerequisite for highly efficient combined nanothermal and photothermal therapy for colon cancer.
Collapse
Affiliation(s)
- Milena Georgieva
- Institute of Molecular Biology “R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (M.G.); (N.K.); Tel.: +359-896833604 (M.G.); +359-889577074 (N.K.)
| | - Zlatina Gospodinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.K.-M.); (T.K.)
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Milena Keremidarska-Markova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.K.-M.); (T.K.)
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd, 1164 Sofia, Bulgaria
| | - Trayana Kamenska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.K.-M.); (T.K.)
| | - Galina Gencheva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.K.-M.); (T.K.)
- Correspondence: (M.G.); (N.K.); Tel.: +359-896833604 (M.G.); +359-889577074 (N.K.)
| |
Collapse
|
40
|
Hristov DR, Lopez H, Ortin Y, O'Sullivan K, Dawson KA, Brougham DF. Impact of dynamic sub-populations within grafted chains on the protein binding and colloidal stability of PEGylated nanoparticles. NANOSCALE 2021; 13:5344-5355. [PMID: 33660726 DOI: 10.1039/d0nr08294e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polyethylene glycol grafting has played a central role in preparing the surfaces of nano-probes for biological interaction, to extend blood circulation times and to modulate protein recognition and cellular uptake. However, the role of PEG graft dynamics and conformation in determining surface recognition processes is poorly understood primarily due to the absence of a microscopic picture of the surface presentation of the polymer. Here a detailed NMR analysis reveals three types of dynamic ethylene glycol units on PEG-grafted SiO2 nanoparticles (NPs) of the type commonly evaluated as long-circulating theranostic nano-probes; a narrow fraction with fast dynamics associated with the chain ends; a broadened fraction spectrally overlapped with the former arising from those parts of the chain experiencing some dynamic restriction; and a fraction too broad to be observed in the spectrum arising from units closer to the surface/graft which undergo slow motion on the NMR timescale. We demonstrate that ethylene glycol units transition between fractions as a function of temperature, core size, PEG chain length and surface coverage and demonstrate how this distribution affects colloidal stability and protein uptake. The implications of the findings for biological application of grafted nanoparticles are discussed in the context of accepted models for surface ligand conformation.
Collapse
Affiliation(s)
- Delyan R Hristov
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Dublin, Republic of Ireland
| | - Hender Lopez
- School of Physics & Optometric & Clinical Sciences, Technological University Dublin, City Campus, Kevin Street, Dublin 8, Republic of Ireland
| | - Yannick Ortin
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Republic of Ireland.
| | - Kate O'Sullivan
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Republic of Ireland.
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Dublin, Republic of Ireland
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Republic of Ireland.
| |
Collapse
|
41
|
Roeinfard M, Zahedifar M, Darroudi M, Sadri K, Khorsand Zak A. Preparation of Technetium Labeled-Graphene Quantum Dots and Investigation of Their Bio Distribution. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Saw WS, Anasamy T, Foo YY, Kwa YC, Kue CS, Yeong CH, Kiew LV, Lee HB, Chung LY. Delivery of Nanoconstructs in Cancer Therapy: Challenges and Therapeutic Opportunities. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen Shang Saw
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Theebaa Anasamy
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Yiing Yee Foo
- Department of Pharmacology Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
| | - Yee Chu Kwa
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Chin Siang Kue
- Department of Diagnostic and Allied Health Sciences Faculty of Health and Life Sciences Management and Science University Shah Alam Selangor 40100 Malaysia
| | - Chai Hong Yeong
- School of Medicine Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor 47500 Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
| | - Hong Boon Lee
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
- School of Biosciences Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor 47500 Malaysia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
43
|
Lin G, Cortez-Jugo C, Ju Y, Besford QA, Ryan TM, Pan S, Richardson JJ, Caruso F. Microemulsion-Assisted Templating of Metal-Stabilized Poly(ethylene glycol) Nanoparticles. Biomacromolecules 2020; 22:612-619. [PMID: 33337863 DOI: 10.1021/acs.biomac.0c01463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly(ethylene glycol) (PEG) is well known to endow nanoparticles (NPs) with low-fouling and stealth-like properties that can reduce immune system clearance in vivo, making PEG-based NPs (particularly sub-100 nm) of interest for diverse biomedical applications. However, the preparation of sub-100 nm PEG NPs with controllable size and morphology is challenging. Herein, we report a strategy based on the noncovalent coordination between PEG-polyphenolic ligands (PEG-gallol) and transition metal ions using a water-in-oil microemulsion phase to synthesize sub-100 nm PEG NPs with tunable size and morphology. The metal-phenolic coordination drives the self-assembly of the PEG-gallol/metal NPs: complexation between MnII and PEG-gallol within the microemulsions yields a series of metal-stabilized PEG NPs, including 30-50 nm solid and hollow NPs, depending on the MnII/gallol feed ratio. Variations in size and morphology are attributed to the changes in hydrophobicity of the PEG-gallol/MnII complexes at varying MnII/gallol ratios based on contact angle measurements. Small-angle X-ray scattering analysis, which is used to monitor the particle size and intermolecular interactions during NP evolution, reveals that ionic interactions are the dominant driving force in the formation of the PEG-gallol/MnII NPs. pH and cytotoxicity studies, and the low-fouling properties of the PEG-gallol/MnII NPs confirm their high biocompatibility and functionality, suggesting that PEG polyphenol-metal NPs are promising systems for biomedical applications.
