1
|
Satyam SM, Bairy LK, Rehman A, Farook M, Khan S, Nair AA, Binu NN, Yehya M, Khan MM. Dapagliflozin: A Promising Strategy to Combat Cisplatin-Induced Hepatotoxicity in Wistar Rats. BIOLOGY 2024; 13:672. [PMID: 39336099 PMCID: PMC11428795 DOI: 10.3390/biology13090672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Recognizing the challenges posed by chemotherapy, specifically the hepatotoxic effects of drugs like cisplatin, this study aimed to examine the hepatoprotective potential of dapagliflozin to mitigate cisplatin-induced hepatotoxicity in a rat model. This study focused on repurposing drugs such as dapagliflozin and natural agents like silymarin as potential interventions to address cisplatin-induced hepatotoxicity. Thirty adult female Wistar rats were distributed into five groups and treated with cisplatin alone, silymarin, dapagliflozin, or a combination of dapagliflozin and silymarin accordingly for 45 days. Body weight, fasting blood glucose levels, liver function tests, and histopathological analysis were conducted to evaluate the hepatoprotective effects. Cisplatin-induced hepatotoxicity significantly (p < 0.05) increased the serum levels of ALT, AST, TB, and reduced the TP and albumin levels. Dapagliflozin administration led to significant reductions in ALT, AST, TB, and increased albumin levels. Silymarin demonstrated comparable effects. Combining dapagliflozin and silymarin showed synergistic effects, further reducing the liver enzymes and improving albumin levels. Histopathological examination supported these findings, revealing the restoration of liver structure with dapagliflozin and silymarin treatment. Dapagliflozin and silymarin exhibited substantial hepatoprotective benefits against cisplatin-induced hepatotoxicity in rats. The combination therapy demonstrated synergistic effects, highlighting a potential therapeutic approach for mitigating chemotherapy-induced liver damage. Further research into molecular mechanisms and clinical translation is warranted, offering hope for improved clinical outcomes in cancer patients undergoing cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Shakta Mani Satyam
- Faculty of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Laxminarayana Kurady Bairy
- Faculty of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Abdul Rehman
- Faculty of Pathology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Mohamed Farook
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sofiya Khan
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Anuradha Asokan Nair
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Nirmal Nachiketh Binu
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Mohamed Yehya
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Mohammed Moin Khan
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| |
Collapse
|
2
|
Satyam SM, Bairy LK, Rehman A, Attia M, Ahmed L, Emad K, Jaafer Y, Bahaaeldin A. Unlocking Synergistic Hepatoprotection: Dapagliflozin and Silymarin Combination Therapy Modulates Nuclear Erythroid 2-Related Factor 2/Heme Oxygenase-1 Pathway in Carbon Tetrachloride-Induced Hepatotoxicity in Wistar Rats. BIOLOGY 2024; 13:473. [PMID: 39056668 PMCID: PMC11273720 DOI: 10.3390/biology13070473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
This study was aimed to investigate the hepatoprotective potential of dapagliflozin and silymarin alone and in combination to combat carbon tetrachloride (CCl4)-induced hepatotoxicity and the anticipated mechanisms. Thirty female Wistar rats were randomly allocated into five different groups. All the experimental animals except the normal control (Group I) were administered CCl4. Additionally, Groups II, III, IV, and V were treated with gum acacia, silymarin, dapagliflozin, and a combination of dapagliflozin and silymarin, respectively, for 14 days. Dapagliflozin, silymarin alone, and in combination, significantly reduced (p < 0.05) serum levels of ALT, AST, AST:ALT ratio, and total bilirubin compared to CCl4-intoxicated control rats. There was a notable reduction (p < 0.05) observed in the levels of IL-1beta, IL-6, TNF-alpha, nitrites, and 4-hydroxynonenal, accompanied by an elevation in catalase, superoxide dismutase, glutathione peroxidase, nuclear erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in liver homogenates of the groups treated with dapagliflozin, silymarin alone, and in combination, as compared to the CCl4-intoxicated control group. Dapagliflozin in combination with silymarin showed a synergistic hepatoprotective effect. Our study reveals the profound hepatoprotective potential of dapagliflozin alone and in combination with silymarin in CCl4-intoxicated Wistar rats by modulating the Nrf2 and HO-1 signaling pathways.
