1
|
Martinez-Val A, Van der Hoeven L, Bekker-Jensen DB, Jørgensen MM, Nors J, Franciosa G, Andersen CL, Bramsen JB, Olsen JV. Proteomics of colorectal tumors identifies the role of CAVIN1 in tumor relapse. Mol Syst Biol 2025:10.1038/s44320-025-00102-8. [PMID: 40269326 DOI: 10.1038/s44320-025-00102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
Colorectal cancer molecular signatures derived from omics data can be employed to stratify CRC patients and aid decisions about therapies or evaluate prognostic outcome. However, molecular biomarkers for identification of patients at increased risk of disease relapse are currently lacking. Here, we present a comprehensive multi-omics analysis of a Danish colorectal cancer tumor cohort composed of 412 biopsies from tumors of 371 patients diagnosed at TNM stage II or III. From mass spectrometry-based patient proteome profiles, we classified the tumors into four molecular subtypes, including a mesenchymal-like subtype. As the mesenchymal-rich tumors are known to represent the most invasive and metastatic phenotype, we focused on the protein signature defining this subtype to evaluate their potential as relapse risk markers. Among signature-specific proteins, we followed-up Caveolae-Associated Protein-1 (CAVIN1) and demonstrated its role in tumor progression in a 3D in vitro model of colorectal cancer. Compared to previous omics analyses of CRC, our multi-omics classification provided deeper insights into EMT in cancer cells with stronger correlations with risk of relapse.
Collapse
Affiliation(s)
- Ana Martinez-Val
- Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Leander Van der Hoeven
- Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dorte B Bekker-Jensen
- Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Evosep Biosystems, Odense, Denmark
| | - Margarita Melnikova Jørgensen
- Institute of Pathology, Randers Regional Hospital, Randers, Denmark
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jesper Nors
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Giulia Franciosa
- Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Claus L Andersen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Jesper B Bramsen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Kim E, Erazo-Oliveras A, Muñoz-Vega M, Fuentes NR, Salinas ML, George MJ, Zoh RS, Hensel ME, Patil BS, Ivanov I, Turner ND, Chapkin RS. Diet therapy abates mutant APC and KRas effects by reshaping plasma membrane cholesterol nanodomains. Biophys J 2025; 124:508-527. [PMID: 39709523 PMCID: PMC11866957 DOI: 10.1016/j.bpj.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 12/01/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024] Open
Abstract
Cholesterol-enriched plasma membrane domains are known to serve as signaling platforms in a diverse array of cellular processes. However, the link between cholesterol homeostasis and mutant APC-KRas-associated colorectal tumorigenesis remains to be established. Thus, we investigated the impact of Apc-Kras on 1) colonocyte plasma membrane cholesterol homeostasis, order, and receptor nanoclustering, 2) colonocyte cell proliferation, and 3) whether these effects are modulated by select membrane active dietaries (MADs). We observed that oncogenic APC-KRas increased membrane order by perturbing cholesterol homeostasis when cell proliferation is upregulated, in part by altering the expression of genes associated with cholesterol influx, export and de novo synthesis in mouse colorectal cancer (CRC) models and CRC patients. In addition, oncogene-induced loss of cholesterol homeostasis altered Fzd7, LRP6, and KRas cluster structure/organization. Notably, we show that the combination of chemoprotective MADs, i.e., n-3 PUFAs and curcumin, reduced colonic membrane free cholesterol, order, receptor cluster size, cell proliferation, and the number of dysplastic foci in mutant APC-KRas models. This work highlights the dynamic shaping of plasma membrane organization during colon tumorigenesis and the utility of membrane-targeted cancer therapy.
Collapse
Affiliation(s)
- Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas; Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas
| | - Alfredo Erazo-Oliveras
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition, Texas A&M University, College Station, Texas; CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, Texas
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition, Texas A&M University, College Station, Texas; CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, Texas
| | - Natividad R Fuentes
- Department of Cancer Biology, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Michael L Salinas
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition, Texas A&M University, College Station, Texas; CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, Texas
| | - Miranda J George
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas
| | - Roger S Zoh
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, Indiana
| | - Martha E Hensel
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, University of Texas, Bastrop, Texas
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Science, Texas A&M University, College Station, Texas
| | - Ivan Ivanov
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Nancy D Turner
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition, Texas A&M University, College Station, Texas; CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, Texas.
| |
Collapse
|
3
|
Fetisov TI, Menyailo ME, Ikonnikov AV, Khozyainova AA, Tararykova AA, Kopantseva EE, Korobeynikova AA, Senchenko MA, Bokova UA, Kirsanov KI, Yakubovskaya MG, Denisov EV. Decoding Chemotherapy Resistance of Undifferentiated Pleomorphic Sarcoma at the Single Cell Resolution: A Case Report. J Clin Med 2024; 13:7176. [PMID: 39685635 DOI: 10.3390/jcm13237176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Undifferentiated pleomorphic sarcoma (UPS) is a highly malignant mesenchymal tumor that ranks as one of the most common types of soft tissue sarcoma. Even though chemotherapy increases the 5-year survival rate in UPS, high tumor heterogeneity frequently leads to chemotherapy resistance and consequently to recurrences. In this study, we characterized the cell composition and the transcriptional profile of UPS with resistance to chemotherapy at the single cell resolution. Methods: A 58-year-old woman was diagnosed with a 13.6 × 9.3 × 6.0 cm multi-nodular tumor with heterogeneous cysto-solid structure at the level of the distal metadiaphysis of the left thigh during magnetic resonance tomography. Morphological and immunohistochemical analysis led to the diagnosis of high-grade (G3) UPS. Neoadjuvant chemotherapy, surgery (negative resection margins), and adjuvant chemotherapy were conducted, but tumor recurrence developed. The UPS sample was used to perform single-cell RNA sequencing by chromium-fixed RNA profiling. Results: Four subpopulations of tumor cells and seven subpopulations of tumor microenvironment (TME) have been identified in UPS. The expression of chemoresistance genes has been detected, including KLF4 (doxorubicin and ifosfamide), ULK1, LUM, GPNMB, and CAVIN1 (doxorubicin), and AHNAK2 (gemcitabine) in tumor cells and ETS1 (gemcitabine) in TME. Conclusions: This study provides the first description of the single-cell transcriptome of UPS with resistance to two lines of chemotherapy, showcasing the gene expression in subpopulations of tumor cells and TME, which may be potential markers for personalized cancer therapy.
Collapse
Affiliation(s)
- Timur I Fetisov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Maxim E Menyailo
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Alexander V Ikonnikov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
| | - Anna A Khozyainova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Anastasia A Tararykova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Elena E Kopantseva
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
| | - Anastasia A Korobeynikova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Maria A Senchenko
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Ustinia A Bokova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Kirill I Kirsanov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Marianna G Yakubovskaya
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Evgeny V Denisov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| |
Collapse
|
4
|
Li Z, Du Y, Lu Y, Ma X, Li F, Zeng P, Zhang T, He Y, Luo P, Wu J. Hypericum perforatum-derived exosomes-like nanovesicles for adipose tissue photodynamic therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155854. [PMID: 39032276 DOI: 10.1016/j.phymed.2024.155854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Recent investigations underscore the capacity of photodynamic therapy (PDT) to induce adipocyte apoptosis, thereby mitigating obesity. Nonetheless, extant synthetic photosensitizers manifest limitations that hinder their clinical viability. PURPOSE In the current study, we used Hypericum perforatum-derived exosomes-like nanovesicles (HPExos) as a novel photosensitizer, and investigated its PDT effects in adipose tissue during obesity. METHOD HPExos-were administered to high fat diet mice via intraperitoneal injection, followed by targeted irradiation with specialized LED lights. Mass spectrometric analysis was analyzed in adipose tissues. CCK8 assay and Oil Red O staining were used to investigate lipid accumulation in 3T3-L1 cells to clarify adipocyte differentiation. The expression levels of related markers associated with adipogenesis and lipogenesis were assessed by RT-PCR. Apoptosis analysis was performed by TUNEL staining of and western blotting. RESULTS HPExos combined with PDT accumulated in visceral white adipose tissues results in a reduced body weight and improved insulin sensitivity. HPExos combined with PDT induced apoptosis by driving high levels of ROS. In addition, HPExos combined with PDT significantly downregulated the expression of transcription factors, PPARγ, C/EBPα, and SREBP and lipogenesis protein FABP4 both in vitro and in vivo, associated with a decreased FFA levels. CONCLUSION These findings suggest that HPExos could act as an effective photosensitizer in regulating glucose hemostasis by inhibiting adipocyte differentiation and lipogenesis, offering a promising approach for obesity treatment.
Collapse
Affiliation(s)
- Ziyu Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, Macau, China; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yu Du
- Department of Rheumatology and Immunology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Yu Lu
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoyu Ma
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Fei Li
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Peiyuan Zeng
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tao Zhang
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuqian He
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pei Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, Macau, China
| | - Jianbo Wu
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
5
|
Gutay-Tóth Z, Gellen G, Doan M, Eliason JF, Vincze J, Szente L, Fenyvesi F, Goda K, Vecsernyés M, Szabó G, Bacso Z. Cholesterol-Depletion-Induced Membrane Repair Carries a Raft Conformer of P-Glycoprotein to the Cell Surface, Indicating Enhanced Cholesterol Trafficking in MDR Cells, Which Makes Them Resistant to Cholesterol Modifications. Int J Mol Sci 2023; 24:12335. [PMID: 37569709 PMCID: PMC10419235 DOI: 10.3390/ijms241512335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The human P-glycoprotein (P-gp), a transporter responsible for multidrug resistance, is present in the plasma membrane's raft and non-raft domains. One specific conformation of P-gp that binds to the monoclonal antibody UIC2 is primarily associated with raft domains and displays heightened internalization in cells overexpressing P-gp, such as in NIH-3T3 MDR1 cells. Our primary objective was to investigate whether the trafficking of this particular P-gp conformer is dependent on cholesterol levels. Surprisingly, depleting cholesterol using cyclodextrin resulted in an unexpected increase in the proportion of raft-associated P-gp within the cell membrane, as determined by UIC2-reactive P-gp. This increase appears to be a compensatory response to cholesterol loss from the plasma membrane, whereby cholesterol-rich raft micro-domains are delivered to the cell surface through an augmented exocytosis process. Furthermore, this exocytotic event is found to be part of a complex trafficking mechanism involving lysosomal exocytosis, which contributes to membrane repair after cholesterol reduction induced by cyclodextrin treatment. Notably, cells overexpressing P-gp demonstrated higher total cellular cholesterol levels, an increased abundance of stable lysosomes, and more effective membrane repair following cholesterol modifications. These modifications encompassed exocytotic events that involved the transport of P-gp-carrying rafts. Importantly, the enhanced membrane repair capability resulted in a durable phenotype for MDR1 expressing cells, as evidenced by significantly improved viabilities of multidrug-resistant Pgp-overexpressing immortal NIH-3T3 MDR1 and MDCK-MDR1 cells compared to their parents when subjected to cholesterol alterations.
