1
|
Klyosova EY, Azarova YE, Ilyina EA, Goryainova NV, Polonikov AV. Association between Polymorphisms of Heat Shock Protein HSPA5 and Risk of Type 2 Diabetes Mellitus. Bull Exp Biol Med 2024; 176:599-602. [PMID: 38724812 DOI: 10.1007/s10517-024-06075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Indexed: 05/18/2024]
Abstract
We studied the relationship between the HSPA5 gene polymorphisms and the risk of type 2 diabetes mellitus. Genotyping of three SNPs of the HSPA5 gene was performed in 1579 patients with type 2 diabetes mellitus and 1650 healthy individuals. It was found that the genotypes rs55736103-T/T, rs12009-G/G, and rs391957-T/C-T/T are associated with increased risk of type 2 diabetes in females. A rare haplotype, rs55736103C-rs12009A-rs391957T HSPA5, associated with a reduced risk of type 2 diabetes in females was found. Associations between polymorphisms of the HSPA5 gene encoding heat shock protein and the risk of type 2 diabetes mellitus were established for the first time.
Collapse
Affiliation(s)
- E Yu Klyosova
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia.
| | - Yu E Azarova
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - E A Ilyina
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - N V Goryainova
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - A V Polonikov
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| |
Collapse
|
2
|
Bourebaba L, Serwotka-Suszczak A, Pielok A, Sikora M, Mularczyk M, Marycz K. The PTP1B inhibitor MSI-1436 ameliorates liver insulin sensitivity by modulating autophagy, ER stress and systemic inflammation in Equine metabolic syndrome affected horses. Front Endocrinol (Lausanne) 2023; 14:1149610. [PMID: 37020593 PMCID: PMC10067883 DOI: 10.3389/fendo.2023.1149610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Equine metabolic syndrome (EMS) is a multifactorial pathology gathering insulin resistance, low-grade inflammation and past or chronic laminitis. Among the several molecular mechanisms underlying EMS pathogenesis, increased negative insulin signalling regulation mediated by protein tyrosine phosphatase 1 B (PTP1B) has emerged as a critical axis in the development of liver insulin resistance and general metabolic distress associated to increased ER stress, inflammation and disrupted autophagy. Thus, the use of PTP1B selective inhibitors such as MSI-1436 might be considered as a golden therapeutic tool for the proper management of EMS and associated conditions. Therefore, the present investigation aimed at verifying the clinical efficacy of MSI-1436 systemic administration on liver metabolic balance, insulin sensitivity and inflammatory status in EMS affected horses. Moreover, the impact of MSI-1436 treatment on liver autophagy machinery and associated ER stress in liver tissue has been analysed. METHODS Liver explants isolated from healthy and EMS horses have been treated with MSI-1436 prior to gene and protein expression analysis of main markers mediating ER stress, mitophagy and autophagy. Furthermore, EMS horses have been intravenously treated with a single dose of MSI-1436, and evaluated for their metabolic and inflammatory status. RESULTS Clinical application of MSI-1436 to EMS horses restored proper adiponectin levels and attenuated the typical hyperinsulinemia and hyperglycemia. Moreover, administration of MSI-1436 further reduced the circulating levels of key pro-inflammatory mediators including IL-1β, TNF-α and TGF-β and triggered the Tregs cells activation. At the molecular level, PTP1B inhibition resulted in a noticeable mitigation of liver ER stress, improvement of mitochondrial dynamics and consequently, a regulation of autophagic response. Similarly, short-term ex vivo treatment of EMS liver explants with trodusquemine (MSI-1436) substantially enhanced autophagy by upregulating the levels of HSC70 and Beclin-1 at both mRNA and protein level. Moreover, the PTP1B inhibitor potentiated mitophagy and associated expression of MFN2 and PINK1. Interestingly, inhibition of PTP1B resulted in potent attenuation of ER stress key mediators' expression namely, CHOP, ATF6, HSPA5 and XBP1. CONCLUSION Presented findings shed for the first time promising new insights in the development of an MSI-1436-based therapy for proper equine metabolic syndrome intervention and may additionally find potential translational application to human metabolic syndrome treatment.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- International Institute of Translational Medicine, Wisznia Mała, Poland
| | - Anna Serwotka-Suszczak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ariadna Pielok
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Mateusz Sikora
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- International Institute of Translational Medicine, Wisznia Mała, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- *Correspondence: Krzysztof Marycz,
| |
Collapse
|
3
|
Dowling P, Bazou D. Identification of Ubiquitination-Associated Proteins Using 2D-DIGE. Methods Mol Biol 2023; 2596:83-96. [PMID: 36378432 DOI: 10.1007/978-1-0716-2831-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ubiquitination is a post-translational modification, in which a small regulatory protein (~8.6 kDa) is tagged as a single moiety or as a chain to target proteins. Ubiquitination is the most versatile cellular regulatory mechanism, essential to the physiological and pathophysiological cellular events that regulate protein turnover, gene transcription, cell cycle progression, DNA repair, apoptosis, viral budding, and receptor-mediated endocytosis. Changes and abnormalities within the ubiquitination process can result in a plethora of diseases, including various cancers. The ubiquitination process is tightly controlled in a stepwise manner by four enzymes: E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes, E3 ubiquitin-ligating enzymes, and deubiquitinating proteases. Using fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) to detect and quantitate cellular proteins associated with the ubiquitination process will facilitate the evaluation of this post-translational modification associated with the pathophysiological phenotype.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland.