Collapse
Affiliation(s)
- Shakta Mani Satyam
- Faculty of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Laxminarayana Kurady Bairy
- Faculty of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Abdul Rehman
- Faculty of Pathology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Mohamed Attia
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Layth Ahmed
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Karam Emad
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Yusuf Jaafer
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Abdelrehman Bahaaeldin
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| |
Collapse
|
3
|
Li J, Liao R, Zhang S, Weng H, Liu Y, Tao T, Yu F, Li G, Wu J. Promising remedies for cardiovascular disease: Natural polyphenol ellagic acid and its metabolite urolithins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154867. [PMID: 37257327 DOI: 10.1016/j.phymed.2023.154867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a significant worldwide factor contributing to human fatality and morbidity. With the increase of incidence rates, it is of concern that there is a lack of current therapeutic alternatives because of multiple side effects. Ellagic acid (EA), the natural polyphenol (C14H6O8), is abundant in pomegranates, berries, and nuts. EA and its intestinal microflora metabolite, urolithins, have recently attracted much attention as a potential novel "medicine" because of their wide pharmacological properties. PURPOSE This study aimed to critically analyze available literature to summarize the beneficial effects of EA and urolithins, and highlights their druggability and therapeutic potential in various CVDs. METHODS We systematically studied research and review articles between 1984 and 2022 available on various databases to obtain the data on EA and urolithins with no language restriction. Their cardiovascular protective activities, underlying mechanism, and druggability were highlighted and discussed comprehensively. RESULTS We found that EA and urolithins may exert preventive and curative effects on CVD with negligible side effects and possibly regulate lipid metabolism imbalance, pro-inflammatory factor production, vascular smooth muscle cell proliferation, cardiomyocyte apoptosis, endothelial cell dysfunction, and Ca2+ intake and release. Potentially, this may lead to the prevention and amelioration of atherosclerosis, hypertension, myocardial infarction, cardiac fibrosis, cardiomyopathy, cardiac arrhythmias, and cardiotoxicities in vivo. Several molecules and signaling pathways are associated with their therapeutic actions, including phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, NF-κB, nuclear factor erythroid-2 related factor 2, sirtuin1, miRNA, and extracellular signal-regulated kinase 1/2. CONCLUSION In vitro and in vivo studies shows that EA and urolithins could be used as valid candidates for early prevention and effective therapeutic strategies for various CVDs.
Collapse
Affiliation(s)
- Jingyan Li
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Ruixue Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shijia Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, China
| | - Huimin Weng
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuanzhi Liu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tianyi Tao
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Fengxu Yu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Ntchapda F, Bonabe C, Atsamo AD, Kemeta Azambou DR, Bekono Fouda Y, Imar Djibrine S, Seke Etet PF, Théophile D. Effect of Aqueous Extract of Adansonia digitata Stem Bark on the Development of Hypertension in L-NAME-Induced Hypertensive Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:3678469. [PMID: 33014103 PMCID: PMC7519996 DOI: 10.1155/2020/3678469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/23/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Adansonia digitata is a plant used against cardiovascular disorders in African folk medicine. We assessed the effects of the aqueous extract of its stem bark on the development of hypertension in L-NAME-induced hypertensive rats. METHODS The animals were administered L-NAME once daily for 3 weeks (25 mg/kg, i.p.), concomitantly with aqueous extract of A. digitata stem bark (100 and 200 mg/kg, p.o.) or captopril (20 mg/kg, p.o.). Then, hemodynamic and electrocardiographic parameters, oxidative stress markers, and the lipid profile were assessed in the blood and heart, aorta, and kidney homogenates, and histopathological analyses were performed. RESULTS L-NAME-induced hypertensive control animals, but not the animals concomitantly treated with A. digitata extract, displayed increases in the mean arterial blood pressure (21.64% difference, p < 0.001, vs. dose 200 mg/kg), systolic arterial blood pressure (21.33%, p < 0.001), and the diastolic arterial blood pressure (21.84%, p < 0.001). In addition, hypertensive control animals displayed (i) increases in serum triglycerides, total cholesterol, LDL, and creatinine levels, malondialdehyde and transaminase activities, and atherogenic index; (ii) decreases in serum HDL, catalase, reduced glutathione, and nitric oxide; and (iii) aorta wall thickening, inflammatory cell infiltration, and cell loss in the cardiac muscle and renal tissues. As captopril, the extract prevented hypertension-like changes in lipid profile, cardiac, hepatic, and renal affection indicators, and oxidative stress markers. CONCLUSION Our findings suggest that the extract of A. digitata has antihypertensive and antioxidant effects in L-NAME-induced hypertension rat models. These effects partly justify the traditional medicine use against cardiovascular disorders.
