1
|
Luo X, Wang K, Jiang C. Gut microbial enzymes and metabolic dysfunction-associated steatohepatitis: Function, mechanism, and therapeutic prospects. Cell Host Microbe 2025:S1931-3128(25)00153-2. [PMID: 40425014 DOI: 10.1016/j.chom.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent liver disease worldwide. The liver communicates with the intestine, in large part through the gut microbiota. Microbial enzymes are key mediators that affect the progression of MASLD and the more severe metabolic dysfunction-associated steatohepatitis (MASH). These enzymes contribute to the metabolism or biosynthesis of steroids, fatty acids, amino acids, ethanol, choline, and intestinal hormones that contribute to disease progression. Additionally, dysbiosis and functional alterations in the microbiota compromise the intestinal barrier, increasing its permeability to bacterial metabolites and liver exposure to microbial-associated molecular patterns (MAMPs), thereby exacerbating liver inflammation and fibrosis. Furthermore, functional alterations in the gut microbiota can modulate intestinal signaling pathways through metabolites or gut hormones, subsequently affecting hepatic metabolism. A deeper understanding of the roles of the gut microbiota and microbial enzymes in MASH will facilitate the development of personalized treatments targeting specific gut microbes or functional enzymes.
Collapse
Affiliation(s)
- Xi Luo
- Department of Physiology and Pathophysiology, Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Parra I, Carrasco-Carballo A, Palafox-Sanchez V, Martínez-García I, Aguilera J, Góngora-Alfaro JL, Aranda-González II, Tizabi Y, Mendieta L. Peroxisome Proliferator-Activated Receptors (PPARs) May Mediate the Neuroactive Effects of Probiotic Metabolites: An In Silico Approach. Int J Mol Sci 2025; 26:4507. [PMID: 40429654 DOI: 10.3390/ijms26104507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 05/29/2025] Open
Abstract
It is well established that the gut-brain axis (GBA) is a bidirectional communication between the gut and the brain. This axis, critical in maintaining overall homeostasis, is regulated at the neuronal, endocrine, and immunological levels, all of which may be influenced by the gut microbiota (GM). Therefore, dysbiosis or disruption in the GM may have serious consequences including neuroinflammation due to overactivation of the immune system. Strategies to reestablish GM integrity via use of probiotics are being pursued as novel therapeutic intervention in a variety of central and peripheral diseases. The mechanisms leading to dysbiosis or efficacy of probiotics, however, are not fully evident. Here, we performed computational analysis on two major probiotics, namely Lactobacillus Lacticaseibacillus rhamnosus GG (formerly named Lactobacillus rhamnosus, L. rhamnosus GG) and Bifidobacterium animalis spp. lactis (B. lactis or B. animalis) to not only shed some light on their mechanism(s) of action but also to identify potential molecular targets for novel probiotics. Using the PubMed web page and BioCyc Database Collection platform we specifically analyzed proteins affected by metabolites of these bacteria. Our results indicate that peroxisome proliferator-activated receptors (PPARs), nuclear receptor proteins that are involved in regulation of inflammation are key mediators of the neuroactive effect of probiotics.
Collapse
Affiliation(s)
- Irving Parra
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Alan Carrasco-Carballo
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Victoria Palafox-Sanchez
- Institute for Obesity Research, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey 64700, Mexico
| | - Isabel Martínez-García
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - José Aguilera
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - José L Góngora-Alfaro
- Departamento de Neurociencias, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Avenida Itzáes No. 490 x 59, Mérida 97000, Mexico
| | - Irma Isela Aranda-González
- Facultad de Medicina, Universidad Autónoma de Yucatán, Avenida Itzáes No. 498 x 59 y 59A, Mérida 97000, Mexico
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Liliana Mendieta
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| |
Collapse
|
3
|
Beyoğlu D, Popov YV, Idle JR. Metabolomic Hallmarks of Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2024; 25:12809. [PMID: 39684520 DOI: 10.3390/ijms252312809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
From a detailed review of 90 experimental and clinical metabolomic investigations of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD), we have developed metabolomic hallmarks for both obesity and MASLD. Obesity studies were conducted in mice, rats, and humans, with consensus biomarker groups in plasma/serum being essential and nonessential amino acids, energy metabolites, gut microbiota metabolites, acylcarnitines and lysophosphatidylcholines (LPC), which formed the basis of the six metabolomic hallmarks of obesity. Additionally, mice and rats shared elevated cholesterol, humans and rats shared elevated fatty acids, and humans and mice shared elevated VLDL/LDL, bile acids and phosphatidylcholines (PC). MASLD metabolomic studies had been performed in mice, rats, hamsters, cows, geese, blunt snout breams, zebrafish, and humans, with the biomarker groups in agreement between experimental and clinical investigations being energy metabolites, essential and nonessential amino acids, fatty acids, and bile acids, which lay the foundation of the five metabolomic hallmarks of MASLD. Furthermore, the experimental group had higher LPC/PC and cholesteryl esters, and the clinical group had elevated acylcarnitines, lysophosphatidylethanolamines/phosphatidylethanolamines (LPE/PE), triglycerides/diglycerides, and gut microbiota metabolites. These metabolomic hallmarks aid in the understanding of the metabolic role played by obesity in MASLD development, inform mechanistic studies into underlying disease pathogenesis, and are critical for new metabolite-inspired therapies.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - Yury V Popov
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jeffrey R Idle
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| |
Collapse
|
4
|
Wang L, Zheng W, Sun Y, Ren X, Yan C, Song S, Ai C. Fucoidan ameliorates alcohol-induced liver injury in mice through Parabacteroides distasonis-mediated regulation of the gut-liver axis. Int J Biol Macromol 2024; 279:135309. [PMID: 39236962 DOI: 10.1016/j.ijbiomac.2024.135309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Polysaccharides can benefit the liver via modulation of the gut microbiota, but the exact mechanism is still unclear. This study demonstrated that the effect of Scytosiphon lomentaria fucoidan (SLF) on alcohol-induced liver injury can be closely related to the level of Parabacteroides distasonis (Pd) via in vivo and in vitro models. Further mice experiment showed that Pd alleviated liver injury and inflammation by suppressing the NF-κB/MAPK pathways and activating Nrf2 pathway. The underlying mechanism can be closely associated with modulation of the gut microbiota, particularly an increase in microbiota diversity and beneficial bacteria and a reduction in Proteobacteria. Targeted metabolomics indicated that Pd ameliorated alcohol-induced dysbiosis of microbiota metabolites profile, primarily affecting amino acid metabolism. Moreover, Pd reduced the level of total bile acids (BAs) and improved BAs profile, affecting the expression levels of BA-associated genes in the liver and ileum involved in BA synthesis, transport, and reabsorption. This study suggests that SLF can benefit alcohol-induced liver injury via P. distasonis-mediated regulation of the gut-liver axis.
Collapse
Affiliation(s)
- Lu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Weiyun Zheng
- School of Agronomy and Life Science, Shanxi Datong University, Datong 037009, PR China
| | - Yiyun Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiaomeng Ren
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunhong Yan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
5
|
Feng X, Wang M, Wen S, Hu L, Lan Y, Xu H. Lactiplantibacillus plantarum P101 Alleviated Alcohol-Induced Hepatic Lipid Accumulation in Mice via AMPK Signaling Pathway: Gut Microbiota and Metabolomics Analysis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10373-6. [PMID: 39388022 DOI: 10.1007/s12602-024-10373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Mitigating steatosis is essential for delaying the progression of alcoholic liver disease. The effect and mechanism of Lactiplantibacillus plantarum P101 (LP.P101) on alleviating alcohol-induced hepatic lipid accumulation were investigated in our study. The mouse model was constructed by a short-term (10-day)-plus-binge ethanol feeding and gavaged with 108 CFU/mL of LP.P101 daily. Lipid droplet in the liver was significantly reduced by LP.101 intervention on AMPK activation. However, when AMPK was inhibited by dorsomorphin, the levels of related indicators (ALT, TG, etc.) and the expression levels of AMPK and relevant genes in the liver converged to that of the alcohol-fed group. Compared with the alcohol-fed group, LP.P101 reduced the relative abundance of Firmicutes and increased that of Bacteroidetes. Parabacteroides merdae was negatively correlated with lipid accumulation, and unclassified Negativibacillus was negatively associated with AMPK activation. Importantly, LP.P101 modified the compositions of the serum metabolites. The potential biomarker stercobilinogen was positively correlated with AMPK activation and negatively associated with lipid accumulation. This work confirmed that LP.P101 attenuated alcohol-induced hepatic lipid accumulation in mice through AMPK activation, and the alterations in gut microbiota and metabolites may play a significant role on AMPK activation.
Collapse
Affiliation(s)
- Xiaoyan Feng
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China
| | - Siyue Wen
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China
| | - Liehai Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China
| | - Yuzhi Lan
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China.
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330200, P. R. China.
| |
Collapse
|
6
|
Singh AK, Kumar P, Mishra SK, Rajput VD, Tiwari KN, Singh AK, Minkina T, Pandey AK, Upadhyay P. A Dual Therapeutic Approach to Diabetes Mellitus via Bioactive Phytochemicals Found in a Poly Herbal Extract by Restoration of Favorable Gut Flora and Related Short-Chain Fatty Acids. Appl Biochem Biotechnol 2024; 196:6690-6715. [PMID: 38393580 DOI: 10.1007/s12010-024-04879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Diabetes mellitus (DM), a metabolic and endocrine condition, poses a serious threat to human health and longevity. The emerging role of gut microbiome associated with bioactive compounds has recently created a new hope for DM treatment. UHPLC-HRMS methods were used to identify these compounds in a poly herbal ethanolic extract (PHE). The effects of PHE on body weight (BW), fasting blood glucose (FBG) level, gut microbiota, fecal short-chain fatty acids (SCFAs) production, and the correlation between DM-related indices and gut microbes, in rats were investigated. Chebulic acid (0.368%), gallic acid (0.469%), andrographolide (1.304%), berberine (6.442%), and numerous polysaccharides were the most representative constituents in PHE. A more significant BW gain and a reduction in FBG level towards normal of PHE 600 mg/kg treated rats group were resulted at the end of 28th days of the study. Moreover, the composition of the gut microbiota corroborated the study's hypothesis, as evidenced by an increased ratio of Bacteroidetes to Firmicutes and some beneficial microbial species, including Prevotella copri and Lactobacillus hamster. The relative abundance of Bifidobacterium pseudolongum, Ruminococcus bromii, and Blautia producta was found to decline in PHE treatment groups as compared to diabetic group. The abundance of beneficial bacteria in PHE 600 mg/kg treatment group was concurrently associated with increased SCFAs concentrations of acetate and propionate (7.26 nmol/g and 4.13 nmol/g). The findings of this study suggest a promising approach to prevent DM by demonstrating that these naturally occurring compounds decreased FBG levels by increasing SCFAs content and SCFAs producing gut microbiota.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov On Don, Russia
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anand Kumar Singh
- Department of Chemistry, Mariahu PG College, VBS Purvanchal University, Jaunpur, Uttar Pradesh, 222161, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov On Don, Russia
| | - Ajay Kumar Pandey
- Department of Kaychikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prabhat Upadhyay
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
7
|
Ralli T, Ahmad S, Saifi Z, Alhalmi A, Aeri V, Aqil M, Kohli K. Exploring the therapeutic potential of silymarin-based herbal remedy (prebiotic) and probiotic blend in a mouse model of NAFLD: Insights into gut microbiota modulation and liver health. Heliyon 2024; 10:e33505. [PMID: 39027434 PMCID: PMC11254739 DOI: 10.1016/j.heliyon.2024.e33505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant consequence of metabolic dysfunction, often associated with changes in the intestinal microbiota. Prebiotics and probiotics have shown promise in NAFLD management. This study evaluated a silymarin-based herbal remedy with piperine and fulvic acid, alongside a probiotic blend of Bifidobacterium adolescentis, Bifidobacterium bifidum, Lactobacillus casei, and Lactobacillus rhamnosus. Using a NAFLD mouse model induced by a high-fat and high-fructose diet, we assessed biochemical parameters, liver function, glucose levels, and conducted histological analysis. Stool samples underwent 16S rRNA metagenomic analysis to explore changes in microbiota composition. Mice on the high-fat diet exhibited elevated lipids, liver enzymes, and glucose, with reduced high-density lipoprotein levels (with p value < 0.001). Treatment, particularly with F3 (silymarin-piperine-fulvic acid herbal remedy and probiotic blend), significantly reduced hepatic fat accumulation and improved gut microbiota composition. This study highlights the potential of silymarin-based therapy combined with probiotics in attenuating NAFLD progression.