| |
Collapse
|
4
|
Zhang C, Zhang B, Zhang X, Sun G, Sun X. Targeting Orphan Nuclear Receptors NR4As for Energy Homeostasis and Diabetes. Front Pharmacol 2020; 11:587457. [PMID: 33328994 PMCID: PMC7728612 DOI: 10.3389/fphar.2020.587457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
Orphan nuclear receptors are important members of the nuclear receptor family and may regulate cell proliferation, metabolism, differentiation, and apoptosis. NR4As, a subfamily of orphan nuclear receptors, have been reported to play key roles in carbohydrate and lipid metabolism and energy homeostasis. Popularity of obesity has resulted in a series of metabolic diseases such as diabetes and its complications. While imbalance of energy intake and expenditure is the main cause of obesity, the concrete mechanism of obesity has not been fully understood. It has been reported that NR4As have significant regulatory effects on energy homeostasis and diabetes and are expected to become new targets for discovering drugs for metabolic syndrome. A number of studies have demonstrated that abnormalities in metabolism induced by altered levels of NR4As may contribute to numerous diseases, such as chronic inflammation, tumorigenesis, diabetes and its complications, atherosclerosis, and other cardiovascular diseases. However, systematic reviews focusing on the roles of NR4As in mediating energy homeostasis and diabetes remain limited. Therefore, this article reviews the structure and regulation of NR4As and their critical function in energy homeostasis and diabetes, as well as small molecules that may regulate NR4As. Our work is aimed at providing valuable support for the research and development of drugs targeting NR4As for the treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Chenyang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuelian Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Jin MH, Shen GN, Jin YH, Sun HN, Zhen X, Zhang YQ, Lee DS, Cui YD, Yu LY, Kim JS, Kwon T, Han YH. Peroxiredoxin I deficiency increases pancreatic β‑cell apoptosis after streptozotocin stimulation via the AKT/GSK3β signaling pathway. Mol Med Rep 2020; 22:1831-1838. [PMID: 32705184 PMCID: PMC7411341 DOI: 10.3892/mmr.2020.11279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/28/2020] [Indexed: 01/11/2023] Open
Abstract
Apoptosis of pancreatic β-cells is involved in the pathogenesis of type I and II diabetes. Peroxiredoxin I (Prx I) serves an important role in regulating cellular apoptosis; however, the role of Prx I in pancreatic β-cell apoptosis is not completely understood. In the present study, the role of peroxiredoxin 1 (Prx I) during streptozotocin (STZ)-induced apoptosis of pancreatic β-cells was investigated. The expression level of Prx I was decreased by STZ treatment in a time-dependent manner, and apoptosis of Prx I knockdown MIN6 cells was increased by STZ stimulation, compared with untransduced MIN6 cells. Furthermore, an intraperitoneal injection of STZ increased pancreatic islet damage in Prx I knockout mice, compared with wild-type and Prx II knockout mice. AKT and glycogen synthase kinase (GSK)-3β phosphorylation significantly decreased following Prx I knockdown in MIN6 cells. However, phosphorylated β-catenin and p65 levels significantly increased after STZ stimulation, compared with untransduced cells. The results of the present study indicate that deletion of Prx I mediated STZ-induced pancreatic β-cell death in vivo and in vitro by regulating the AKT/GSK-3β/β-catenin signaling pathway, as well as NF-κB signaling. These findings provide a theoretical basis for treatment of pancreatic damage.