Collapse
Affiliation(s)
- Zsuzsanna Gutay-Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabriella Gellen
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1053 Budapest, Hungary
| | - Minh Doan
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - James F. Eliason
- Great Lakes Stem Cell Innovation Center, Detroit, MI 48202, USA;
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., 1097 Budapest, Hungary;
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| | - Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| |
Collapse
|
6
|
Gellen G, Klement E, Biwott K, Schlosser G, Kalló G, Csősz É, Medzihradszky KF, Bacso Z. Cross-Linking Mass Spectrometry on P-Glycoprotein. Int J Mol Sci 2023; 24:10627. [PMID: 37445813 DOI: 10.3390/ijms241310627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The ABC transporter P-glycoprotein (Pgp) has been found to be involved in multidrug resistance in tumor cells. Lipids and cholesterol have a pivotal role in Pgp's conformations; however, it is often difficult to investigate it with conventional structural biology techniques. Here, we applied robust approaches coupled with cross-linking mass spectrometry (XL-MS), where the natural lipid environment remains quasi-intact. Two experimental approaches were carried out using different cross-linkers (i) on living cells, followed by membrane preparation and immunoprecipitation enrichment of Pgp, and (ii) on-bead, subsequent to membrane preparation and immunoprecipitation. Pgp-containing complexes were enriched employing extracellular monoclonal anti-Pgp antibodies on magnetic beads, followed by on-bead enzymatic digestion. The LC-MS/MS results revealed mono-links on Pgp's solvent-accessible residues, while intraprotein cross-links confirmed a complex interplay between extracellular, transmembrane, and intracellular segments of the protein, of which several have been reported to be connected to cholesterol. Harnessing the MS results and those of molecular docking, we suggest an epitope for the 15D3 cholesterol-dependent mouse monoclonal antibody. Additionally, enriched neighbors of Pgp prove the strong connection of Pgp to the cytoskeleton and other cholesterol-regulated proteins. These findings suggest that XL-MS may be utilized for protein structure and network analyses in such convoluted systems as membrane proteins.
Collapse
Affiliation(s)
- Gabriella Gellen
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Eva Klement
- Single Cell Omics Advanced Core Facility, HCEMM, H-6728 Szeged, Hungary
- Laboratory of Proteomics Research, BRC, H-6726 Szeged, Hungary
| | - Kipchumba Biwott
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Gergő Kalló
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | | | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
- Faculty of Pharmacology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| |
Collapse
|
7
|
Low JY, Laiho M. Caveolae-Associated Molecules, Tumor Stroma, and Cancer Drug Resistance: Current Findings and Future Perspectives. Cancers (Basel) 2022; 14:cancers14030589. [PMID: 35158857 PMCID: PMC8833326 DOI: 10.3390/cancers14030589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cell membranes contain small invaginations called caveolae. They are a specialized lipid domain and orchestrate cellular signaling events, mechanoprotection, and lipid homeostasis. Formation of the caveolae depends on two classes of proteins, the caveolins and cavins, which form large complexes that allow their self-assembly into caveolae. Loss of either of these two proteins leads to distortion of the caveolae structure and disruption of many physiological processes that affect diseases of the muscle, metabolic states governing lipids, and the glucose balance as well as cancers. In cancers, the expression of caveolins and cavins is heterogenous, and they undergo alterations both in the tumors and the surrounding tumor microenvironment stromal cells. Remarkably, their expression and function has been associated with resistance to many cancer drugs. Here, we summarize the current knowledge of the resistance mechanisms and how this knowledge could be applied into the clinic in future. Abstract The discovery of small, “cave-like” invaginations at the plasma membrane, called caveola, has opened up a new and exciting research area in health and diseases revolving around this cellular ultrastructure. Caveolae are rich in cholesterol and orchestrate cellular signaling events. Within caveola, the caveola-associated proteins, caveolins and cavins, are critical components for the formation of these lipid rafts, their dynamics, and cellular pathophysiology. Their alterations underlie human diseases such as lipodystrophy, muscular dystrophy, cardiovascular disease, and diabetes. The expression of caveolins and cavins is modulated in tumors and in tumor stroma, and their alterations are connected with cancer progression and treatment resistance. To date, although substantial breakthroughs in cancer drug development have been made, drug resistance remains a problem leading to treatment failures and challenging translation and bench-to-bedside research. Here, we summarize the current progress in understanding cancer drug resistance in the context of caveola-associated molecules and tumor stroma and discuss how we can potentially design therapeutic avenues to target these molecules in order to overcome treatment resistance.
Collapse
Affiliation(s)
- Jin-Yih Low
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Correspondence: ; Tel.: +1-410-502-9748; Fax: +1-410-502-2821
| | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
8
|
Zhou HH, Zhang YM, Zhang SP, Xu QX, Tian YQ, Li P, Cao D, Zheng YQ. Suppression of PTRF Alleviates Post-Infectious Irritable Bowel Syndrome via Downregulation of the TLR4 Pathway in Rats. Front Pharmacol 2021; 12:724410. [PMID: 34690766 PMCID: PMC8529073 DOI: 10.3389/fphar.2021.724410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Accumulating evidence suggests that the polymerase I and transcript release factor (PTRF), a key component of the caveolae structure on the plasma membrane, plays a pivotal role in suppressing the progression of colorectal cancers. However, the role of PTRF in the development of functional gastrointestinal (GI) disorders remains unclear. Post-infectious irritable bowel syndrome (PI-IBS) is a common functional GI disorder that occurs after an acute GI infection. Here, we focused on the role of PTRF in the occurrence of PI-IBS and investigated the underlying mechanisms. Methods: Lipopolysaccharide (LPS) (5 μg/ml) was used to induce inflammatory injury in human primary colonic epithelial cells (HCoEpiCs). Furthermore, a rat model of PI-IBS was used to study the role of PTRF. Intestinal sensitivity was assessed based on the fecal water content. A two-bottle sucrose intake test was used to evaluate behavioral changes. Furthermore, shRNA-mediated knockdown of PTRF was performed both in vitro and in vivo. We detected the expression of PTRF in colonic mucosal tissues through immunohistochemistry (IHC), western blotting (WB), and immunofluorescence (IF) analysis. Luciferase activity was quantified using a luciferase assay. Co-localization of PTRF and Toll-like receptor 4 (TLR4) was detected using IF analysis. The activation of the signaling pathways downstream of TLR4, including the iNOs, p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) pathways, was detected via WB. The levels of NO, IL-1β, IL-6, and TNF-α were measured using enzyme-linked immunosorbent assays. Results: LPS significantly induced PTRF expression and signaling downstream of TLR4, including p38, ERK, and JNK pathways, in HCoEpiCs. Moreover, shRNA-mediated knockdown of PTRF in HCoEpiCs significantly decreased the phosphorylation of JNK, ERK, and p38 and iNOS expression. In PI-IBS rats, the lack of PTRF not only reduced fecal water content and suppressed depressive behavior but also increased the body weight. Furthermore, we found a strong co-localization pattern for PTRF and TLR4. Consistently, the lack of PTRF impaired TLR4 signaling, as shown by the decreased levels of p-JNK, p-ERK, and p-p38, which are upstream factors involved in iNOS expression. Conclusion: PTRF promoted PI-IBS and stimulated TLR4 signaling both in vitro and in vivo. The results of this study not only enlighten the pathogenesis of PI-IBS but also help us understand the biological activity of PTRF and provide an important basis for the clinical treatment of PI-IBS by targeting PTRF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Di Cao
- Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Yong-qiu Zheng
- Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu, China
| |
Collapse
|
9
|
Tian Y, Liu X, Hu J, Zhang H, Wang B, Li Y, Fu L, Su R, Yu Y. Integrated Bioinformatic Analysis of the Expression and Prognosis of Caveolae-Related Genes in Human Breast Cancer. Front Oncol 2021; 11:703501. [PMID: 34513683 PMCID: PMC8427033 DOI: 10.3389/fonc.2021.703501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/31/2021] [Indexed: 12/21/2022] Open
Abstract
Caveolae-related genes, including CAVs that encodes caveolins and CAVINs that encodes caveolae-associated proteins cavins, have been identified for playing significant roles in a variety of biological processes including cholesterol transport and signal transduction, but evidences related to tumorigenesis and cancer progression are not abundant to correlate with clinical characteristics and prognosis of patients with cancer. In this study, we investigated the expression of these genes at transcriptional and translational levels in patients with breast cancer using Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), cBioPortal databases, and immunohistochemistry of the patients in our hospital. Prognosis of patients with breast cancer based on the expressions of CAVs and CAVINs was summarized using Kaplan-Meier Plotter with their correlation to different subtyping. The relevant molecular pathways of these genes were further analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database and Gene Set Enrichment Analysis (GSEA). Results elucidated that expression levels of CAV1, CAV2, CAVIN1, CAVIN2, and CAVIN3 were significantly lower in breast cancer tissues than in normal samples, while the expression level of CAVIN2 was correlated with advanced tumor stage. Furthermore, investigations on survival of patients with breast cancer indicated outstanding associations between prognosis and CAVIN2 levels, especially for the patients with estrogen receptor positive (ER+) breast cancer. In conclusion, our investigation indicated CAVIN2 is a potential therapeutic target for patients with ER+ breast cancer, which may relate to functions of cancer cell surface receptors and adhesion molecules.
Collapse
Affiliation(s)
- Yao Tian
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaofeng Liu
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jing Hu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Huan Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Baichuan Wang
- Anhui Medical University Clinical College of Chest, Hefei, China.,Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, China
| | - Yingxi Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Li Fu
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ran Su
- School of Computer Software, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
10
|
Wu Y, Shen Q, Chen X, Wu Y, Niu Y, Lv F. miR-1301-3p promotes the proliferation and migration of lung cancer cells via direct repression of polymerase I and transcript release factor. Oncol Lett 2020; 20:286. [PMID: 33014164 PMCID: PMC7520749 DOI: 10.3892/ol.2020.12149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/19/2020] [Indexed: 12/25/2022] Open
Abstract
Aberrant expression of microRNAs (miRNAs or miRs) is associated with a number of human diseases, including lung cancer. Although numerous differentially expressed miRNAs have been identified in lung cancer via microarray and sequencing methods, to the best of our knowledge, only a small portion of these miRNAs have been experimentally verified. In the present study, miR-1301-3p expression levels in lung tumor tissues and lung cancer cells were measured by reverse transcription-quantitative PCR (RT-qPCR) and by analyzing previously published data. Cell Counting Kit-8 and Transwell assays were used to analyze the function of miR-1301-3p in lung cancer tissues and cells. Bioinformatics analysis, RT-qPCR, western blotting and a dual-luciferase reporter assay were performed to investigate the mechanism of miR-1301-3p in lung cancer cells. It was identified that miR-1301-3p is an upregulated miRNA in lung cancer via analyzing previously published microarray and The Cancer Genome Atlas-lung squamous cell carcinoma project data, and the upregulation of miR-1301-3p was confirmed in collected clinical samples and cells. Inhibition of miR-1301-3p suppressed lung cancer cell proliferation and migration. In addition, miR-1301-3p inhibition upregulated E-cadherin, an epithelial cell maker, and downregulated vimentin, a mesenchymal cell marker. Using bioinformatics analysis, it was revealed that polymerase I and transcript release factor (PTRF) is a target of miR-1301-3p. RT-qPCR, western blotting and dual-luciferase reporter assays demonstrated that PTRF is targeted by miR-1301-3p in lung cancer cells. The rescue experiments indicated that silencing PTRF could attenuate the inhibition of cell proliferation and migration induced by miR-1301-3p inhibitor in lung cancer cells. Furthermore, a strong negative correlation between miR-1301-3p and PTRF mRNA was identified in clinical samples. In summary, the present data highlight the involvement of miR-1301-3p in the proliferation and migration of lung cancer cells, indicating that miR-1301-3p may be a promising biomarker for lung cancer.