Collapse
Affiliation(s)
- Tanya Ralli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
- School of Pharmacy, COER University, Roorkee-247667, India
| | - Shahnawaz Ahmad
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Zoya Saifi
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Vidhu Aeri
- Department of Pharmacognosy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
- Research and Publications, Lloyd Institute of Management and Technology, Knowledge Park II, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Li C, Liu Z, Wei W, Chen C, Zhang L, Wang Y, Zhou B, Liu L, Li X, Zhao C. Exploring the Regulatory Effect of LPJZ-658 on Copper Deficiency Combined with Sugar-Induced MASLD in Middle-Aged Mice Based on Multi-Omics Analysis. Nutrients 2024; 16:2010. [PMID: 38999758 PMCID: PMC11243161 DOI: 10.3390/nu16132010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/14/2024] Open
Abstract
Globally, metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), is one of the most common liver disorders and is strongly associated with copper deficiency. To explore the potential effects and mechanisms of Lactiplantibacillus plantarum LPJZ-658, copper deficiency combined with a high-sugar diet-induced MASLD mouse model was utilized in this study. We fed 40-week-old (middle-aged) male C57BL/6 mice a copper-deficient and high-sugar diet for 16 weeks (CuDS), with supplementary LPJZ-658 for the last 6 weeks (CuDS + LPJZ-658). In this study, we measured body weight, liver weight, and serum biochemical markers. Lipid accumulation, histology, lipidomics, and sphingolipid metabolism-related enzyme expression were investigated to analyze liver function. Untargeted metabolomics was used to analyze the serum and the composition and abundance of intestinal flora. In addition, the correlation between differential liver lipid profiles, serum metabolites, and gut flora at the genus level was measured. The results show that LPJZ-658 significantly improves abnormal liver function and hepatic steatosis. The lipidomics analyses and metabolic pathway analysis identified sphingolipid, retinol, and glycerophospholipid metabolism as the most relevant metabolic pathways that characterized liver lipid dysregulation in the CuDS group. Consistently, RT-qPCR analyses revealed that the enzymes catalyzing sphingolipid metabolism that were significantly upregulated in the CuDS group were downregulated by the LPJZ-658 treatment. In addition, the serum metabolomics results indicated that the linoleic acid, taurine and hypotaurine, and ascorbate and aldarate metabolism pathways were associated with CuDS-induced MASLD. Notably, we found that treatment with LPJZ-658 partially reversed the changes in the differential serum metabolites. Finally, LPJZ-658 effectively regulated intestinal flora abnormalities and was significantly correlated with differential hepatic lipid species and serum metabolites. In conclusion, we elucidated the function and potential mechanisms of LPJZ-658 in alleviating copper deficiency combined with sugar-induced middle-aged MASLD and hope this will provide possible treatment strategies for improving MASLD.
Collapse
Affiliation(s)
- Chunhua Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Ziqi Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Chen Chen
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Lichun Zhang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Bo Zhou
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Changchun Veterinary Research Institute, Chinese Academy of Medical Sciences, Changchun 130122, China;
| | - Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Xiao Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Changchun Veterinary Research Institute, Chinese Academy of Medical Sciences, Changchun 130122, China;
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| |
Collapse
|
9
|
Li XD, Lu Y, Luo CY, Xin WG, Kang X, Lin YC, Lin LB. Lacticaseibacillus chiayiensis mediate intestinal microbiome and microbiota-derived metabolites regulating the growth and immunity of chicks. Vet Microbiol 2024; 290:109969. [PMID: 38211362 DOI: 10.1016/j.vetmic.2023.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Emerging evidence confirms beneficial properties of probiotics in promoting growth and immunity of farmed chicken. However, the molecular mechanisms underlying the host-microbiome interactions mediated by probiotics are not fully understood. In this study, the internal mechanisms of Lacticaseibacillus chiayiensis-mediated host-microbiome interactions and to elucidate how it promotes host growth were investigated by additional supplementation with L. chiayiensis. We conducted experiments, including intestinal cytokines, digestive enzymes test, intestinal microbiome, metabolome and transcriptome analysis. The results showed that chickens fed L. chiayiensis exhibited higher body weight gain and digestive enzyme activity, and lower pro-inflammatory cytokines, compared to controls. Microbiota sequencing analysis showed that the gut microbiota structure was reshaped with L. chiayiensis supplementation. Specifically, Lactobacillus and Escherichia increased in abundance and Enterococcus, Lactococcus, Corynebacterium, Weissella and Gallicola decreased. In addition, the bacterial community diversity was significantly increased compared to controls. Metabolomic and transcriptomic analyses revealed that higher bile acids and N-acyl amides concentrations and lower carbohydrates concentrations in L. chiayiensis-fed chickens. Meanwhile, the expression of genes related to nutrient transport and absorption in the intestine was upregulated, which reflected the enhanced digestion and absorption of nutrients in chickens supplemented with L. chiayiensis. Moreover, supplementation of L. chiayiensis down-regulated genes involved in inflammation-related, mainly involved in NF-κB signaling pathway and MHC-II mediated antigen presentation process. Cumulatively, these findings highlight that host-microbiota crosstalk enhances the host growth phenotype in two ways: by enhancing bile acid metabolism and digestive enzyme activity, and reducing the occurrence of intestinal inflammation to promote nutrient absorption and maintain intestinal health. This provides a basis for the application of LAB as an alternative to antibiotics in animal husbandry.
Collapse
Affiliation(s)
- Xin-Dong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China
| | - Yao Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China
| | - Cheng-Ying Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China
| | - Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China
| | - Xin Kang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China
| | - Yi-Cen Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China.
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China.
| |
Collapse
|
10
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
11
|
Wang M, Feng X, Zhao Y, Lan Y, Xu H. Indole-3-acetamide from gut microbiota activated hepatic AhR and mediated the remission effect of Lactiplantibacillus plantarum P101 on alcoholic liver injury in mice. Food Funct 2023; 14:10535-10548. [PMID: 37947440 DOI: 10.1039/d3fo03585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Alcoholic liver disease is a prevalent condition resulting from excessive alcohol consumption, characterized by hepatic lipid accumulation and inflammation. This study delved into the protective effects and mechanisms of L. plantarum P101 on alcoholic liver injury in mice. As a result, L. plantarum P101 intervention reduced ALT and AST release, indicative of hepatocyte injury alleviation, while enhancing the activity of the antioxidant enzymes SOD and CAT. A reduction in pro-inflammatory cytokine TNF-α and an increase in anti-inflammatory cytokine IL-10 levels were observed in the L. plantarum P101-intervened mouse liver, signifying reduced inflammation within the mice. Furthermore, L. plantarum P101 intervention altered the gut microbial composition, primarily marked by an increase in Bacteroidota abundance, along with significant enrichment of beneficial bacteria, including Coprostanoligenes, Blautia and Lactiplantibacillus. Correlation analysis unveiled connections between serum tryptophan metabolites and the altered gut microbiota genera, suggesting that gut microbiota-driven effects may extend to extraintestinal organs through their metabolites. Intriguingly, serum indole-3-acetamide (IAM) was elevated by L. plantarum P101-regulated gut microbiota. Subsequently, the role of IAM in ameliorating alcoholic injury was explored using HepG2 cells, where it bolstered cell viability and attenuated EtOH-induced oxidative damage. Concomitantly, IAM activated the gene and protein expression of AhR in cells. Likewise, hepatic AhR expression in mice subjected to L. plantarum P101 significantly up-regulated, possibly instigated by gut microbiota-mediated IAM. Collectively, L. plantarum P101 orchestrates a modulation of gut microbiota and its metabolites, particularly IAM, to activate AhR, thereby alleviating alcoholic liver injury.
Collapse
Affiliation(s)
- Mengqi Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
| | - Yu Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
| | - Yuzhi Lan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, P.R. China
| |
Collapse
|
12
|
Zhao J, Zhao F, Yuan J, Liu H, Wang Y. Gut microbiota metabolites, redox status, and the related regulatory effects of probiotics. Heliyon 2023; 9:e21431. [PMID: 38027795 PMCID: PMC10643359 DOI: 10.1016/j.heliyon.2023.e21431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. It is caused by excess levels of free radicals and leads to the damage of DNA, proteins, and lipids. The crucial role of gut microbiota in regulating oxidative stress has been widely demonstrated. Studies have suggested that the redox regulatory effects of gut microbiota are related to gut microbiota metabolites, including fatty acids, lipopolysaccharides, tryptophan metabolites, trimethylamine-N-oxide and polyphenolic metabolites. In recent years, the potential benefits of probiotics have been gaining increasing scientific interest owing to their ability to modulate gut microbiota and oxidative stress. In this review, we summarise the adverse health effects of oxidative stress and discuss the role of the gut microbiota and its metabolites in redox regulation. Based on the influence of gut microbiota metabolites, the roles of probiotics in preventing oxidative stress are highlighted.