Collapse
Affiliation(s)
- Mei-Hua Jin
- Laboratory of Disease Model Research Center, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Gui-Nan Shen
- Laboratory of Disease Model Research Center, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hua Jin
- Department of Library and Information Center, Library of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hu-Nan Sun
- Laboratory of Disease Model Research Center, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Xing Zhen
- Laboratory of Disease Model Research Center, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yong-Qing Zhang
- Laboratory of Disease Model Research Center, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Dong-Seok Lee
- School of Life Sciences, KUN Creative Bioresearch Group, Kyungpook National University, Daegu, Gyeongsangbuk 702‑701, Republic of Korea
| | - Yu-Dong Cui
- Laboratory of Disease Model Research Center, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Li-Yun Yu
- Laboratory of Disease Model Research Center, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Ibam‑myeon, Jeongeup‑si, Jeonbuk 56216, Republic of Korea
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Ibam‑myeon, Jeongeup‑si, Jeonbuk 56216, Republic of Korea
| | - Ying-Hao Han
- Laboratory of Disease Model Research Center, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
6
|
Function of Nr4a Orphan Nuclear Receptors in Proliferation, Apoptosis and Fuel Utilization Across Tissues. Cells 2019; 8:cells8111373. [PMID: 31683815 PMCID: PMC6912296 DOI: 10.3390/cells8111373] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
The Nr4a family of nuclear hormone receptors is composed of three members-Nr4a1/Nur77, Nr4a2/Nurr1 and Nr4a3/Nor1. While currently defined as ligandless, these transcription factors have been shown to regulate varied processes across a host of tissues. Of particular interest, the Nr4a family impinge, in a tissue dependent fashion, on cellular proliferation, apoptosis and fuel utilization. The regulation of these processes occurs through both nuclear and non-genomic pathways. The purpose of this review is to provide a balanced perspective of the tissue specific and Nr4a family member specific, effects on cellular proliferation, apoptosis and fuel utilization.
Collapse
|
7
|
Oleic acid increases the transcriptional activity of FoxO1 by promoting its nuclear translocation and β-catenin binding in pancreatic β-cells. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2753-2764. [PMID: 31255704 DOI: 10.1016/j.bbadis.2019.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/31/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023]
Abstract
In the setting of metabolic overload, chronic elevations of free fatty acids in blood and tissues are associated with pancreatic β-cell lipotoxicity and failure. Ultimately, obesity combined with insulin resistance increases the dysfunctional demand of β-cells and contributes to the development of type 2 diabetes. Forkhead box O1 (FoxO1) is a potent transcriptional regulator of pancreatic β-cell function and tolerance to lipid stress. The present study examined the effects of stearoyl-CoA desaturase 1 (SCD1)-metabolized precursors and products, notably oleic acid, on the compensatory capacity of β-cells and their relationship with regulation of the FoxO1 and Wnt pathways. The trioleate-induced compromise of insulin sensitivity blunted the compensatory response of pancreatic β-cells in primary rat islets. These events were associated with increases in the nuclear accumulation and transcriptional activity of FoxO1. Such effects were also observed in INS-1E cells that were subjected to oleate treatment. The overexpression of human SCD1 that was accompanied by endogenously generated oleic acid also led to an increase in the nuclear abundance of FoxO1. The mechanism of the oleate-mediated subcellular localization of FoxO1 was independent of the fatty acid receptor GPR40. Instead, the mechanism involved diversion of the active β-catenin pool from an interaction with transcription factor 7-like 2 toward FoxO1-mediated transcription in β-cells. Our findings identify a unique role for oleic acid in the compensatory response of pancreatic β-cells and emphasize the importance of FoxO1 in β-cell failure in obesity-induced insulin resistance.
Collapse
|
8
|
Liu X, Zeng X, Chen X, Luo R, Li L, Wang C, Liu J, Cheng J, Lu Y, Chen Y. Oleic acid protects insulin-secreting INS-1E cells against palmitic acid-induced lipotoxicity along with an amelioration of ER stress. Endocrine 2019; 64:512-524. [PMID: 30778898 DOI: 10.1007/s12020-019-01867-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/08/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE It is demonstrated that unsaturated fatty acids can counteract saturated fatty acids-induced lipotoxicity, but the molecular mechanisms are unclear. In this study, we investigated the protective effects of monounsaturated oleic acid (OA) against saturated palmitic acid (PA)-induced cytotoxicity in rat β cells as well as islets, and mechanistically focused on its regulation on endoplasmic reticulum (ER) stress. METHODS Rat insulinoma cell line INS-1E cells and primary islets were treated with PA with or without OA for 24 h to determine the cell viability, apoptosis, and ER stress. SD rats were fed with high-fat diet (HFD) for 16 w, then, HFD was half replaced by olive oil to observe the protective effects of monounsaturated fatty acids rich diet. RESULTS We demonstrated that PA impaired cell viability and insulin secretion of INS-1E cells and rat islets, but OA robustly rescued cells from cell death. OA substantially alleviated either PA or chemical ER stressors (thapsigargin or tunicamycin)-induced ER stress. Importantly, OA attenuated the activity of PERK-eIF2α-ATF4-CHOP pathway and regulated the ER Ca2+ homeostasis. In vivo, only olive oil supplementation did not cause significant changes, while high-fat diet (HFD) for 32 w obviously induced islets ER stress and impaired insulin sensitivity in SD rats. Half replacement of HFD with olive oil (a mixed diet) has ameliorated this effect. CONCLUSION OA alleviated PA-induced lipotoxicity in INS-1E cells and improved insulin sensitivity in HFD rats. The amelioration of PA triggered ER stress may be responsible for its beneficial effects in β cells.
