1
|
Liu Y, Han X, Yu J, Li Y, Sun M, Pang Q, Li Y, Dai S. Genome-wide identification and expression analysis of glutaredoxin in Puccinellia tenuiflora under salinity stress. BMC PLANT BIOLOGY 2025; 25:605. [PMID: 40340753 PMCID: PMC12060299 DOI: 10.1186/s12870-025-06547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/11/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Glutaredoxins (GRX) are key oxidoreductases that modulate protein redox states during plant development and stress responses. Alkaligrass (Puccinellia tenuiflora) is a highly salt-tolerant forage grass, but its GRX gene family (PutGRXs) remains uncharacterized, unlike those in Arabidopsis and other plants. RESULTS We identified 25 PutGRX genes in the P. tenuiflora genome. Phylogenetic analysis revealed close evolutionary ties to monocotyledonous rice (Oryza sativa). Based on gene structure and conserved domains, PutGRXs were classified into three groups: five CGFS-type, eleven CPYC-type, and nine CC-type GRXs. Promoter analysis identified numerous cis-acting elements linked to abiotic stresses (e.g., light, drought, heat, cold) and hormone responses, suggesting a pivotal role in stress adaptation. Tissue-specific expression profiling showed differential PutGRX expression in roots, leaves, stems, flowers, and sheaths, with most genes responding to NaCl, NaHCO3, and Na2CO3 stresses. Functional characterization of chloroplast-localized PutGrxS12 demonstrated its importance in plant growth and ROS scavenging under salinity stress. CONCLUSION This study offers the first comprehensive genomic and functional analysis of the PutGRX family in P. tenuiflora, highlighting its conservation, classification, and stress-responsive roles. Our findings advance understanding of GRX-mediated stress tolerance and provide potential targets for engineering salt-resistant crops.
Collapse
Affiliation(s)
- Yanshuang Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xia Han
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Juanjuan Yu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yueyue Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Meihong Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Ying Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
2
|
Sang T, Zhang Z, Liu G, Wang P. Navigating the landscape of plant proteomics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:740-761. [PMID: 39812500 DOI: 10.1111/jipb.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
In plants, proteins are fundamental to virtually all biological processes, such as photosynthesis, signal transduction, metabolic regulation, and stress responses. Studying protein distribution, function, modifications, and interactions at the cellular and tissue levels is critical for unraveling the complexities of these biological pathways. Protein abundance and localization are highly dynamic and vary widely across the proteome, presenting a challenge for global protein quantification and analysis. Mass spectrometry-based proteomics approaches have proven to be powerful tools for addressing this complex issue. In this review, we summarize recent advancements in proteomics research and their applications in plant biology, with an emphasis on the current state and challenges of studying post-translational modifications, single-cell proteomics, and protein-protein interactions. Additionally, we discuss future prospects for plant proteomics, highlighting potential opportunities that proteomics technologies offer in advancing plant biology research.
Collapse
Affiliation(s)
- Tian Sang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhen Zhang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Guting Liu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Mansoor S, Hamid S, Tuan TT, Park JE, Chung YS. Advance computational tools for multiomics data learning. Biotechnol Adv 2024; 77:108447. [PMID: 39251098 DOI: 10.1016/j.biotechadv.2024.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
The burgeoning field of bioinformatics has seen a surge in computational tools tailored for omics data analysis driven by the heterogeneous and high-dimensional nature of omics data. In biomedical and plant science research multi-omics data has become pivotal for predictive analytics in the era of big data necessitating sophisticated computational methodologies. This review explores a diverse array of computational approaches which play crucial role in processing, normalizing, integrating, and analyzing omics data. Notable methods such similarity-based methods, network-based approaches, correlation-based methods, Bayesian methods, fusion-based methods and multivariate techniques among others are discussed in detail, each offering unique functionalities to address the complexities of multi-omics data. Furthermore, this review underscores the significance of computational tools in advancing our understanding of data and their transformative impact on research.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, 63243, Republic of Korea
| | - Saira Hamid
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Pulwama, J&K, India
| | - Thai Thanh Tuan
- Department of Plant Resources and Environment, Jeju National University, 63243, Republic of Korea; Multimedia Communications Laboratory, University of Information Technology, Ho Chi Minh city 70000, Vietnam; Multimedia Communications Laboratory, Vietnam National University, Ho Chi Minh city 70000, Vietnam
| | - Jong-Eun Park
- Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju, Jeju-do, Republic of Korea.
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, 63243, Republic of Korea.
| |
Collapse
|
4
|
Chen Z, Liu Y, Wang Q, Fei J, Liu X, Zhang C, Yin Y. miRNA Sequencing Analysis in Maize Roots Treated with Neutral and Alkaline Salts. Curr Issues Mol Biol 2024; 46:8874-8889. [PMID: 39194741 DOI: 10.3390/cimb46080524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Soil salinization/alkalization is a complex environmental factor that includes not only neutral salt NaCl but also other components like Na2CO3. miRNAs, as small molecules that regulate gene expression post-transcriptionally, are involved in plant responses to abiotic stress. In this study, maize seedling roots were treated for 5 h with 100 mM NaCl, 50 mM Na2CO3, and H2O, respectively. Sequencing analysis of differentially expressed miRNAs under these conditions revealed that the Na2CO3 treatment group had the most differentially expressed miRNAs. Cluster analysis indicated their main involvement in the regulation of ion transport, binding, metabolism, and phenylpropanoid and flavonoid biosynthesis pathways. The unique differentially expressed miRNAs in the NaCl treatment group were related to the sulfur metabolism pathway. This indicates a significant difference in the response patterns of maize to different treatment groups. This study provides theoretical evidence and genetic resources for further analysis of the molecular mechanisms behind maize's salt-alkali tolerance.
Collapse
Affiliation(s)
- Ziqi Chen
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Yang Liu
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Qi Wang
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Jianbo Fei
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Chuang Zhang
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Yuejia Yin
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| |
Collapse
|
5
|
Zargar SM, Hami A, Manzoor M, Mir RA, Mahajan R, Bhat KA, Gani U, Sofi NR, Sofi PA, Masi A. Buckwheat OMICS: present status and future prospects. Crit Rev Biotechnol 2024; 44:717-734. [PMID: 37482536 DOI: 10.1080/07388551.2023.2229511] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Buckwheat (Fagopyrum spp.) is an underutilized resilient crop of North Western Himalayas belonging to the family Polygonaceae and is a source of essential nutrients and therapeutics. Common Buckwheat and Tatary Buckwheat are the two main cultivated species used as food. It is the only grain crop possessing rutin, an important metabolite with high nutraceutical potential. Due to its inherent tolerance to various biotic and abiotic stresses and a short life cycle, Buckwheat has been proposed as a model crop plant. Nutritional security is one of the major concerns, breeding for a nutrient-dense crop such as Buckwheat will provide a sustainable solution. Efforts toward improving Buckwheat for nutrition and yield are limited due to the lack of available: genetic resources, genomics, transcriptomics and metabolomics. In order to harness the agricultural importance of Buckwheat, an integrated breeding and OMICS platforms needs to be established that can pave the way for a better understanding of crop biology and developing commercial varieties. This, coupled with the availability of the genome sequences of both Buckwheat species in the public domain, should facilitate the identification of alleles/QTLs and candidate genes. There is a need to further our understanding of the molecular basis of the genetic regulation that controls various economically important traits. The present review focuses on: the food and nutritional importance of Buckwheat, its various omics resources, utilization of omics approaches in understanding Buckwheat biology and, finally, how an integrated platform of breeding and omics will help in developing commercially high yielding nutrient rich cultivars in Buckwheat.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Kaiser A Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Umar Gani
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Najeebul Rehman Sofi
- MRCFC, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, India
| | - Parvaze A Sofi
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| |
Collapse
|
6
|
Berthelier TH, Cabanac SC, Callot C, Bellec A, Mathé C, Jamet E, Dunand C. Evolutionary Analysis of Six Gene Families Part of the Reactive Oxygen Species (ROS) Gene Network in Three Brassicaceae Species. Int J Mol Sci 2024; 25:1938. [PMID: 38339216 PMCID: PMC10856686 DOI: 10.3390/ijms25031938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Climate change is expected to intensify the occurrence of abiotic stress in plants, such as hypoxia and salt stresses, leading to the production of reactive oxygen species (ROS), which need to be effectively managed by various oxido-reductases encoded by the so-called ROS gene network. Here, we studied six oxido-reductases families in three Brassicaceae species, Arabidopsis thaliana as well as Nasturtium officinale and Eutrema salsugineum, which are adapted to hypoxia and salt stress, respectively. Using available and new genomic data, we performed a phylogenomic analysis and compared RNA-seq data to study genomic and transcriptomic adaptations. This comprehensive approach allowed for the gaining of insights into the impact of the adaptation to saline or hypoxia conditions on genome organization (gene gains and losses) and transcriptional regulation. Notably, the comparison of the N. officinale and E. salsugineum genomes to that of A. thaliana highlighted changes in the distribution of ohnologs and homologs, particularly affecting class III peroxidase genes (CIII Prxs). These changes were specific to each gene, to gene families subjected to duplication events and to each species, suggesting distinct evolutionary responses. The analysis of transcriptomic data has allowed for the identification of genes related to stress responses in A. thaliana, and, conversely, to adaptation in N. officinale and E. salsugineum.
Collapse
Affiliation(s)
- Thomas Horst Berthelier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (T.H.B.); (S.C.C.); (C.M.)
| | - Sébastien Christophe Cabanac
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (T.H.B.); (S.C.C.); (C.M.)
| | - Caroline Callot
- Centre National de Ressources Génomiques Végétales, INRAE, 31320 Auzeville-Tolosane, France; (C.C.); (A.B.)
| | - Arnaud Bellec
- Centre National de Ressources Génomiques Végétales, INRAE, 31320 Auzeville-Tolosane, France; (C.C.); (A.B.)
| | - Catherine Mathé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (T.H.B.); (S.C.C.); (C.M.)
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (T.H.B.); (S.C.C.); (C.M.)
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (T.H.B.); (S.C.C.); (C.M.)
| |
Collapse
|
7
|
Omar SA, Ashokhan S, Abdul Majid N, Karsani SA, Lau BYC, Yaacob JS. Enhanced azadirachtin production in neem (Azadirachta indica) callus through NaCl elicitation: Insights into differential protein regulation via shotgun proteomics. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105778. [PMID: 38458685 DOI: 10.1016/j.pestbp.2024.105778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/19/2023] [Accepted: 01/09/2024] [Indexed: 03/10/2024]
Abstract
With their remarkable bioactivity and evolving commercial importance, plant secondary metabolites (PSMs) have gained significant research interest in recent years. Plant tissue culture serves as a credible tool to examine how abiotic stresses modulate the production of PSMs, enabling clear insights into plant stress responses and the prospects for controlled synthesis of bioactive compounds. Azadirachta indica, or neem has been recognized as a repository of secondary metabolites for centuries, particularly for the compound named azadirachtin, due to its bio-pesticidal and high antioxidant properties. Introducing salt stress as an elicitor makes it possible to enhance the synthesis of secondary metabolites, specifically azadirachtin. Thus, in this research, in vitro callus cultures of neem were micro-propagated and induced with salinity stress to explore their effects on the production of azadirachtin and identify potential proteins associated with salinity stress through comparative shotgun proteomics (LCMS/MS). To induce salinity stress, 2-month-old calli were subjected to various concentrations of NaCl (0.05-1.5%) for 4 weeks. The results showed that the callus cultures were able to adapt and survive in the salinity treatments, but displayed a reduction in fresh weight as the NaCl concentration increased. Notably, azadirachtin production was significantly enhanced in the salinity treatment compared to control, where 1.5% NaCl-treated calli produced the highest azadirachtin amount (10.847 ± 0.037 mg/g DW). The proteomics analysis showed that key proteins related to primary metabolism, such as defence, energy, cell structure, redox, transcriptional and photosynthesis, were predominantly differentially regulated (36 upregulated and 93 downregulated). While a few proteins were identified as being regulated in secondary metabolism, they were not directly involved in the synthesis of azadirachtin. In conjunction with azadirachtin elicitation, salinity stress treatment could therefore be successfully applied in commercial settings for the controlled synthesis of azadirachtin and other plant-based compounds. Further complementary omics approaches can be employed to enhance molecular-level modifications, to facilitate large-scale production of bioactive compounds in the future.