Collapse
Affiliation(s)
- Fidèle Ntchapda
- Department of Biological Sciences, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Christian Bonabe
- Department of Biological Sciences, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Albert Donatien Atsamo
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - David Romain Kemeta Azambou
- Department of Biological Sciences, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Yannick Bekono Fouda
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Soudy Imar Djibrine
- Institut Universitaire des Sciences et Techniques d'Abéché (IUSTA), P.O. Box 6077, N'Djamena, Chad
| | - Paul F. Seke Etet
- Department of Physiological Sciences and Biochemistry, FMBS, University of Ngaoundéré, Ngaoundéré, P.O. Box 454, Cameroon
| | - Dimo Théophile
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
5
|
Silva TL, Lacerda UV, da Matta SLP, Queiroz VAV, Stringheta PC, Martino HSD, de Barros FAR. Evaluation of the efficacy of toasted white and tannin sorghum flours to improve oxidative stress and lipid profile in vivo. J Food Sci 2020; 85:2236-2244. [PMID: 32609891 DOI: 10.1111/1750-3841.15301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 12/29/2022]
Abstract
The objective of the present work was to evaluate and compare the effect of toasted white and tannin sorghum flours on lipid metabolism and antioxidant potential in vivo. Male spontaneously hypertensive rats (SHR) were induced to oxidative stress with paracetamol and fed a normal diet (AIN-93M) and diets containing toasted tannin sorghum flour and toasted white sorghum flour (without tannins), replacing 100% cellulose, during 29 days. Hepatotoxicity was assessed by biochemical tests and by quantifying oxidative stress markers. Groups that received toasted sorghum flour with and without tannins showed reduction of alanine aminotransferase (ALT) concentration and improvement of lipid profile, with increase of high-density lipoprotein (HDL) compared to paracetamol control, and did not differ statistically from the AIN-93M control. Moreover, toasted white sorghum flour presented similar efficacy in reducing oxidative stress in liver tissue compared to toasted tannin sorghum flour, although the former had lower total phenolic content and antioxidant capacity, suggesting a greater effect of small phenolic compounds, such as phenolic acids, in the prevention of oxidative stress. Therefore, toasted white and tannin sorghum flours had similar efficacy to improve the lipid profile and oxidative stress in rats treated with paracetamol, constituting potential sources of antioxidants, which can be used as promising ready-to-eat foods and as ingredients for the development of sorghum-based products. PRACTICAL APPLICATION: The health benefits of sorghum coupled with the growing interest of the food industry in producing healthier food products have motivated the development of toasted sorghum flours as potential sources of antioxidants and dietary fiber. We have demonstrated that consumption of toasted white and tannin sorghum flours by rats treated with paracetamol had similar efficacy to improve oxidative stress and lipid profile. Thus, these toasted sorghum flours have great potential to be used by the food industry as ready-to-eat foods or as ingredients in the development of various food products.