Collapse
Affiliation(s)
| | | | - Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| |
Collapse
|
13
|
Barouei J, Martinic A, Bendiks Z, Mishchuk D, Heeney D, Slupsky CM, Marco ML. Type 2-resistant starch and Lactiplantibacillus plantarum NCIMB 8826 result in additive and interactive effects in diet-induced obese mice. Nutr Res 2023; 118:12-28. [PMID: 37536013 DOI: 10.1016/j.nutres.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023]
Abstract
Little is known about how combining a probiotic with prebiotic dietary fiber affects the ability of either biotic to improve health. We hypothesized that prebiotic, high-amylose maize type 2-resistant starch (RS) together with probiotic Lactiplantibacillus plantarum NCIMB8826 (LP) as a complementary synbiotic results in additive effects on the gut microbiota in diet-induced obese mice and other body sites. Diet-induced obese C57BL/6J male mice were fed a high-fat diet adjusted to contain RS (20% by weight), LP (109 cells every 48 hours), or both (RS+LP) for 6 weeks. As found for mice fed RS, cecal bacterial alpha diversity was significantly reduced in mice given RS+LP compared with those fed LP and high-fat controls. Similarly, both RS+LP and RS also conferred lower quantities of cecal butyrate and serum histidine and higher ileal TLR2 transcript levels and adipose tissue interleukin-6 protein. As found for mice fed LP, RS+LP-fed mice had higher colonic tissue TH17 cytokines, reduced epididymal fat immune and oxidative stress responses, reduced serum carnitine levels, and increased transcript quantities of hepatic carnitine palmitoyl transferase 1α. Notably, compared with RS and LP consumed separately, there were also synergistic increases in colonic glucose and hepatic amino acids as well antagonistic effects of LP on RS-mediated increases in serum adiponectin and urinary toxin levels. Our findings show that it is not possible to fully predict outcomes of synbiotic applications based on findings of the probiotic or the prebiotic tested separately; therefore, studies should be conducted to test new synbiotic formulations.
Collapse
Affiliation(s)
- Javad Barouei
- Integrated Food Security Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX; Department of Food Science & Technology, University of California, Davis, CA
| | - Alice Martinic
- Department of Nutrition, University of California, Davis, CA
| | - Zach Bendiks
- Department of Food Science & Technology, University of California, Davis, CA
| | - Darya Mishchuk
- Department of Food Science & Technology, University of California, Davis, CA
| | - Dustin Heeney
- Department of Food Science & Technology, University of California, Davis, CA
| | - Carolyn M Slupsky
- Department of Food Science & Technology, University of California, Davis, CA; Department of Nutrition, University of California, Davis, CA
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA.
| |
Collapse
|
14
|
Aghaei F, Arabzadeh E, Mahmoodzadeh Hosseini H, Shirvani H. Exercise Training and Probiotic Lacticaseibacillus rhamnosus GG Reduce Tetracycline-Induced Liver Oxidative Stress and Inflammation in Rats with Hepatic Steatosis. Probiotics Antimicrob Proteins 2023; 15:1393-1405. [PMID: 36169882 DOI: 10.1007/s12602-022-09994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 10/25/2022]
Abstract
Lifestyle modification with regular exercise can improve metabolic diseases by reducing lipid profile and inflammation. Probiotics have been recently recommended not only for gastrointestinal diseases but also for metabolic and even degenerative diseases. Therefore, in the present study, the effect of high-intensity interval training (HIIT) and Lacticaseibacillus rhamnosus strain GG (LGG) as a probiotic on tetracycline-induced hepatic steatosis in an animal model was evaluated. Eighty male Wistar rats were randomly divided into eight groups (n = 10 in each group): control, LGG, HIIT, LGG + HIIT, tetracycline-induced (TTC), TTC + LGG, TTC + HIIT, and TTC + LGG + HIIT. The rats are treated by intraperitoneal injection (IP) with 140 mg kg-1 tetracycline, an antibiotic previously known to induce steatosis. The exercise training groups performed HIIT 5 days/week for 5 weeks, and 107 CFU/ml of Lacticaseibacillus rhamnosus GG was gavaged for the LGG groups 5 days/week for 5 weeks. Fatty droplets in the hepatocyte were considered with Oil Red staining. TTC-receiving rats have more lipid accumulation and larger lipid droplets in the liver compared to healthy animals. The two-way ANOVA showed that the interaction of LGG and HIIT significantly decreased LDL, cholesterol, and triglyceride in the healthy rats (p < 0.05). In TTC-receiving rats, the interaction of LGG and HIIT significantly increased HDL and SOD and significantly decreased triglyceride, ALP, AST, and ALT (p < 0.05). The consumption of probiotic LGG, along with HIIT with control of lipid profile and liver enzymes and improvement of the oxidative capacity, neutralizes the damage of TTC to liver tissue. Therefore, this protocol can be recommended for people with hepatic steatosis.
Collapse
Affiliation(s)
- Fariba Aghaei
- Faculty of Physical Education and Sport Sciences, Karaj Branch, Islamic Azad University, Alborz, Iran
| | - Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Liu L, Deng L, Wei W, Li C, Lu Y, Bai J, Li L, Zhang H, Jin N, Li C, Zhao C. Lactiplantibacillus plantarum LPJZ-658 Improves Non-Alcoholic Steatohepatitis by Modulating Bile Acid Metabolism and Gut Microbiota in Mice. Int J Mol Sci 2023; 24:13997. [PMID: 37762300 PMCID: PMC10531215 DOI: 10.3390/ijms241813997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the most prevalent diseases worldwide; it is characterized by hepatic lipid accumulation, inflammation, and progressive fibrosis. Here, a Western diet combined with low-dose weekly carbon tetrachloride was fed to C57BL/6J mice for 12 weeks to build a NASH model to investigate the attenuating effects and possible mechanisms of Lactiplantibacillus plantarum LPJZ-658. Hepatic pathology, lipid profiles, and gene expression were assessed. The metabolomic profiling of the serum was performed. The composition structure of gut microbiota was profiled using 16s rRNA sequencing. The results show that LPJZ-658 treatment significantly attenuated liver injury, steatosis, fibrosis, and inflammation in NASH mice. Metabolic pathway analysis revealed that several pathways, such as purine metabolism, glycerophospholipid metabolism, linoleic acid metabolism, and primary bile acid biosynthesis, were associated with NASH. Notably, we found that treatment with LPJZ-658 regulated the levels of bile acids (BAs) in the serum. Moreover, LPJZ-658 restored NASH-induced gut microbiota dysbiosis. The correlation analysis deduced obvious interactions between BAs and gut microbiota. The current study indicates that LPJZ-658 supplementation protects against NASH progression, which is accompanied by alternating BA metabolic and modulating gut microbiota.
Collapse
Affiliation(s)
- Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China; (L.L.); (C.L.); (Y.L.)
| | - Liquan Deng
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Chunhua Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China; (L.L.); (C.L.); (Y.L.)
| | - Yuting Lu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China; (L.L.); (C.L.); (Y.L.)
| | - Jieying Bai
- College of Future Technology, Peking University, Beijing 100871, China;
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (L.L.); (N.J.)
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (L.L.); (N.J.)
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (L.L.); (N.J.)
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China; (L.L.); (C.L.); (Y.L.)
| |
Collapse
|
16
|
Kaufmann B, Seyfried N, Hartmann D, Hartmann P. Probiotics, prebiotics, and synbiotics in nonalcoholic fatty liver disease and alcohol-associated liver disease. Am J Physiol Gastrointest Liver Physiol 2023; 325:G42-G61. [PMID: 37129252 PMCID: PMC10312326 DOI: 10.1152/ajpgi.00017.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
The use of probiotics, prebiotics, and synbiotics has become an important therapy in numerous gastrointestinal diseases in recent years. Modifying the gut microbiota, this therapeutic approach helps to restore a healthy microbiome. Nonalcoholic fatty liver disease and alcohol-associated liver disease are among the leading causes of chronic liver disease worldwide. A disrupted intestinal barrier, microbial translocation, and an altered gut microbiome metabolism, or metabolome, are crucial in the pathogenesis of these chronic liver diseases. As pro-, pre-, and synbiotics modulate these targets, they were identified as possible new treatment options for liver disease. In this review, we highlight the current findings on clinical and mechanistic effects of this therapeutic approach in nonalcoholic fatty liver disease and alcohol-associated liver disease.
Collapse
Affiliation(s)
- Benedikt Kaufmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Nick Seyfried
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Phillipp Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
17
|
Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. 'Multi-omics' data integration: applications in probiotics studies. NPJ Sci Food 2023; 7:25. [PMID: 37277356 DOI: 10.1038/s41538-023-00199-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
The concept of probiotics is witnessing increasing attention due to its benefits in influencing the host microbiome and the modulation of host immunity through the strengthening of the gut barrier and stimulation of antibodies. These benefits, combined with the need for improved nutraceuticals, have resulted in the extensive characterization of probiotics leading to an outburst of data generated using several 'omics' technologies. The recent development in system biology approaches to microbial science is paving the way for integrating data generated from different omics techniques for understanding the flow of molecular information from one 'omics' level to the other with clear information on regulatory features and phenotypes. The limitations and tendencies of a 'single omics' application to ignore the influence of other molecular processes justify the need for 'multi-omics' application in probiotics selections and understanding its action on the host. Different omics techniques, including genomics, transcriptomics, proteomics, metabolomics and lipidomics, used for studying probiotics and their influence on the host and the microbiome are discussed in this review. Furthermore, the rationale for 'multi-omics' and multi-omics data integration platforms supporting probiotics and microbiome analyses was also elucidated. This review showed that multi-omics application is useful in selecting probiotics and understanding their functions on the host microbiome. Hence, recommend a multi-omics approach for holistically understanding probiotics and the microbiome.
Collapse
Affiliation(s)
- Iliya Dauda Kwoji
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090, Durban, South Africa
| | - Olayinka Ayobami Aiyegoro
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, Northwest, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090, Durban, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090, Durban, South Africa.
| |
Collapse
|
18
|
Nuccio DA, Normann MC, Zhou H, Grippo AJ, Singh P. Microbiome and Metabolome Variation as Indicator of Social Stress in Female Prairie Voles. Int J Mol Sci 2023; 24:1677. [PMID: 36675193 PMCID: PMC9861106 DOI: 10.3390/ijms24021677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Social isolation is detrimental to the health of social mammals inducing neurochemical and hormonal changes related to depression and anxiety, as well as impairments of cardiovascular and immune functioning. Likewise, perceptions of loneliness are increasingly recognized as detrimental to human psychological well-being, cognitive functioning, and physical health. Few studies, however, have examined the impact of social isolation on the intestinal microbiome and metabolome. To better understand the impact of social isolation on these systems, intestinal microbiota, and the systemic impact via the gut-brain axis, we employed prairie voles. Physiological stress on female prairie voles (n = 22) either with a same-sex sibling (n = 11) or in isolation (n = 11) for four weeks demonstrated behavioral indicators of increased anxiety and depression in isolated voles (p ≤ 0.01). Bacterial DNA from fecal and colon samples, collected at five time points (T0-4), were sequenced for all nine hypervariable regions of the 16S rRNA gene. Microbiome analyses revealed several differences in gut communities of paired and isolated voles with greater differences at T4. Notably, several taxa associated with host health including Anaerostipes and Lactobacillaceae were more prevalent in paired voles, whereas several taxa associated with known pathogens (e.g., Staphylococcaceae and Enterococcus) or disease were elevated in isolated animals. Similarly, metabolome analyses suggested isolated voles, when compared to paired animals, exhibited differences in metabolites associated with diabetes and colitis. These findings further contribute to our understanding of the harmful effects of social isolation, which cause perturbations in the gut microbiome and serum metabolites.