Collapse
Affiliation(s)
- Yun Wu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated with Fudan University, Shanghai 200040, P.R. China
| | - Qianwen Shen
- Department of Radiation Oncology, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated with Fudan University, Shanghai 200040, P.R. China
| | - Xiaoyu Chen
- Department of Thoracic Surgery, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated with Fudan University, Shanghai 200040, P.R. China
| | - Yue Wu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated with Fudan University, Shanghai 200040, P.R. China
| | - Yuxu Niu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated with Fudan University, Shanghai 200040, P.R. China
| | - Fanzhen Lv
- Department of Thoracic Surgery, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated with Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
11
|
Sun G, Ni K. The Role of Cavin3 in the Progression of Lung Cancer and Its Mechanism. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6364801. [PMID: 32352004 PMCID: PMC7178469 DOI: 10.1155/2020/6364801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The purpose of this study was to describe the role of Cavin3 in the progression of lung cancer and its underlying mechanism. METHODS Totally, 200 cases of lung cancer tissues and corresponding paracancer tissues were collected. Cavin3 expression in samples was determined by qRT-PCR, and the correlation with lung cancer stages as well as prognosis was statistically analyzed combined with matched clinical information. To investigate the mechanism of Cavin3 in lung cancer progression, firstly, Cavin3 was detected in lung cancer cell lines A549, PC9, and H520. Then, cells with stable Cavin3 overexpression and Cavin3 knockout were established to determine the effect of Cavin3 overexpression on the mammalian target of rapamycin (mTOR) signaling pathway. Subsequently, cells were harvested for cell proliferation, migration, and invasion assays in vitro, as well as nude mouse transplantation tumor experiment in vivo. RESULTS Cavin3 was seen to be highly expressed in cancer tissues. Statistical analysis with matched clinical data showed that Cavin3 as a prognostic indicator of lung cancer had important clinical value. In addition, it could be found that high expression of Cavin3 was able to promote cell proliferation, migration, and invasion and also potentiate tumor formation in vivo. CONCLUSION Cavin3 was highly expressed in lung cancer, and it was capable to promote cell proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Gaozhong Sun
- Department of Cardio-Thoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014 Zhejiang, China
| | - Kewei Ni
- Department of Cardio-Thoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014 Zhejiang, China
| |
Collapse
|
12
|
Wang X, Arcani DMC, Zhao J, Xu M, Zhou X, Yang Y. Prognostic and diagnostic significance of Cavin 2 in lung adenocarcinoma. Arch Med Sci 2020; 16:1189-1195. [PMID: 32864008 PMCID: PMC7444728 DOI: 10.5114/aoms.2019.85347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/12/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Cavin 2 down-regulation is reported in several malignant tumors and is associated with tumor progression. However, the role of Cavin 2 in lung adenocarcinoma is unknown. This study aimed to investigate the prognostic and diagnostic significance of Cavin 2 in lung adenocarcinoma. MATERIAL AND METHODS Cavin 2 expression levels were examined in 150 cases of lung adenocarcinoma and matched adjacent normal lung tissues using RNA extraction and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blotting and immunohistochemistry (IHC) assays. Then, the relationship of Cavin 2 expression with clinicopathological characteristics and patients' survival was further evaluated in lung adenocarcinoma. RESULTS QPCR and Western blotting analysis indicated that Cavin 2 expression levels were significantly lower in lung adenocarcinoma tissues compared with those in adjacent normal lung tissues (p < 0.0001). The IHC results showed that positive expression of Cavin 2 was mainly located in cytoplasm as brown, but was hard to detect in lung adenocarcinoma tissues. The low-expression rates of Cavin 2 in lung adenocarcinoma and adjacent normal lung tissues were 62.0% and 20.0%, respectively, and the difference was significant (p < 0.0001). Lower expression of Cavin 2 was significantly associated with tumor size, TNM stage and lymph node metastasis (p < 0.05). CONCLUSIONS Cavin 2 has low expression in lung adenocarcinoma, which might be regarded as a potential prognostic and diagnostic biomarker.
Collapse
Affiliation(s)
- Xianguo Wang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei, China
| | - Diana Maria Cespedes Arcani
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei, China
| | - Jingping Zhao
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei, China
| | - Ming Xu
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei, China
| | - Xuefeng Zhou
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei, China
| | - Yibin Yang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei, China
| |
Collapse
|
13
|
Yeh HC, Margulis V, Singla N, Hernandez E, Panwar V, Woldu SL, Karam JA, Wood CG, Weizer AZ, Raman JD, Remzi M, Rioux-Leclercq N, Haitel A, Roscigno M, Bolenz C, Bensalah K, Li CC, Ke HL, Li WM, Lee HY, Rapoport LM, Lotan Y, Kapur P, Shariat SF, Hsieh JT, Wu WJ. PTRF independently predicts progression and survival in multiracial upper tract urothelial carcinoma following radical nephroureterectomy. Urol Oncol 2019; 38:496-505. [PMID: 31862213 DOI: 10.1016/j.urolonc.2019.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Polymerase I and transcript release factor (PTRF) has been implicated in cancer biology but its role in upper tract urothelial carcinoma (UTUC) is unknown. From a pilot transcriptome, we identified PTRF was significantly upregulated in high stage UTUC. Bladder cancer transcriptome from The Cancer Genome Atlas (TCGA) supported our finding and high PTRF level also predicted poor survival. We, therefore, investigated the correlation of PTRF with patients' clinicopathologic characteristics and outcomes in a multiracial UTUC cohort. MATERIALS AND METHODS By immunohistochemical staining, PTRF expression was determined using H-score. PTRF expression of 575 UTUCs from 8 institutions, including 118 Asians and 457 Caucasians, was compared with various clinicopathologic parameters. Human urothelial cancer cell lines were used to evaluate the level of PTRF protein and mRNA expression, and PTRF transcript level was assessed in fresh samples from 12 cases of the cohort. The impact of PTRF expression on disease progression, cancer-specific death and overall mortality was also examined. RESULTS High PTRF expression was significantly associated with multifocality (P = 0.023), high pathologic tumor stage (P < 0.00001), nonurothelial differentiation (P = 0.035), lymphovascular invasion (P = 0.003) and lymph node metastasis (P = 0.031). PTRF mRNA expression was also markedly increased in advanced stage UTUC (P = 0.0003). High PTRF expressing patients had consistently worse outcomes than patients with low PTRF expression regardless of demographic variation (all P < 0.005). In multivariate analysis, high PTRF expression was an independent predictor for progression-free survival (hazard ratio [HR] 1.70, 95% confidence interval [CI] 1.07-2.69, P = 0.025), cancer-specific survival (HR 2.09, 95% CI 1.28-3.42, P = 0.003), and overall survival (HR 2.04, 95% CI 1.33-3.14, P = 0.001). CONCLUSIONS Results indicate that PTRF is a predictive biomarker for progression and survival and an independent prognosticator of UTUC. Elevated PTRF could probably propel clinically aggressive disease and serve as a potential therapeutic target for UTUC.
Collapse
Affiliation(s)
- Hsin-Chih Yeh
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nirmish Singla
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Vandana Panwar
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Solomon L Woldu
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jose A Karam
- Department of Urology, MD Anderson Cancer Center, Houston, TX
| | | | - Alon Z Weizer
- Department of Urology, University of Michigan, Ann Arbor, MI
| | - Jay D Raman
- Division of Urology, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Mesut Remzi
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | | | - Andrea Haitel
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Marco Roscigno
- Department of Urology, Ospedali Riuniti of Bergamo, Bergamo, Italy
| | | | - Karim Bensalah
- Department of Urology, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Ching-Chia Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Lung Ke
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Ying Lee
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Leonid M Rapoport
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shahrokh F Shariat
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX; Department of Urology, Medical University of Vienna, Vienna, Austria; Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Paulitschke V, Eichhoff O, Gerner C, Paulitschke P, Bileck A, Mohr T, Cheng PF, Leitner A, Guenova E, Saulite I, Freiberger SN, Irmisch A, Knapp B, Zila N, Chatziisaak T, Stephan J, Mangana J, Kunstfeld R, Pehamberger H, Aebersold R, Dummer R, Levesque MP. Proteomic identification of a marker signature for MAPKi resistance in melanoma. EMBO J 2019; 38:e95874. [PMID: 31267558 PMCID: PMC6669927 DOI: 10.15252/embj.201695874] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
MAPK inhibitors (MAPKi) show outstanding clinical response rates in melanoma patients harbouring BRAF mutations, but resistance is common. The ability of melanoma cells to switch from melanocytic to mesenchymal phenotypes appears to be associated with therapeutic resistance. High-throughput, subcellular proteome analyses and RNAseq on two panels of primary melanoma cells that were either sensitive or resistant to MAPKi revealed that only 15 proteins were sufficient to distinguish between these phenotypes. The two proteins with the highest discriminatory power were PTRF and IGFBP7, which were both highly upregulated in the mesenchymal-resistant cells. Proteomic analysis of CRISPR/Cas-derived PTRF knockouts revealed targets involved in lysosomal activation, endocytosis, pH regulation, EMT, TGFβ signalling and cell migration and adhesion, as well as a significantly reduced invasive index and ability to form spheres in 3D culture. Overexpression of PTRF led to MAPKi resistance, increased cell adhesion and sphere formation. In addition, immunohistochemistry of patient samples showed that PTRF expression levels were a significant biomarker of poor progression-free survival, and IGFBP7 levels in patient sera were shown to be higher after relapse.