Collapse
Affiliation(s)
- Siti Ainnsyah Omar
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sharmilla Ashokhan
- School of Biotechnology, MILA University, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Benjamin Yii Chung Lau
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Jamilah Syafawati Yaacob
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Sui D, Wang B, El-Kassaby YA, Wang L. Integration of Physiological, Transcriptomic, and Metabolomic Analyses Reveal Molecular Mechanisms of Salt Stress in Maclura tricuspidata. PLANTS (BASEL, SWITZERLAND) 2024; 13:397. [PMID: 38337930 PMCID: PMC10857159 DOI: 10.3390/plants13030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Salt stress is a universal abiotic stress that severely affects plant growth and development. Understanding the mechanisms of Maclura tricuspidate's adaptation to salt stress is crucial for developing salt-tolerant plant varieties. This article discusses the integration of physiology, transcriptome, and metabolome to investigate the mechanism of salt adaptation in M. tricuspidata under salt stress conditions. Overall, the antioxidant enzyme system (SOD and POD) of M. tricuspidata exhibited higher activities compared with the control, while the content of soluble sugar and concentrations of chlorophyll a and b were maintained during salt stress. KEGG analysis revealed that deferentially expressed genes were primarily involved in plant hormone signal transduction, phenylpropanoid and flavonoid biosynthesis, alkaloids, and MAPK signaling pathways. Differential metabolites were enriched in amino acid metabolism, the biosynthesis of plant hormones, butanoate, and 2-oxocarboxylic acid metabolism. Interestingly, glycine, serine, and threonine metabolism were found to be important both in the metabolome and transcriptome-metabolome correlation analyses, suggesting their essential role in enhancing the salt tolerance of M. tricuspidata. Collectively, our study not only revealed the molecular mechanism of salt tolerance in M. tricuspidata, but also provided a new perspective for future salt-tolerant breeding and improvement in salt land for this species.
Collapse
Affiliation(s)
- Dezong Sui
- Jiangsu Academy of Forestry, Nanjing 211153, China; (D.S.); (B.W.)
| | - Baosong Wang
- Jiangsu Academy of Forestry, Nanjing 211153, China; (D.S.); (B.W.)
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T IZ4, Canada;
| | - Lei Wang
- Jiangsu Academy of Forestry, Nanjing 211153, China; (D.S.); (B.W.)
| |
Collapse
|
9
|
Feng S, Yao YT, Wang BB, Li YM, Li L, Bao AK. Flavonoids are involved in salt tolerance through ROS scavenging in the halophyte Atriplex canescens. PLANT CELL REPORTS 2023; 43:5. [PMID: 38127154 DOI: 10.1007/s00299-023-03087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/26/2023] [Indexed: 12/23/2023]
Abstract
KEY MESSAGE The content of flavonoids could increase in A. canescens under saline conditions. Overexpression of AcCHI in transgenic A. thaliana promotes flavonoid biosynthesis, thereby functioning in the tolerance of transgenic plants to salt and osmotic stress by maintaining ROS homeostasis. Atriplex canescens is a halophytic forage shrub with excellent adaptation to saline environment. Our previous study showed that a large number of genes related to the biosynthesis of flavonoids in A. canescens were significantly up-regulated by NaCl treatments. However, it remains unclear whether flavonoids are involved in A. canescens response to salinity. In this study, we found that the accumulation of flavonoids significantly increased in either the leaves or roots of A. canescens seedling under 100 and 300 mM NaCl treatments. Correspondingly, AcCHS, AcCHI and AcF3H, which encode three key enzymes (chalcone synthases (CHS), chalcone isomerase (CHI), and flavanone 3-hydroxylase (F3H), respectively) of flavonoids biosynthesis, were significantly induced in the roots or leaves of A. canescens by 100 or 300 mM NaCl. Then, we generated the transgenic Arabidopsis thaliana overexpressing AcCHI and found that transgenic plants accumulated more flavonoids through enhancing the pathway of flavonoids biosynthesis. Furthermore, overexpression of AcCHI conferred salt and osmotic stress tolerance in transgenic A. thaliana. Contrasted with wild-type A. thaliana, transgenic lines grew better with greater biomass, less H2O2 content as well as lower relative plasma permeability in either salt or osmotic stress conditions. In conclusion, our results indicate that flavonoids play an important role in A. canescens response to salt stress through reactive oxygen species (ROS) scavenging and the key enzyme gene AcCHI in flavonoids biosynthesis pathway of A. canescens has the potential to improve the stress tolerance of forages and crops.
Collapse
Affiliation(s)
- Shan Feng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yu-Ting Yao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Bei-Bei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yi-Meng Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Li Li
- Institute of Grassland, Xinjiang Academy of Animal Science, Urumqi, 830000, Xinjiang, China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Rodriguez Gallo MC, Li Q, Talasila M, Uhrig RG. Quantitative Time-Course Analysis of Osmotic and Salt Stress in Arabidopsis thaliana Using Short Gradient Multi-CV FAIMSpro BoxCar DIA. Mol Cell Proteomics 2023; 22:100638. [PMID: 37704098 PMCID: PMC10663867 DOI: 10.1016/j.mcpro.2023.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023] Open
Abstract
A major limitation when undertaking quantitative proteomic time-course experimentation is the tradeoff between depth-of-analysis and speed-of-analysis. In high complexity and high dynamic range sample types, such as plant extracts, balance between resolution and time is especially apparent. To address this, we evaluate multiple compensation voltage (CV) high field asymmetric waveform ion mobility spectrometry (FAIMSpro) settings using the latest label-free single-shot Orbitrap-based DIA acquisition workflows for their ability to deeply quantify the Arabidopsis thaliana seedling proteome. Using a BoxCarDIA acquisition workflow with a -30 -50 -70 CV FAIMSpro setting, we were able to consistently quantify >5000 Arabidopsis seedling proteins over a 21-min gradient, facilitating the analysis of ∼42 samples per day. Utilizing this acquisition approach, we then quantified proteome-level changes occurring in Arabidopsis seedling shoots and roots over 24 h of salt and osmotic stress, to identify early and late stress response proteins and reveal stress response overlaps. Here, we successfully quantify >6400 shoot and >8500 root protein groups, respectively, quantifying nearly ∼9700 unique protein groups in total across the study. Collectively, we pioneer a short gradient, multi-CV FAIMSpro BoxCarDIA acquisition workflow that represents an exciting new analysis approach for undertaking quantitative proteomic time-course experimentation in plants.
Collapse
Affiliation(s)
- M C Rodriguez Gallo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Q Li
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - M Talasila
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - R G Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
11
|
Keil L, Mehlmer N, Cavelius P, Garbe D, Haack M, Ritz M, Awad D, Brück T. The Time-Resolved Salt Stress Response of Dunaliella tertiolecta-A Comprehensive System Biology Perspective. Int J Mol Sci 2023; 24:15374. [PMID: 37895054 PMCID: PMC10607294 DOI: 10.3390/ijms242015374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Algae-driven processes, such as direct CO2 fixation into glycerol, provide new routes for sustainable chemical production in synergy with greenhouse gas mitigation. The marine microalgae Dunaliella tertiolecta is reported to accumulate high amounts of intracellular glycerol upon exposure to high salt concentrations. We have conducted a comprehensive, time-resolved systems biology study to decipher the metabolic response of D. tertiolecta up to 24 h under continuous light conditions. Initially, due to a lack of reference sequences required for MS/MS-based protein identification, a high-quality draft genome of D. tertiolecta was generated. Subsequently, a database was designed by combining the genome with transcriptome data obtained before and after salt stress. This database allowed for detection of differentially expressed proteins and identification of phosphorylated proteins, which are involved in the short- and long-term adaptation to salt stress, respectively. Specifically, in the rapid salt adaptation response, proteins linked to the Ca2+ signaling pathway and ion channel proteins were significantly increased. While phosphorylation is key in maintaining ion homeostasis during the rapid adaptation to salt stress, phosphofructokinase is required for long-term adaption. Lacking β-carotene, synthesis under salt stress conditions might be substituted by the redox-sensitive protein CP12. Furthermore, salt stress induces upregulation of Calvin-Benson cycle-related proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (L.K.); (N.M.); (P.C.); (D.G.); (M.H.); (M.R.); (D.A.)
| |
Collapse
|
12
|
Xu B, Cao L, Zhang Z, Li X, Zhao X, Wang X, Wang Y, Wu B, Zhou W, Lin C, Gao Y, Rong L. Physiological effects of combined NaCl and NaHCO 3 stress on the seedlings of two maple species. FRONTIERS IN PLANT SCIENCE 2023; 14:1209999. [PMID: 37496858 PMCID: PMC10367004 DOI: 10.3389/fpls.2023.1209999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Salt stress impacts growth and physiological processes in plants, and some plants exposed to salt stress will produce physiological mechanisms to adapt to the new environment. However, the effects of combined NaCl and NaHCO3 stress on the seedlings of Acer species are understudied. In this study, we designed an experiment to measure physiological characteristics by establishing a range of NaCl and NaHCO3 concentrations (0, 25, 50, 75, and 100 mmol L-1) to estimate the compound salt tolerance of Acer ginnala and Acer palmatum. When the concentrations of NaCl and NaHCO3 were 25 mmol L-1, the leaf water content, relative conductivity, malondialdehyde (MDA) content, proline content, soluble sugar content, and chlorophyll did not change (p > 0.05) in two maple seedlings. At concentrations greater than 50 mmol L-1, the relative conductivity and MDA content increased, proline and soluble sugars accumulated, and the potential activity of PS II (Fv/Fo), potential photochemical efficiency of PS II (Fv/Fm), PS II actual photochemical efficiency (Yield), and photosynthetic electron transfer efficiency (ETR) decreased (p < 0.05). The superoxide dismutase (SOD) and catalase (CAT) activities showed the same trend of first increasing and then decreasing (p < 0.05). The peroxidase (POD) activity increased only when concentrations of NaCl and NaHCO3 were 100 mmol L-1, while there was no statistical difference between the other treatments and the control. Therefore, the two maple seedlings adjusted their osmotic balance and alleviated oxidative stress by accumulating proline, soluble sugars and increasing CAT and SOD activities. Further analysis showed that both species are salt tolerant and the salt tolerance of Acer ginnala is better than that of Acer palmatum.
Collapse
Affiliation(s)
- Bo Xu
- College of Agriculture, Yanbian University, Yanji, China
| | - Lina Cao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, China
| | - Zhenxing Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Xinyu Li
- College of Agriculture, Yanbian University, Yanji, China
| | - Xiangyu Zhao
- College of Agriculture, Yanbian University, Yanji, China
| | - Xinyue Wang
- College of Agriculture, Yanbian University, Yanji, China
| | - Yining Wang
- College of Agriculture, Yanbian University, Yanji, China
| | - Bingchen Wu
- College of Agriculture, Yanbian University, Yanji, China
| | - Weihua Zhou
- College of Agriculture, Yanbian University, Yanji, China
| | - Chenlu Lin
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Yufu Gao
- College of Agriculture, Yanbian University, Yanji, China
| | - Liping Rong
- College of Agriculture, Yanbian University, Yanji, China
| |
Collapse
|
13
|
Mann A, Lata C, Kumar N, Kumar A, Kumar A, Sheoran P. Halophytes as new model plant species for salt tolerance strategies. FRONTIERS IN PLANT SCIENCE 2023; 14:1137211. [PMID: 37251767 PMCID: PMC10211249 DOI: 10.3389/fpls.2023.1137211] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Soil salinity is becoming a growing issue nowadays, severely affecting the world's most productive agricultural landscapes. With intersecting and competitive challenges of shrinking agricultural lands and increasing demand for food, there is an emerging need to build resilience for adaptation to anticipated climate change and land degradation. This necessitates the deep decoding of a gene pool of crop plant wild relatives which can be accomplished through salt-tolerant species, such as halophytes, in order to reveal the underlying regulatory mechanisms. Halophytes are generally defined as plants able to survive and complete their life cycle in highly saline environments of at least 200-500 mM of salt solution. The primary criterion for identifying salt-tolerant grasses (STGs) includes the presence of salt glands on the leaf surface and the Na+ exclusion mechanism since the interaction and replacement of Na+ and K+ greatly determines the survivability of STGs in saline environments. During the last decades or so, various salt-tolerant grasses/halophytes have been explored for the mining of salt-tolerant genes and testing their efficacy to improve the limit of salt tolerance in crop plants. Still, the utility of halophytes is limited due to the non-availability of any model halophytic plant system as well as the lack of complete genomic information. To date, although Arabidopsis (Arabidopsis thaliana) and salt cress (Thellungiella halophila) are being used as model plants in most salt tolerance studies, these plants are short-lived and can tolerate salinity for a shorter duration only. Thus, identifying the unique genes for salt tolerance pathways in halophytes and their introgression in a related cereal genome for better tolerance to salinity is the need of the hour. Modern technologies including RNA sequencing and genome-wide mapping along with advanced bioinformatics programs have advanced the decoding of the whole genetic information of plants and the development of probable algorithms to correlate stress tolerance limit and yield potential. Hence, this article has been compiled to explore the naturally occurring halophytes as potential model plant species for abiotic stress tolerance and to further breed crop plants to enhance salt tolerance through genomic and molecular tools.