Collapse
Affiliation(s)
- Gan Lin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and The Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and The Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and The Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Quinn A Besford
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and The Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.,Leibniz Institute for Polymer Research, Hohe Straße 6, Dresden 01069, Germany
| | - Timothy M Ryan
- Australian Synchrotron, ANSTO, 800 Blackburn Rd., Clayton, Victoria 3168, Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and The Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and The Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and The Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
44
|
|
45
|
Ju Y, Kelly HG, Dagley LF, Reynaldi A, Schlub TE, Spall SK, Bell CA, Cui J, Mitchell AJ, Lin Z, Wheatley AK, Thurecht KJ, Davenport MP, Webb AI, Caruso F, Kent SJ. Person-Specific Biomolecular Coronas Modulate Nanoparticle Interactions with Immune Cells in Human Blood. ACS NANO 2020; 14:15723-15737. [PMID: 33112593 DOI: 10.1021/acsnano.0c06679] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
When nanoparticles interact with human blood, a multitude of plasma components adsorb onto the surface of the nanoparticles, forming a biomolecular corona. Corona composition is known to be influenced by the chemical composition of nanoparticles. In contrast, the possible effects of variations in the human blood proteome between healthy individuals on the formation of the corona and its subsequent interactions with immune cells in blood are unknown. Herein, we prepared and examined a matrix of 11 particles (including organic and inorganic particles of three sizes and five surface chemistries) and plasma samples from 23 healthy donors to form donor-specific biomolecular coronas (personalized coronas) and investigated the impact of the personalized coronas on particle interactions with immune cells in human blood. Among the particles examined, poly(ethylene glycol) (PEG)-coated mesoporous silica (MS) particles, irrespective of particle size (800, 450, or 100 nm in diameter), displayed the widest range (up to 60-fold difference) of donor-dependent variance in immune cell association. In contrast, PEG particles (after MS core removal) of 860, 518, or 133 nm in diameter displayed consistent stealth behavior (negligible cell association), irrespective of plasma donor. For comparison, clinically relevant PEGylated doxorubicin-encapsulated liposomes (Doxil) (74 nm in diameter) showed significant variance in association with monocytes and B cells across all plasma donors studied. An in-depth proteomic analysis of each biomolecular corona studied was performed, and the results were compared against the nanoparticle-blood cell association results, with individual variance in the proteome driving differential association with specific immune cell types. We identified key immunoglobulin and complement proteins that explicitly enriched or depleted within the corona and which strongly correlated with the cell association pattern observed across the 23 donors. This study demonstrates how plasma variance in healthy individuals significantly influences the blood immune cell interactions of nanoparticles.