Collapse
Affiliation(s)
- Thaís Lessa Silva
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Udielle Vermelho Lacerda
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Paulo César Stringheta
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|
6
|
Han S, Bal NB, Sadi G, Usanmaz SE, Tuglu MM, Uludag MO, Demirel-Yilmaz E. Inhibition of endoplasmic reticulum stress protected DOCA-salt hypertension-induced vascular dysfunction. Vascul Pharmacol 2019; 113:38-46. [PMID: 30458302 DOI: 10.1016/j.vph.2018.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/21/2018] [Accepted: 11/16/2018] [Indexed: 01/08/2023]
Abstract
Hypertension has complex vascular pathogenesis and therefore the molecular etiology remains poorly elucidated. Endoplasmic reticulum stress (ERS), which is a condition of the unfolded/misfolded protein accumulation in the endoplasmic reticulum, has been defined as a potential target for cardiovascular disease. In the present study, the effects of ERS inhibition on hypertension-induced alterations in the vessels were investigated. In male Wistar albino rats, hypertension was induced through unilateral nephrectomy, deoxycorticosterone-acetate (DOCA) injection (20 mg/kg, twice a week) and 1% NaCl with 0.2% KCI added to drinking water for 12 weeks. An ERS inhibitor, tauroursodeoxycolic acid (TUDCA) (150 mg/kg/day, i.p.), was administered for the final four weeks. ERS inhibition in DOCA-salt induced hypertension was observed to have reduced systolic blood pressure, improved endothelial dysfunction, enhanced plasma nitric oxide (NO) level, reduced protein expressions of phosphorylated-double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (pPERK), 78 kDa glucose-regulated protein (GRP78), Inositol trisphosphate receptor1 (IP3R1) and Epidermal growth factor receptor (EGFR), increased expressions of endoplasmic reticulum Ca2+-ATPase2 (SERCA2) and B cell lymphoma2 (Bcl2) in vessels. These findings suggest that the beneficial effects of ERS inhibition on hypertension may be related to protection of vessel functions through restoration of endoplasmic reticulum calcium homeostasis, and apoptotic and mitotic pathways.
Collapse
Affiliation(s)
- Sevtap Han
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey.
| | - Nur Banu Bal
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Gökhan Sadi
- Karamanoglu Mehmetbey University, K.Ö. Faculty of Science, Department of Biology, Karaman, Turkey
| | - Suzan Emel Usanmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sihhiye, 06100 Ankara, Turkey
| | - Merve Matilda Tuglu
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sihhiye, 06100 Ankara, Turkey
| | - Mecit Orhan Uludag
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Emine Demirel-Yilmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sihhiye, 06100 Ankara, Turkey
| |
Collapse
|
7
|
Oboh G, Adeoyo OO, Ademosun AO, Ogunsuyi OB, Agunloye OM. Effect of combinations of caffeine and caffeic acid on key enzymes linked to hypertension (in vitro). ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s13596-018-0313-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Yamamoto H, Kanno K, Ikuta T, Arihiro K, Sugiyama A, Kishikawa N, Tazuma S. Enhancing hepatic fibrosis in spontaneously hypertensive rats fed a choline-deficient diet: a follow-up report on long-term effects of oxidative stress in non-alcoholic fatty liver disease. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2016; 23:260-9. [DOI: 10.1002/jhbp.333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/10/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Hiroya Yamamoto
- Department of General Internal Medicine; Hiroshima University Hospital; 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551 Japan
| | - Keishi Kanno
- Department of General Internal Medicine; Hiroshima University Hospital; 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551 Japan
| | - Takuya Ikuta
- Department of General Internal Medicine; Hiroshima University Hospital; 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551 Japan
| | - Koji Arihiro
- Department of Anatomical Pathology; Hiroshima University Hospital; Hiroshima Japan
| | - Akiko Sugiyama
- Department of General Internal Medicine; Hiroshima University Hospital; 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551 Japan