Collapse
Affiliation(s)
- Anita Mann
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Charu Lata
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pardesh, India
| | - Naresh Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- Department of Biochemistry, Eternal University, Baru Sahib, Himachal Pardesh, Ludhiana, India
| | - Ashwani Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Arvind Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Parvender Sheoran
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Agriculture Technology Application Research Center, Ludhiana, India
| |
Collapse
|
14
|
Rezayian M, Zarinkamar F. Nitric oxide, calmodulin and calcium protein kinase interactions in the response of Brassica napus to salinity stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:411-419. [PMID: 36779525 DOI: 10.1111/plb.13511] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Involvement of nitric oxide (NO) in plant metabolism and its connection with phytohormones has not been fully described, thus information about the role of this molecule in signalling pathways remains fragmented. In this study, the effects of NO on calmodulin (CAM), calcium protein kinase (CPK), content of phytohormones and secondary metabolites in canola plants under salinity stress were investigated. We applied 100 μM sodium nitroprusside as an NO source to canola plants grown under saline (100 mM NaCl) and non-saline conditions at the vegetative stage. Plant growth was negatively affected by salinity, but exogenous NO treatment improved growth. NO caused a significant increase in activity of CAT, SOD and POX through their enhanced gene expression in stressed canola. Salinity-responsive genes, namely CAM and CPK, were induced by NO in plants grown under salinity. NO application enhanced phenolic compounds, such as gallic acid and coumaric acid and flavonoid compound,s catechin, diadzein and kaempferol, in plants subjected to salinity. NO treatment enhanced abscisic acid and brassinosteroids but decreased auxin and gibberellin in stressed canola plants. The impacts of NO in improving stress tolerance in canola required CAM and CPK. Also, NO signalling re-established the phytohormone balance and resulted in enhanced tolerance to salt stress. Furthermore, NO improved salinity tolerance in canola by increasing enzymatic and non-enzymatic antioxidant content.
Collapse
Affiliation(s)
- M Rezayian
- Department of Plant Biology, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - F Zarinkamar
- Department of Plant Biology, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Zhang R, Zheng D, Feng N, Qiu QS, Zhou H, Liu M, Li Y, Meng F, Huang X, Huang A, Li Y. Prohexadione calcium enhances rice growth and tillering under NaCl stress. PeerJ 2023; 11:e14804. [PMID: 36778152 PMCID: PMC9910188 DOI: 10.7717/peerj.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/05/2023] [Indexed: 02/09/2023] Open
Abstract
Salt stress affects crop quality and reduces crop yields, and growth regulators enhance salt tolerance of crop plants. In this report, we examined the effects of prohexadione-calcium (Pro-Ca) on improving rice (Oryza sativa L.) growth and tillering under salt stress. We found that NaCl stress inhibited the growth of two rice varieties and increased malondialdehyde (MDA) levels, electrolyte leakage, and the activities of the antioxidant enzymes. Foliar application of Pro-Ca reduced seedling height and increased stem base width and lodging resistance of rice. Further analyses showed that Pro-Ca application reduced MDA content, electrolyte leakage, and membrane damage in rice leaves under NaCl stress. Pro-Ca enhanced the net photosynthetic rate (Pn), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) of rice seedlings, while increasing the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbic acid peroxidase (APX) at the tillering stage under salt stress. Overall, Pro-Ca improves salt tolerance of rice seedlings at the tillering stage by enhancing lodging resistance, reducing membrane damages, and enhancing photosynthesis and antioxidant capacities of rice seedlings.
Collapse
Affiliation(s)
- Rongjun Zhang
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - Dianfeng Zheng
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China,South China, National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, China,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Naijie Feng
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China,South China, National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, China,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Quan-Sheng Qiu
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China,School of Life Sciences, Lanzhou University, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou, Gansu, China
| | - Hang Zhou
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China,South China, National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Meiling Liu
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - Yao Li
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - Fengyan Meng
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - XiXin Huang
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - Anqi Huang
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - Yixiang Li
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
16
|
Impact of Salinity on the Energy Transfer between Pigment-Protein Complexes in Photosynthetic Apparatus, Functions of the Oxygen-Evolving Complex and Photochemical Activities of Photosystem II and Photosystem I in Two Paulownia Lines. Int J Mol Sci 2023; 24:ijms24043108. [PMID: 36834517 PMCID: PMC9967322 DOI: 10.3390/ijms24043108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The present study shows the effect of salinity on the functions of thylakoid membranes from two hybrid lines of Paulownia: Paulownia tomentosa x fortunei and Paulownia elongate x elongata, grown in a Hoagland solution with two NaCl concentrations (100 and 150 mM) and different exposure times (10 and 25 days). We observed inhibition of the photochemical activities of photosystem I (DCPIH2 → MV) and photosystem II (H2O → BQ) only after the short treatment (10 days) with the higher NaCl concentration. Data also revealed alterations in the energy transfer between pigment-protein complexes (fluorescence emission ratios F735/F685 and F695/F685), the kinetic parameters of the oxygen-evolving reactions (initial S0-S1 state distribution, misses (α), double hits (β) and blocked centers (SB)). Moreover, the experimental results showed that after prolonged treatment with NaCl Paulownia tomentosa x fortunei adapted to the higher concentration of NaCl (150 mM), while this concentration is lethal for Paulownia elongata x elongata. This study demonstrated the relationship between the salt-induced inhibition of the photochemistry of both photosystems and the salt-induced changes in the energy transfer between the pigment-protein complexes and the alterations in the Mn cluster of the oxygen-evolving complex under salt stress.
Collapse
|
17
|
Silva VNB, da Silva TLC, Ferreira TMM, Neto JCR, Leão AP, de Aquino Ribeiro JA, Abdelnur PV, Valadares LF, de Sousa CAF, Júnior MTS. Multi-omics Analysis of Young Portulaca oleracea L. Plants' Responses to High NaCl Doses Reveals Insights into Pathways and Genes Responsive to Salinity Stress in this Halophyte Species. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:1-21. [PMID: 36947413 PMCID: PMC9883379 DOI: 10.1007/s43657-022-00061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Soil salinity is among the abiotic stressors that threaten agriculture the most, and purslane (Portulaca oleracea L.) is a dicot species adapted to inland salt desert and saline habitats that hyper accumulates salt and has high phytoremediation potential. Many researchers consider purslane a suitable model species to study the mechanisms of plant tolerance to drought and salt stresses. Here, a robust salinity stress protocol was developed and used to characterize the morphophysiological responses of young purslane plants to salinity stress; then, leaf tissue underwent characterization by distinct omics platforms to gain further insights into its response to very high salinity stress. The salinity stress protocol did generate different levels of stress by gradients of electrical conductivity at field capacity and water potential in the saturation extract of the substrate, and the morphological parameters indicated three distinct stress levels. As expected from a halophyte species, these plants remained alive under very high levels of salinity stress, showing salt crystal-like structures constituted mainly by Na+, Cl-, and K+ on and around closed stomata. A comprehensive and large-scale metabolome and transcriptome single and integrated analyses were then employed using leaf samples. The multi-omics integration (MOI) system analysis led to a data-set of 51 metabolic pathways with at least one enzyme and one metabolite differentially expressed due to salinity stress. These data sets (of genes and metabolites) are valuable for future studies aimed to deepen our knowledge on the mechanisms behind the high tolerance of this species to salinity stress. In conclusion, besides showing that this species applies salt exclusion already in young plants to support very high levels of salinity stress, the initial analysis of metabolites and transcripts data sets already give some insights into other salt tolerance mechanisms used by this species to support high levels of salinity stress. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00061-2.
Collapse
Affiliation(s)
- Vivianny Nayse Belo Silva
- Graduate Program of Plant Biotechnology, Federal University of Lavras, CP 3037, Lavras, MG 37200-000 Brazil
| | | | | | | | - André Pereira Leão
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF 70770‐901 Brazil
| | | | - Patrícia Verardi Abdelnur
- Institute of Chemistry, Federal University of Goiás, Campus Samambaia, Goiânia, GO 74690‐900 Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF 70770‐901 Brazil
| | | | | | - Manoel Teixeira Souza Júnior
- Graduate Program of Plant Biotechnology, Federal University of Lavras, CP 3037, Lavras, MG 37200-000 Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF 70770‐901 Brazil
| |
Collapse
|
18
|
Khan I, Awan SA, Rizwan M, Akram MA, Zia-Ur-Rehman M, Wang X, Zhang X, Huang L. Physiological and transcriptome analyses demonstrate the silver nanoparticles mediated alleviation of salt stress in pearl millet (Pennisetum glaucum L). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120863. [PMID: 36526056 DOI: 10.1016/j.envpol.2022.120863] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Pearl millet (Pennisetum glaucum L.) is a highly nutritive-value summer-annual forage crop used for hay, silage, grazing, and green chop. However, abiotic stresses including salinity negatively affect its growth and productivity. Furthermore, the nanotechnology is attaining greater consideration to reduce the impact of environmental stresses in plants. In the present study, transcriptome responses of silver nanoparticles (AgNPs) in pearl millet under salinity were investigated. The treatments were given as Control, NaCl (250 mM), AgNPs (20 mg/L), and NaCl + AgNPs to pearl millet seedlings after thirteen days of seed sowing. After 1 h of given treatments, leaf samples were collected and subjected to physio-chemical examination and transcriptome analyses. Salt stress increased the hydrogen peroxide (H2O2), malondialdehyde (MDA) content, and proline as compared to other treatments. In addition, the combined applications of NaCl + AgNPs ameliorated the oxidative damage by increasing antioxidant enzymes activities including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Furthermore, RNA sequencing data showed 6016 commonly annotated Differentially Expressed Transcripts (DETs) among various treated combinations. Among them, 427 transcripts were upregulated, and 136 transcripts were downregulated at nanoparticles vs control, 1469 upregulated and 1182 downregulated at salt vs control, 494 upregulated and 231 downregulated at salt + nanoparticles vs control, 783 upregulated and 523 downregulated at nanoparticles vs salt. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that Mitogen-activated protein kinase (MAPK) signaling pathway, biosynthesis of secondary metabolites, and plant hormonal signal transduction pathway were the enriched among all identified pathways. In addition, Reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR) showed that salinity up regulated the relative expression of DETs in pearl millet while, AgNPs optimized their expression that are associated with various molecular and metabolic functions. Overall, AgNPs treatments effectively improved the morphology, physiology, biochemistry, and gene expression pattern under salinity which could be attributed to positive impacts of AgNPs on pearl millet.
Collapse
Affiliation(s)
- Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Samrah Afzal Awan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Adnan Akram
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Xiaosan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
19
|
Chen Y, Li H, Zhang S, Du S, Zhang J, Song Z, Jiang J. Analysis of the main antioxidant enzymes in the roots of Tamarix ramosissima under NaCl stress by applying exogenous potassium (K +). FRONTIERS IN PLANT SCIENCE 2023; 14:1114266. [PMID: 37143868 PMCID: PMC10151674 DOI: 10.3389/fpls.2023.1114266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/23/2023] [Indexed: 05/06/2023]
Abstract
Introduction Salinization affects more than 25% of the world's arable land, and Tamarix ramosissima Ledeb (T. ramosissima), the representative of Tamarix plants, is widely grown in salinized soil. In contrast, less is known about the mechanism of potassium's antioxidative enzyme activity in preventing NaCl stress damage to plants. Method This study examined changes in root growth for T. ramosissima at 0h, 48h, and 168h, performed antioxidant enzyme activity assays, transcriptome sequencing, and non-targeted metabolite analysis to understand changes in their roots as well as changes in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Quantitative real-time PCR (qRT-PCR) was used to identify differentially expressed genes (DEGs) and differential metabolites associated with antioxidant enzyme activities. Result As the time increased, the results showed that compared with the 200 Mm NaCl group, the root growth of the 200 mM NaCl + 10 mM KCl group increased, the activities of SOD, POD and CAT increased the most, but the contents of hydrogen peroxide (H2O2) and Malondialdehyde (MDA) increased less. Meanwhile, 58 DEGs related to SOD, POD and CAT activities were changed during the application of exogenous K+ for 48h and 168h in T. ramosissima. Based on association analysis of transcriptomic and metabolomic data, we found coniferyl alcohol, which can act as a substrate to label catalytic POD. It is worth noting that Unigene0013825 and Unigene0014843, as POD-related genes, have positively regulated the downstream of coniferyl alcohol, and they have a significant correlation with coniferyl alcohol. Discussion In summary, 48h and 168h of exogenous K+ applied to the roots of T. ramosissima under NaCl stress can resist NaCl stress by scavenging the reactive oxygen species (ROS) generated by high salt stress by enhancing the mechanism of antioxidant enzyme activity, relieving NaCl toxicity and maintaining growth. This study provides genetic resources and a scientific theoretical basis for further breeding of salt-tolerant Tamarix plants and the molecular mechanism of K+ alleviating NaCl toxicity.