Collapse
Affiliation(s)
- Verena Paulitschke
- Department of DermatologyMedical University of ViennaViennaAustria
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Ossia Eichhoff
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| | - Christopher Gerner
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaViennaAustria
| | - Philipp Paulitschke
- Institute of PhysicsCenter for NanoScienceLudwig Maximilians UniversityMunichGermany
| | - Andrea Bileck
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaViennaAustria
| | - Thomas Mohr
- Department of Medicine IInstitute of Cancer Research and Comprehensive Cancer CenterMedical University ViennaViennaAustria
| | - Phil F Cheng
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| | - Alexander Leitner
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Emmanuella Guenova
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| | - Ieva Saulite
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| | - Sandra N Freiberger
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| | - Anja Irmisch
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| | - Bernhard Knapp
- Department of StatisticsProtein Informatics GroupUniversity of OxfordOxfordUK
| | - Nina Zila
- Department of DermatologyMedical University of ViennaViennaAustria
| | | | - Jürgen Stephan
- Institute of PhysicsCenter for NanoScienceLudwig Maximilians UniversityMunichGermany
| | - Joanna Mangana
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| | - Rainer Kunstfeld
- Department of DermatologyMedical University of ViennaViennaAustria
| | | | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Faculty of ScienceUniversity of ZurichZurichSwitzerland
| | - Reinhard Dummer
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| | - Mitchell P Levesque
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| |
Collapse
|
15
|
Identification of intracellular cavin target proteins reveals cavin-PP1alpha interactions regulate apoptosis. Nat Commun 2019; 10:3279. [PMID: 31332168 PMCID: PMC6646387 DOI: 10.1038/s41467-019-11111-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
Caveolae are specialized domains of the plasma membrane. Formation of these invaginations is dependent on the expression of Caveolin-1 or -3 and proteins of the cavin family. In response to stress, caveolae disassemble and cavins are released from caveolae, allowing cavins to potentially interact with intracellular targets. Here, we describe the intracellular (non-plasma membrane) cavin interactome using biotin affinity proteomics and mass spectrometry. We validate 47 potential cavin-interactor proteins using a cell-free expression system and protein-protein binding assays. These data, together with pathway analyses, reveal unknown roles for cavin proteins in metabolism and stress signaling. We validated the interaction between one candidate interactor protein, protein phosphatase 1 alpha (PP1α), and Cavin-1 and -3 and show that UV treatment causes release of Cavin3 from caveolae allowing interaction with, and inhibition of, PP1α. This interaction increases H2AX phosphorylation to stimulate apoptosis, identifying a pro-apoptotic signaling pathway from surface caveolae to the nucleus.
Collapse
|
16
|
Pu W, Nassar ZD, Khabbazi S, Xie N, McMahon KA, Parton RG, Riggins GJ, Harris JM, Parat MO. Correlation of the invasive potential of glioblastoma and expression of caveola-forming proteins caveolin-1 and CAVIN1. J Neurooncol 2019; 143:207-220. [PMID: 30949900 DOI: 10.1007/s11060-019-03161-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common primary brain cancer. The average survival time for the majority of patients is approximately 15 months after diagnosis. A major feature of GBM that contributes to its poor prognosis is its high invasiveness. Caveolae are plasma membrane subdomains that participate in numerous biological functions. Caveolin-1 and Caveolae Associated Protein 1 (CAVIN1), formerly termed Polymerase I and Transcript Release Factor, are both necessary for caveola formation. We hypothesized that high expression of caveola-forming proteins in GBM promotes invasiveness via modulation of the production of matrix-degrading enzymes. METHODS The mRNA expression of caveola-forming proteins and matrix proteases in GBM samples, and survival after stratifying patients according to caveolin-1 or CAVIN1 expression, were analyzed from TCGA and REMBRANDT databases. The proteolytic profile of cell lines expressing or devoid of caveola-forming proteins was investigated using zymography and real-time qPCR. Invasion through basement membrane-like protein was investigated in vitro. RESULTS Expression of both caveolin-1 and CAVIN1 was increased in GBM compared to normal samples and correlated with expression of urokinase plasminogen activator (uPA) and gelatinases. High expression of caveola-forming proteins was associated with shorter survival time. GBM cell lines capable of forming caveolae expressed more uPA and matrix metalloproteinase-2 (MMP-2) and/or -9 (MMP-9) and were more invasive than GBM cells devoid of caveola-forming proteins. Experimental manipulation of caveolin-1 or CAVIN1 expression in GBM cells recapitulated some, but not all of these features. Caveolae modulate GBM cell invasion in part via matrix protease expression.
Collapse
Affiliation(s)
- Wenjun Pu
- PACE, University of Queensland School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Zeyad D Nassar
- School of Medicine and Freemasons Foundation Centre for Men's Health, South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Samira Khabbazi
- PACE, University of Queensland School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Nan Xie
- PACE, University of Queensland School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Kerrie-Ann McMahon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gregory J Riggins
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
| | - Jonathan M Harris
- Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Marie-Odile Parat
- PACE, University of Queensland School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
17
|
Panis C, Corrêa S, Binato R, Abdelhay E. The Role of Proteomics in Cancer Research. ONCOGENOMICS 2019:31-55. [DOI: 10.1016/b978-0-12-811785-9.00003-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Guo Q, Guan GF, Cheng W, Zou CY, Zhu C, Cheng P, Wu AH. Integrated profiling identifies caveolae-associated protein 1 as a prognostic biomarker of malignancy in glioblastoma patients. CNS Neurosci Ther 2018; 25:343-354. [PMID: 30311408 DOI: 10.1111/cns.13072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/24/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
AIMS Glioblastoma (GBM) is a lethal disease of the central nervous system with high mortality, and novel therapeutic targets and strategies for GBM are urgently needed. Caveolae-associated protein 1 (CAVIN1) is an essential caveolar component-encoding gene and has been poorly studied in glioma. To this end, in this study, we evaluated CAVIN1 expression in glioma tissue as well as the correlation between CAVIN1 expression and prognosis in glioma patients using the data collected from clinical samples or from the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Rembrandt, and Gene Expression Omnibus (GEO) data sets. METHODS Survival analysis was performed with the Kaplan-Meier curve and log-rank test. The predictive role of CAVIN1 in progressive malignancy in glioma was evaluated by using a receiver operator characteristic (ROC) curve. Gene ontology (GO), Gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA) methods were used to interpret the functions of CAVIN1 in GBM. RESULTS CAVIN1 expression was elevated in GBM compared with that in low-grade glioma and nontumor brain samples and was correlated with unfavorable outcomes in glioma patients. Additionally, CAVIN1 could serve as an independent predictive factor for progressive malignancy in GBM. Furthermore, CAVIN1 was associated with disrupted angiogenesis and immune response in the tumor microenvironment of GBM. CONCLUSIONS We identified CAVIN1 as a prognostic biomarker and potential target for developing novel therapeutic strategies against GBM.
Collapse
Affiliation(s)
- Qing Guo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Ge-Fei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Cun-Yi Zou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - An-Hua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Natarajan S, Sumantran VN, Ranganathan M, Madheswaran S. Microarray and pattern miner analysis of AXL and VIM gene networks in MDA‑MB‑231 cells. Mol Med Rep 2018; 18:4147-4155. [PMID: 30132537 DOI: 10.3892/mmr.2018.9404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/02/2018] [Indexed: 11/05/2022] Open
Abstract
MDA‑MB‑231 cells represent malignant triple‑negative breast cancer, which overexpress epidermal growth factor receptor (EGFR) and two genes (AXL and VIM) associated with poor prognosis. The present study aimed to identify novel therapeutic targets and elucidate the functional networks for the AXL and VIM genes in MDA‑MB‑231 cells. We identified 71 genes upregulated in MDA‑MB‑231 vs. MCF7 cells using BRB‑Array tool to re‑analyse microarray data from six GEO datasets. Gene ontology and STRING analysis showed that 43/71 genes upregulated in MDA‑MB‑231 compared with MCF7 cells, regulate cell survival and migration. Another 19 novel genes regulate migration, metastases, senescence, autophagy and chemoresistance. The Pattern Miner systems biology tool uses specific genes as inputs or 'baits' to identify outputs from the NCI‑60 database. Using five genes regulating cancer cell migration (AXL, VIM, EGFR, CAPN2, and COL4A1) as input 'baits', we used pattern miner to identify statistically significant, co‑expressed genes from the list of 71 genes upregulated in MDA‑MB‑231 compared with MCF7 cells. Outputs were subsets of the 71 genes, which showed significant co‑expression with one or more of the five input genes. These outputs were used to develop functional networks for AXL and VIM. Analysis of these networks verified known properties of AXL and VIM, and suggested novel functions for these two genes. Thus, genes in the AXL network promote migration, metastasis and chemoresistance, whereas the VIM gene network regulates novel tumorigenic processes, such as lipogenesis, senescence and autophagy. Notably, these two networks contain 12 genes not reported for TNBC.
Collapse
Affiliation(s)
- Sudhakar Natarajan
- Department of Biotechnology, Faculty of Engineering and Technology, Dr. M.G.R. Educational and Research Institute, Tamil Nadu, Chennai 600095, India
| | - Venil N Sumantran
- Dr. A.P.J. Abdul Kalam Centre for Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Tamil Nadu, Chennai 600095, India
| | - Mohan Ranganathan
- Department of Biotechnology, Faculty of Engineering and Technology, Dr. M.G.R. Educational and Research Institute, Tamil Nadu, Chennai 600095, India
| | - Suresh Madheswaran
- Department of Biotechnology, Faculty of Engineering and Technology, Dr. M.G.R. Educational and Research Institute, Tamil Nadu, Chennai 600095, India
| |
Collapse
|
20
|
Yang Q, Zhu C, Zhang Y, Wang Y, Wang Y, Zhu L, Yang X, Li J, Nie H, Jiang S, Zhang X, Cao X, Li Q, Zhang X, Tian G, Hu L, Zhu L, Zhao G, Zhang Z. Molecular analysis of gastric cancer identifies genomic markers of drug sensitivity in Asian gastric cancer. J Cancer 2018; 9:2973-2980. [PMID: 30123366 PMCID: PMC6096361 DOI: 10.7150/jca.25506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/16/2018] [Indexed: 01/09/2023] Open
Abstract
Background: Gastric cancer (GC) is one of the leading causes of lethal malignancies worldwide, especially in Eastern Asia. Clinical responses to antitumor therapies are often limited to a subset of patients. Methods: To uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we performed ultra-deep targeted sequencing in a cohort with 72 patients (41 with chemotherapy sensitivity and 31 with chemotherapy resistance). Results: We found that sixteen mutated cancer genes were associated with widely used agent in chemotherapy of gastric cancer. Genes identified in these study are mainly involved in activation and inactivation of cancer chemotherapeutic agents, changes of apoptosis and proliferation, drug efflux, DNA damage repair, and the tumor microenvironment. Discussion: A novel group of chemo-sensitivity related genes provided new therapeutic strategies to overcome the development and evolution of resistance to cancer chemotherapy.