Collapse
Affiliation(s)
- Xiaohong Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, Endocrinology Department, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xin Zeng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, Endocrinology Department, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xuanming Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, Endocrinology Department, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ruixi Luo
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, Endocrinology Department, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Linzhao Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, Endocrinology Department, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Chengshi Wang
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, Endocrinology Department, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, Endocrinology Department, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, Endocrinology Department, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, Endocrinology Department, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, Endocrinology Department, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
9
|
Pharmacologic or genetic activation of SIRT1 attenuates the fat-induced decrease in beta-cell function in vivo. Nutr Diabetes 2019; 9:11. [PMID: 30890694 PMCID: PMC6424971 DOI: 10.1038/s41387-019-0075-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background There is evidence that sirtuin 1 (SIRT1), a key regulator of nutrient metabolism, increases β-cell secretory function. Excess circulating fat, as seen in obesity, has been shown to decrease β-cell function, an effect that may involve decreased SIRT1 activity. Consequently, SIRT1 activation may increase β-cell function in conditions of elevated plasma-free fatty acid levels. Here we attempted to attenuate the lipid-induced decrease in β-cell function in vivo using pharmacological and genetic models of SIRT1 activation. Methods Our pharmacologic model involved 48 h intravenous infusion of Wistar rats with either saline or oleate with or without the SIRT1 activator resveratrol. Additionally, we used β-cell-specific SIRT1 overexpressing (BESTO) mice and wild-type littermates infused for 48 h intravenously with either saline or oleate. In both models, the infusion period was followed by assessment of β-cell function using the hyperglycemic clamp method. Results Lipid infusion resulted in a significant decrease in β-cell function as expected in both rats (p < 0.05) and mice (p < 0.001). Both models of SIRT1 activation, which did not alter β-cell function in the absence of fat, resulted in partial protection from the fat-induced decrease in β-cell function (NS vs. control). Conclusion These results suggest that SIRT1 is a therapeutic target in decreased β-cell function specifically induced by fat.
Collapse
|
10
|
Němcová-Fürstová V, Balušíková K, Halada P, Pavlíková N, Šrámek J, Kovář J. Stearate-Induced Apoptosis in Human Pancreatic β-Cells is Associated with Changes in Membrane Protein Expression and These Changes are Inhibited by Oleate. Proteomics Clin Appl 2019; 13:e1800104. [PMID: 30666801 DOI: 10.1002/prca.201800104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/12/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Lipotoxicity is implicated in type 2 diabetes pathogenesis. Its molecular mechanisms are not completely understood. The aim of this study is to identify new suspect proteins involved in pancreatic β-cell death induction by saturated fatty acids and its inhibition by unsaturated fatty acids. EXPERIMENTAL DESIGN Employing 2DE analysis and subsequent western blot confirmation, the differences in membrane/membrane-associated protein expression in human β-cell line NES2Y are assessed during cell death induction by stearate and its inhibition by oleate. RESULTS Induction of apoptosis by stearate is associated with significantly increased levels of Hsp90β, peroxiredoxin-1, and 14-3-3γ in the membrane fraction of NES2Y cells and significantly decreased levels of annexin A2, annexin A4, and reticulocalbin-2. All these changes are significantly inhibited by oleate co-application. No expression changes are detected after application of stearate together with oleate. Furthermore, the expression of reticulocalbin-2 is significantly decreased after stearate application also in the whole cell lysate. CONCLUSIONS AND CLINICAL RELEVANCE Several membrane-associated proteins that could be related to pro- and anti-apoptotic signaling initiated by fatty acids in human pancreatic β-cells are identified. As far as we know, annexin A4, reticulocalbin-2, and 14-3-3γ represent novel molecules related to the effect of fatty acids on β-cell viability.