Collapse
Affiliation(s)
- Daniel A. Nuccio
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL 60115, USA
| | - Marigny C. Normann
- Department of Psychology, Northern Illinois University, Dekalb, IL 60115, USA
| | - Haiming Zhou
- Department of Statistics and Actuarial Sciences, Northern Illinois University, Dekalb, IL 60115, USA
| | - Angela J. Grippo
- Department of Psychology, Northern Illinois University, Dekalb, IL 60115, USA
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL 60115, USA
| |
Collapse
|
19
|
Hyun JY, Kim SK, Yoon SJ, Lee SB, Jeong JJ, Gupta H, Sharma SP, Oh KK, Won SM, Kwon GH, Cha MG, Kim DJ, Ganesan R, Suk KT. Microbiome-Based Metabolic Therapeutic Approaches in Alcoholic Liver Disease. Int J Mol Sci 2022; 23:8749. [PMID: 35955885 PMCID: PMC9368757 DOI: 10.3390/ijms23158749] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Alcohol consumption is a global healthcare problem. Chronic alcohol consumption generates a wide spectrum of hepatic lesions, the most characteristic of which are steatosis, hepatitis, fibrosis, and cirrhosis. Alcoholic liver diseases (ALD) refer to liver damage and metabolomic changes caused by excessive alcohol intake. ALD present several clinical stages of severity found in liver metabolisms. With increased alcohol consumption, the gut microbiome promotes a leaky gut, metabolic dysfunction, oxidative stress, liver inflammation, and hepatocellular injury. Much attention has focused on ALD, such as alcoholic fatty liver (AFL), alcoholic steatohepatitis (ASH), alcoholic cirrhosis (AC), hepatocellular carcinoma (HCC), a partnership that reflects the metabolomic significance. Here, we report on the global function of inflammation, inhibition, oxidative stress, and reactive oxygen species (ROS) mechanisms in the liver biology framework. In this tutorial review, we hypothetically revisit therapeutic gut microbiota-derived alcoholic oxidative stress, liver inflammation, inflammatory cytokines, and metabolic regulation. We summarize the perspective of microbial therapy of genes, gut microbes, and metabolic role in ALD. The end stage is liver transplantation or death. This review may inspire a summary of the gut microbial genes, critical inflammatory molecules, oxidative stress, and metabolic routes, which will offer future promising therapeutic compounds in ALD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Raja Ganesan
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon 24253, Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon 24253, Korea
| |
Collapse
|
20
|
Li X, Wang Y, Zhang J, Lu G, You Y, Wang Y, Sun H, Nan B, Wang Y. The effect of Lactobacillus rhamnosus B10 on alcoholic liver injury and intestinal microbiota in alcohol-induced mice model. J Food Biochem 2022; 46:e14372. [PMID: 35929524 DOI: 10.1111/jfbc.14372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/22/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Lactobacillus rhamnosus B10 (L. rhamnosus B10) isolated from the baby feces was given to an alcohol mice model, aiming to investigate the effects of L. rhamnosus B10 on alcoholic liver injury by regulating intestinal microbiota. C57BL/6N mice were fed with liquid diet Lieber-DeCarli with or without 5% (v/v) ethanol for 8 weeks, and treated with L. rhamnosus B10 at the last 2 weeks. The results showed that L. rhamnosus B10 decreased the serum total cholesterol (1.48 mmol/L), triglycerides (0.97 mmol/L), alanine aminotransferase (26.4 U/L), aspartate aminotransferase (14.2 U/L), lipopolysaccharide (0.23 EU/mL), and tumor necrosis factor-α (138 pg/mL). In addition, L. rhamnosus B10 also reduced the liver triglycerides (1.02 mmol/g prot), alanine aminotransferase (17.8 mmol/g prot) and aspartate aminotransferase (12.5 mmol/g prot) in alcohol mice, thereby ameliorating alcohol-induced liver injury. The changes of intestinal microbiota composition on class, family and genus level in cecum were analyzed. The intestinal symbiotic abundance of Firmicutes was elevated while gram-negative bacteria Proteobacteria and Deferribacteres was decreased in alcohol mice treated with L. rhamnosus B10 for 2 weeks. In summary, this study provided evidence for the therapeutic effects of probiotics on alcoholic liver injury by regulating intestinal flora.
Collapse
Affiliation(s)
- Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Yushan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Jun Zhang
- Changchun Shengjinnuo Biological Pharmaceutical Co., Ltd, Changchun, China
| | - Guijiao Lu
- Jilin Correction Health Co., Ltd, Changchun, China
| | - Ying You
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Haiyue Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| |
Collapse
|
21
|
Cui C, Wang C, Han S, Yu D, Zhu L, Jiang P. Impact of a long-term high-fructose diet on systemic metabolic profiles of mice. FASEB Bioadv 2022; 4:560-572. [PMID: 35949511 PMCID: PMC9353457 DOI: 10.1096/fba.2021-00152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/11/2022] Open
Abstract
Evidence is mounting that chronic high-fructose diets (HFrD) can lead to metabolic abnormalities and cause a variety of diseases. However, the underlying mechanism by which long-term high fructose intake influencing systemic metabolism remains unclarified. This study, therefore, attempted to investigate the impact of a high-fructose diet on metabolic profile. Four-week-old male C57BL/6 mice were fed with 15% fructose solution as their only source of water for 8 weeks. Afterward, gas chromatography-mass spectrometry (GC-MS) was employed to investigate the comprehensive metabolic profile of serum, muscle, liver, heart, white adipose, brain, and kidney tissues, and multivariate analyses including principal component analysis (PCA) and orthogonal partial least squared-discriminant analysis (OPLS-DA) were applied to screen for differential metabolite expression between the HFrD and control groups. Furthermore, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.kegg.jp) were employed to portray a detailed metabolic network. This study identified 62 metabolites related to HFrD and 10 disturbed metabolic pathways. The results indicated that high fructose intake mainly influenced amino acid metabolism and biosynthesis (glycine, serine, and threonine metabolism; aspartate, and glutamate metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and arginine biosynthesis pathways), glutathione metabolism, sphingolipid metabolism, and glyoxylate and dicarboxylate metabolism in serum, whereas these pathways were suppressed in the brain. Starch and sucrose metabolism in muscle was also disrupted. These results elucidate the effects of long-term high fructose consumption on the metabolic profiles of various tissues and provide new insight for the identification of potential metabolic biomarkers and pathways disrupted by high fructose.
Collapse
Affiliation(s)
- Changmeng Cui
- Department of NeurosurgeryAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Changshui Wang
- Department of NeurosurgeryAffiliated Hospital of Jining Medical UniversityJiningChina
| | | | - Dingyi Yu
- Jining Life Science CenterJiningChina
| | - Li Zhu
- Institute of Clinical Pharmacy and PharmacologyJining First People's HospitalJining Medical UniversityJiningChina
| | - Pei Jiang
- Institute of Clinical Pharmacy and PharmacologyJining First People's HospitalJining Medical UniversityJiningChina
| |
Collapse
|
22
|
Lactobacillus plantarum ZY08 relieves chronic alcohol-induced hepatic steatosis and liver injury in mice via restoring intestinal flora homeostasis. Food Res Int 2022; 157:111259. [DOI: 10.1016/j.foodres.2022.111259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
|
23
|
Intestinal ELF4 Deletion Exacerbates Alcoholic Liver Disease by Disrupting Gut Homeostasis. Int J Mol Sci 2022; 23:ijms23094825. [PMID: 35563234 PMCID: PMC9102452 DOI: 10.3390/ijms23094825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Alcohol liver disease (ALD) is characterized by intestinal barrier disruption and gut dysbiosis. Dysfunction of E74-like ETS transcription factor 4 (ELF4) leads to colitis. We aimed to test the hypothesis that intestinal ELF4 plays a critical role in maintaining the normal function of intestinal barrier and gut homeostasis in a mouse model of ALD. Intestinal ELF4 deficiency resulted in dysfunction of the intestinal barrier. Elf4−/− mice exhibited gut microbiota (GM) dysbiosis with the characteristic of a larger proportion of Proteobacteria. The LPS increased in Elf4−/− mice and was the most important differential metabolite between Elf4−/− mice and WT mice. Alcohol exposure increased liver-to-body weight ratio, and hepatic inflammation response and steatosis in WT mice. These deleterious effects were exaggerated in Elf4−/− mice. Alcohol exposure significantly increased serum levels of TG, ALT, and AST in Elf4−/− mice but not in WT mice. In addition, alcohol exposure resulted in enriched expression of genes associated with cholesterol metabolism and lipid metabolism in livers from Elf4−/− mice. 16S rRNA sequencing showed a decrease abundance of Akkermansia and Bilophila in Elf4−/− mice. In conclusion, intestinal ELF4 is an important host protective factor in maintaining gut homeostasis and alleviating alcohol exposure-induced hepatic steatosis and injury.
Collapse
|
24
|
Liu J, Yang D, Wang X, Asare PT, Zhang Q, Na L, Shao L. Gut Microbiota Targeted Approach in the Management of Chronic Liver Diseases. Front Cell Infect Microbiol 2022; 12:774335. [PMID: 35444959 PMCID: PMC9014089 DOI: 10.3389/fcimb.2022.774335] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The liver is directly connected to the intestines through the portal vein, which enables the gut microbiota and gut-derived products to influence liver health. There is accumulating evidence of decreased gut flora diversity and alcohol sensitivity in patients with various chronic liver diseases, including non-alcoholic/alcoholic liver disease, chronic hepatitis virus infection, primary sclerosing cholangitis and liver cirrhosis. Increased intestinal mucosal permeability and decline in barrier function were also found in these patients. Followed by bacteria translocation and endotoxin uptake, these will lead to systemic inflammation. Specific microbiota and microbiota-derived metabolites are altered in various chronic liver diseases studies, but the complex interaction between the gut microbiota and liver is missing. This review article discussed the bidirectional relationship between the gut and the liver, and explained the mechanisms of how the gut microbiota ecosystem alteration affects the pathogenesis of chronic liver diseases. We presented gut-microbiota targeted interventions that could be the new promising method to manage chronic liver diseases.
Collapse
Affiliation(s)
- Jing Liu
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital; The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dakai Yang
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaojing Wang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Paul Tetteh Asare
- Human and Animal Health Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Qingwen Zhang
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital; The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lixin Na
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital; The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lei Shao
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Lei Shao,
| |
Collapse
|
25
|
Xiang JY, Chi YY, Han JX, Shi X, Cai Y, Xiang H, Xie Q. Intestinal Microbiota Contributes to the Improvement of Alcoholic Hepatitis in Mice Treated With Schisandra chinensis Extract. Front Nutr 2022; 9:822429. [PMID: 35252302 PMCID: PMC8894320 DOI: 10.3389/fnut.2022.822429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Alcoholic hepatitis (AH) has a high short-term mortality rate. Schisandra chinensis has the potential to ameliorate liver damage and be a source of prebiotics. We aimed to investigate whether Schisandra chinensis extract (SCE) can improve AH and the role of the small intestinal and cecal microbiota and their metabolites. UHPLC-QE-MS was used to analyze the chemical components of SCE. The chronic-plus-binge ethanol feeding model was used to induce AH in mice. 1H NMR was used to analyze intestinal metabolites. 16S rRNA-based high throughput sequencing was used to evaluate the effects of SCE on intestinal microbiota (IM). Intestinal microbiota transplantation was used to explore the role of IM in SCE treatment of AH. SCE ameliorated AH non-dose-dependently. SCE effectively improved liver inflammation and oxidative/nitrosative stress, strengthened intestinal barrier function, and regulated the composition of IM and the content of short-chain fatty acids (SCFAs) in AH mice. Samples from in vivo and in vitro SCE-altered IM improved liver status and regulated the IM. The administration of Lactobacillus plantarum and Bifidobacterium breve ameliorated AH to some extent. The administration of Enterococcus faecalis and Klebsiella oxytoca had partial beneficial effects on AH. Collectively, IM and metabolites were closely associated with the improvement of SCE on AH. The possible microbe targets were the growth inhibition of Escherichia-Shigella and the expansion of SCFA producers, such as Lactobacillus and Bifidobacterium. Schisandra chinensis can be considered as a safe and effective dietary supplement for the prevention and improvement of AH.