Collapse
Affiliation(s)
- Yahui Chen
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
- Jiangsu Academy of Forestry, Nanjing, China
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- Faculty of science and Department of statistic, University of British Columbia, Vancouver, BC, Canada
| | - Haijia Li
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Shiyang Zhang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| | - Shanfeng Du
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Jinchi Zhang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- *Correspondence: Jiang Jiang, ; Zhizhong Song,
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
- *Correspondence: Jiang Jiang, ; Zhizhong Song,
| |
Collapse
|
20
|
Perveen N, Dinesh MR, Sankaran M, Ravishankar KV, Krishnajee HG, Hanur VS, Alamri S, Kesawat MS, Irfan M. Comparative transcriptome analysis provides novel insights into molecular response of salt-tolerant and sensitive polyembryonic mango genotypes to salinity stress at seedling stage. FRONTIERS IN PLANT SCIENCE 2023; 14:1152485. [PMID: 37123820 PMCID: PMC10141464 DOI: 10.3389/fpls.2023.1152485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Introduction Increased soil salinity in the recent years has adversely affected the productivity of mango globally. Extending the cultivation of mango in salt affected regions warrants the use of salinity tolerant/resistant rootstocks. However, the lack of sufficient genomic and transcriptomic information impedes comprehensive research at the molecular level. Method We employed RNA sequencing-based transcriptome analysis to gain insight into molecular response to salt stress by using two polyembryonic mango genotypes with contrasting response to salt stress viz., salt tolerant Turpentine and salt susceptible Mylepelian. Results RNA sequencing by Novaseq6000 resulted in a total of 2795088, 17535948, 7813704 and 5544894 clean reads in Mylepelian treated (MT), Mylepelian control (MC), Turpentine treated (TT) and Turpentine control (TC) respectively. In total, 7169 unigenes annotated against all the five public databases, including NR, NT, PFAM, KOG, Swissport, KEGG and GO. Further, maximum number of differentially expressed genes were found between MT and MC (2106) followed by MT vs TT (1158) and TT and TC (587). The differentially expressed genes under different treatment levels included transcription factors (bZIP, NAC, bHLH), genes involved in Calcium-dependent protein kinases (CDPKs), ABA biosynthesis, Photosynthesis etc. Expression of few of these genes was experimentally validated through quantitative real-time PCR (qRT-PCR) and contrasting expression pattern of Auxin Response Factor 2 (ARF2), Late Embryogenesis Abundant (LEA) and CDPK genes were observed between Turpentine and Mylepelian. Discussion The results of this study will be useful in understanding the molecular mechanism underlying salt tolerance in mango which can serve as valuable baseline information to generate new targets in mango breeding for salt tolerance.
Collapse
Affiliation(s)
- Nusrat Perveen
- Division of Fruit Crops, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
- *Correspondence: Nusrat Perveen, ; K. V. Ravishankar,
| | - M. R. Dinesh
- Division of Fruit Crops, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
| | - M. Sankaran
- Division of Fruit Crops, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
| | - K. V. Ravishankar
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
- *Correspondence: Nusrat Perveen, ; K. V. Ravishankar,
| | - Hara Gopal Krishnajee
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
| | - Vageeshbabu S. Hanur
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammad Irfan
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Unique and Shared Proteome Responses of Rice Plants ( Oryza sativa) to Individual Abiotic Stresses. Int J Mol Sci 2022; 23:ijms232415552. [PMID: 36555193 PMCID: PMC9778788 DOI: 10.3390/ijms232415552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Food safety of staple crops such as rice is of global concern and is at the top of the policy agenda worldwide. Abiotic stresses are one of the main limitations to optimizing yields for sustainability, food security and food safety. We analyzed proteome changes in Oryza sativa cv. Nipponbare in response to five adverse abiotic treatments, including three levels of drought (mild, moderate, and severe), soil salinization, and non-optimal temperatures. All treatments had modest, negative effects on plant growth, enabling us to identify proteins that were common to all stresses, or unique to one. More than 75% of the total of differentially abundant proteins in response to abiotic stresses were specific to individual stresses, while fewer than 5% of stress-induced proteins were shared across all abiotic constraints. Stress-specific and non-specific stress-responsive proteins identified were categorized in terms of core biological processes, molecular functions, and cellular localization.
Collapse
|
22
|
Yu W, Wu W, Zhang N, Wang L, Wang Y, Wang B, Lan Q, Wang Y. Research Advances on Molecular Mechanism of Salt Tolerance in Suaeda. BIOLOGY 2022; 11:biology11091273. [PMID: 36138752 PMCID: PMC9495733 DOI: 10.3390/biology11091273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
Plant growth and development are inevitably affected by various environmental factors. High salinity is the main factor leading to the reduction of cultivated land area, which seriously affects the growth and yield of plants. The genus Suaeda is a kind of euhalophyte herb, with seedlings that grow rapidly in moderately saline environments and can even survive in conditions of extreme salinity. Its fresh branches can be used as vegetables and the seed oil is rich in unsaturated fatty acids, which has important economic value and usually grows in a saline environment. This paper reviews the progress of research in recent years into the salt tolerance of several Suaeda species (for example, S. salsa, S. japonica, S. glauca, S. corniculata), focusing on ion regulation and compartmentation, osmotic regulation of organic solutes, antioxidant regulation, plant hormones, photosynthetic systems, and omics (transcriptomics, proteomics, and metabolomics). It helps us to understand the salt tolerance mechanism of the genus Suaeda, and provides a theoretical foundation for effectively improving crop resistance to salt stress environments.
Collapse
Affiliation(s)
- Wancong Yu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Wenwen Wu
- Department of Agronomy, Tianjin Agricultural University, Tianjin 300392, China
| | - Nan Zhang
- Department of Agronomy, Tianjin Agricultural University, Tianjin 300392, China
| | - Luping Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Yiheng Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Bo Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Qingkuo Lan
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
- Correspondence: (Q.L.); (Y.W.)
| | - Yong Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
- Correspondence: (Q.L.); (Y.W.)
| |
Collapse
|
23
|
Duan W, Lu B, Liu L, Meng Y, Ma X, Li J, Zhang K, Sun H, Zhang Y, Dong H, Bai Z, Li C. Effects of Exogenous Melatonin on Root Physiology, Transcriptome and Metabolome of Cotton Seedlings under Salt Stress. Int J Mol Sci 2022; 23:ijms23169456. [PMID: 36012720 PMCID: PMC9409268 DOI: 10.3390/ijms23169456] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Root systems are the key organs through which plants absorb water and nutrients and perceive the soil environment and thus are easily damaged by salt stress. Melatonin can alleviate stress-induced damage to roots. The present study investigated the effects of exogenous melatonin on the root physiology, transcriptome and metabolome of cotton seedlings under salt stress. Salt stress was observed to damage the cell structure and disorder the physiological system of cotton seedling roots. After subjecting melatonin-soaked seeds to salt stress, the activities of SOD, CAT and POD in cotton seedling roots increased by 10–25%, 50–60% and 50–60%, respectively. The accumulation of H2O2 and MDA were significantly decreased by 30–60% and 30–50%, respectively. The contents of soluble sugar, soluble protein and K+ increased by 15–30%, 15–30% and 20–50%, respectively, while the Na+ content was significantly reduced. Melatonin also increased auxin (by 20–40%), brassinosteroids (by 5–40%) and gibberellin (by 5–35%) and promoted melatonin content and root activity. Exogenous melatonin maintained the integrity of root cells and increased the number of organelles. Transcriptomic and metabolomic results showed that exogenous melatonin could mitigate the salt-stress-induced inhibition of plant root development by regulating the reactive oxygen species scavenging system; ABC transporter synthesis; plant hormone signal transduction, endogenous melatonin gene expression; and the expression of the transcription factors MYB, TGA and WRKY33. These results provide a new direction and empirical basis for improving crop salt tolerance with melatonin.
Collapse
Affiliation(s)
- Wenjing Duan
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Science, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Bin Lu
- College of Landscape and Tourism, Hebei Agricultural University, Baoding 071000, China
| | - Liantao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Yanjun Meng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Science, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Xinying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Science, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Jin Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Hongchun Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Yongjiang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Hezhong Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
- Cotton Research Center, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhiying Bai
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Science, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
- Correspondence: (Z.B.); (C.L.)
| | - Cundong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
- Correspondence: (Z.B.); (C.L.)
| |
Collapse
|
24
|
Chen X, Xu Z, Zhao B, Yang Y, Mi J, Zhao Z, Liu J. Physiological and Proteomic Analysis Responsive Mechanisms for Salt Stress in Oat. FRONTIERS IN PLANT SCIENCE 2022; 13:891674. [PMID: 35783977 PMCID: PMC9240473 DOI: 10.3389/fpls.2022.891674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Oat is considered as a moderately salt-tolerant crop that can be used to improve saline and alkaline soils. Previous studies have focused on short-term salt stress exposure, and the molecular mechanisms of salt tolerance in oat have not yet been elucidated. In this study, the salt-tolerant oat cultivar Vao-9 and the salt-sensitive oat cultivar Bai5 were treated with 6 days of 0 and 150 mmol L-1 salt stress (nNaCl:nNa2SO4 = 1:1). Label-Free technology was then used to analyze the differentially expressed proteins in leaves under 0 and 150 mmol L-1 salt stress. The obtained results indicated that total of 2,631 proteins were identified by mass spectrometry in the four samples. The salt-tolerant cultivar Vao-9 mainly enhances its carbohydrate and energy metabolism through the pentose and glucuronate interconversions, and carbon fixation pathways in prokaryotes, thereby reducing the damage caused by salt stress. In addition, the down-regulation of ribosomes expression and the up-regulated expression of HSPs and CRT are all through the regulation of protein synthesis in response to salt stress. However, GABA metabolism presents a different synthesis pattern in Bai5 and Vao-9. The main KEGG function of differential expressed protein (DEP) in Bai5 is classified into protein processing in the endoplasmic reticulum, estrogen signaling pathway, antigen processing and presentation, longevity regulating pathway-multiple species, arginine and proline metabolism, beta-alanine metabolism, vitamin B6 metabolism, salmonella infection, chloroalkane and chloroalkene degradation, and limonene and pinene degradation. Moreover, the main KEGG functions of DEP in Vao-9 are classified as ribosome and carbon fixation pathways in prokaryotes, pentose and glucuronate interconversions, GABA ergic synapse, and taurine and hypotaurine metabolism. The results obtained in this study provide an important basis for further research on the underlying mechanisms of salt response and tolerance in oat and other plant species.
Collapse
Affiliation(s)
- Xiaojing Chen
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Zhongshan Xu
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Baoping Zhao
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Yanming Yang
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Junzhen Mi
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Zhou Zhao
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Jinghui Liu
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| |
Collapse
|
25
|
A Review of Integrative Omic Approaches for Understanding Rice Salt Response Mechanisms. PLANTS 2022; 11:plants11111430. [PMID: 35684203 PMCID: PMC9182744 DOI: 10.3390/plants11111430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Soil salinity is one of the most serious environmental challenges, posing a growing threat to agriculture across the world. Soil salinity has a significant impact on rice growth, development, and production. Hence, improving rice varieties’ resistance to salt stress is a viable solution for meeting global food demand. Adaptation to salt stress is a multifaceted process that involves interacting physiological traits, biochemical or metabolic pathways, and molecular mechanisms. The integration of multi-omics approaches contributes to a better understanding of molecular mechanisms as well as the improvement of salt-resistant and tolerant rice varieties. Firstly, we present a thorough review of current knowledge about salt stress effects on rice and mechanisms behind rice salt tolerance and salt stress signalling. This review focuses on the use of multi-omics approaches to improve next-generation rice breeding for salinity resistance and tolerance, including genomics, transcriptomics, proteomics, metabolomics and phenomics. Integrating multi-omics data effectively is critical to gaining a more comprehensive and in-depth understanding of the molecular pathways, enzyme activity and interacting networks of genes controlling salinity tolerance in rice. The key data mining strategies within the artificial intelligence to analyse big and complex data sets that will allow more accurate prediction of outcomes and modernise traditional breeding programmes and also expedite precision rice breeding such as genetic engineering and genome editing.
Collapse
|
26
|
Abstract
Proteins are intimately involved in executing and controlling virtually all cellular processes. To understand the molecular mechanisms that underlie plant phenotypes, it is essential to investigate protein expression, interactions, and modifications, to name a few. The proteome is highly dynamic in time and space, and a plethora of protein modifications, protein interactions, and network constellations are at play under specific conditions and developmental stages. Analysis of proteomes aims to characterize the entire protein complement of a particular cell type, tissue, or organism-a challenging task, given the dynamic nature of the proteome. Modern mass spectrometry-based proteomics technology can be used to address this complexity at a system-wide scale by the global identification and quantification of thousands of proteins. In this review, we present current methods and technologies employed in mass spectrometry-based proteomics and provide examples of dynamic changes in the plant proteome elucidated by proteomic approaches.