Collapse
Affiliation(s)
- Vlasta Němcová-Fürstová
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamila Balušíková
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Nela Pavlíková
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Šrámek
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kovář
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Duwaerts CC, Amin AM, Siao K, Her C, Fitch M, Beysen C, Turner SM, Goodsell A, Baron JL, Grenert JP, Cho SJ, Maher JJ. Specific Macronutrients Exert Unique Influences on the Adipose-Liver Axis to Promote Hepatic Steatosis in Mice. Cell Mol Gastroenterol Hepatol 2017; 4. [PMID: 28649594 PMCID: PMC5472193 DOI: 10.1016/j.jcmgh.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The factors that distinguish metabolically healthy obesity from metabolically unhealthy obesity are not well understood. Diet has been implicated as a determinant of the unhealthy obesity phenotype, but which aspects of the diet induce dysmetabolism are unknown. The goal of this study was to investigate whether specific macronutrients or macronutrient combinations provoke dysmetabolism in the context of isocaloric, high-energy diets. METHODS Mice were fed 4 high-energy diets identical in calorie and nutrient content but different in nutrient composition for 3 weeks to 6 months. The test diets contained 42% carbohydrate (sucrose or starch) and 42% fat (oleate or palmitate). Weight and glucose tolerance were monitored; blood and tissues were collected for histology, gene expression, and immunophenotyping. RESULTS Mice gained weight on all 4 test diets but differed significantly in other metabolic outcomes. Animals fed the starch-oleate diet developed more severe hepatic steatosis than those on other formulas. Stable isotope incorporation showed that the excess hepatic steatosis in starch-oleate-fed mice derived from exaggerated adipose tissue lipolysis. In these mice, adipose tissue lipolysis coincided with adipocyte necrosis and inflammation. Notably, the liver and adipose tissue abnormalities provoked by starch-oleate feeding were reproduced when mice were fed a mixed-nutrient Western diet with 42% carbohydrate and 42% fat. CONCLUSIONS The macronutrient composition of the diet exerts a significant influence on metabolic outcome, independent of calories and nutrient proportions. Starch-oleate appears to cause hepatic steatosis by inducing progressive adipose tissue injury. Starch-oleate phenocopies the effect of a Western diet; consequently, it may provide clues to the mechanism whereby specific nutrients cause metabolically unhealthy obesity.
Collapse
Affiliation(s)
- Caroline C. Duwaerts
- Department of Medicine, University of California, San Francisco, California,The Liver Center, University of California, San Francisco, California
| | - Amin M. Amin
- Department of Medicine, University of California, San Francisco, California,The Liver Center, University of California, San Francisco, California
| | - Kevin Siao
- Department of Medicine, University of California, San Francisco, California,The Liver Center, University of California, San Francisco, California
| | - Chris Her
- Department of Medicine, University of California, San Francisco, California,The Liver Center, University of California, San Francisco, California
| | - Mark Fitch
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California
| | | | | | - Amanda Goodsell
- Department of Medicine, University of California, San Francisco, California,The Liver Center, University of California, San Francisco, California
| | - Jody L. Baron
- Department of Medicine, University of California, San Francisco, California,The Liver Center, University of California, San Francisco, California
| | - James P. Grenert
- The Liver Center, University of California, San Francisco, California,Department of Pathology, University of California, San Francisco, California
| | - Soo-Jin Cho
- Department of Pathology, University of California, San Francisco, California
| | - Jacquelyn J. Maher
- Department of Medicine, University of California, San Francisco, California,The Liver Center, University of California, San Francisco, California,Correspondence Address correspondence to: Jacquelyn J. Maher, MD, Liver Center Laboratory, 1001 Potrero Avenue, Building 40, Room 4102, San Francisco, California 94110. fax: (415) 641-0517.Liver Center Laboratory1001 Potrero Avenue, Building 40, Room 4102San FranciscoCalifornia 94110
| |
Collapse
|
12
|
Yousefpour A, Modarress H, Goharpey F, Amjad-Iranagh S. Combination of anti-hypertensive drugs: a molecular dynamics simulation study. J Mol Model 2017; 23:158. [DOI: 10.1007/s00894-017-3333-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/27/2017] [Indexed: 01/03/2023]
|
13
|
Barre DE, Mizier-Barre KA, Griscti O, Hafez K. Flaxseed oil supplementation manipulates correlations between serum individual mol % free fatty acid levels and insulin resistance in type 2 diabetics. Insulin resistance and percent remaining pancreatic β-cell function are unaffected. Endocr Regul 2016; 50:183-193. [DOI: 10.1515/enr-2016-0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Objectives. Elevated total serum free fatty acids (FFAs) concentrations have been suggested, controversially, to enhance insulin resistance and decrease percent remaining β-cell function. However, concentrations of individual serum FFAs have never been published in terms of their relationship (correlation) to homeostatic model assessment-insulin resistance (HOMA-IR) and percent remaining β-cell function (HOMA-%β) in the type 2 diabetics (T2Ds). Alpha-linolenic acid consumption has a negative correlation with the insulin resistance, which in turn is negatively correlated with the remaining β-cell function. The primary objective was to test the hypothesis that there would be different relationship (correlation) between the blood serum individual free FFA mol % levels and HOMA-IR and/or HOMA-%β in T2D. The secondary objective was to test the hypothesis that flaxseed oil, previously being shown to be ineffective in the glycemic control in T2Ds, may alter these correlations in a statistically significant manner as well as HOMA-IR and/or HOMA-%β.