Collapse
Affiliation(s)
- Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yanli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yangyang Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yahui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lei Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiaomei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Huizhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiaoxin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiaoyan Cao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xueli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Guangang Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lipeng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lili Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
21
|
Jung SH, Lee M, Park HA, Lee HC, Kang D, Hwang HJ, Park C, Yu DM, Jung YR, Hong MN, Kim YN, Park HJ, Ko YG, Lee JS. Integrin α6β4-Src-AKT signaling induces cellular senescence by counteracting apoptosis in irradiated tumor cells and tissues. Cell Death Differ 2018; 26:245-259. [PMID: 29786073 DOI: 10.1038/s41418-018-0114-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/07/2018] [Accepted: 03/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cellular senescence refers to an irreversible growth arrest that is triggered by various intrinsic and extrinsic stresses. Many recent studies have demonstrated that cellular senescence plays a crucial role in the regression of tumors exposed to ionizing radiation (IR), but the underlying mechanism remains unknown. Here we show that the activation of integrin β4 is essential for IR-induced cellular senescence. IR treatment results in the phosphorylation of integrin β4 at tyrosine residue 1510, leading to activation of the integrin α6β4-Src-AKT signaling pathway. We further reveal that the IR-induced phosphorylation of integrin β4 is regulated by the cholesterol content and membrane fluidity. We also find that IR-induced p53-caspase signaling is independent of integrin α6β4-Src-AKT signaling. Finally, we show that siRNA- or inhibitor-mediated blockade of integrin α6β4-Src-AKT signaling switches the post-irradiation fate from senescence to apoptosis, under p53 activated condition, in both cancer cells and tumor tissues of xenograft mice. On the basis of our finding that, integrin α6β4 is specifically activated and acts primarily to induce premature senescence in irradiated cancer cells, we propose that this integrin may be a valuable target and biomarker for radiotherapy.
Collapse
Affiliation(s)
- Seung Hee Jung
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea
| | - Minyoung Lee
- Radiation Non-clinical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hyun A Park
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea
| | - Hyung Chul Lee
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea
| | - Donghee Kang
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea
| | - Hyun Jung Hwang
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea
| | - Chanho Park
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea
| | - Dong-Min Yu
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Yu Ri Jung
- Radiation Non-clinical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Mi-Na Hong
- Radiation Non-clinical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Yong-Nyun Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Korea
| | - Heon Joo Park
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea.,Department of Microbiology, Inha University College of Medicine, Incheon, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea. .,Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea.
| |
Collapse
|
22
|
Wang F, Zheng Y, Orange M, Yang C, Yang B, Liu J, Tan T, Ma X, Chen T, Yin X, Tang X, Zhu H. PTRF suppresses the progression of colorectal cancers. Oncotarget 2018; 8:48650-48659. [PMID: 27203393 PMCID: PMC5564714 DOI: 10.18632/oncotarget.9424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/11/2016] [Indexed: 01/04/2023] Open
Abstract
As a key component of caveolae structure on the plasma membrane, accumulated evidence has suggested that Polymerase I and Transcript Release Factor (PTRF) plays a pivotal role in suppressing the progression of human malignances. However, the function of PTRF in the development of colorectal cancers is still unclear. Here we report that the expression of PTRF is significantly reduced in tumor tissues derived from human patients with colorectal cancers, and that the downregulation of PTRF correlates to the advanced stage of the disease. In addition, we found that the expression of PTRF negatively regulates the tumorigenic activities of colorectal cell lines (Colo320, HT29 and CaCo2). Furthermore, ectopic PTRF expression caused significant suppression of cellular proliferation, and anchorage-independent colony growth of Colo320 cells, which have the lowest expression level of PTRF in the three studied cell lines. Meanwhile, shRNA mediated knockdown of PTRF in CaCo2 cells significantly promoted cellular proliferation and anchorage-independent colony growth. In addition, in vivo assays further revealed that tumor growth was significantly inhibited in xenografts with ectopic PTRF expression as compared to untreated Colo320 cells, but was markedly enhanced in PTRF knockdown CaCo2 cells. Biochemical studies revealed that overexpression of PTRF led to the suppression of the AKT/mTOR pathway, as evidenced by reduced phosphorylation of AKT, mTOR, and downstream MMP-9. Thus, these findings, for the first time, demonstrated that PTRF inhibits the tumorigenesis of colorectal cancers and that it might serve as a potential therapeutic target for human colon cancer patients.
Collapse
Affiliation(s)
- Fengyun Wang
- Gastroenterology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongqiu Zheng
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Matthew Orange
- Department of Physical Education and Human Performance, Central Connecticut State University, New Britain, CT, USA
| | - Chunlin Yang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bin Yang
- Gastroenterology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiong Liu
- Gastroenterology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xiangxue Ma
- Gastroenterology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tin Chen
- Gastroenterology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolan Yin
- Gastroenterology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Gastroenterology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
23
|
Fuentes NR, Kim E, Fan YY, Chapkin RS. Omega-3 fatty acids, membrane remodeling and cancer prevention. Mol Aspects Med 2018; 64:79-91. [PMID: 29627343 DOI: 10.1016/j.mam.2018.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
Proteins are often credited as the macromolecule responsible for performing critical cellular functions, however lipids have recently garnered more attention as our understanding of their role in cell function and human health becomes more apparent. Although cellular membranes are the lipid environment in which many proteins function, it is now apparent that protein and lipid assemblies can be organized to form distinct micro- or nanodomains that facilitate signaling events. Indeed, it is now appreciated that cellular function is partly regulated by the specific spatiotemporal lipid composition of the membrane, down to the nanosecond and nanometer scale. Furthermore, membrane composition is altered during human disease processes such as cancer and obesity. For example, an increased rate of lipid/cholesterol synthesis in cancerous tissues has long been recognized as an important aspect of the rewired metabolism of transformed cells. However, the contribution of lipids/cholesterol to cellular function in disease models is not yet fully understood. Furthermore, an important consideration in regard to human health is that diet is a major modulator of cell membrane composition. This can occur directly through incorporation of membrane substrates, such as fatty acids, e.g., n-3 polyunsaturated fatty acids (n-3 PUFA) and cholesterol. In this review, we describe scenarios in which changes in membrane composition impact human health. Particular focus is placed on the importance of intrinsic lipid/cholesterol biosynthesis and metabolism and extrinsic dietary modification in cancer and its effect on plasma membrane properties.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Molecular and Cellular Medicine, Texas A&M University, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA; Center for Translational Environmental Health Research, Texas A&M University, USA.
| |
Collapse
|
24
|
Huang K, Fang C, Yi K, Liu X, Qi H, Tan Y, Zhou J, Li Y, Liu M, Zhang Y, Yang J, Zhang J, Li M, Kang C. The role of PTRF/Cavin1 as a biomarker in both glioma and serum exosomes. Theranostics 2018; 8:1540-1557. [PMID: 29556340 PMCID: PMC5858166 DOI: 10.7150/thno.22952] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022] Open
Abstract
Exosomes play critical roles in intercellular communication in both nearby and distant cells in individuals and organs. Polymerase I and transcript release factor (PTRF), also known as Cavin1, has previously been described as a critical factor in caveola formation, and aberrant PTRF expression has been reported in various malignancies. However, the function of PTRF in tumor progression remains controversial, and its role in glioma is poorly understood. In this study, we report that PTRF is associated with malignancy grade and poor prognosis in glioma patients. Our previous study using two proteomics methods, tandem mass tag (TMT) and data-independent acquisition (DIA), showed that EGFRvIII overexpression increased PTRF expression at the protein level. In contrast, blocking PI3K and AKT using LY294002 and MK-2206, respectively, decreased PTRF expression, showing that PTRF is regulated in the EGFR/PI3K/AKT pathway. ChIP-PCR analysis showed that PTRF is transcriptionally regulated by the H3K4me3 and H3K27me3 modifications. Furthermore, PTRF overexpression increased exosome secretion and induced cell growth in vitro. More importantly, overexpressing PTRF induced the malignancy of nearby cells in vivo, suggesting that PTRF alters the microenvironment through intercellular communication via exosomes. Furthermore, analysis of clinical samples showed a positive correlation between tumor grade and PTRF expression in both tumor tissues and exosomes isolated from blood harvested from glioma patients, and PTRF expression in exosomes isolated from the sera of GBM patients was decreased after surgery. In conclusion, PTRF serves as a promising biomarker in both tumor samples and serum exosomes, thus facilitating the detection of glioma and potentially serving as a therapeutic target for glioblastoma multiforme.
Collapse
Affiliation(s)
- Kai Huang
- Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Chuan Fang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Neurosurgery, Hebei University Affiliated Hospital, Baoding 071000, China
| | - Kaikai Yi
- Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Xing Liu
- Beijing Neurosurgical Institute, Capital Medical University,Beijing,100050,China
| | - Hongzhao Qi
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Yanli Tan
- College of Fundamental Medicine, Hebei University, Baoding 071000, China
| | - Junhu Zhou
- Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Ying Li
- Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Mingyang Liu
- Department of Medicine, Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yuqing Zhang
- Department of Medicine, Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jingxuan Yang
- Department of Medicine, Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Min Li
- Department of Medicine, Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Chunsheng Kang
- Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| |
Collapse
|
25
|
Lee H, Kim BW, Lee JW, Hong J, Lee JW, Kim HL, Lee JS, Ko YG. Extracellular reactive oxygen species are generated by a plasma membrane oxidative phosphorylation system. Free Radic Biol Med 2017; 112:504-514. [PMID: 28842348 DOI: 10.1016/j.freeradbiomed.2017.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/17/2017] [Accepted: 08/20/2017] [Indexed: 12/31/2022]
Abstract
Although the oxidative phosphorylation (OXPHOS) system has been found in mitochondria and the plasma membrane of various mammalian cell lines, understanding the physiological functions of the plasma membrane OXPHOS system is challenging. Here, we demonstrated that OXPHOS I, II, III, IV and V subunits were expressed in the plasma membrane of HepG2 cells and primary mouse hepatocytes, as determined by non-permeabilized immunofluorescence, total internal reflection fluorescence (TIRF) microscopy, cell surface-biotin labeling and plasma membrane and lipid raft isolation. Next, we demonstrated that NADH administration generated extracellular superoxide and improved insulin signaling in HepG2 cells and primary mouse hepatocytes. The NADH-dependent generation of extracellular superoxide was prevented by knockdown of NDUFV-1, the first subunit of OXPHOS I receiving electrons from NADH and the NADH-improved insulin signaling was abolished by extracellular catalase. Thus, we conclude that the OXPHOS system in the plasma membrane may be required for the generation of extracellular ROS and the regulation of insulin signaling.