Collapse
Affiliation(s)
- Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany;
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany;
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany;
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| |
Collapse
|
27
|
Choudhury AR, Roy SK, Trivedi P, Choi J, Cho K, Yun SH, Walitang DI, Park JH, Kim K, Sa T. Label-free proteomics approach reveals candidate proteins in rice (Oryza sativa L.) important for ACC deaminase producing bacteria-mediated tolerance against salt stress. Environ Microbiol 2022; 24:3612-3624. [PMID: 35191581 DOI: 10.1111/1462-2920.15937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/30/2022]
Abstract
The omics-based studies are important for identifying characteristic proteins in plants to elucidate the mechanism of ACC deaminase producing bacteria-mediated salt tolerance. This study evaluates the changes in the proteome of rice inoculated with ACC deaminase producing bacteria under salt stress conditions. Salt stress resulted in a significant decrease in photosynthetic pigments, whereas inoculation of Methylobacterium oryzae CBMB20 had significantly increased pigment contents under normal and salt stress conditions. A total of 76, 51 and 33 differentially abundant proteins (DAPs) were identified in non-inoculated salt stressed plants, bacteria inoculated plants under normal and salt stress conditions, respectively. The abundances of proteins responsible for ethylene emission and programmed cell death were increased, and that of photosynthesis-related proteins were decreased in non-inoculated plants under salt stress. Whereas, bacteria-inoculated plants had shown higher abundance of antioxidant proteins, RuBisCo and ribosomal proteins that are important for enhancing stress tolerance and improving plant physiological traits. Collectively, salt stress might affect plant physiological traits by impairing photosynthetic machinery and accelerating apoptosis leading to a decline in biomass. However, inoculation of plants with bacteria can assist in enhancing photosynthetic activity, antioxidant activities and ethylene regulation related proteins for attenuating salt induced apoptosis and sustaining growth and development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aritra Roy Choudhury
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea.,Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Swapan Kumar Roy
- College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology, Dhaka, Bangladesh
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Jeongyun Choi
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea.,Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Kun Cho
- Bio-chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Sung Ho Yun
- Bio-chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Denver I Walitang
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea.,College of Agriculture, Fisheries and Forestry, Romblon State University, Philippines
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,Department of Bioprocess Engineering, University of Science and Technology (UST) of Korea, Daejeon, Republic of Korea
| | - Kiyoon Kim
- National Forest Seed Variety Center, Chungju, Republic of Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea.,The Korean Academy of Science and Technology, Seongnam, Republic of Korea
| |
Collapse
|
28
|
Mansour MMF, Hassan FAS. How salt stress-responsive proteins regulate plant adaptation to saline conditions. PLANT MOLECULAR BIOLOGY 2022; 108:175-224. [PMID: 34964081 DOI: 10.1007/s11103-021-01232-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/06/2021] [Indexed: 05/20/2023]
Abstract
An overview is presented of recent advances in our knowledge of candidate proteins that regulate various physiological and biochemical processes underpinning plant adaptation to saline conditions. Salt stress is one of the environmental constraints that restrict plant distribution, growth and yield in many parts of the world. Increased world population surely elevates food demands all over the globe, which anticipates to add a great challenge to humanity. These concerns have necessitated the scientists to understand and unmask the puzzle of plant salt tolerance mechanisms in order to utilize various strategies to develop salt tolerant crop plants. Salt tolerance is a complex trait involving alterations in physiological, biochemical, and molecular processes. These alterations are a result of genomic and proteomic complement readjustments that lead to tolerance mechanisms. Proteomics is a crucial molecular tool that indicates proteins expressed by the genome, and also identifies the functions of proteins accumulated in response to salt stress. Recently, proteomic studies have shed more light on a range of promising candidate proteins that regulate various processes rendering salt tolerance to plants. These proteins have been shown to be involved in photosynthesis and energy metabolism, ion homeostasis, gene transcription and protein biosynthesis, compatible solute production, hormone modulation, cell wall structure modification, cellular detoxification, membrane stabilization, and signal transduction. These candidate salt responsive proteins can be therefore used in biotechnological approaches to improve tolerance of crop plants to salt conditions. In this review, we provided comprehensive updated information on the proteomic data of plants/genotypes contrasting in salt tolerance in response to salt stress. The roles of salt responsive proteins that are potential determinants for plant salt adaptation are discussed. The relationship between changes in proteome composition and abundance, and alterations observed in physiological and biochemical features associated with salt tolerance are also addressed.
Collapse
Affiliation(s)
| | - Fahmy A S Hassan
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
29
|
Xu L, Song JQ, Wang YL, Liu XH, Li XL, Zhang B, Li AJ, Ye XF, Wang J, Wang P. Thymol improves salinity tolerance of tobacco by increasing the sodium ion efflux and enhancing the content of nitric oxide and glutathione. BMC PLANT BIOLOGY 2022; 22:31. [PMID: 35027009 PMCID: PMC8756686 DOI: 10.1186/s12870-021-03395-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Salt stress is one of the most important abiotic stresses affecting the yield and quality of tobacco (Nicotiana tabacum). Thymol (a natural medicine) has been widely used in medical research because of its antibacterial and anti-inflammatory activities. However, the influence of thymol on the root growth of tobacco is not fully elucidated. In this study, the regulatory effects of different concentrations of thymol were investigated. METHODOLOGY Here, histochemical staining and biochemical methods, non-invasive micro-test technology (NMT), and qPCR assay were performed to investigate the effect of thymol and mechanism of it improving salinity tolerance in tobacco seedlings. RESULTS In this study, our results showed that thymol rescued root growth from salt stress by ameliorating ROS accumulation, lipid peroxidation, and cell death. Furthermore, thymol enhanced contents of NO and GSH to repress ROS accumulation, further protecting the stability of the cell membrane. And, thymol improved Na+ efflux and the expression of SOS1, HKT1, and NHX1, thus protecting the stability of Na+ and K+. CONCLUSION Our study confirmed the protecting effect of thymol in tobacco under salt stress, and we also identified the mechanism of it, involving dynamic regulation of antioxidant system and the maintenance of Na+ homeostasis. It can be a new method to improve salinity tolerance in plants.
Collapse
Affiliation(s)
- Liang Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jia-Qian Song
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yue-Lin Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiao-Han Liu
- Guangdong Shaoguan Tobacco Recuring Co., LTD., Shaoguan, 512000, China
| | - Xue-Li Li
- China Tobacco Corporation Staff Training College, Zhengzhou, 450008, China
| | - Bo Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ai-Jie Li
- Joint Center for Biomedical Innovation, Henan University, Kaifeng, 475000, China
| | - Xie-Feng Ye
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jing Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Peng Wang
- Wuhan Cigarette Factory of Hubei China Tobacco Industry Limited Liability Company, Wuhan, 430051, China.
| |
Collapse
|
30
|
Jha S, Maity S, Singh J, Chouhan C, Tak N, Ambatipudi K. Integrated physiological and comparative proteomics analysis of contrasting genotypes of pearl millet reveals underlying salt-responsive mechanisms. PHYSIOLOGIA PLANTARUM 2022; 174:e13605. [PMID: 34837239 DOI: 10.1111/ppl.13605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/11/2021] [Indexed: 05/20/2023]
Abstract
Salinity stress poses a significant risk to plant development and agricultural yield. Therefore, elucidation of stress-response mechanisms has become essential to identify salt-tolerance genes in plants. In the present study, two genotypes of pearl millet (Pennisetum glaucum L.) with contrasting tolerance for salinity exhibited differential morpho-physiological and proteomic responses under 150 mM NaCl. The genotype IC 325825 was shown to withstand the stress better than IP 17224. The salt-tolerance potential of IC 325825 was associated with its ability to maintain intracellular osmotic, ionic, and redox homeostasis and membrane integrity under stress. The IC 325825 genotype exhibited a higher abundance of C4 photosynthesis enzymes, efficient enzymatic and non-enzymatic antioxidant system, and lower Na+ /K+ ratio compared with IP 17224. Comparative proteomics analysis revealed greater metabolic perturbation in IP 17224 under salinity, in contrast to IC 325825 that harbored pro-active stress-responsive machinery, allowing its survival and better adaptability under salt stress. The differentially abundant proteins were in silico characterized for their functions, subcellular-localization, associated pathways, and protein-protein interaction. These proteins were mainly involved in photosynthesis/response to light stimulus, carbohydrate and energy metabolism, and stress responses. Proteomics data were validated through expression profiling of the selected genes, revealing a poor correlation between protein abundance and their relative transcript levels. This study has provided novel insights into salt adaptive mechanisms in P. glaucum, demonstrating the power of proteomics-based approaches. The critical proteins identified in the present study could be further explored as potential objects for engineering stress tolerance in salt-sensitive major crops.
Collapse
Affiliation(s)
- Shweta Jha
- Plant Functional Genomics Lab, Biotechnology Unit, Department of Botany (UGC-Centre of Advanced Study), Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Jawahar Singh
- Plant Functional Genomics Lab, Biotechnology Unit, Department of Botany (UGC-Centre of Advanced Study), Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Chaya Chouhan
- Plant Functional Genomics Lab, Biotechnology Unit, Department of Botany (UGC-Centre of Advanced Study), Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Nisha Tak
- BNF and Microbial Genomics Lab, Department of Botany (UGC-Centre of Advanced Study), Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
31
|
Athar HUR, Zulfiqar F, Moosa A, Ashraf M, Zafar ZU, Zhang L, Ahmed N, Kalaji HM, Nafees M, Hossain MA, Islam MS, El Sabagh A, Siddique KHM. Salt stress proteins in plants: An overview. FRONTIERS IN PLANT SCIENCE 2022; 13:999058. [PMID: 36589054 PMCID: PMC9800898 DOI: 10.3389/fpls.2022.999058] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 05/04/2023]
Abstract
Salinity stress is considered the most devastating abiotic stress for crop productivity. Accumulating different types of soluble proteins has evolved as a vital strategy that plays a central regulatory role in the growth and development of plants subjected to salt stress. In the last two decades, efforts have been undertaken to critically examine the genome structure and functions of the transcriptome in plants subjected to salinity stress. Although genomics and transcriptomics studies indicate physiological and biochemical alterations in plants, it do not reflect changes in the amount and type of proteins corresponding to gene expression at the transcriptome level. In addition, proteins are a more reliable determinant of salt tolerance than simple gene expression as they play major roles in shaping physiological traits in salt-tolerant phenotypes. However, little information is available on salt stress-responsive proteins and their possible modes of action in conferring salinity stress tolerance. In addition, a complete proteome profile under normal or stress conditions has not been established yet for any model plant species. Similarly, a complete set of low abundant and key stress regulatory proteins in plants has not been identified. Furthermore, insufficient information on post-translational modifications in salt stress regulatory proteins is available. Therefore, in recent past, studies focused on exploring changes in protein expression under salt stress, which will complement genomic, transcriptomic, and physiological studies in understanding mechanism of salt tolerance in plants. This review focused on recent studies on proteome profiling in plants subjected to salinity stress, and provide synthesis of updated literature about how salinity regulates various salt stress proteins involved in the plant salt tolerance mechanism. This review also highlights the recent reports on regulation of salt stress proteins using transgenic approaches with enhanced salt stress tolerance in crops.
Collapse
Affiliation(s)
- Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Nadeem Ahmed
- College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Botany, Mohy-ud-Din Islamic University, Nerian Sharif, Pakistan
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Sohidul Islam
- Department of Agronomy, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Ayman El Sabagh
- Faculty of Agriculture, Department of Field Crops, Siirt University, Siirt, Türkiye
- Agronomy Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth WA, Australia
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| |
Collapse
|
32
|
Ma TL, Li WJ, Hong YS, Zhou YM, Tian L, Zhang XG, Liu FL, Liu P. TMT based proteomic profiling of Sophora alopecuroides leaves reveal flavonoid biosynthesis processes in response to salt stress. J Proteomics 2021; 253:104457. [PMID: 34933133 DOI: 10.1016/j.jprot.2021.104457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Salt stress is the major abiotic stress worldwide, adversely affecting crop yield and quality. Utilizing salt tolerance genes for the genetic breeding of crops is one of the most effective measures to withstand salinization. Sophora alopecuroides is a well-known saline-alkaline and drought-tolerant medicinal plant. Understanding the underlying molecular mechanism for Sophora alopecuroides salt tolerance is crucial to identifying the salt-tolerant genes. In this study, we performed tandem mass tag (TMT) based proteomic profiling of S. alopecuroides leaves under 150 mM NaCl induced salt stress condition for 3 d and 7 d. Data are available on ProteomeXchange (PXD027627). Furthermore, the proteomic findings were validated through parallel reaction monitoring (PRM). We observed that the expression levels of several transporter proteins related to the secondary messenger signaling pathway were altered under salt stress conditions induced for 3 d. However, the expression of the certain transferase, oxidoreductase, dehydrogenase, which are involved in the biosynthesis of flavonoids, alkaloids, phenylpropanoids, and amino acid metabolism, were mainly alerted after 7 d post-salt-stress induction. Several potential genes that might be involved in salt stress conditions were identified; however, it demands further investigation. Although salt stress affects the level of secondary metabolites, their correlation needs to be investigated further. SIGNIFICANCE: Salinization is the most severe abiotic adversity, which has had a significant negative effect on world food security over the time. Excavating salt-tolerant genes from halophytes or medicinal plants is one of the important measures to cope with salt stress. S. alopecuroides is a well-known medicinal plant with anti-tumor, anti-inflammatory, and antibacterial effects, anti-saline properties, and resistance to drought stress. Currently, only a few studies have explored the S. alopecuroides' gene function, and regulation and these studies are mostly related to the unpublished genome sequence information of S. alopecuroides. Recently, transcriptomics and metabolomics studies have been carried on the abiotic stress in S. alopecuroides roots. Multiple studies have shown that altered gene expression at the transcript level and altered metabolite levels do not correspond to the altered protein levels. In this study, TMT and PRM based proteomic analyses of S. alopecuroides leaves under salt stress condition induced using 150 mM NaCl for 3 d and 7 d was performed. These analyses elucidated the activation of different mechanisms in response to salt stress. A total of 434 differentially abundant proteins (DAPs) in salt stress conditions were identified and analyzed. For the first time, this study utilized proteomics technology to dig out plentiful underlying salt-tolerant genes from the medicinal plant, S. alopecuroides. We believe that this study will be of great significance to crop genetics and breeding.