Methods. Patients were recruited via a newspaper advertisement and two physicians have been employed. All the patients came to visit one and three months later for a second visit. At the second visit, the subjects were randomly assigned (double blind) to flaxseed or safflower oil treatment for three months, until the third visit.
Results. Different statistically significant correlations or trends towards among some serum individual free FFA mol % levels and HOMA-IR and HOMA-%β, pre- and post-flaxseed and safflower oil supplementation were found. However, flaxseed oil had no impact on HOMA-IR or HOMA-%β despite statistically significant alterations in correlations compared to baseline HOMA-IR.
Conclusions. The obtained data indicate that high doses of flaxseed oil have no statistically significant effect on HOMA-IR or HOMA-%β in T2Ds, probably due to the additive effects of negative and positive correlations.
Collapse
Affiliation(s)
- DE Barre
- Department of Health Sciences and Emergency Management, Cape Breton University, Sydney, Nova Scotia, Canada
| | - KA Mizier-Barre
- Department of Biology, Cape Breton University, Sydney, Nova Scotia, Canada
| | - O Griscti
- School of Nursing, Cape Breton University, Sydney, Nova Scotia, Canada
| | - K Hafez
- Dr Soliman Faqeeh Hospital/King Abdulla University of Science and Technology, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Kitaura Y, Inoue K, Kato N, Matsushita N, Shimomura Y. Enhanced oleate uptake and lipotoxicity associated with laurate. FEBS Open Bio 2015; 5:485-91. [PMID: 26106523 PMCID: PMC4475777 DOI: 10.1016/j.fob.2015.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 12/30/2022] Open
Abstract
Free fatty acids have been reported to induce cell death (lipotoxicity), but the effects depend on the carbon chain length and number of double bonds. Medium-chain saturated fatty acids (MC-SFAs), such as laurate, have less lipotoxicity than long-chain saturated fatty acids (LC-SFAs), such as palmitate. Monounsaturated fatty acids, such as oleate, have also been reported not only to exert cytotoxic effects, but also to reduce the lipotoxicity of LC-SFA. However the interaction between MC-SFA and oleate with respect to cell death is unclear. In this report, we found that lipotoxicity was enhanced by a combination of laurate and oleate relative to either fatty acid alone. The possible mechanisms involved were examined by measuring the production of reactive oxygen species, mitochondrial depolarization, caspase-3 activity, and lipid droplet formation. Although the stress signals and cell death pathways were distinct among different cell types, we found a common phenomenon of enhanced lipid droplet formation in all cells tested. Using fluorescent- or radioisotope-labeled fatty acids, we found that oleate, but not laurate, increased the uptake of fluorescent-labeled fatty acids, and the combinatory effect was more efficient than with oleate alone. We also found that laurate increased oleate uptake, but the effect of oleate on laurate uptake varied among cell types. These results suggest that laurate enhances the influx rate of oleate, the increased intracellular concentration of which not only enhances lipid storage, but also induces cell death by lipotoxic stress responses, which vary according to cell type.