Collapse
Affiliation(s)
- Hyun Lee
- Division of Life Sciences, Korea University, Seoul, Republic of Korea; Tunneling Nanotube Research Center, Korea University, Seoul, Republic of Korea
| | - Bong-Woo Kim
- Division of Life Sciences, Korea University, Seoul, Republic of Korea; Tunneling Nanotube Research Center, Korea University, Seoul, Republic of Korea
| | - Jung-Woo Lee
- Division of Life Sciences, Korea University, Seoul, Republic of Korea; Tunneling Nanotube Research Center, Korea University, Seoul, Republic of Korea
| | - Jin Hong
- Division of Life Sciences, Korea University, Seoul, Republic of Korea; Tunneling Nanotube Research Center, Korea University, Seoul, Republic of Korea
| | - Jung-Wha Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong-Lim Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae-Seon Lee
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, Republic of Korea; Tunneling Nanotube Research Center, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Emad A, Cairns J, Kalari KR, Wang L, Sinha S. Knowledge-guided gene prioritization reveals new insights into the mechanisms of chemoresistance. Genome Biol 2017; 18:153. [PMID: 28800781 PMCID: PMC5554409 DOI: 10.1186/s13059-017-1282-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/18/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Identification of genes whose basal mRNA expression predicts the sensitivity of tumor cells to cytotoxic treatments can play an important role in individualized cancer medicine. It enables detailed characterization of the mechanism of action of drugs. Furthermore, screening the expression of these genes in the tumor tissue may suggest the best course of chemotherapy or a combination of drugs to overcome drug resistance. RESULTS We developed a computational method called ProGENI to identify genes most associated with the variation of drug response across different individuals, based on gene expression data. In contrast to existing methods, ProGENI also utilizes prior knowledge of protein-protein and genetic interactions, using random walk techniques. Analysis of two relatively new and large datasets including gene expression data on hundreds of cell lines and their cytotoxic responses to a large compendium of drugs reveals a significant improvement in prediction of drug sensitivity using genes identified by ProGENI compared to other methods. Our siRNA knockdown experiments on ProGENI-identified genes confirmed the role of many new genes in sensitivity to three chemotherapy drugs: cisplatin, docetaxel, and doxorubicin. Based on such experiments and extensive literature survey, we demonstrate that about 73% of our top predicted genes modulate drug response in selected cancer cell lines. In addition, global analysis of genes associated with groups of drugs uncovered pathways of cytotoxic response shared by each group. CONCLUSIONS Our results suggest that knowledge-guided prioritization of genes using ProGENI gives new insight into mechanisms of drug resistance and identifies genes that may be targeted to overcome this phenomenon.
Collapse
Affiliation(s)
- Amin Emad
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics, Gonda 19, Mayo Clinic Rochester, 200, 1st St. SW, Rochester, MN 55905 USA
| | - Krishna R. Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Gonda 19, Mayo Clinic Rochester, 200, 1st St. SW, Rochester, MN 55905 USA
| | - Saurabh Sinha
- Department of Computer Science and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 2122 Siebel Center, 201N. Goodwin Ave, Urbana, IL 61801 USA
| |
Collapse
|
27
|
Hou TY, Davidson LA, Kim E, Fan YY, Fuentes NR, Triff K, Chapkin RS. Nutrient-Gene Interaction in Colon Cancer, from the Membrane to Cellular Physiology. Annu Rev Nutr 2017; 36:543-70. [PMID: 27431370 DOI: 10.1146/annurev-nutr-071715-051039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The International Agency for Research on Cancer recently released an assessment classifying red and processed meat as "carcinogenic to humans" on the basis of the positive association between increased consumption and risk for colorectal cancer. Diet, however, can also decrease the risk for colorectal cancer and be used as a chemopreventive strategy. Bioactive dietary molecules, such as n-3 polyunsaturated fatty acids, curcumin, and fermentable fiber, have been proposed to exert chemoprotective effects, and their molecular mechanisms have been the focus of research in the dietary/chemoprevention field. Using these bioactives as examples, this review surveys the proposed mechanisms by which they exert their effects, from the nucleus to the cellular membrane. In addition, we discuss emerging technologies involving the culturing of colonic organoids to study the physiological effects of dietary bioactives. Finally, we address future challenges to the field regarding the identification of additional molecular mechanisms and other bioactive dietary molecules that can be utilized in our fight to reduce the incidence of colorectal cancer.
Collapse
Affiliation(s)
- Tim Y Hou
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Laurie A Davidson
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843.,Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas 77843
| | - Eunjoo Kim
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77843
| | - Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Faculty of Toxicology, Texas A&M University, College Station, Texas 77843
| | - Karen Triff
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843;
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843.,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843.,Faculty of Toxicology, Texas A&M University, College Station, Texas 77843.,Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
28
|
Fiederling F, Weschenfelder M, Fritz M, von Philipsborn A, Bastmeyer M, Weth F. Ephrin-A/EphA specific co-adaptation as a novel mechanism in topographic axon guidance. eLife 2017; 6. [PMID: 28722651 PMCID: PMC5517148 DOI: 10.7554/elife.25533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022] Open
Abstract
Genetic hardwiring during brain development provides computational architectures for innate neuronal processing. Thus, the paradigmatic chick retinotectal projection, due to its neighborhood preserving, topographic organization, establishes millions of parallel channels for incremental visual field analysis. Retinal axons receive targeting information from quantitative guidance cue gradients. Surprisingly, novel adaptation assays demonstrate that retinal growth cones robustly adapt towards ephrin-A/EphA forward and reverse signals, which provide the major mapping cues. Computational modeling suggests that topographic accuracy and adaptability, though seemingly incompatible, could be reconciled by a novel mechanism of coupled adaptation of signaling channels. Experimentally, we find such 'co-adaptation' in retinal growth cones specifically for ephrin-A/EphA signaling. Co-adaptation involves trafficking of unliganded sensors between the surface membrane and recycling endosomes, and is presumably triggered by changes in the lipid composition of membrane microdomains. We propose that co-adaptative desensitization eventually relies on guidance sensor translocation into cis-signaling endosomes to outbalance repulsive trans-signaling.
Collapse
Affiliation(s)
- Felix Fiederling
- Department of Cell and Neurobiology, Karlsruhe Institute of Technology, Zoological Institute, Karlruhe, Germany
| | - Markus Weschenfelder
- Department of Cell and Neurobiology, Karlsruhe Institute of Technology, Zoological Institute, Karlruhe, Germany
| | - Martin Fritz
- Department of Cell and Neurobiology, Karlsruhe Institute of Technology, Zoological Institute, Karlruhe, Germany
| | - Anne von Philipsborn
- Department of Cell and Neurobiology, Karlsruhe Institute of Technology, Zoological Institute, Karlruhe, Germany
| | - Martin Bastmeyer
- Department of Cell and Neurobiology, Karlsruhe Institute of Technology, Zoological Institute, Karlruhe, Germany
| | - Franco Weth
- Department of Cell and Neurobiology, Karlsruhe Institute of Technology, Zoological Institute, Karlruhe, Germany
| |
Collapse
|
29
|
Ichikawa Y, Zemljic-Harpf AE, Zhang Z, McKirnan MD, Manso AM, Ross RS, Hammond HK, Patel HH, Roth DM. Modulation of caveolins, integrins and plasma membrane repair proteins in anthracycline-induced heart failure in rabbits. PLoS One 2017; 12:e0177660. [PMID: 28498861 PMCID: PMC5428970 DOI: 10.1371/journal.pone.0177660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/01/2017] [Indexed: 01/01/2023] Open
Abstract
Anthracyclines are chemotherapeutic drugs known to induce heart failure in a dose-dependent manner. Mechanisms involved in anthracycline cardiotoxicity are an area of relevant investigation. Caveolins bind, organize and regulate receptors and signaling molecules within cell membranes. Caveolin-3 (Cav-3), integrins and related membrane repair proteins can function as cardioprotective proteins. Expression of these proteins in anthracycline-induced heart failure has not been evaluated. We tested the hypothesis that daunorubicin alters cardioprotective protein expression in the heart. Rabbits were administered daunorubicin (3 mg/kg, IV) weekly, for three weeks or nine weeks. Nine weeks but not three weeks of daunorubicin resulted in progressive reduced left ventricular function. Cav-3 expression in the heart was unchanged at three weeks of daunorubicin and increased in nine week treated rabbits when compared to control hearts. Electron microscopy showed caveolae in the heart were increased and mitochondrial number and size were decreased after nine weeks of daunorubicin. Activated beta-1 (β1) integrin and the membrane repair protein MG53 were increased after nine weeks of daunorubicin vs. controls with no change at the three week time point. The results suggest a potential pathophysiological role for Cav3, integrins and membrane repair in daunorubicin-induced heart failure.
Collapse
Affiliation(s)
- Yasuhiro Ichikawa
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, United States of America
| | - Alice E. Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, United States of America
| | - Zheng Zhang
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - M. Dan McKirnan
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, United States of America
| | - Ana Maria Manso
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Robert S. Ross
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - H. Kirk Hammond
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Hemal H. Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, United States of America
| | - David M. Roth
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
30
|
Reversal effects of local anesthetics on P-glycoprotein-mediated cancer multidrug resistance. Anticancer Drugs 2017; 28:243-249. [DOI: 10.1097/cad.0000000000000455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Kikuchi M, Yamashita K, Waraya M, Minatani N, Ushiku H, Kojo K, Ema A, Kosaka Y, Katoh H, Sengoku N, Enomoto T, Tanino H, Sawanobori M, Watanabe M. Epigenetic regulation of ZEB1-RAB25/ESRP1 axis plays a critical role in phenylbutyrate treatment-resistant breast cancer. Oncotarget 2016; 7:1741-53. [PMID: 26646320 PMCID: PMC4811494 DOI: 10.18632/oncotarget.6480] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/15/2015] [Indexed: 01/14/2023] Open
Abstract
Phenylbutyrate (PB) is a histone deacetylase antagonist that also exhibits antitumor activity. In this study, we used 7 breast cancer cell lines to identify biomarker candidates that predict PB sensitivity in breast cancer. Comprehensive gene expression profiles were compared using microarrays, and the importance of the identified genes to PB sensitivity was confirmed in gene transfection experiments. CRL and MDAMB453 cells were identified as PB-sensitive, while MDAMB231 cells were PB-resistant.RAB25 and ESRP1 were identified as key regulators of PB sensitivity, while ANKD1, ETS1, PTRF, IFI16 and KIAA1199 acted as PB resistance-related genes. Expression of these genes was dramatically altered by DNA demethylation treatments. RAB25 expression inhibited IFI16 and PTRF, while ESRP1 expression suppressed ANKRD1, ETS1, and KIAA1199. Both RAB25 and ESRP1 were suppressed by ZEB1, which was in turn regulated via epigenetic mechanisms. Thus, PB sensitivity is influenced by epigenetic expression alteration of ZEB1. The genes associated with PB sensitivity are downstream targets of ZEB1. Epigenetic regulation of ZEB1 may prove valuable as a critical biomarker for predicting resistance to breast cancer therapies.