Collapse
Affiliation(s)
- Tian-Li Ma
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China.
| | - Wen-Juan Li
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Yuan-Shu Hong
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Yu-Mei Zhou
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Lei Tian
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Xiao-Gang Zhang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Feng-Lou Liu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Ping Liu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
33
|
Goussi R, Manfredi M, Marengo E, Derbali W, Cantamessa S, Barbato R, Manaa A. Thylakoid proteome variation of Eutrema salsugineum in response to drought and salinity combined stress. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148482. [PMID: 34418359 DOI: 10.1016/j.bbabio.2021.148482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/30/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022]
Abstract
It is well known that plant responses to stress involve different events occurring at different places of the cell/leaf and at different time scales in relation with the plant development. In fact, the organelles proteomes include a wide range of proteins that could include a wide range of proteins showing a considerable change in cellular functions and metabolism process. On this basis, a comparative proteomics analysis and fluorescence induction measurements were performed to investigate the photosynthetic performance and the relative thylakoid proteome variation in Eutrema salsugineum cultivated under salt stress (200 mM NaCl), water deficit stress (PEG) and combined treatment (PEG + NaCl) as a hyperosmotic stress. The obtained results showed a significant decrease of plant growth under drought stress conditions, with the appearance of some toxicity symptoms, especially in plants subjected to combined treatment. Application of salt or water stress alone showed no apparent change in the chlorophyll a fluorescence transients, primary photochemistry (fluorescence kinetics of the O-J phase), the PQ pool state (J-I phase changes), (Fv/Fm) and (Fk/Fj) ratios. However, a considerable decrease of all these parameters was observed under severe osmotic stress (PEG + NaCl). The thylakoid proteome analysis revealed 58 proteins showing a significant variation in their abundance between treatments (up or down regulation). The combined treatment (PEG + NaCl) induced a decrease in the expression of the whole PSII core subunit (D1, D2, CP43, CP47, PsbE and PsbH), whereas the OEC subunits proteins remained constant. An increase in the amount of PsaD, PsaE, PsaF, PsaH, PsaK and PsaN was detected under drought stress (PEG5%). No significant change in the accumulation of Cyt b6 and Cyt f was observed. Some regulated proteins involved in cellular redox homeostasis were detected (glutamine synthetase, phosphoglycerate kinase, transketolase), and showed a significant decrease under the combined treatment. Some oxidative stress related proteins were significantly up-regulated under salt or drought stress and could play a crucial role in the PSI photoprotection and the control of ROS production level.
Collapse
Affiliation(s)
- Rahma Goussi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia; Faculté des Sciences de Tunis, Université Tunis El Manar, 2092, Tunisia; Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune & Allergic Diseases - CAAD, University of Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Walid Derbali
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia; Faculté des Sciences de Tunis, Université Tunis El Manar, 2092, Tunisia
| | - Simone Cantamessa
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy; CREA - Research Centre for Forestry and Wood - Italy
| | - Roberto Barbato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Arafet Manaa
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia.
| |
Collapse
|
34
|
Rodriguez MC, Mehta D, Tan M, Uhrig RG. Quantitative Proteome and PTMome Analysis of Arabidopsis thaliana Root Responses to Persistent Osmotic and Salinity Stress. PLANT & CELL PHYSIOLOGY 2021; 62:1012-1029. [PMID: 34059891 DOI: 10.1093/pcp/pcab076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Abiotic stresses such as drought result in large annual economic losses around the world. As sessile organisms, plants cannot escape the environmental stresses they encounter but instead must adapt to survive. Studies investigating plant responses to osmotic and/or salt stress have largely focused on short-term systemic responses, leaving our understanding of intermediate to longer-term adaptation (24 h to d) lacking. In addition to protein abundance and phosphorylation changes, evidence suggests reversible lysine acetylation may also be important for abiotic stress responses. Therefore, to characterize the protein-level effects of osmotic and salt stress, we undertook a label-free proteomic analysis of Arabidopsis thaliana roots exposed to 300 mM mannitol and 150 mM NaCl for 24 h. We assessed protein phosphorylation, lysine acetylation and changes in protein abundance, detecting significant changes in 245, 35 and 107 total proteins, respectively. Comparison with available transcriptome data indicates that transcriptome- and proteome-level changes occur in parallel, while post-translational modifications (PTMs) do not. Further, we find significant changes in PTMs, and protein abundance involve different proteins from the same networks, indicating a multifaceted regulatory approach to prolonged osmotic and salt stress. In particular, we find extensive protein-level changes involving sulfur metabolism under both osmotic and salt conditions as well as changes in protein kinases and transcription factors that may represent new targets for drought stress signaling. Collectively, we find that protein-level changes continue to occur in plant roots 24 h from the onset of osmotic and salt stress and that these changes differ across multiple proteome levels.
Collapse
Affiliation(s)
- Maria C Rodriguez
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
- These authors contributed equally to the work
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
- These authors contributed equally to the work
| | - Maryalle Tan
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
| | - Richard G Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
35
|
Xiong E, Zhang C, Ye C, Jiang Y, Zhang Y, Chen F, Dong G, Zeng D, Yu Y, Wu L. iTRAQ-based proteomic analysis provides insights into the molecular mechanisms of rice formyl tetrahydrofolate deformylase in salt response. PLANTA 2021; 254:76. [PMID: 34533642 DOI: 10.1007/s00425-021-03723-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
A new molecular mechanism of tetrahydrofolate deformylase involved in the salt response presumably affects mitochondrial and chloroplast function by regulating energy metabolism and accumulation of reactive oxygen species. High salinity severely restrains plant growth and development, consequently leading to a reduction in grain yield. It is therefore critical to identify the components involved in plant salt resistance. In our previous study, we identified a rice leaf early-senescence mutant hpa1, which encodes a formyl tetrahydrofolate deformylase (Xiong et al. in Sci China Life Sci 64(5):720-738, 2021). Here, we report that HPA1 also plays a role in the salt response. To explore the molecular mechanism of HPA1 in salt resistance, we attempted to identify the differentially expressed proteins between wild type and hpa1 mutant for salinity treatment using an iTRAQ-based comparative protein quantification approach. A total of 4598 proteins were identified, of which 279 were significantly altered, including 177 up- and 102 down-regulated proteins. A functional analysis suggested that the 279 differentially expressed proteins are involved mainly in the regulation of oxidative phosphorylation, phenylpropanoid biosynthesis, photosynthesis, posttranslational modifications, protein turnover and energy metabolism. Moreover, a deficiency in HPA1 impaired chlorophyll metabolism and photosynthesis in chloroplasts and affected the electron flow of the electron transport chain in mitochondria. These changes led to abnormal energy metabolism and accumulation of reactive oxygen species, which may affect the permeability and integrity of cell membranes, leading to cell death. In addition, the results were verified by transcriptional or physiological experiments. Our results provide an insight into a new molecular mechanism of the tetrahydrofolate cycle protein formyl tetrahydrofolate deformylase, which is involved in the salt response, presumably by affecting mitochondrial and chloroplast function regulating energy metabolism and accumulation of reactive oxygen species under salt stress.
Collapse
Affiliation(s)
- Erhui Xiong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chen Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chenxi Ye
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yaohuang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
36
|
Saini S, Kaur N, Marothia D, Singh B, Singh V, Gantet P, Pati PK. Morphological Analysis, Protein Profiling and Expression Analysis of Auxin Homeostasis Genes of Roots of Two Contrasting Cultivars of Rice Provide Inputs on Mechanisms Involved in Rice Adaptation towards Salinity Stress. PLANTS 2021; 10:plants10081544. [PMID: 34451587 PMCID: PMC8399380 DOI: 10.3390/plants10081544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/02/2021] [Accepted: 07/24/2021] [Indexed: 11/26/2022]
Abstract
Plants remodel their root architecture in response to a salinity stress stimulus. This process is regulated by an array of factors including phytohormones, particularly auxin. In the present study, in order to better understand the mechanisms involved in salinity stress adaptation in rice, we compared two contrasting rice cultivars—Luna Suvarna, a salt tolerant, and IR64, a salt sensitive cultivar. Phenotypic investigations suggested that Luna Suvarna in comparison with IR64 presented stress adaptive root traits which correlated with a higher accumulation of auxin in its roots. The expression level investigation of auxin signaling pathway genes revealed an increase in several auxin homeostasis genes transcript levels in Luna Suvarna compared with IR64 under salinity stress. Furthermore, protein profiling showed 18 proteins that were differentially regulated between the roots of two cultivars, and some of them were salinity stress responsive proteins found exclusively in the proteome of Luna Suvarna roots, revealing the critical role of these proteins in imparting salinity stress tolerance. This included proteins related to the salt overly sensitive pathway, root growth, the reactive oxygen species scavenging system, and abscisic acid activation. Taken together, our results highlight that Luna Suvarna involves a combination of morphological and molecular traits of the root system that could prime the plant to better tolerate salinity stress.
Collapse
Affiliation(s)
- Shivani Saini
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
| | - Navdeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
| | - Deeksha Marothia
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
| | - Baldev Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
| | - Varinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
| | - Pascal Gantet
- Université de Montpellier, UMR DIADE, Centre de Recherche de l’IRD, Avenue Agropolis, BP 64501, CEDEX 5, 34394 Montpellier, France
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Molecular Biology, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Correspondence: (P.G.); (P.K.P.)
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
- Correspondence: (P.G.); (P.K.P.)
| |
Collapse
|
37
|
Huangfu Y, Pan J, Li Z, Wang Q, Mastouri F, Li Y, Yang S, Liu M, Dai S, Liu W. Genome-wide identification of PTI1 family in Setaria italica and salinity-responsive functional analysis of SiPTI1-5. BMC PLANT BIOLOGY 2021; 21:319. [PMID: 34217205 PMCID: PMC8254068 DOI: 10.1186/s12870-021-03077-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/27/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND PTI1 (Pto-interacting 1) protein kinase belongs to the receptor-like cytoplasmic kinase (RLCK) group of receptor-like protein kinases (RLK), but lack extracellular and transmembrane domains. PTI1 was first identified in tomato (Solanum lycopersicum) and named SlPTI1, which has been reported to interact with bacterial effector Pto, a serine/threonine protein kinase involved in plant resistance to bacterial disease. Briefly, the host PTI1 specifically recognizes and interacts with the bacterial effector AvrPto, which triggers hypersensitive cell death to inhibit the pathogen growth in the local infection site. Previous studies have demonstrated that PTI1 is associated with oxidative stress and hypersensitivity. RESULTS We identified 12 putative PTI1 genes from the genome of foxtail millet (Setaria italica) in this study. Gene replication analysis indicated that both segmental replication events played an important role in the expansion of PTI1 gene family in foxtail millet. The PTI1 family members of model plants, i.e. S. italica, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), maize (Zea mays), S. lycopersicum, and soybean (Glycine max), were classified into six major categories according to the phylogenetic analysis, among which the PTI1 family members in foxtail millet showed higher degree of homology with those of rice and maize. The analysis of a complete set of SiPTI1 genes/proteins including classification, chromosomal location, orthologous relationships and duplication. The tissue expression characteristics revealed that SiPTI1 genes are mainly expressed in stems and leaves. Experimental qRT-PCR results demonstrated that 12 SiPTI1 genes were induced by multiple stresses. Subcellular localization visualized that all of foxtail millet SiPTI1s were localized to the plasma membrane. Additionally, heterologous expression of SiPTI1-5 in yeast and E. coli enhanced their tolerance to salt stress. CONCLUSIONS Our results contribute to a more comprehensive understanding of the roles of PTI1 protein kinases and will be useful in prioritizing particular PTI1 for future functional validation studies in foxtail millet.