Collapse
Affiliation(s)
- Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hannah G Kelly
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Arnold Reynaldi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales Australia, Sydney, New South Wales 2052, Australia
| | - Timothy E Schlub
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sukhdeep K Spall
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Craig A Bell
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Andrew J Mitchell
- Department of Chemical Engineering, Materials Characterisation and Fabrication Platform, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhixing Lin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Adam K Wheatley
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kristofer J Thurecht
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales Australia, Sydney, New South Wales 2052, Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
46
|
Pearce AK, Anane‐Adjei AB, Cavanagh RJ, Monteiro PF, Bennett TM, Taresco V, Clarke PA, Ritchie AA, Alexander MR, Grabowska AM, Alexander C. Effects of Polymer 3D Architecture, Size, and Chemistry on Biological Transport and Drug Delivery In Vitro and in Orthotopic Triple Negative Breast Cancer Models. Adv Healthc Mater 2020; 9:e2000892. [PMID: 33073536 DOI: 10.1002/adhm.202000892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/16/2020] [Indexed: 02/01/2023]
Abstract
The size, shape, and underlying chemistries of drug delivery particles are key parameters which govern their ultimate performance in vivo. Responsive particles are desirable for triggered drug delivery, achievable through architecture change and biodegradation to control in vivo fate. Here, polymeric materials are synthesized with linear, hyperbranched, star, and micellar-like architectures based on 2-hydroxypropyl methacrylamide (HPMA), and the effects of 3D architecture and redox-responsive biodegradation on biological transport are investigated. Variations in "stealth" behavior between the materials are quantified in vitro and in vivo, whereby reduction-responsive hyperbranched polymers most successfully avoid accumulation within the liver, and none of the materials target the spleen or lungs. Functionalization of selected architectures with doxorubicin (DOX) demonstrates enhanced efficacy over the free drug in 2D and 3D in vitro models, and enhanced efficacy in vivo in a highly aggressive orthotopic breast cancer model when dosed over schedules accounting for the biodistribution of the carriers. These data show it is possible to direct materials of the same chemistries into different cellular and physiological regions via modulation of their 3D architectures, and thus the work overall provides valuable new insight into how nanoparticle architecture and programmed degradation can be tailored to elicit specific biological responses for drug delivery.
Collapse
Affiliation(s)
- Amanda K. Pearce
- School of Chemistry University of Birmingham Edgbaston B15 2TT UK
- School of Pharmacy University of Nottingham Nottingham NG72RD UK
| | | | | | | | | | - Vincenzo Taresco
- School of Pharmacy University of Nottingham Nottingham NG72RD UK
| | - Phil A. Clarke
- School of Medicine University of Nottingham Nottingham NG72RD UK
| | | | | | | | | |
Collapse
|
47
|
Ding Y, Xu H, Xu C, Tong Z, Zhang S, Bai Y, Chen Y, Xu Q, Zhou L, Ding H, Sun Z, Yan S, Mao Z, Wang W. A Nanomedicine Fabricated from Gold Nanoparticles-Decorated Metal-Organic Framework for Cascade Chemo/Chemodynamic Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001060. [PMID: 32995124 PMCID: PMC7507500 DOI: 10.1002/advs.202001060] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/07/2020] [Indexed: 05/08/2023]
Abstract
The incorporation of new modalities into chemotherapy greatly enhances the anticancer efficacy combining the merits of each treatment, showing promising potentials in clinical translations. Herein, a hybrid nanomedicine (Au/FeMOF@CPT NPs) is fabricated using metal-organic framework (MOF) nanoparticles and gold nanoparticles (Au NPs) as building blocks for cancer chemo/chemodynamic therapy. MOF NPs are used as vehicles to encapsulate camptothecin (CPT), and the hybridization by Au NPs greatly improves the stability of the nanomedicine in a physiological environment. Triggered by the high concentration of phosphate inside the cancer cells, Au/FeMOF@CPT NPs effectively collapse after internalization, resulting in the complete drug release and activation of the cascade catalytic reactions. The intracellular glucose can be oxidized by Au NPs to produce hydrogen dioxide, which is further utilized as chemical fuel for the Fenton reaction, thus realizing the synergistic anticancer efficacy. Benefitting from the enhanced permeability and retention effect and sophisticated fabrications, the blood circulation time and tumor accumulation of Au/FeMOF@CPT NPs are significantly increased. In vivo results demonstrate that the combination of chemotherapy and chemodynamic therapy effectively suppresses the tumor growth, meantime the systemic toxicity of this nanomedicine is greatly avoided.
Collapse
|
48
|
Vu MN, Kelly HG, Wheatley AK, Peng S, Pilkington EH, Veldhuis NA, Davis TP, Kent SJ, Truong NP. Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002861. [PMID: 32583981 PMCID: PMC7361276 DOI: 10.1002/smll.202002861] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Indexed: 05/21/2023]
Abstract
A key concept in nanomedicine is encapsulating therapeutic or diagnostic agents inside nanoparticles to prolong blood circulation time and to enhance interactions with targeted cells. During circulation and depending on the selected application (e.g., cancer drug delivery or immune modulators), nanoparticles are required to possess low or high interactions with cells in human blood and blood vessels to minimize side effects or maximize delivery efficiency. However, analysis of cellular interactions in blood vessels is challenging and is not yet realized due to the diverse components of human blood and hemodynamic flow in blood vessels. Here, the first comprehensive method to analyze cellular interactions of both synthetic and commercially available nanoparticles under human blood flow conditions in a microvascular network is developed. Importantly, this method allows to unravel the complex interplay of size, charge, and type of nanoparticles on their cellular associations under the dynamic flow of human blood. This method offers a unique platform to study complex interactions of any type of nanoparticles in human blood flow conditions and serves as a useful guideline for the rational design of liposomes and polymer nanoparticles for diverse applications in nanomedicine.