Collapse
Affiliation(s)
- Jun-Yan Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Yan-Yu Chi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Jin-Xin Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Xinyu Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Yong Cai
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Resources and Applied Microbiology Laboratory, Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, China
- *Correspondence: Yong Cai
| | - Hongyu Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Resources and Applied Microbiology Laboratory, Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, China
- Hongyu Xiang
| | - Qiuhong Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Resources and Applied Microbiology Laboratory, Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, China
- Qiuhong Xie
| |
Collapse
|
26
|
Fuenzalida C, Dufeu MS, Poniachik J, Roblero JP, Valenzuela-Pérez L, Beltrán CJ. Probiotics-Based Treatment as an Integral Approach for Alcohol Use Disorder in Alcoholic Liver Disease. Front Pharmacol 2021; 12:729950. [PMID: 34630107 PMCID: PMC8497569 DOI: 10.3389/fphar.2021.729950] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) is one of the leading causes of morbidity among adults with alcohol use disorder (AUD) worldwide. Its clinical course ranges from steatosis to alcoholic hepatitis, progressing to more severe forms of liver damage, such as cirrhosis and hepatocellular carcinoma. The pathogenesis of ALD is complex and diverse elements are involved in its development, including environmental factors, genetic predisposition, the immune response, and the gut-liver axis interaction. Chronic alcohol consumption induces changes in gut microbiota that are associated with a loss of intestinal barrier function and inflammatory responses which reinforce a liver damage progression triggered by alcohol. Alcohol metabolites such as acetaldehyde, lipid peroxidation-derived aldehyde malondialdehyde (MDA), and protein-adducts act as liver-damaging hepatotoxins and potentiate systemic inflammation. Additionally, ethanol causes direct damage to the central nervous system (CNS) by crossing the blood-brain barrier (BBB), provoking oxidative stress contributing to neuroinflammation. Overall, these processes have been associated with susceptibility to depression, anxiety, and alcohol craving in ALD. Recent evidence has shown that probiotics can reverse alcohol-induced changes of the microbiota and prevent ALD progression by restoring gut microbial composition. However, the impact of probiotics on alcohol consumption behavior has been less explored. Probiotics have been used to treat various conditions by restoring microbiota and decreasing systemic and CNS inflammation. The results of some studies suggest that probiotics might improve mental function in Alzheimer’s, autism spectrum disorder, and attenuated morphine analgesic tolerance. In this sense, it has been observed that gut microbiota composition alterations, as well as its modulation using probiotics, elicit changes in neurotransmitter signals in the brain, especially in the dopamine reward circuit. Consequently, it is not difficult to imagine that a probiotics-based complementary treatment to ALD might reduce disease progression mediated by lower alcohol consumption. This review aims to present an update of the pathophysiologic mechanism underlying the microbiota-gut-liver-brain axis in ALD, as well as to provide evidence supporting probiotic use as a complementary therapy to address alcohol consumption disorder and its consequences on liver damage.
Collapse
Affiliation(s)
- Catalina Fuenzalida
- Laboratory of Inmunogastroenterology, Gastroenterology Unit, Medicine Department, Hospital Clínico Universidad de Chile, Santiago, Chile.,Medicine Faculty, Universidad de Chile, Santiago, Chile
| | - María Soledad Dufeu
- Laboratory of Inmunogastroenterology, Gastroenterology Unit, Medicine Department, Hospital Clínico Universidad de Chile, Santiago, Chile.,Medicine Faculty, Universidad de Chile, Santiago, Chile
| | - Jaime Poniachik
- Gastroenterology Unit, Medicine Department, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Juan Pablo Roblero
- Gastroenterology Unit, Medicine Department, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Lucía Valenzuela-Pérez
- Laboratory of Inmunogastroenterology, Gastroenterology Unit, Medicine Department, Hospital Clínico Universidad de Chile, Santiago, Chile.,Medicine Faculty, Universidad de Chile, Santiago, Chile.,School of Veterinary Medicine, Science Faculty, Universidad Mayor, Santiago, Chile
| | - Caroll Jenny Beltrán
- Laboratory of Inmunogastroenterology, Gastroenterology Unit, Medicine Department, Hospital Clínico Universidad de Chile, Santiago, Chile.,Medicine Faculty, Universidad de Chile, Santiago, Chile
| |
Collapse
|
27
|
Effects of Potential Probiotic Strains on the Fecal Microbiota and Metabolites of D-Galactose-Induced Aging Rats Fed with High-Fat Diet. Probiotics Antimicrob Proteins 2021; 12:545-562. [PMID: 31301059 DOI: 10.1007/s12602-019-09545-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Both aging and diet play an important role in influencing the gut ecosystem. Using premature senescent rats induced by D-galactose and fed with high-fat diet, this study aims to investigate the effects of different potential probiotic strains on the dynamic changes of fecal microbiome and metabolites. In this study, male Sprague-Dawley rats were fed with high-fat diet and injected with D-galactose for 12 weeks to induce aging. The effect of Lactobacillus plantarum DR7, L. fermentum DR9, and L. reuteri 8513d administration on the fecal microbiota profile, short-chain fatty acids, and water-soluble compounds were analyzed. It was found that the administration of the selected strains altered the gut microbiota diversity and composition, even at the phylum level. The fecal short-chain fatty acid content was also higher in groups that were administered with the potential probiotic strains. Analysis of the fecal water-soluble metabolites revealed that administration of L. plantarum DR7 and L. reuteri 8513d led to higher fecal content of compounds related to amino acid metabolism such as tryptophan, leucine, tyrosine, cysteine, methionine, valine, and lysine; while administration of L. fermentum DR9 led to higher prevalence of compounds related to carbohydrate metabolism such as erythritol, xylitol, and arabitol. In conclusion, it was observed that different strains of lactobacilli can cause difference alteration in the gut microbiota and the metabolites, suggesting the urgency to explore the specific metabolic impact of specific strains on the host.
Collapse
|
28
|
Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry-Based Metabolomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:57-67. [PMID: 33791974 DOI: 10.1007/978-3-030-51652-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Compared to one-dimensional gas chromatography with mass spectrometry (GC-MS), GC × GC-MS provides significantly increased peak capacity, resolution, and sensitivity for analysis of complex biological samples. In the last decade, GC × GC-MS has been increasingly applied to the discovery of metabolite biomarkers and elucidation of metabolic mechanisms in human diseases. The recent development of coupling GC × GC with a high-resolution mass spectrometer further accelerates these metabolomic applications. In this chapter, we will briefly review the instrumentation, sample preparation, data analysis, and applications of GC × GC-MS-based metabolomic analysis.
Collapse
|
29
|
Su H, Xie L, Xu Y, Ke H, Bao T, Li Y, Chen W. Pelargonidin-3- O-glucoside Derived from Wild Raspberry Exerts Antihyperglycemic Effect by Inducing Autophagy and Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13025-13037. [PMID: 31322351 DOI: 10.1021/acs.jafc.9b03338] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing evidence indicates that anthocyanins exert beneficial effects on type 2 diabetes (T2D), but the underlying mechanism remains unclear. Herein, the hyperglycemia-lowering effect of Pg3G derived from wild raspberry was investigated on high-glucose/high-fat (HG+HF)-induced hepatocytes and db/db diabetic mice. Our results indicated that Pg3G promoted glucose uptake in HG+HF-induced hepatocytes. Moreover, Pg3G induced autophagy, whereas autophagy inhibitors blocked the hypoglycemic effect of Pg3G. Transcriptional factor EB (TFEB) was found to be linked to Pg3G-induced autophagy. In vivo study showed that Pg3G treatment contributed to the improvement of glucose tolerance, insulin sensitivity, and induction of autophagy. Furthermore, Pg3G not only modified the gut microbiota composition, as indicated by an increased abundance of Prevotella, and elevated Bacteroidetes/Firmicutes ratio, but also strengthened the intestinal barrier integrity. This study unveils a novel mechanism that Pg3G attenuates hyperglycemia through inducing autophagy and modulating gut microbiota, which implicates a potential nutritional intervention strategy for T2D.
Collapse
Affiliation(s)
- Hongming Su
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Yang Xu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Huihui Ke
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Tao Bao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Yuting Li
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
30
|
The Gut Microbiota: How Does It Influence the Development and Progression of Liver Diseases. Biomedicines 2020; 8:biomedicines8110501. [PMID: 33207562 PMCID: PMC7697996 DOI: 10.3390/biomedicines8110501] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The gut–liver axis plays important roles in both the maintenance of a healthy liver and the pathogenesis of liver diseases, where the gut microbiota acts as a major determinant of this relationship. Gut bacteria-derived metabolites and cellular components are key molecules that affect the function of the liver and modulate the pathology of liver diseases. Accumulating evidence showed that gut microbiota produces a myriad of molecules, including lipopolysaccharide, lipoteichoic acid, peptidoglycan, and DNA, as well as short-chain fatty acids, bile acids, trimethylamine, and indole derivatives. The translocation of these components to the liver exerts beneficial or pathogenic effects by interacting with liver immune cells. This is a bidirectional relationship. Therefore, the existence of crosstalk between the gut and liver and its implications on host health and diseases are essential for the etiology and treatment of diseases. Several mechanisms have been proposed for the pathogenesis of liver diseases, but still, the mechanisms behind the pathogenic role of gut-derived components on liver pathogenesis remain elusive and not understandable. This review discusses the current progress on the gut microbiota and its components in terms of the progression of liver diseases, and in turn, how liver diseases indirectly affect the intestinal function and induce intestinal inflammation. Moreover, this paper highlights the current therapeutic and preventive strategies used to restore the gut microbiota composition and improve host health.
Collapse
|
31
|
Zheng TX, Pu SL, Tan P, Du YC, Qian BL, Chen H, Fu WG, Huang MZ. Liver Metabolomics Reveals the Effect of Lactobacillus reuteri on Alcoholic Liver Disease. Front Physiol 2020; 11:595382. [PMID: 33281626 PMCID: PMC7689281 DOI: 10.3389/fphys.2020.595382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD), a type of chronic liver disease that is prevalent worldwide, is still identified to have a poor prognosis despite many medical treatment protocols. Thus, it is urgent to develop and test new treatment protocols for ALD. Lactobacillus reuteri (L. reuteri) has been widely used in the clinical treatment of digestive system diseases, but studies on the protective effect of L. reuteri on ALD are considered to be rare. Therefore, in the present study, we examined the effect of L. reuteri on ALD and provide data that are significant in the development of new treatment protocols for ALD. An ALD model has been established in C57BL/6J mice treated according to the Gao-binge modeling method. Mice in the treatment group were administered with L. reuteri. Hematoxylin and eosin (H&E) staining, oil red O staining, immunohistochemistry, and biochemical analyses were performed to detect the phenotypic changes in the liver among mice in the different treatment groups. L. reuteri treatment reversed inflammatory cell infiltration and lipid accumulation. Moreover, AST, ALT, TG, and TCH levels were also reduced in the probiotics-treatment group. Five candidate biomarkers were found in the liver metabolites of different treatment groups by UPLC/QTOF-MS and a multivariate analysis. Several fatty acid metabolic pathways such as linoleic acid metabolism and glycerolipid metabolism were involved. All these findings suggested that L. reuteri treatment reversed the phenotype of ethanol-induced hepatitis and metabolic disorders. These findings provide evidence that L. reuteri might serve as a new therapeutic strategy for ALD.