Collapse
Affiliation(s)
- Mariko Kikuchi
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan.,Epigenetic Treatment Research Group, Japan
| | - Mina Waraya
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Naoko Minatani
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hideki Ushiku
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Ken Kojo
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Akira Ema
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yoshimasa Kosaka
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hiroshi Katoh
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Norihiko Sengoku
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Takumo Enomoto
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hirokazu Tanino
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | | | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| |
Collapse
|
32
|
Lee H, Kim SH, Lee JS, Yang YH, Nam JM, Kim BW, Ko YG. Mitochondrial oxidative phosphorylation complexes exist in the sarcolemma of skeletal muscle. BMB Rep 2016; 49:116-21. [PMID: 26645635 PMCID: PMC4915115 DOI: 10.5483/bmbrep.2016.49.2.232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 12/22/2022] Open
Abstract
Although proteomic analyses have revealed the presence of mitochondrial oxidative
phosphorylation (OXPHOS) proteins in the plasma membrane, there have been no
in-depth evaluations of the presence or function of OXPHOS I-V in the plasma
membrane. Here, we demonstrate the in situ localization of
OXPHOS I-V complexes to the sarcolemma of skeletal muscle by immunofluorescence
and immunohistochemistry. A portion of the OXPHOS I-V complex proteins was not
co-stained with MitoTracker but co-localized with caveolin-3 in the sarcolemma
of mouse gastrocnemius. Mitochondrial matrix-facing OXPHOS complex subunits were
ectopically expressed in the sarcolemma of the non-permeabilized muscle fibers
and C2C12 myotubes. The sarcolemmal localization of cytochrome c was also
observed from mouse gastrocnemius muscles and C2C12 myotubes, as determined by
confocal and total internal resonance fluorescence (TIRF) microscopy. Based on
these data, we conclude that a portion of OXPHOS complexes is localized in the
sarcolemma of skeletal muscle and may have non-canonical functions. [BMB Reports
2016; 49(2): 116-121]
Collapse
Affiliation(s)
- Hyun Lee
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Seung-Hyeob Kim
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jae-Seon Lee
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
| | - Yun-Hee Yang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Bong-Woo Kim
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
33
|
Tome ME, Herndon JM, Schaefer CP, Jacobs LM, Zhang Y, Jarvis CK, Davis TP. P-glycoprotein traffics from the nucleus to the plasma membrane in rat brain endothelium during inflammatory pain. J Cereb Blood Flow Metab 2016; 36:1913-1928. [PMID: 27466374 PMCID: PMC5094312 DOI: 10.1177/0271678x16661728] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/28/2016] [Indexed: 02/01/2023]
Abstract
P-glycoprotein (PgP), a drug efflux pump in blood-brain barrier endothelial cells, is a major clinical obstacle for effective central nervous system drug delivery. Identifying PgP regulatory pathways that can be exploited clinically is critical for improving central nervous system drug delivery. We previously found that PgP activity increases in rat brain microvessels concomitant with decreased central nervous system drug delivery in response to acute peripheral inflammatory pain. In the current study, we tested the hypothesis that PgP traffics to the luminal plasma membrane of the microvessel endothelial cells from intracellular stores during peripheral inflammatory pain. Using immunofluorescence microscopy, we detected PgP in endothelial cell nuclei and in the luminal plasma membrane in control animals. Following peripheral inflammatory pain, luminal PgP staining increased while staining in the nucleus decreased. Biochemical analysis of nuclear PgP content confirmed our visual observations. Peripheral inflammatory pain also increased endothelial cell luminal staining of polymerase 1 and transcript release factor/cavin1 and serum deprivation response protein/cavin2, two caveolar scaffold proteins, without changing caveolin1 or protein kinase C delta binding protein/cavin3 location. Our data (a) indicate that PgP traffics from stores in the nucleus to the endothelial cell luminal membrane in response to peripheral inflammatory pain; (b) provide an explanation for our previous observation that peripheral inflammatory pain inhibits central nervous system drug uptake; and (c) suggest a novel regulatory mechanism for PgP activity in rat brain.
Collapse
Affiliation(s)
- Margaret E Tome
- Department of Pharmacology, University of Arizona, Tucson, USA
| | | | | | - Leigh M Jacobs
- Department of Pharmacology, University of Arizona, Tucson, USA
| | - Yifeng Zhang
- Department of Pharmacology, University of Arizona, Tucson, USA
| | | | - Thomas P Davis
- Department of Pharmacology, University of Arizona, Tucson, USA
| |
Collapse
|
34
|
Lee YS, Hwang SG, Kim JK, Park TH, Kim YR, Myeong HS, Choi JD, Kwon K, Jang CS, Ro YT, Noh YH, Kim SY. Identification of novel therapeutic target genes in acquired lapatinib-resistant breast cancer by integrative meta-analysis. Tumour Biol 2015; 37:2285-97. [PMID: 26361955 DOI: 10.1007/s13277-015-4033-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/02/2015] [Indexed: 12/11/2022] Open
Abstract
Acquired resistance to lapatinib is a highly problematic clinical barrier that has to be overcome for a successful cancer treatment. Despite efforts to determine the mechanisms underlying acquired lapatinib resistance (ALR), no definitive genetic factors have been reported to be solely responsible for the acquired resistance in breast cancer. Therefore, we performed a cross-platform meta-analysis of three publically available microarray datasets related to breast cancer with ALR, using the R-based RankProd package. From the meta-analysis, we were able to identify a total of 990 differentially expressed genes (DEGs, 406 upregulated, 584 downregulated) that are potentially associated with ALR. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs showed that "response to organic substance" and "p53 signaling pathway" may be largely involved in ALR process. Of these, many of the top 50 upregulated and downregulated DEGs were found in oncogenesis of various tumors and cancers. For the top 50 DEGs, we constructed the gene coexpression and protein-protein interaction networks from a huge database of well-known molecular interactions. By integrative analysis of two systemic networks, we condensed the total number of DEGs to six common genes (LGALS1, PRSS23, PTRF, FHL2, TOB1, and SOCS2). Furthermore, these genes were confirmed in functional module eigens obtained from the weighted gene correlation network analysis of total DEGs in the microarray datasets ("GSE16179" and "GSE52707"). Our integrative meta-analysis could provide a comprehensive perspective into complex mechanisms underlying ALR in breast cancer and a theoretical support for further chemotherapeutic studies.
Collapse
Affiliation(s)
- Young Seok Lee
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sun Goo Hwang
- Plant Genomics Laboratory, Department of Applied Plant Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin Ki Kim
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Tae Hwan Park
- Department of Plastic and Reconstructive Surgery, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Young Rae Kim
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Ho Sung Myeong
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Jong Duck Choi
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Kang Kwon
- School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Applied Plant Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Young Tae Ro
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Yun Hee Noh
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
35
|
Cavin-1 and Caveolin-1 are both required to support cell proliferation, migration and anchorage-independent cell growth in rhabdomyosarcoma. J Transl Med 2015; 95:585-602. [PMID: 25822667 DOI: 10.1038/labinvest.2015.45] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/26/2015] [Accepted: 02/27/2015] [Indexed: 12/17/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a childhood soft tissue tumor with broad expression of markers that are typically found in skeletal muscle. Cavin-1 is a recently discovered protein actively cooperating with Caveolin-1 (Cav-1) in the morphogenesis of caveolae and whose role in cancer is drawing increasing attention. Using a combined in silico and in vitro analysis here we show that Cavin-1 is expressed in myogenic RMS tumors as well as in human and primary mouse RMS cultures, exhibiting a broad subcellular localization, ranging from nuclei and cytosol to plasma membrane. In particular, the coexpression and plasma membrane interaction between Cavin-1 and Cav-1 characterized the proliferation of human and mouse RMS cell cultures, while a downregulation of their expression levels was observed during the myogenic differentiation. Knockdown of Cavin-1 or Cav-1 in the human RD and RH30 cells led to impairment of cell proliferation and migration. Moreover, loss of Cavin-1 in RD cells impaired the anchorage-independent cell growth in soft agar. While the loss of Cavin-1 did not affect the Cav-1 protein levels in RMS cells, Cav-1 overexpression and knockdown triggered a rise or depletion of Cavin-1 protein levels in RD cells, respectively, in turn reflecting on increased or decreased cell proliferation, migration and anchorage-independent cell growth. Collectively, these data indicate that the interaction between Cavin-1 and Cav-1 underlies the cell growth and migration in myogenic tumors.
Collapse
|
36
|
Zhang Y, Qu X, Teng Y, Li Z, Xu L, Liu J, Ma Y, Fan Y, Li C, Liu S, Wang Z, Hu X, Zhang J, Liu Y. Cbl-b inhibits P-gp transporter function by preventing its translocation into caveolae in multiple drug-resistant gastric and breast cancers. Oncotarget 2015; 6:6737-48. [PMID: 25788263 PMCID: PMC4466646 DOI: 10.18632/oncotarget.3253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/29/2015] [Indexed: 12/25/2022] Open
Abstract
The transport function of P-glycoprotein (P-gp) requires its efficient localization to caveolae, a subset of lipid rafts, and disruption of caveolae suppresses P-gp transport function. However, the regulatory molecules involved in the translocation of P-gp into caveolae remain unknown. In the present study, we showed that c-Src dependent Caveolin-1 phosphorylation promoted the translocation of P-gp into caveolae, resulting in multidrug resistance in adriamycin resistant gastric cancer SGC7901/Adr and breast cancer MCF-7/Adr cells. In a negative feedback loop, the translocation of Cbl-b from the nucleus to the cytoplasm prevented the localization of P-gp to caveolae resulting in the reversal of MDR through the ubiquitination and degradation of c-Src. Clinical data showed a significant positive relationship between Cbl-b expression and survival in P-gp positive breast cancer patients who received anthracycline-based chemotherapy. Our findings identified a new regulatory mechanism of P-gp transport function in multiple drug-resistant gastric and breast cancers.