Collapse
Affiliation(s)
- Yongguan Huangfu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Jiaowen Pan
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Zhen Li
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Qingguo Wang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Fatemeh Mastouri
- Bota Bioscience, 325 Vassar st. Suite 2a, Cambridge, MA, 02139, USA
| | - Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Stephen Yang
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr, Rockville, MD, 20850, USA
| | - Min Liu
- Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Wei Liu
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
38
|
Naing AH, Kim CK. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. PHYSIOLOGIA PLANTARUM 2021; 172:1711-1723. [PMID: 33605458 DOI: 10.1111/ppl.13373] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 05/23/2023]
Abstract
Abiotic stresses, such as heat, drought, salinity, low temperature, and heavy metals, inhibit plant growth and reduce crop productivity. Abiotic stresses are becoming increasingly extreme worldwide due to the ongoing deterioration of the global climate and the increase in agrochemical utilization and industrialization. Plants grown in fields are affected by one or more abiotic stresses. The consequent stress response of plants induces reactive oxygen species (ROS), which are then used as signaling molecules to activate stress-tolerance mechanism. However, under extreme stress conditions, ROS are overproduced and cause oxidative damage to plants. In such conditions, plants produce anthocyanins after ROS signaling via the transcription of anthocyanin biosynthesis genes. These anthocyanins are then utilized in antioxidant activities by scavenging excess ROS for their sustainability. In this review, we discuss the physiological, biochemical, and molecular mechanisms underlying abiotic stress-induced anthocyanins in plants and their role in abiotic stress tolerance. In addition, we highlight the current progress in the development of anthocyanin-enriched transgenic plants and their ability to increase abiotic stress tolerance. Overall, this review provides valuable information that increases our understanding of the mechanisms by which anthocyanins respond to abiotic stress and protect plants against it. This review also provides practical guidance for plant biologists who are engineering stress-tolerant crops using anthocyanin biosynthesis or regulatory genes.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Chang Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
39
|
Leschevin M, Marcelo P, Ismael M, San-Clemente H, Jamet E, Rayon C, Pageau K. A Tandem Mass Tags (TMTs) labeling approach highlights differences between the shoot proteome of two Arabidopsis thaliana ecotypes, Col-0 and Ws. Proteomics 2021; 21:e2000293. [PMID: 33891803 DOI: 10.1002/pmic.202000293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Arabidopsis has become a powerful model to study morphogenesis, plant growth, development but also plant response to environmental conditions. Over 1000 Arabidopsis genomes are available and show natural genetic variations. Among them, the main reference accessions Wassilewskija (Ws) and Columbia (Col-0), originally growing at contrasted altitudes and temperatures, are widely studied, but data contributing to their molecular phenotyping are still scarce. A global quantitative proteomics approach using isobaric stable isotope labeling (Tandem Mass Tags, TMT) was performed on Ws and Col-0. Plants have been hydroponically grown at 16 h/8 h (light/dark cycle) at 23°C day/19°C night for three weeks. A TMT labeling of the proteins extracted from their shoots has been performed and showed a differential pattern of protein abundance between them. These results have allowed identifying several proteins families possibly involved in the differential responses observed for Ws and Col-0 during plant development and upon environmental changes. In particular, Ws and Col-0 mainly differ in photosynthesis, cell wall-related proteins, plant defense/stress, ROS scavenging enzymes/redox homeostasis and DNA/RNA binding/transcription/translation/protein folding.
Collapse
Affiliation(s)
- Maïté Leschevin
- UMRT 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| | - Paulo Marcelo
- Plateforme d'Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, Amiens, France
| | - Marwa Ismael
- UMRT 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| | | | - Elisabeth Jamet
- LRSV, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Catherine Rayon
- UMRT 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| | - Karine Pageau
- UMRT 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
40
|
Hounslow E, Evans CA, Pandhal J, Sydney T, Couto N, Pham TK, Gilmour DJ, Wright PC. Quantitative proteomic comparison of salt stress in Chlamydomonas reinhardtii and the snow alga Chlamydomonas nivalis reveals mechanisms for salt-triggered fatty acid accumulation via reallocation of carbon resources. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:121. [PMID: 34022944 PMCID: PMC8141184 DOI: 10.1186/s13068-021-01970-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/13/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Chlamydomonas reinhardtii is a model green alga strain for molecular studies; its fully sequenced genome has enabled omic-based analyses that have been applied to better understand its metabolic responses to stress. Here, we characterised physiological and proteomic changes between a low-starch C. reinhardtii strain and the snow alga Chlamydomonas nivalis, to reveal insights into their contrasting responses to salinity stress. RESULTS Each strain was grown in conditions tailored to their growth requirements to encourage maximal fatty acid (as a proxy measure of lipid) production, with internal controls to allow comparison points. In 0.2 M NaCl, C. nivalis accumulates carbohydrates up to 10.4% DCW at 80 h, and fatty acids up to 52.0% dry cell weight (DCW) over 12 days, however, C. reinhardtii does not show fatty acid accumulation over time, and shows limited carbohydrate accumulation up to 5.5% DCW. Analysis of the C. nivalis fatty acid profiles showed that salt stress improved the biofuel qualities over time. Photosynthesis and respiration rates are reduced in C. reinhardtii relative to C. nivalis in response to 0.2 M NaCl. De novo sequencing and homology matching was used in conjunction with iTRAQ-based quantitative analysis to identify and relatively quantify proteomic alterations in cells exposed to salt stress. There were abundance differences in proteins associated with stress, photosynthesis, carbohydrate and lipid metabolism proteins. In terms of lipid synthesis, salt stress induced an increase in dihydrolipoyl dehydrogenase in C. nivalis (1.1-fold change), whilst levels in C. reinhardtii remained unaffected; this enzyme is involved in acetyl CoA production and has been linked to TAG accumulation in microalgae. In salt-stressed C. nivalis there were decreases in the abundance of UDP-sulfoquinovose (- 1.77-fold change), which is involved in sulfoquinovosyl diacylglycerol metabolism, and in citrate synthase (- 2.7-fold change), also involved in the TCA cycle. Decreases in these enzymes have been shown to lead to increased TAG production as fatty acid biosynthesis is favoured. Data are available via ProteomeXchange with identifier PXD018148. CONCLUSIONS These differences in protein abundance have given greater understanding of the mechanism by which salt stress promotes fatty acid accumulation in the un-sequenced microalga C. nivalis as it switches to a non-growth state, whereas C. reinhardtii does not have this response.
Collapse
Affiliation(s)
- E Hounslow
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - C A Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| | - J Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - T Sydney
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - N Couto
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - T K Pham
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - D James Gilmour
- Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - P C Wright
- University of Southampton, University Road, Southampton, SO17 1BJ, UK
| |
Collapse
|
41
|
Wang M, Ren T, Huang R, Li Y, Zhang C, Xu Z. Overexpression of an Apocynum venetum flavonols synthetase gene confers salinity stress tolerance to transgenic tobacco plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:667-676. [PMID: 33780740 DOI: 10.1016/j.plaphy.2021.03.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/16/2021] [Indexed: 05/27/2023]
Abstract
Soil salinity is a major limiting factor for agricultural production, threatening food security worldwide. A thorough understanding of the mechanisms underlying plant responses is required to effectively counter its deleterious effects on crop productivity. Total flavonoid accumulation reportedly improves salinity tolerance in many crops. Therefore, we isolated the full-length cDNA of a flavonol synthetase (FLS) gene from Apocynum venetum (AvFLS). The gene contained a 1008-bp open reading frame encoding a protein composed of 335 amino acid residues. Multiple sequence alignment showed that the AvFLS protein was highly homologous to FLSs from other plants. AvFLS was expressed in leaves, stems, roots, flowers, and germinated seeds. Expression pattern analysis revealed that AvFLS was significantly induced by salinity stress. AvFLS overexpression in tobacco positively affected the development and growth of transgenic plants under salinity stress: root and seedling growth were inhibited to a lesser extent, while seed germination rate increased. Additionally, the overexpression of AvFLS under salinity stress resulted in an increase in total flavonoid content (1.63 mg g-1 in wild-type samples and 4.63 mg g-1 on average in transgenic samples), which accompanied the increase in the activity of antioxidant enzymes and inhibited the production of reactive oxygen species. Further, AvFLS-overexpressing transgenic tobacco plants absorbed more K+ than wild type plants, leading to an increased K+/Na+ ratio, which in turn contributed to the maintenance of Na+/K+ homeostasis. These findings suggest that an AvFLS-induced increase in total flavonoid content enhanced plant salinity tolerance, implying the importance of AvFLS gene responses to salinity stress.
Collapse
Affiliation(s)
- Meng Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tingting Ren
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ruihuan Huang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; China Tobacco Guangxi Industrial Co., Ltd., Nanming, 530000, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zongchang Xu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
42
|
Down-Regulation of SlGRAS10 in Tomato Confers Abiotic Stress Tolerance. Genes (Basel) 2021; 12:genes12050623. [PMID: 33922069 PMCID: PMC8143468 DOI: 10.3390/genes12050623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
Adverse environmental factors like salt stress, drought, and extreme temperatures, cause damage to plant growth, development, and crop yield. GRAS transcription factors (TFs) have numerous functions in biological processes. Some studies have reported that the GRAS protein family plays significant functions in plant growth and development under abiotic stresses. In this study, we demonstrated the functional characterization of a tomato SlGRAS10 gene under abiotic stresses such as salt stress and drought. Down-regulation of SlGRAS10 by RNA interference (RNAi) produced dwarf plants with smaller leaves, internode lengths, and enhanced flavonoid accumulation. We studied the effects of abiotic stresses on RNAi and wild-type (WT) plants. Moreover, SlGRAS10-RNAi plants were more tolerant to abiotic stresses (salt, drought, and Abscisic acid) than the WT plants. Down-regulation of SlGRAS10 significantly enhanced the expressions of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) to reduce the effects of reactive oxygen species (ROS) such as O2− and H2O2. Malondialdehyde (MDA) and proline contents were remarkably high in SlGRAS10-RNAi plants. Furthermore, the expression levels of chlorophyll biosynthesis, flavonoid biosynthesis, and stress-related genes were also enhanced under abiotic stress conditions. Collectively, our conclusions emphasized the significant function of SlGRAS10 as a stress tolerate transcription factor in a certain variety of abiotic stress tolerance by enhancing osmotic potential, flavonoid biosynthesis, and ROS scavenging system in the tomato plant.
Collapse
|
43
|
Wei MY, Liu JY, Li H, Hu WJ, Shen ZJ, Qiao F, Zhu CQ, Chen J, Liu X, Zheng HL. Proteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlings. Nitric Oxide 2021; 111-112:14-30. [PMID: 33839259 DOI: 10.1016/j.niox.2021.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 01/31/2023]
Abstract
Hydrogen sulfide (H2S) is an important gaseous signal molecule which participates in various abiotic stress responses. However, the underlying mechanism of H2S associated salt tolerance remains elusive. In this study, sodium hydrosulfide (NaHS, donor of H2S) was used to investigate the protective role of H2S against salt stress at the biochemical and proteomic levels. Antioxidant activity and differentially expressed proteins (DEPs) of rice seedlings treated by NaCl or/and exogenous H2S were investigated by the methods of biochemical approaches and comparative proteomic analysis. The protein-protein interaction (PPI) analysis was used for understanding the interaction networks of stress responsive proteins. In addition, relative mRNA levels of eight selected identified DEPs were analyzed by quantitative real-time PCR. The result showed that H2S alleviated oxidative damage caused by salt stress in rice seedling. The activities of some antioxidant enzymes and glutathione metabolism were mediated by H2S under salt stress. Proteomics analyses demonstrated that NaHS regulated antioxidant related proteins abundances and affected related enzyme activities under salt stress. Proteins related to light reaction system (PsbQ domain protein, plastocyanin oxidoreductase iron-sulfur protein), Calvin cycle (phosphoglycerate kinase, sedoheptulose-1,7-bisphosphatase precursor, ribulose-1,5-bisphosphate carboxylase/oxygenase) and chlorophyll biosynthesis (glutamate-1-semialdehyde 2,1-aminomutase, coproporphyrinogen III oxidase) are important for NaHS against salt stress. ATP synthesis related proteins, malate dehydrogenase and 2, 3-bisphosphoglycerate-independent phosphoglycerate mutase were up-regulated by NaHS under salt stress. Protein metabolism related proteins and cell structure related proteins were recovered or up-regulated by NaHS under salt stress. The PPI analysis further unraveled a complicated regulation network among above biological processes to enhance the tolerance of rice seedling to salt stress under H2S treatment. Overall, our results demonstrated that H2S takes protective roles in salt tolerance by mitigating oxidative stress, recovering photosynthetic capacity, improving primary and energy metabolism, strengthening protein metabolism and consolidating cell structure in rice seedlings.
Collapse
Affiliation(s)
- Ming-Yue Wei
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Ji-Yun Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Huan Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Wen-Jun Hu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China; Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310021, PR China
| | - Zhi-Jun Shen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Fang Qiao
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Chun-Quan Zhu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Xiang Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China.
| |
Collapse
|
44
|
Li J, Wang Y, Wei H, Kang X. Comparative proteomic analysis provides insight into the molecular mechanism of vegetative growth advantage in allotriploid Populus. Genomics 2021; 113:1180-1192. [PMID: 33677055 DOI: 10.1016/j.ygeno.2021.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/04/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
Though allotriploid poplar shows a salient vegetative growth advantage that impacts biomass and lumber yield, the proteomic data of Populus allotriploids have not been scrutinized for identifying the underlying molecular mechanisms. We conducted a large-scale label-free proteomics profiling of the 5th, 10th, and 25th leaves of allotriploids and diploids, and identified 4587 protein groups. Among 932 differentially expressed proteins (DEPs), 22 are transcription factors (TFs) that could regulate vegetative growth advantage in allotriploids. The DEPs involved in light reaction, Calvin cycle, and photorespiration, protein synthesis, sucrose synthesis, starch synthesis, and starch decomposition displayed elevated expression in Populus allotriploids. However, the DEPs functioning in sucrose decomposition, tricarboxylic acid (TCA) cycle, and protein degradation exhibited significantly downregulated expression. The alternations of these DEPs augmented efficiency of photosynthesis, carbon fixation, sucrose and starch accumulation, and decreased capacity of carbohydrate consumption, leading to larger volume of biomass and vigorous growth in Populus allotriploids.