Collapse
Affiliation(s)
- Tian-Xiang Zheng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shi-Lin Pu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Peng Tan
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi-Chao Du
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bao-Lin Qian
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wen-Guang Fu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mei-Zhou Huang
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
32
|
Ghini V, Tenori L, Pane M, Amoruso A, Marroncini G, Squarzanti DF, Azzimonti B, Rolla R, Savoia P, Tarocchi M, Galli A, Luchinat C. Effects of Probiotics Administration on Human Metabolic Phenotype. Metabolites 2020; 10:396. [PMID: 33036487 PMCID: PMC7601401 DOI: 10.3390/metabo10100396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
The establishment of the beneficial interactions between the host and its microbiota is essential for the correct functioning of the organism, since microflora alterations can lead to many diseases. Probiotics improve balanced microbial communities, exerting substantial health-promoting effects. Here we monitored the molecular outcomes, obtained by gut microflora modulation through probiotic treatment, on human urine and serum metabolic profiles, with a metabolomic approach. Twenty-two subjects were enrolled in the study and administered with two different probiotic types, both singularly and in combination, for 8 weeks. Urine and serum samples were collected before and during the supplementation and were analyzed by nuclear magnetic resonance (NMR) spectroscopy and statistical analyses. After eight weeks of treatment, probiotics deeply influence the urinary metabolic profiles of the volunteers, without significantly altering their single phenotypes. Anyway, bacteria supplementation tends to reduce the differences in metabolic phenotypes among individuals. Overall, the effects are recipient-dependent, and in some individuals, robust effects are already well visible after four weeks. Modifications in metabolite levels, attributable to each type of probiotic administration, were also monitored. Metabolomic analysis of biofluids turns out to be a powerful technique to monitor the dynamic interactions between the microflora and the host, and the individual response to probiotic assumption.
Collapse
Affiliation(s)
- Veronica Ghini
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy;
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy;
- Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Pane
- Probiotical S.p.A., 28100 Novara, Italy; (M.P.); (A.A.)
| | | | - Giada Marroncini
- Department of Experimental and Clinical Biochemical Sciences “Mario Serio”, University of Florence, 50100 Firenze, Italy; (G.M.); (M.T.); (A.G.)
| | - Diletta Francesca Squarzanti
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (D.F.S.); (B.A.); (R.R.); (P.S.)
- Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), DiSS, UPO, Corso Trieste 15/A, 28100 Novara, Italy
| | - Barbara Azzimonti
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (D.F.S.); (B.A.); (R.R.); (P.S.)
- Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), DiSS, UPO, Corso Trieste 15/A, 28100 Novara, Italy
| | - Roberta Rolla
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (D.F.S.); (B.A.); (R.R.); (P.S.)
- Clinical Chemistry Unit, Azienda Ospedaliero Universitaria Maggiore della Carità, Corso Mazzini 18, 28100 Novara, Italy
| | - Paola Savoia
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (D.F.S.); (B.A.); (R.R.); (P.S.)
- SCDU Dermatology, AOU Maggiore della Carità, 28100 Novara, Italy
| | - Mirko Tarocchi
- Department of Experimental and Clinical Biochemical Sciences “Mario Serio”, University of Florence, 50100 Firenze, Italy; (G.M.); (M.T.); (A.G.)
| | - Andrea Galli
- Department of Experimental and Clinical Biochemical Sciences “Mario Serio”, University of Florence, 50100 Firenze, Italy; (G.M.); (M.T.); (A.G.)
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy;
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy;
- Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
33
|
Hua Y, Cao H, Wang J, He F, Jiang G. Gut microbiota and fecal metabolites in captive and wild North China leopard (Panthera pardus japonensis) by comparsion using 16 s rRNA gene sequencing and LC/MS-based metabolomics. BMC Vet Res 2020; 16:363. [PMID: 32993639 PMCID: PMC7526248 DOI: 10.1186/s12917-020-02583-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gut microbes significantly contribute to nutrient digestion and absorption, intestinal health and immunity, and are essential for the survival and environmental adaptation of wild animals. However, there are few studies on the gut microbiota of captive and wild North China leopard (Panthera pardus japonensis). Results A total of 10 mainly bacterial phyla were identified in the fecal microbiota of North China leopard, Lachnoclostridium (p = 0.003), Peptoclostridium (p = 0.005), Bacteroides (p = 0.008), Fusobacterium (p = 0.017) and Collinsella (p = 0.019) were significantly higher than those of wild North China leopard. Distinct differences in the fecal metabolic phenotypes of captive and wild North China leopard were found, such as content of l-methionine, n-acetyl-l-tyrosine, pentadecanoic acid and oleic acid. Differentially abundant gut microbes were associated with fecal metabolites, especially the bacteria in Firmicutes and Bacteroidetes, involved in the metabolism of N-acetyl-L-alanine and D-quinovose. Conclusion This study reports for the first time the differences in gut microbiota abundance between captive and wild North China leopard, as well as significant differences in fecal metabolic phenotypes between two groups.
Collapse
Affiliation(s)
- Yan Hua
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Natural Protected Area, Northeast Forestry University, 150040, Harbin, China.,Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 510520, Guangzhou, China
| | - Heqin Cao
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Natural Protected Area, Northeast Forestry University, 150040, Harbin, China
| | - Jiao Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 510520, Guangzhou, China
| | - Fengping He
- College of Veterinary Medicine, Yunnan Agricultural University, 650201, Kunming, China
| | - Guangshun Jiang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Natural Protected Area, Northeast Forestry University, 150040, Harbin, China.
| |
Collapse
|
34
|
Andrographolide Exerts Antihyperglycemic Effect through Strengthening Intestinal Barrier Function and Increasing Microbial Composition of Akkermansia muciniphila. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6538930. [PMID: 32774682 PMCID: PMC7396114 DOI: 10.1155/2020/6538930] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/15/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
Accumulating evidence indicates that type 2 diabetes (T2D) is associated with intestinal barrier dysfunction and dysbiosis, implying the potential targets for T2D therapeutics. Andrographolide was reported to have several beneficial effects on diabetes and its associated complications. However, the protective role of andrographolide, as well as its underlying mechanism against T2D, remains elusive. Herein, we reported that andrographolide enhanced intestinal barrier integrity in LPS-induced Caco-2 cells as indicated by the improvement of cell monolayer barrier permeability and upregulation of tight junction protein expression. In addition, andrographolide alleviated LPS-induced oxidative stress by preventing ROS and superoxide anion radical overproduction and reversing glutathione depletion. In line with the in vitro results, andrographolide reduced metabolic endotoxemia and strengthened gut barrier integrity in db/db diabetic mice. We also found that andrographolide appeared to ameliorate glucose intolerance and insulin resistance and attenuated diabetes-associated redox disturbance and inflammation. Furthermore, our results indicated that andrographolide modified gut microbiota composition as indicated by elevated Bacteroidetes/Firmicutes ratio, enriched microbial species of Akkermansia muciniphila, and increased SCFAs level. Taken together, this study demonstrated that andrographolide exerted a glucose-lowering effect through strengthening intestinal barrier function and increasing the microbial species of A. muciniphila, which illuminates a plausible approach to prevent T2D by regulating gut barrier integrity and shaping intestinal microbiota composition.
Collapse
|
35
|
Lin D, Jiang X, Zhao Y, Zhai X, Yang X. Komagataeibacter hansenii CGMCC 3917 alleviates alcohol-induced liver injury by regulating fatty acid metabolism and intestinal microbiota diversity in mice. Food Funct 2020; 11:4591-4604. [PMID: 32432239 DOI: 10.1039/c9fo02040c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The potential effects of Komagataeibacter hansenii CGMCC 3917 cells on alcohol-induced liver injury and their probable mechanisms were investigated. Male Kunming mice were orally administered with alcohol (10 mL per kg BW) alone or in combination with administration of K. hansenii CGMCC 3917 cells at 2 × 108 and 2 × 106 CFUs for 10 weeks. Administration of strain CGMCC 3917 cells, especially high dose administration, decreased the liver weights, fat gain, and fatty-acid metabolism-related enzyme SCD-1, ACC and FAS expressions and endotoxin release, which were elevated by alcohol treatment. Furthermore, the total contents of long chain fatty acids of the liver and serum in alcohol-treated mice supplemented with a high dose of strain CGMCC 3917 cells were decreased to 5.44 ± 0.19 μg mL-1 and 3.66 ± 0.15 μg mL-1 from 6.65 ± 0.31 μg mL-1 and 4.52 ± 0.21 μg mL-1, respectively. Conversely, the SCFAs decreased by ethanol treatment, particularly the acetic acid, propionic acid and butyric acid, were obviously enhanced in the faeces, colon and cecum of the mice supplemented with strain CGMCC 3917 cells. Moreover, strain CGMCC 3917 cells could regulate gut microbiome by significantly decreasing the abundance of Actinobacteria, Proteobacteria and Firmicutes, and dramatically increasing the abundance of Bacteroidetes in alcohol-treated mice. These findings suggest that K. hansenii CGMCC 3917 cells alleviate alcohol-induced liver damage via regulating fatty acid metabolism and intestinal microbiota diversity in mice.
Collapse
Affiliation(s)
- Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | | | | | | | | |
Collapse
|
36
|
Using Multiple Analytical Platforms to Investigate the Androgen Depletion Effects on Fecal Metabolites in a Mouse Model of Systemic Lupus Erythematosus. J Proteome Res 2019; 19:667-676. [PMID: 31820642 DOI: 10.1021/acs.jproteome.9b00558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by circulating autoantibodies that deposit in target organs (e.g., kidneys), resulting in chronic inflammation and eventual destruction of the organ. SLE is much more prevalent in females than males in both humans and spontaneous mouse models of lupus, such as NZBxNZW F1 (BWF1) mice. Depleting androgens by castration dramatically increases the susceptibility of BWF1 male to lupus. We compared fecal metabolite profiles of castrated BWF1 (androgen-depleted) male, intact (androgen-replete) male, and female mice. Four analytical platforms were employed to study the profiles of polar metabolites in mouse feces collected from adult BWF1 mice, and a total of 435 metabolites was identified. Of these, the abundance levels of 72 metabolites were significantly different between castrated and intact male groups, and 63 metabolites were different between female and male groups. Pathway analysis indicated that the pathway differences between castrated and intact male mice closely resembled the pathway differences between female and intact male mice, suggesting that low levels of androgens, whether due to depletion (castrated male) or endogenous (female), are associated with multiple fecal metabolomic alterations, which could potentially affect SLE progression. Our findings demonstrate that analyzing fecal metabolites using multiple analytical platforms holds great promise for detecting metabolomic alterations in complex disease model systems.