Collapse
Affiliation(s)
- Yasuyuki Kitaura
- Laboratory of Nutritional Biochemistry, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kana Inoue
- Laboratory of Nutritional Biochemistry, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Naoki Kato
- Laboratory of Nutritional Biochemistry, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Nahomi Matsushita
- Laboratory of Nutritional Biochemistry, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoshiharu Shimomura
- Laboratory of Nutritional Biochemistry, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
15
|
Kussmann M, Morine MJ, Hager J, Sonderegger B, Kaput J. Perspective: a systems approach to diabetes research. Front Genet 2013; 4:205. [PMID: 24187547 PMCID: PMC3807566 DOI: 10.3389/fgene.2013.00205] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/24/2013] [Indexed: 12/17/2022] Open
Abstract
We review here the status of human type 2 diabetes studies from a genetic, epidemiological, and clinical (intervention) perspective. Most studies limit analyses to one or a few omic technologies providing data of components of physiological processes. Since all chronic diseases are multifactorial and arise from complex interactions between genetic makeup and environment, type 2 diabetes mellitus (T2DM) is a collection of sub-phenotypes resulting in high fasting glucose. The underlying gene–environment interactions that produce these classes of T2DM are imperfectly characterized. Based on assessments of the complexity of T2DM, we propose a systems biology approach to advance the understanding of origin, onset, development, prevention, and treatment of this complex disease. This systems-based strategy is based on new study design principles and the integrated application of omics technologies: we pursue longitudinal studies in which each subject is analyzed at both homeostasis and after (healthy and safe) challenges. Each enrolled subject functions thereby as their own case and control and this design avoids assigning the subjects a priori to case and control groups based on limited phenotyping. Analyses at different time points along this longitudinal investigation are performed with a comprehensive set of omics platforms. These data sets are generated in a biological context, rather than biochemical compound class-driven manner, which we term “systems omics.”
Collapse
Affiliation(s)
- Martin Kussmann
- Nestlé Institute of Health Sciences SA Lausanne, Switzerland ; Faculty of Life Sciences, Ecole Polytechnique Fédérale Lausanne, Switzerland ; Faculty of Science, Aarhus University Aarhus, Denmark
| | | | | | | | | |
Collapse
|
16
|
The biological activities of protein/oleic acid complexes reside in the fatty acid. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1125-43. [DOI: 10.1016/j.bbapap.2013.02.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/12/2022]
|
17
|
Teodoro-Morrison T, Schuiki I, Zhang L, Belsham DD, Volchuk A. GRP78 overproduction in pancreatic beta cells protects against high-fat-diet-induced diabetes in mice. Diabetologia 2013; 56:1057-67. [PMID: 23475366 DOI: 10.1007/s00125-013-2855-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 01/21/2013] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Endoplasmic reticulum (ER) stress has been detected in pancreatic beta cells and in insulin-sensitive tissues, such as adipose and liver, in obesity-linked rodent models of type 2 diabetes. The contribution of ER stress to pancreatic beta cell dysfunction in type 2 diabetes is unclear. We hypothesised that increased chaperone capacity protects beta cells from ER stress and dysfunction caused by obesity and improves overall glucose homeostasis. METHODS We generated a mouse model that overproduces the resident ER chaperone GRP78 (glucose-regulated protein 78 kDa) in pancreatic beta cells under the control of a rat insulin promoter. These mice were subjected to high-fat diet (HFD) feeding for 20 weeks and metabolic variables and markers of ER stress in islets were measured. RESULTS As expected, control mice on the HFD developed obesity, glucose intolerance and insulin resistance. In contrast, GRP78 transgenic mice tended to be leaner than their non-transgenic littermates and were protected against development of glucose intolerance, insulin resistance and ER stress in islets. Furthermore, islets from transgenic mice had a normal insulin content and normal levels of cell-surface GLUT2 (glucose transporter 2) and the transgenic mice were less hyperinsulinaemic than control mice on the HFD. CONCLUSIONS/INTERPRETATION These data show that increased chaperone capacity in beta cells provides protection against the pathogenesis of obesity-induced type 2 diabetes by maintaining pancreatic beta cell function, which ultimately improves whole-body glucose homeostasis.
Collapse
Affiliation(s)
- T Teodoro-Morrison
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, 101 College Street, TMDT 10-706, Toronto, ON M5G 1L7, Canada
| | | | | | | | | |
Collapse
|
18
|
Manteiga S, Choi K, Jayaraman A, Lee K. Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:425-47. [PMID: 23408581 DOI: 10.1002/wsbm.1213] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adipose tissue (AT) depots actively regulate whole body energy homeostasis by orchestrating complex communications with other physiological systems as well as within the tissue. Adipocytes readily respond to hormonal and nutritional inputs to store excess nutrients as intracellular lipids or mobilize the stored fat for utilization. Co-ordinated regulation of metabolic pathways balancing uptake, esterification, and hydrolysis of lipids is accomplished through positive and negative feedback interactions of regulatory hubs comprising several pleiotropic protein kinases and nuclear receptors. Metabolic regulation in adipocytes encompasses biogenesis and remodeling of uniquely large lipid droplets (LDs). The regulatory hubs also function as energy and nutrient sensors, and integrate metabolic regulation with intercellular signaling. Over-nutrition causes hypertrophic expansion of adipocytes, which, through incompletely understood mechanisms, initiates a cascade of metabolic and signaling events leading to tissue remodeling and immune cell recruitment. Macrophage activation and polarization toward a pro-inflammatory phenotype drives a self-reinforcing cycle of pro-inflammatory signals in the AT, establishing an inflammatory state. Sustained inflammation accelerates lipolysis and elevates free fatty acids in circulation, which robustly correlates with development of obesity-related diseases. The adipose regulatory network coupling metabolism, growth, and signaling of multiple cell types is exceedingly complex. While components of the regulatory network have been individually studied in exquisite detail, systems approaches have rarely been utilized to comprehensively assess the relative engagements of the components. Thus, need and opportunity exist to develop quantitative models of metabolic and signaling networks to achieve a more complete understanding of AT biology in both health and disease.