Collapse
Affiliation(s)
- Jiang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, PR China
| | - Yi Wang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton 49931, USA
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, PR China; National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, PR China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
45
|
Transcriptional profiling of two contrasting genotypes uncovers molecular mechanisms underlying salt tolerance in alfalfa. Sci Rep 2021; 11:5210. [PMID: 33664362 PMCID: PMC7933430 DOI: 10.1038/s41598-021-84461-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
Alfalfa is an important forage crop that is moderately tolerant to salinity; however, little is known about its salt-tolerance mechanisms. We studied root and leaf transcriptomes of a salt-tolerant (G03) and a salt-sensitive (G09) genotype, irrigated with waters of low and high salinities. RNA sequencing led to 1.73 billion high-quality reads that were assembled into 418,480 unigenes; 35% of which were assigned to 57 Gene Ontology annotations. The unigenes were assigned to pathway databases for understanding high-level functions. The comparison of two genotypes suggested that the low salt tolerance index for transpiration rate and stomatal conductance of G03 compared to G09 may be due to its reduced salt uptake under salinity. The differences in shoot biomass between the salt-tolerant and salt-sensitive lines were explained by their differential expressions of genes regulating shoot number. Differentially expressed genes involved in hormone-, calcium-, and redox-signaling, showed treatment- and genotype-specific differences and led to the identification of various candidate genes involved in salinity stress, which can be investigated further to improve salinity tolerance in alfalfa. Validation of RNA-seq results using qRT-PCR displayed a high level of consistency between the two experiments. This study provides valuable insight into the molecular mechanisms regulating salt tolerance in alfalfa.
Collapse
|
46
|
Xu Z, Chen X, Lu X, Zhao B, Yang Y, Liu J. Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:315-328. [PMID: 33545609 DOI: 10.1016/j.plaphy.2021.01.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Soil salinity is among the crucial factors that impact on crop productivity, including oat (Avena sativa L.). Herein, we used two distinct oat cultivars with varied salt tolerance levels to unravel adaptive responses to salt stress by metabolomic and transcriptomic characterization. Metabolomic profiling revealed 201 metabolites, including saccharides, amino acids, organic acids, and secondary metabolites. The levels of most saccharides and amino acids were elevated in Baiyan 2 (BY2) as well as in Baiyan 5 (BY5) exposed to salt stress. In the tolerant cultivar BY2 exposed to 150 mM NaCl, concentrations of most of the metabolites increased significantly, with sucrose increased by 38.34-fold, Sophorose increased by 314.15-fold and Isomaltose 2 increased by 25.76-fold. In the sensitive cultivar BY5, the concentrations of most metabolites increased after the plant was exposed to 150 mM NaCl but decreased after the plant was exposed to 300 mM NaCl. Transcriptomic analysis revealed that gene expressions in BY5 were significantly affected under exposure to 300 mM NaCl (34040 genes up-regulated and 14757 genes down-regulated). Assessment of metabolic pathways as well as KEGG enrichment revealed that salt stress interferes with the biosynthesis of two oat cultivars, including capacity expenditure and sugar metabolism. Most of the BY2 genes enhanced energy consumption (for example, glycolysis) and biosynthesis (for instance, starch and sugar metabolism) under salt stress. In contrast, genes in BY5 were found to be down-regulated, leading to the inhibition of energy consumption and biosynthesis, which may also be attributed to salt sensitivity in BY5. In addition, the modified Na+/K+ transporter genes expression is associated with the predominant ionic responses in BY2, which leads low concentration of Na+ and high K+ when exposed to high salt situations. These findings suggest that the varied defensive capacities of these two oat cultivars in response to salt stress are due to their variations in energy-expenditure strategy, synthesis of energy substances and ion transport in roots. Our present study offers a crucial reference for oat cultivation under saline soil.
Collapse
Affiliation(s)
- Zhongshan Xu
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China; Cereal Engineering Technology Research Center, Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, 010019, China; National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, Inner Mongolia, 010019, China
| | - Xiaojing Chen
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China; Cereal Engineering Technology Research Center, Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, 010019, China; National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, Inner Mongolia, 010019, China
| | - Xiaoping Lu
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China
| | - Baoping Zhao
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China; Cereal Engineering Technology Research Center, Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, 010019, China; National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, Inner Mongolia, 010019, China
| | - Yanming Yang
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China; Cereal Engineering Technology Research Center, Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, 010019, China; National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, Inner Mongolia, 010019, China
| | - Jinghui Liu
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China; Cereal Engineering Technology Research Center, Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, 010019, China; National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, Inner Mongolia, 010019, China.
| |
Collapse
|
47
|
Zhu Y, Wang Q, Wang Y, Xu Y, Li J, Zhao S, Wang D, Ma Z, Yan F, Liu Y. Combined Transcriptomic and Metabolomic Analysis Reveals the Role of Phenylpropanoid Biosynthesis Pathway in the Salt Tolerance Process of Sophora alopecuroides. Int J Mol Sci 2021; 22:ijms22052399. [PMID: 33673678 PMCID: PMC7957753 DOI: 10.3390/ijms22052399] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Salt stress is the main abiotic stress that limits crop yield and agricultural development. Therefore, it is imperative to study the effects of salt stress on plants and the mechanisms through which plants respond to salt stress. In this study, we used transcriptomics and metabolomics to explore the effects of salt stress on Sophora alopecuroides. We found that salt stress incurred significant gene expression and metabolite changes at 0, 4, 24, 48, and 72 h. The integrated transcriptomic and metabolomic analysis revealed that the differentially expressed genes (DEGs) and differential metabolites (DMs) obtained in the phenylpropanoid biosynthesis pathway were significantly correlated under salt stress. Of these, 28 DEGs and seven DMs were involved in lignin synthesis and 23 DEGs and seven DMs were involved in flavonoid synthesis. Under salt stress, the expression of genes and metabolites related to lignin and flavonoid synthesis changed significantly. Lignin and flavonoids may participate in the removal of reactive oxygen species (ROS) in the root tissue of S. alopecuroides and reduced the damage caused under salt stress. Our research provides new ideas and genetic resources to study the mechanism of plant responses to salt stress and further improve the salt tolerance of plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fan Yan
- Correspondence: (F.Y.); (Y.L.)
| | | |
Collapse
|
48
|
The effect of salt stress on the production of apocarotenoids and the expression of genes related to their biosynthesis in saffron. Mol Biol Rep 2021; 48:1707-1715. [PMID: 33611780 DOI: 10.1007/s11033-021-06219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Saffron stigmas are widely used as food additives and as traditional medicine in Iran and many other countries. The unique taste, flavor and pharmaceutical properties of saffron stigmas are due to the presence of three apocarotenoids secondary metabolites crocin, picrocrocin and safranal. There is limited knowledge about the effect of environmental stresses on the metabolism of apocarotenoids in saffron. We analyzed the content of crocin and picrocrocin and the expression of key genes of apocarotenoid biosynthesis pathways (CsCCD2, CsCCD4, CsUGT2, CsCHY-β and CsLCYB) in saffron plants exposed to moderate (90 mM) and high (150 mM) salt (NaCl) concentrations. Measuring ion concentrations in leaves showed an increased accumulation of Na+ and decreased uptake of K+ in salt treated compared to control plants indicating an effective salt stress. HPLC analysis of apocarotenoids revealed that crocin production was significantly halted (P < 0.05) with increasing salt concentration while picrocrocin level did not change with moderate salt but significantly dropped by high salt concentration. Real-time PCR analysis revealed a progressive decrease in transcript levels of CsUGT2 and CsLCYB genes with increasing salt concentration (P < 0.05). The expression of CsCCD2 and CsCHY-β tolerated moderate salt concentration but significantly downregulated with high salt concentration. CsCCD4 however responded differently to salt concentration being decreased with moderate salt but increased at higher salt concentration. Our result suggested that salt stress had an adverse effect on the production of saffron apocarotenoids and it is likely influencing the quality of saffron stigma produced.
Collapse
|
49
|
Selection and Validation of Reference Genes for RT-qPCR Analysis in Spinacia oleracea under Abiotic Stress. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4853632. [PMID: 33623781 PMCID: PMC7875621 DOI: 10.1155/2021/4853632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/16/2021] [Indexed: 11/17/2022]
Abstract
Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is an accurate and convenient method for mRNA quantification. Selection of optimal reference gene(s) is an important step in RT-qPCR experiments. However, the stability of housekeeping genes in spinach (Spinacia oleracea) under various abiotic stresses is unclear. Evaluating the stability of candidate genes and determining the optimal gene(s) for normalization of gene expression in spinach are necessary to investigate the gene expression patterns during development and stress response. In this study, ten housekeeping genes, 18S ribosomal RNA (18S rRNA), actin, ADP ribosylation factor (ARF), cytochrome c oxidase subunit 5C (COX), cyclophilin (CYP), elongation factor 1-alpha (EF1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone H3 (H3), 50S ribosomal protein L2 (RPL2), and tubulin alpha chain (TUBα) from spinach, were selected as candidates in roots, stems, leaves, flowers, and seedlings in response to high temperature, CdCl2, NaCl, NaHCO3, and Na2CO3 stresses. The expression of these genes was quantified by RT-qPCR and evaluated by NormFinder, BestKeeper, and geNorm. 18S rRNA, actin, ARF, COX, CYP, EF1α, GAPDH, H3, and RPL2 were detected as optimal reference genes for gene expression analysis of different organs and stress responses. The results were further confirmed by the expression pattern normalized with different reference genes of two heat-responsive genes. Here, we optimized the detection method of the gene expression pattern in spinach. Our results provide the optimal candidate reference genes which were crucial for RT-qPCR analysis.
Collapse
|
50
|
Shi P, Gu M. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. BMC PLANT BIOLOGY 2020; 20:568. [PMID: 33380327 PMCID: PMC7774241 DOI: 10.1186/s12870-020-02753-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Soil salinity is one of the major abiotic stress factors that affect crop growth and yield, which seriously restricts the sustainable development of agriculture. Quinoa is considered as one of the most promising crops in the future for its high nutrition value and strong adaptability to extreme weather and soil conditions. However, the molecular mechanisms underlying the adaptive response to salinity stress of quinoa remain poorly understood. To identify candidate genes related to salt tolerance, we performed reference-guided assembly and compared the gene expression in roots treated with 300 mM NaCl for 0, 0.5, 2, and 24 h of two contrasting quinoa genotypes differing in salt tolerance. RESULTS The salt-tolerant (ST) genotype displayed higher seed germination rate and plant survival rate, and stronger seedling growth potential as well than the salt-sensitive (SS) genotype under salt stress. An average of 38,510,203 high-quality clean reads were generated. Significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified to deeper understand the differential response. Transcriptome analysis indicated that salt-responsive genes in quinoa were mainly related to biosynthesis of secondary metabolites, alpha-Linolenic acid metabolism, plant hormone signal transduction, and metabolic pathways. Moreover, several pathways were significantly enriched amongst the differentially expressed genes (DEGs) in ST genotypes, such as phenylpropanoid biosynthesis, plant-pathogen interaction, isoquinoline alkaloid biosynthesis, and tyrosine metabolism. One hundred seventeen DEGs were common to various stages of both genotypes, identified as core salt-responsive genes, including some transcription factor members, like MYB, WRKY and NAC, and some plant hormone signal transduction related genes, like PYL, PP2C and TIFY10A, which play an important role in the adaptation to salt conditions of this species. The expression patterns of 21 DEGs were detected by quantitative real-time PCR (qRT-PCR) and confirmed the reliability of the RNA-Seq results. CONCLUSIONS We identified candidate genes involved in salt tolerance in quinoa, as well as some DEGs exclusively expressed in ST genotype. The DEGs common to both genotypes under salt stress may be the key genes for quinoa to adapt to salinity environment. These candidate genes regulate salt tolerance primarily by participating in reactive oxygen species (ROS) scavenging system, protein kinases biosynthesis, plant hormone signal transduction and other important biological processes. These findings provide theoretical basis for further understanding the regulation mechanism underlying salt tolerance network of quinoa, as well establish foundation for improving its tolerance to salinity in future breeding programs.
Collapse
Affiliation(s)
- Pibiao Shi
- Xinyang Agricultural Experiment Station of Yancheng City, Yancheng, 224049, Jiangsu, China
| | - Minfeng Gu
- Xinyang Agricultural Experiment Station of Yancheng City, Yancheng, 224049, Jiangsu, China.
| |
Collapse
|