Collapse
|
37
|
SOD1 deficiency alters gastrointestinal microbiota and metabolites in mice. Exp Gerontol 2019; 130:110795. [PMID: 31805337 DOI: 10.1016/j.exger.2019.110795] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Redox imbalance induces oxidative damage and causes age-related pathologies. Mice lacking the antioxidant enzyme SOD1 (Sod1-/-) exhibit various aging-like phenotypes throughout the body and are used as aging model mice. Recent reports suggested that age-related changes in the intestinal environment are involved in various diseases. We investigated cecal microbiota profiles and gastrointestinal metabolites in wild-type (Sod1+/+) and Sod1-/- mice. Firmicutes and Bacteroidetes were dominant in Sod1+/+ mice, and most of the detected bacterial species belong to these two phyla. Meanwhile, the Sod1-/- mice had an altered Firmicutes and Bacteroidetes ratio compared to Sod1+/+ mice. Among the identified genera, Paraprevotella, Prevotella, Ruminococcus, and Bacteroides were significantly increased, but Lactobacillus was significantly decreased in Sod1-/- mice compared to Sod1+/+ mice. The correlation analyses between cecal microbiota and liver metabolites showed that Bacteroides and Prevotella spp. were grouped into the same cluster, and Paraprevotella and Ruminococcus spp. were also grouped as another cluster. These four genera showed a positive and a negative correlation with increased and decreased liver metabolites in Sod1-/- mice, respectively. In contrast, Lactobacillus spp. showed a negative correlation with increased liver metabolites and a positive correlation with decreased liver metabolites in Sod1-/- mice. These results suggest that the redox imbalance induced by Sod1 loss alters gastrointestinal microflora and metabolites.
Collapse
|
38
|
Abstract
Microbiome dysbiosis is strongly associated with alcoholic liver disease (ALD). Recent studies on comprehensive analyses of microbiome compositional and functional changes have begun to uncover the mechanistic relation between microbiome and the pathogenesis of ALD. Importantly, targeting the microbiome has become a potential strategy for the prevention and treatment of ALD. In this review, we summarize the clinical evidence of microbiome dysbiosis in ALD patients, and experimental advances in microbiome and metabolomic functional changes in animals with different species and genetic backgrounds in ALD. We also summarize the studies in humanized intestinal microbiome and fecal microbiota transplantation in mice. We introduce new developments in the studies on the role of the circulating bacterial microbiome, oral bacterial microbiome and fungal microbiome in the development of ALD. We highlight the potential mechanisms by which microbiome dysbiosis contributes to ALD, including short chain fatty acid changes, bile acid metabolism, intestinal barrier function, release of bacterial and fungal products, and inflammation. In addition, we summarize the recent developments targeting the microbiome in prevention and treatment of ALD, including dietary nutrient interference, herbal medicine, antibiotics, anti-fungal agents, probiotics, engineered bacterial therapy, fecal transplantation and oral hygiene. Although recent preclinical studies have advanced our understanding of the microbiome and ALD, clinical studies, especially prospective studies with large samples, are needed to better understand the cause-effect of microbiome dysbiosis in ALD. Identifying new precision-based strategies targeting the microbiome are expected to be developed as more effective therapies in ALD.
Collapse
|
39
|
Deda O, Virgiliou C, Orfanidis A, Gika HG. Study of Fecal and Urinary Metabolite Perturbations Induced by Chronic Ethanol Treatment in Mice by UHPLC-MS/MS Targeted Profiling. Metabolites 2019; 9:E232. [PMID: 31623107 PMCID: PMC6836053 DOI: 10.3390/metabo9100232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) as a consequence of ethanol chronic consumption could lead to hepatic cirrhosis that is linked to high morbidity and mortality. Disease diagnosis is still very challenging and usually clear findings are obtained in the later stage of ALD. The profound effect of ethanol on metabolism can be depicted using metabolomics; thus, the discovery of novel biomarkers could shed light on the initiation and the progression of the ALD, serving diagnostic purposes. In the present study, Hydrophilic Interaction Liquid Chromatography tandem Mass Spectrometry HILIC-MS/MS based metabolomics analyisis of urine and fecal samples of C57BL/6 mice of both sexes at two sampling time points was performed, monitoring the effect of eight-week ethanol consumption. The altered hepatic metabolism caused by ethanol consumption induces extensive biochemical perturbations and changes in gut microbiota population on a great scale. Fecal samples were proven to be a suitable specimen for studying ALD since it was more vulnerable to the metabolic changes in comparison to urine samples. The metabolome of male mice was affected on a greater scale than the female metabolome due to ethanol exposure. Precursor small molecules of essential pathways of energy production responded to ethanol exposure. A meaningful correlation between the two studied specimens demonstrated the impact of ethanol in endogenous and symbiome metabolism.
Collapse
Affiliation(s)
- Olga Deda
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
- Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (KEDEK), 57001 Thessaloniki, Greece.
| | - Christina Virgiliou
- Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (KEDEK), 57001 Thessaloniki, Greece.
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Amvrosios Orfanidis
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
- Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (KEDEK), 57001 Thessaloniki, Greece.
| | - Helen G Gika
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
- Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (KEDEK), 57001 Thessaloniki, Greece.
| |
Collapse
|
40
|
Prodhan MAI, Shi B, Song M, He L, Yuan F, Yin X, Bohman P, McClain CJ, Zhang X. Integrating comprehensive two-dimensional gas chromatography mass spectrometry and parallel two-dimensional liquid chromatography mass spectrometry for untargeted metabolomics. Analyst 2019; 144:4331-4341. [PMID: 31192319 PMCID: PMC6677244 DOI: 10.1039/c9an00560a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The diverse characteristics and large number of entities make metabolite separation challenging in metabolomics. To date, there is not a singular instrument capable of analyzing all types of metabolites. In order to achieve a better separation for higher peak capacity and accurate metabolite identification and quantification, we integrated GC × GC-MS and parallel 2DLC-MS for analysis of polar metabolites. To test the performance of the developed system, 13 rats were fed different diets to form two animal groups. Polar metabolites extracted from rat livers were analyzed by GC × GC-MS, parallel 2DLC-MS (-) and parallel 2DLC-MS (+), respectively. By integrating all data together, 58 metabolites were detected with significant change in their abundance levels between groups (p≤ 0.05). Of the 58 metabolites, three metabolites were detected in two platforms and two in all three platforms. Manual examination showed that discrepancy of metabolite regulation measured by different platforms was mainly caused by the poor shape of chromatographic peaks resulting from low instrument response. Pathway analysis demonstrated that integrating the results from multiple platforms increased the confidence of metabolic pathway assignment.
Collapse
Affiliation(s)
- Md Aminul Islam Prodhan
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA. and University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, USA and University of Louisville Hepatobiology & Toxicology Program, University of Louisville, Louisville, KY 40208, USA and Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Biyun Shi
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA. and Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Ming Song
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, USA and University of Louisville Hepatobiology & Toxicology Program, University of Louisville, Louisville, KY 40208, USA and Department of Medicine, University of Louisville, Louisville, KY 40208, USA
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA. and University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, USA and University of Louisville Hepatobiology & Toxicology Program, University of Louisville, Louisville, KY 40208, USA and Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Fang Yuan
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA. and University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, USA and University of Louisville Hepatobiology & Toxicology Program, University of Louisville, Louisville, KY 40208, USA and Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA. and Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Patrick Bohman
- Thermo Fisher Scientific International Inc., 3000 Lakeside Dr., Bannockburn, IL 60015, USA
| | - Craig J McClain
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, USA and University of Louisville Hepatobiology & Toxicology Program, University of Louisville, Louisville, KY 40208, USA and Department of Medicine, University of Louisville, Louisville, KY 40208, USA and Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40208, USA and Robley Rex Louisville VAMC, Louisville, Kentucky 40292, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA. and University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, USA and University of Louisville Hepatobiology & Toxicology Program, University of Louisville, Louisville, KY 40208, USA and Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA and Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40208, USA
| |
Collapse
|
41
|
He L, Li F, Yin X, Bohman P, Kim S, McClain CJ, Feng W, Zhang X. Profiling of Polar Metabolites in Mouse Feces Using Four Analytical Platforms to Study the Effects Of Cathelicidin-Related Antimicrobial Peptide in Alcoholic Liver Disease. J Proteome Res 2019; 18:2875-2884. [PMID: 31188604 PMCID: PMC6748645 DOI: 10.1021/acs.jproteome.9b00181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alterations in gut bacterial homeostasis result in changes in intestinal metabolites. To investigate the effects of alcohol on fecal metabolites and the role of cathelicidin-related antimicrobial peptide (CRAMP) in alcoholic liver disease (ALD), CRAMP knockout (KO) and their control wild type (WT) mice were fed a Lieber-DeCarli liquid diet with or without alcohol. Polar metabolites in mouse feces were analyzed by GC × GC-MS and 2DLC-MS, and the concentrations of short chain fatty acids (SCFAs) were measured by GC-MS. A total of 95 and 190 metabolites were detected by GC × GC-MS and 2DLC-MS, respectively. Among the significantly changed metabolites, taurine and nicotinic acid were decreased in WT mice fed alcohol, which were also down-regulated in KO mice fed without alcohol. Interestingly, these two metabolites were increased in KO mice fed alcohol compared to them in WT controls. Additionally, SCFAs were significantly decreased in WT mice fed alcohol and in KO mice fed without alcohol, whereas two branched-chain SCFAs were increased by alcohol treatment in KO mice. In summary, the analytical platforms employed in this study successfully dissected the alterations of polar metabolites and SCFAs in fecal samples, which helped understand the effects of alcohol consumption and CRAMP in intestinal metabolism and alcohol-induced liver injury.
Collapse
Affiliation(s)
- Liqing He
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
| | - Fengyuan Li
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky 40208, United States
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
| | - Patrick Bohman
- Thermo Fisher Scientific International Inc., 3000 Lakeside Dr., Bannockburn, Illinois 60015, United States
| | - Seongho Kim
- Biostatistics Core, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, United States
| | - Craig J. McClain
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Medicine, University of Louisville, Louisville, Kentucky 40208, United States
- Robley Rex Louisville VAMC, Louisville, Kentucky 40292, United States
| | - Wenke Feng
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Medicine, University of Louisville, Louisville, Kentucky 40208, United States
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky 40208, United States
| |
Collapse
|
42
|
Microbial and metabolomic remodeling by a formula of Sichuan dark tea improves hyperlipidemia in apoE-deficient mice. PLoS One 2019; 14:e0219010. [PMID: 31269076 PMCID: PMC6608967 DOI: 10.1371/journal.pone.0219010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/13/2019] [Indexed: 02/05/2023] Open
Abstract
Medicine-food homology is a long-standing concept in traditional Chinese medicine. YiNianKangBao (YNKB) tea is a medicine-food formulation based on Sichuan dark tea (Ya'an Tibetan tea), which is traditionally used for its lipid-lowering properties. In this study, we evaluated the effects of YNKB on dyslipidemia and investigated the mechanism underlying its correlation with gut microbiota and serum metabolite regulation. Wild-type mice were fed a normal diet as a control. Male ApoE-/- mice were randomly divided into three high-fat diet (HFD) groups, a model group, and two treated groups (100, 400 mg/kg/d for low, high-dose), and fed by gavage for 12 weeks. Serum lipid levels, composition of gut microbiota, and serum metabolites were then analyzed before treatment with YNKB. We extracted the ingredients of YNKB in boiled water for one hour. YNKB supplementation at a high dose of 400 mg/kg/day reduced bodyweight gains (relative epididymal fat pad and liver weight), and markedly attenuated serum lipid profiles and atherosclerosis index, with no significant differences present between the low-dose treatment and HFD groups. Gut microbiota and serum metabolic analysis indicated that significant differences were observed between normal, HFD, and YNKB treatment groups. These differences in gut microbiota exhibited strong correlations with dyslipidemia-related indexes and serum metabolite levels. Oral administration of high-dose YNKB also showed significant lipid-lowering activity against hyperlipidemia in apoE-deficient mice, which might be associated with composition alterations of the gut microbiota and changes in serum metabolite abundances. These findings highlight that YNKB as a medicine-food formulation derived from Sichuan dark tea could prevent dyslipidemia and improve the understanding of its mechanisms and the pharmacological rationale for preventive use.