Collapse
Affiliation(s)
- Sara Manteiga
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | | | | | | |
Collapse
|
19
|
Maris M, Robert S, Waelkens E, Derua R, Hernangomez MH, D'Hertog W, Cnop M, Mathieu C, Overbergh L. Role of the saturated nonesterified fatty acid palmitate in beta cell dysfunction. J Proteome Res 2012; 12:347-62. [PMID: 23170928 DOI: 10.1021/pr300596g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sustained elevated levels of saturated free fatty acids, such as palmitate, contribute to beta cell dysfunction, a phenomenon aggravated by high glucose levels. The aim of this study was to investigate the mechanisms of palmitate-induced beta cell dysfunction and death, combined or not with high glucose. Protein profiling of INS-1E cells, exposed to 0.5 mmol/L palmitate and combined or not with 25 mmol/L glucose, for 24 h was done by 2D-DIGE, both on full cell lysate and on an enriched endoplasmic reticulum (ER) fraction. Eighty-three differentially expressed proteins (P < 0.05) were identified by MALDI-TOF/TOF mass spectrometry and proteomic results were confirmed by functional assays. 2D-DIGE analysis of whole cell lysates and ER enriched samples revealed a high number of proteins compared to previous reports. Palmitate induced beta cell dysfunction and death via ER stress, hampered insulin maturation, generation of harmful metabolites during triglycerides synthesis and altered intracellular trafficking. In combination with high glucose, palmitate induced increased shunting of excess glucose, increased mitochondrial reactive oxygen species production and an elevation in many transcription-related proteins. This study contributes to a better understanding and revealed novel mechanisms of palmitate-induced beta cell dysfunction and death and may provide new targets for drug discovery.
Collapse
Affiliation(s)
- Michael Maris
- Laboratory of Clinical and Experimental Endocrinology, Herestraat 49, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Maris M, Overbergh L, Gysemans C, Waget A, Cardozo AK, Verdrengh E, Cunha JPM, Gotoh T, Cnop M, Eizirik DL, Burcelin R, Mathieu C. Deletion of C/EBP homologous protein (Chop) in C57Bl/6 mice dissociates obesity from insulin resistance. Diabetologia 2012; 55:1167-78. [PMID: 22237685 DOI: 10.1007/s00125-011-2427-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 11/29/2011] [Indexed: 01/23/2023]
Abstract
AIMS/HYPOTHESIS Endoplasmic reticulum (ER) stress has been implicated in the development of type 2 diabetes, via effects on obesity, insulin resistance and pancreatic beta cell health. C/EBP homologous protein (CHOP) is induced by ER stress and has a central role in apoptotic execution pathways triggered by ER stress. The aim of this study was to characterise the role of CHOP in obesity and insulin resistance. METHODS Metabolic studies were performed in Chop ( -/- ) and wild-type C57Bl/6 mice, and included euglycaemic-hyperinsulinaemic clamps and indirect calorimetry. The inflammatory state of liver and adipose tissue was determined by quantitative RT-PCR, immunohistology and macrophage cultures. Viability and absence of ER stress in islets of Langerhans was determined by electron microscopy, islet culture and quantitative RT-PCR. RESULTS Systemic deletion of Chop induced abdominal obesity and hepatic steatosis. Despite marked obesity, Chop ( -/- ) mice had preserved normal glucose tolerance and insulin sensitivity. This discrepancy was accompanied by lower levels of pro-inflammatory cytokines and less infiltration of immune cells into fat and liver. CONCLUSIONS/INTERPRETATION These observations suggest that insulin resistance is not induced by fat accumulation per se, but rather by the inflammation induced by ectopic fat. CHOP may play a key role in the crosstalk between excessive fat deposition and induction of inflammation-mediated insulin resistance.
Collapse
Affiliation(s)
- M Maris
- Catholic University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|