Collapse
Affiliation(s)
- Ye Zhang
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Xiujuan Qu
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yuee Teng
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Zhi Li
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Ling Xu
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Jing Liu
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yanju Ma
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yibo Fan
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Ce Li
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Shizhou Liu
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Zhenning Wang
- 2 Department of Surgical Oncology and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China
| | - Xuejun Hu
- 3 Department of Medical Respiratory, the First Hospital of China Medical University, Shenyang 110001, China
| | - Jingdong Zhang
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yunpeng Liu
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
37
|
|
38
|
Gupta R, Toufaily C, Annabi B. Caveolin and cavin family members: dual roles in cancer. Biochimie 2014; 107 Pt B:188-202. [PMID: 25241255 DOI: 10.1016/j.biochi.2014.09.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 09/04/2014] [Indexed: 12/16/2022]
Abstract
Caveolae are specialized plasma membrane subdomains with distinct lipid and protein compositions, which play an essential role in cell physiology through regulation of trafficking and signaling functions. The structure and functions of caveolae have been shown to require the proteins caveolins. Recently, members of the cavin protein family were found to be required, in concert with caveolins, for the formation and function of caveolae. Caveolins have a paradoxical role in the development of cancer formation. They have been involved in both tumor suppression and oncogenesis, depending on tumor type and progress stage. High expression of caveolins and cavins leads to inhibition of cancer-related pathways, such as growth factor signaling pathways. However, certain cancer cells that express caveolins and cavins have been shown to be more aggressive and metastatic because of their increased potential for anchorage-independent growth. Here, we will survey the functional roles of caveolins and of different cavin family members in cancer regulation.
Collapse
Affiliation(s)
- Reshu Gupta
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Département de Chimie, Université du Québec à Montréal, Québec H3C 3P8, Canada.
| | - Chirine Toufaily
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Département de Chimie, Université du Québec à Montréal, Québec H3C 3P8, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Département de Chimie, Université du Québec à Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
39
|
Emerging role of polymerase-1 and transcript release factor (PTRF/ Cavin-1) in health and disease. Cell Tissue Res 2014; 357:505-13. [PMID: 25107607 DOI: 10.1007/s00441-014-1964-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/04/2014] [Indexed: 01/06/2023]
Abstract
Polymerase-1 and release transcript factor (PTRF) was initially reported to be involved in the termination of the transcription process. More recently, it has been implicated in the formation of caveolae, cave-like structures in the plasma membrane. The effects of PTRF related to caveolae suggest that this protein may play important roles in health and disease. PTRF is highly expressed in various cells, including adipocytes, osteoblasts and muscle (cardiac, skeletal and smooth) cells. The role of PTRF in prostate cancer has been recently reviewed but there is growing evidence that PTRF is involved in other physiological processes such as cell repair and the regulation of glucose and lipid metabolism and, furthermore, altered expression of PTRF may be associated with disease. This review discusses the emerging role of PTRF in health and disease.
Collapse
|
40
|
Ma W, Wang DD, Li L, Feng YK, Gu HM, Zhu GM, Piao JH, Yang Y, Gao X, Zhang PX. Caveolin-1 plays a key role in the oleanolic acid-induced apoptosis of HL-60 cells. Oncol Rep 2014; 32:293-301. [PMID: 24842472 DOI: 10.3892/or.2014.3177] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/14/2014] [Indexed: 11/06/2022] Open
Abstract
Our previous study found that caveolin-1 (CAV-1) protein expression is upregulated during oleanolic acid (OA)-induced inhibition of proliferation and promotion of apoptosis in HL-60 cells. CAV-1 is the main structural protein component of caveolae, playing important roles in tumorigenesis and tumor development. It has been shown that cav-1 expression is lower in leukemia cancer cell lines SUP-B15, HL-60, THP-1 and K562 and in chronic lymphocytic leukemia primary (CLP) cells when compared with normal white blood cells, with the lowest cav-1 expression level found in HL-60 cells. To study the effects of cav-1 in HL-60 cells and the effects of cav-1 overexpression on OA drug efficacy, cav-1 was overexpressed in HL-60 cells using lentiviral-mediated transfection combined with OA treatment. The results showed that cav-1 overexpression inhibited HL-60 cell proliferation, promoted apoptosis, arrested the cell cycle in the G1 phase and inhibited activation of the PI3K/AKT/mTOR signaling pathway. Overexpression of CAV-1 also increased HL-60 cell sensitivity to OA. To further verify whether OA affects HL-60 cells via the activation of downstream signaling pathways by CAV-1, cav-1 gene expression was silenced using RNAi, and the cells were treated with OA to examine its efficacy. The results showed that after cav-1 silencing, OA had little effect on cell activity, apoptosis, the cell cycle and phosphorylation of HL-60 cells. This study is the first to show that CAV-1 plays a crucial role in the effects of OA on HL-60 cells.
Collapse
Affiliation(s)
- Wei Ma
- School of Basic Medicine, Jiamusi University, Jiamusi 154000, P.R. China
| | - Di-Di Wang
- School of Basic Medicine, Jiamusi University, Jiamusi 154000, P.R. China
| | - Li Li
- School of Basic Medicine, Jiamusi University, Jiamusi 154000, P.R. China
| | - Yu-Kuan Feng
- Department of Biology, Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Hong-Mei Gu
- Department of Biology, Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Gui-Ming Zhu
- School of Basic Medicine, Jiamusi University, Jiamusi 154000, P.R. China
| | - Jin-Hua Piao
- School of Basic Medicine, Jiamusi University, Jiamusi 154000, P.R. China
| | - Yu Yang
- School of Basic Medicine, Jiamusi University, Jiamusi 154000, P.R. China
| | - Xu Gao
- Department of Biochemistry, Harbin Medical University, Harbin 150086, P.R. China
| | - Peng-Xia Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi 154000, P.R. China
| |
Collapse
|
41
|
Wang X, Liu T, Bai Y, Liao H, Qiu S, Chang Z, Liu Y, Yan X, Guo H. Polymerase I and transcript release factor acts as an essential modulator of glioblastoma chemoresistance. PLoS One 2014; 9:e93439. [PMID: 24747515 PMCID: PMC3991573 DOI: 10.1371/journal.pone.0093439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/04/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES This study is to investigate if polymerase I and transcript release factor (PTRF) acts as a modulator in glioblastoma (GBM) chemoresistance. METHODS Multidrug resistant (MDR) GBM cell line U251AR was established by exposing the U251 cell line to imatinib. The 2D-DIGE and MALDI-TOF/TOF-MS were performed on U251 and U251AR cell lines to screen MDR-related proteins. The expression of PTRF was determined by Western blot and quantitative RT-PCR analyses. RESULTS When compared with the parental U251 cells, expression of 21 proteins was significantly altered in U251AR cells. Among the 21 differentially expressed proteins, the expression of PTRF was up-regulated by 2.14 folds in U251AR cells when compared with that in the parental U251 cells. Knockdown of PTRF in GBM cell lines significantly increased chemosensitivity of cells to various chemical drugs and decreased the expression levels of caveolin1, a major structural component of caveolae. Expression levels of PTRF and caveolin1 were significantly up-regulated in the relapsed GBM patients. The mRNA level of PTRF and caveolin1 showed a positive correlation in the same GBM specimens. CONCLUSIONS Our results indicate that PTRF acts as a modulator in GBM chemoresistance.
Collapse
Affiliation(s)
- Xin Wang
- The National Key Clinic Specialty, the Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, P. R. China
| | - Tianzhu Liu
- The National Key Clinic Specialty, the Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Yifeng Bai
- Department of Oncology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, P. R. China
| | - Hongzhan Liao
- The National Key Clinic Specialty, the Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Shengcong Qiu
- The National Key Clinic Specialty, the Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Zhenhua Chang
- Department of Laboratory Medicine, Tongchuan People's Hospital, Tongchuan, P. R. China
| | - Yanting Liu
- The National Key Clinic Specialty, the Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Xiaohui Yan
- Clinical Research Centre, Nanfang Hospital of Southern Medical University, Guangzhou, P. R. China
| | - Hongbo Guo
- The National Key Clinic Specialty, the Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
42
|
Faggi F, Mitola S, Sorci G, Riuzzi F, Donato R, Codenotti S, Poliani PL, Cominelli M, Vescovi R, Rossi S, Calza S, Colombi M, Penna F, Costelli P, Perini I, Sampaolesi M, Monti E, Fanzani A. Phosphocaveolin-1 enforces tumor growth and chemoresistance in rhabdomyosarcoma. PLoS One 2014; 9:e84618. [PMID: 24427291 PMCID: PMC3888403 DOI: 10.1371/journal.pone.0084618] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/15/2013] [Indexed: 12/24/2022] Open
Abstract
Caveolin-1 (Cav-1) can ambiguously behave as either tumor suppressor or oncogene depending on its phosphorylation state and the type of cancer. In this study we show that Cav-1 was phosphorylated on tyrosine 14 (pCav-1) by Src-kinase family members in various human cell lines and primary mouse cultures of rhabdomyosarcoma (RMS), the most frequent soft-tissue sarcoma affecting childhood. Cav-1 overexpression in the human embryonal RD or alveolar RH30 cells yielded increased pCav-1 levels and reinforced the phosphorylation state of either ERK or AKT kinase, respectively, in turn enhancing in vitro cell proliferation, migration, invasiveness and chemoresistance. In contrast, reducing the pCav-1 levels by administration of a Src-kinase inhibitor or through targeted Cav-1 silencing counteracted the malignant in vitro phenotype of RMS cells. Consistent with these results, xenotransplantation of Cav-1 overexpressing RD cells into nude mice resulted in substantial tumor growth in comparison to control cells. Taken together, these data point to pCav-1 as an important and therapeutically valuable target for overcoming the progression and multidrug resistance of RMS.
Collapse
Affiliation(s)
- Fiorella Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manuela Cominelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefania Rossi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabio Penna
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Paola Costelli
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Ilaria Perini
- Stem Cell Research Institute, University Hospital Gasthuisberg, Leuven, Belgium
| | - Maurilio Sampaolesi
- Stem Cell Research Institute, University Hospital Gasthuisberg, Leuven, Belgium
- Human Anatomy Section, University of Pavia, Pavia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
- * E-mail:
| |
Collapse
|
43
|
Nassar ZD, Hill MM, Parton RG, Parat MO. Caveola-forming proteins caveolin-1 and PTRF in prostate cancer. Nat Rev Urol 2013; 10:529-36. [PMID: 23938946 DOI: 10.1038/nrurol.2013.168] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The expression of caveola-forming proteins is dysregulated in prostate cancer. Caveolae are flask-shaped invaginations of the plasma membrane that have roles in membrane trafficking and cell signalling. Members of two families of proteins--caveolins and cavins--are known to be required for the formation and functions of caveolae. Caveolin-1, the major structural protein of caveolae, is overexpresssed in prostate cancer and has been demonstrated to be involved in prostate cancer angiogenesis, growth and metastasis. Polymerase I and transcript release factor (PTRF) is the only cavin family member necessary for caveola formation. When exogenously expressed in prostate cancer cells, PTRF reduces aggressive potential, probably via both caveola-mediated and caveola-independent mechanisms. In addition, stromal PTRF expression decreases with progression of the disease. Evaluation of caveolin-1 antibodies in the clinical setting is underway and it is hoped that future studies will reveal the mechanisms of PTRF action, allowing its targeting for therapeutic purposes.
Collapse
Affiliation(s)
- Zeyad D Nassar
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | | | | | | |
Collapse
|