Collapse
|
43
|
Bruch-Bertani JP, Uribe-Cruz C, Pasqualotto A, Longo L, Ayres R, Beskow CB, Barth AL, Lima-Morales D, Meurer F, Tayguara Silveira Guerreiro G, da Silveira TR, Álvares-da-Silva MR, Dall'Alba V. Hepatoprotective Effect of Probiotic Lactobacillus rhamnosus GG Through the Modulation of Gut Permeability and Inflammasomes in a Model of Alcoholic Liver Disease in Zebrafish. J Am Coll Nutr 2019; 39:163-170. [PMID: 31241423 DOI: 10.1080/07315724.2019.1627955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Alcoholic liver disease (ALD) is among the leading causes of death from liver disease. Among the factors involved in its pathogenesis are inflammation and increased intestinal permeability. The aim of this study was to assess the effect of Lactobacillus rhamnosus GG (LGG) on hepatic lipid accumulation, activation of inflammasomes, and gut permeability markers in experimental model of ALD with zebrafish.Methods: An experiment was conducted to assess the effective LGG dose capable of promoting intestinal colonization. Animals were divided into three groups (n = 64/group): ethanol group (E), ethanol + probiotic group (EP), and control group (C). Groups E and EP were exposed to 0.5% ethanol concentration for 28 days. At the end of this period, animals were euthanized, and livers were collected for Oil Red staining and assessment of the inflammasome system. Intestines were collected for evaluation of gut permeability markers.Results: The dose of 1.55 × 106 UFC LGG/fish/d promoted intestinal colonization. Group EP presented lower hepatic lipid accumulation, lower il-1β expression, and higher cldn15a expression when compared to group E.Conclusions: Supplementation with LGG was protective for hepatic steatosis in ALD model. In addition, LGG influenced the modulation of the inflammatory response and markers of gut permeability, improving the gut barrier structure.
Collapse
Affiliation(s)
- Juliana Paula Bruch-Bertani
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carolina Uribe-Cruz
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Amanda Pasqualotto
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Larisse Longo
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Raquel Ayres
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Carolina Bortolin Beskow
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Afonso Luis Barth
- Research Laboratory on Bacterial Resistance (LABRESIS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Daiana Lima-Morales
- Research Laboratory on Bacterial Resistance (LABRESIS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Fábio Meurer
- Post Graduate Program in Sustainable Development of Aquaculture, Universidade Federal do Paraná, Campus de Palotina, Paraná, Brazil
| | | | - Themis Reverbel da Silveira
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mário Reis Álvares-da-Silva
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Internal Medicine, Gastroenterology and Hepatology Unit. School of Medicine, UFRGS. Gastroenterology and Hepatology Division, HCPA, Porto Alegre, Brazil
| | - Valesca Dall'Alba
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Nutrition. School of Medicine, UFRGS. Nutrition Division. Hospital de Clínicas de Porto Alegre, UFRGS. Porto Alegre, Brazil
| |
Collapse
|
44
|
Guo C, Xue G, Pan B, Zhao M, Chen S, Gao J, Chen T, Qiu L. Myricetin Ameliorates Ethanol-Induced Lipid Accumulation in Liver Cells by Reducing Fatty Acid Biosynthesis. Mol Nutr Food Res 2019; 63:e1801393. [PMID: 31168926 DOI: 10.1002/mnfr.201801393] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/28/2019] [Indexed: 12/17/2022]
Abstract
SCOPE Alcoholic liver disease is a serious threat to human health. The development of drug candidates from complementary and alternative medicines is an attractive approach. Myricetin can be found in fruit, vegetables, and herbs. This study investigates the protective effect of myricetin on ethanol-induced injury in mouse liver cells. METHODS AND RESULTS Oil-red O staining, assays of oxidative stress and measurements of inflammatory markers in mouse AML12 liver cells collectively demonstrate that myricetin elicits a curative effect on ethanol-induced injury. Next, the role of myricetin in the metabolic regulation of ethanol pathology in liver cells is assessed by gas chromatography coupled with mass spectrometry. Myricetin inhibits ethanol-stimulated fatty acid biosynthesis. Additionally, dodecanoic acid may be proposed as a potential biomarker related to ethanol pathology or myricetin therapy. It is also observed that myricetin enhances ethanol-induced inhibition of the mitochondrial electron transport chain. Moreover, fumaric acid is found to be a candidate biomarker related to ethanol toxicity or myricetin therapy. Quantitative reverse-transcription-PCR shows that ethanol-induced fatty acid synthase and sterol regulatory element-binding protein-1c mRNA levels are alleviated by myricetin. Finally, myricetin increases ethanol-induced inhibition of phosphorylation of AMP-activated protein kinase. CONCLUSION These results elucidate the pharmacological mechanism of myricetin on ethanol-induced lipid accumulation.
Collapse
Affiliation(s)
- Chang Guo
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, P. R. China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Fujian Province University, Longyan, 364012, P. R. China
| | - Guoqing Xue
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China
| | - Bei Pan
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China
| | - Mengjie Zhao
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China
| | - Si Chen
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China
| | - Jing Gao
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China
| | - Tong Chen
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, P. R. China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Fujian Province University, Longyan, 364012, P. R. China
| | - Longxin Qiu
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, P. R. China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Fujian Province University, Longyan, 364012, P. R. China
| |
Collapse
|
45
|
Jiang X, Lin D, Shao H, Yang X. Antioxidant properties of Komagataeibacter hansenii CGMCC 3917 and its ameliorative effects on alcohol-induced liver injury in mice. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1584647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xinxin Jiang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi‘an, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi‘an, China
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi‘an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi‘an, China
| |
Collapse
|
46
|
Kim S, Yin X, Prodhan MAI, Zhang X, Zhong Z, Kato I. Global Plasma Profiling for Colorectal Cancer-Associated Volatile Organic Compounds: a Proof-of-Principle Study. J Chromatogr Sci 2019; 57:385-396. [PMID: 30796770 PMCID: PMC6478127 DOI: 10.1093/chromsci/bmz011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/14/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
Volatile organic compounds (VOCs) could reflect changes resulting from ongoing pathophysiological processes and altered body metabolisms, and thus have been studied for various types of cancers. We aimed to test an advanced global metabolomic technique to characterize circulating VOCs in patients diagnosed with colorectal cancer (CRC). We employed solid-phase microextraction (SPME) and comprehensive two-dimensional gas chromatography mass-spectrometry (GC × GC-MS). We analyzed 30 random plasma samples from incident cases of CRC. The 30 samples were from population controls enrolled in a large population-based case-control study. The number of metabolite peaks detected in the cases was significantly lower than that detected in the controls (median 1530 vs. 1694, P = 0.02). Partial least squares-discriminant analysis showed clear VOC profile differences between the CRC and the controls. After adjustment for multiple comparisons at the 5% false discovery rate level, five VOCs were differentially expressed between the cases and the controls. Among these five VOCs, 2,3,4-trimethyl-hexane (decreased) and 2,4-dimethylhept-1-ene (increased) were both lipid peroxidation products but not previously reported for CRC. In summary, this study pointed to an intriguing observation that the richness of volatile metabolites may be reduced in CRC cases and demonstrated the utility of SPME GC × GC-MS in discovery of candidate markers for further validation.
Collapse
Affiliation(s)
- Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit MI, USA
- Biostatistics Core, Karmanos Cancer Institute, Wayne State University, Detroit MI, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, Kentucky, USA
| | | | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky, USA
| | - Zichun Zhong
- Department of Computer Science, College of Engineering, Wayne State University, Detroit MI, USA
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Detroit MI, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit MI, USA
| |
Collapse
|
47
|
Xu J, Zhang QF, Zheng J, Yuan BF, Feng YQ. Mass spectrometry-based fecal metabolome analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Sarin SK, Pande A, Schnabl B. Microbiome as a therapeutic target in alcohol-related liver disease. J Hepatol 2019; 70:260-272. [PMID: 30658727 DOI: 10.1016/j.jhep.2018.10.019] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023]
Abstract
Alcohol-related liver disease is associated with significant changes in gut microbial composition. The transmissibility of ethanol-induced liver disease has been demonstrated using faecal microbiota transfer in preclinical models. This technique has also led to improved survival in patients with severe alcoholic hepatitis, suggesting that changes in the composition and function of the gut microbiota are causatively linked to alcohol-related liver disease. A major mechanism by which gut microbiota influence the development of alcohol-related liver disease is through a leaky intestinal barrier. This permits translocation of viable bacteria and microbial products to the liver, where they induce and promote inflammation, as well as contribute to hepatocyte death and the fibrotic response. In addition, gut dysbiosis is associated with changes in the metabolic function of the intestinal microbiota, bile acid composition and circulation, immune dysregulation during onset and progression of alcohol-related liver disease. Findings from preclinical and human studies will be used to demonstrate how alcohol causes intestinal pathology and contributes to alcohol-related liver disease and how the latter is self-perpetuating. Additionally, we summarise the effects of untargeted treatment approaches on the gut microbiota, such as diet, probiotics, antibiotics and faecal microbial transplantation in alcohol-related liver disease. We further discuss how targeted approaches can restore intestinal homeostasis and improve alcohol-related liver disease. These approaches are likely to add to the therapeutic options for alcohol-related liver disease independently or in conjunction with steroids.
Collapse
Affiliation(s)
- Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Apurva Pande
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
49
|
Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R. Publisher Correction: The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15:785. [PMID: 29785003 PMCID: PMC7133393 DOI: 10.1038/s41575-018-0031-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the original version of Table 1 published online, upward arrows to indicate increased translocation of PAMPs were missing from the row entitled 'Translocation' for both the column on alcoholic liver disease and nonalcoholic fatty liver disease. This error has now been updated in the PDF and HTML version of the article.
Collapse
|
50
|
Karu N, Deng L, Slae M, Guo AC, Sajed T, Huynh H, Wine E, Wishart DS. A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database. Anal Chim Acta 2018; 1030:1-24. [DOI: 10.1016/j.aca.2018.05.031] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
|