Collapse
Affiliation(s)
- Mai N. Vu
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyUniversity of MelbourneMelbourneVIC3000Australia
- Department of PharmaceuticsHanoi University of PharmacyHanoi10000Vietnam
| | - Hannah G. Kelly
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyUniversity of MelbourneMelbourneVIC3000Australia
| | - Adam K. Wheatley
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyUniversity of MelbourneMelbourneVIC3000Australia
| | - Scott Peng
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Emily H. Pilkington
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyUniversity of MelbourneMelbourneVIC3000Australia
| | - Nicholas A. Veldhuis
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Thomas P. Davis
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Australia Institute of Bioengineering & NanotechnologyUniversity of QueenslandBrisbaneQLD4072Australia
| | - Stephen J. Kent
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyUniversity of MelbourneMelbourneVIC3000Australia
- Melbourne Sexual Health Centre and Department of Infectious DiseasesAlfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVIC3004Australia
| | - Nghia P. Truong
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| |
Collapse
|
49
|
Czuba-Wojnilowicz E, Miellet S, Glab A, Viventi S, Cavalieri F, Cortez-Jugo C, Dottori M, Caruso F. Distribution of Particles in Human Stem Cell-Derived 3D Neuronal Cell Models: Effect of Particle Size, Charge, and Density. Biomacromolecules 2020; 21:3186-3196. [DOI: 10.1021/acs.biomac.0c00626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ewa Czuba-Wojnilowicz
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Molecular Horizons, School of Medicine, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Agata Glab
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Serena Viventi
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Francesca Cavalieri
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Molecular Horizons, School of Medicine, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
50
|
Zhou J, Lin Z, Ju Y, Rahim MA, Richardson JJ, Caruso F. Polyphenol-Mediated Assembly for Particle Engineering. Acc Chem Res 2020; 53:1269-1278. [PMID: 32567830 DOI: 10.1021/acs.accounts.0c00150] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polyphenols are naturally occurring compounds that are ubiquitous in plants and display a spectrum of physical, chemical, and biological properties. For example, they are antioxidants, have therapeutic properties, absorb UV radiation, and complex with metal ions. Additionally, polyphenols display high adherence, which has been exploited for assembling nanostructured materials. We previously reviewed the assembly of different phenolic materials and their applications (Angew. Chem. Int. Ed. 2019, 58, 1904-1927); however, there is a need for a summary of the fundamental interactions that govern the assembly, stability, and function of polyphenol-based materials. A detailed understanding of interactions between polyphenols and various other building blocks will facilitate the rational design and assembly of advanced polyphenol particles for specific applications. This Account discusses how different interactions and bonding (i.e., hydrogen, π, hydrophobic, metal coordination, covalent, and electrostatic) can be leveraged to assemble and stabilize polyphenol-based particles for diverse applications. In polyphenol-mediated assembly strategies, the polyphenols typically exert more than one type of stabilizing attractive force. However, one interaction often dominates the assembly process and dictates the physicochemical behavior of the particles, which in turn influences potential applications. This Account is thus divided into sections that each focus on a key interaction with relevant examples of applications to highlight structure-function relationships. For example, metal coordination generally becomes weaker at lower pH, which makes it possible to engineer metal-phenolic materials with a pH-responsive disassembly profile suitable for drug delivery. Engineered particles, such as hollow capsules, mesoporous and core-shell particles, and self-assembled nanoparticles are some of the systems that are covered to highlight how polyphenols interact with other building blocks and therefore make up the major focus of this Account. Some of the applications of these materials exemplified in this Account include drug delivery, catalysis, environmental remediation, and forensics. Finally, a perspective is provided on the current challenges and trends in polyphenol-mediated particle assembly, and viable near-term strategies for further elucidating the interplay of various competing interactions in particle formation are discussed. This Account is also expected to serve as a reference to guide fundamental research and facilitate the rational design of polyphenol-based materials for diverse emerging applications.
Collapse
Affiliation(s)
- Jiajing Zhou
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhixing Lin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Md. Arifur Rahim
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|