| | - Nobusuke Kishikawa
- Department of General Internal Medicine; Hiroshima University Hospital; 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551 Japan
| | - Susumu Tazuma
- Department of General Internal Medicine; Hiroshima University Hospital; 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551 Japan
| |
Collapse
|
9
|
Berkban T, Boonprom P, Bunbupha S, Welbat JU, Kukongviriyapan U, Kukongviriyapan V, Pakdeechote P, Prachaney P. Ellagic Acid Prevents L-NAME-Induced Hypertension via Restoration of eNOS and p47phox Expression in Rats. Nutrients 2015; 7:5265-5280. [PMID: 26133972 PMCID: PMC4516999 DOI: 10.3390/nu7075222] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 01/27/2023] Open
Abstract
The effect of ellagic acid on oxidative stress and hypertension induced by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) was investigated. Male Sprague-Dawley rats were administrated with L-NAME (40 mg/kg/day) for five weeks. L-NAME induced high systolic blood pressure (SBP) and increased heart rate (HR), hindlimb vascular resistance (HVR) and oxidative stress. Concurrent treatment with ellagic acid (7.5 or 15 mg/kg) prevented these alterations. Co-treatment with ellagic acid was associated with up-regulation of endothelial nitric oxide synthase (eNOS) protein production and alleviation of oxidative stress as indicated by decreased superoxide production in the vascular tissue, reduced plasma malondialdehyde levels, reduced NADPH oxidase subunit p47phox expression and increased plasma nitrate/nitrite levels. Our results indicate that ellagic acid attenuates hypertension by reducing NADPH oxidase subunit p47phox expression, which prevents oxidative stress and restores NO bioavailability.
Collapse
Affiliation(s)
- Thewarid Berkban
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, 40002 Khon Kaen, Thailand.
| | - Pattanapong Boonprom
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, 40002 Khon Kaen, Thailand.
| | - Sarawoot Bunbupha
- Department of Physiology, Faculty of Medicine, Khon Kaen University, 40002 Khon Kaen, Thailand.
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, 40002 Khon Kaen, Thailand.
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, 40002 Khon Kaen, Thailand.
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002 Khon Kaen, Thailand.
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, 40002 Khon Kaen, Thailand.
| | - Parichat Prachaney
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, 40002 Khon Kaen, Thailand.
| |
Collapse
|
10
|
Hepatoprotective Effect of Silymarin (Silybum marianum) on Hepatotoxicity Induced by Acetaminophen in Spontaneously Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:538317. [PMID: 25821491 PMCID: PMC4363982 DOI: 10.1155/2015/538317] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/19/2023]
Abstract
This study was aimed to investigate the effect of Silymarin (SLM) on the hypertension state and the liver function changes induced by acetaminophen (APAP) in spontaneously hypertensive rat (SHR). Animals normotensive (N) or hypertensive (SHR) were treated or not with APAP (3 g/kg, oral) or previously treated with SLM. Twelve hours after APAP administration, plasmatic levels of liver function markers: alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose (GLU), gamma glutamyl transferase (γ-GT), and alkaline phosphatase (ALP) of all groups, were determined. Liver injury was assessed using histological studies. Samples of their livers were then used to determine the myeloperoxidase (MPO) activity and nitric oxide (NO) production and were also sectioned for histological analysis. No differences were observed for ALT, γ-GT, and GLU levels between SHR and normotensive rats groups. However, AST and ALP levels were increased in hypertensive animals. APAP treatment promoted an increase in ALT and AST in both SHR and N. However, only for SHR, γ-GT levels were increased. The inflammatory response evaluated by MPO activity and NO production showed that SHR was more susceptible to APAP effect, by increasing leucocyte infiltration. Silymarin treatment (Legalon) restored the hepatocyte functional and histopathological alterations induced by APAP in normotensive and hypertensive animals.
Collapse
|
11
|
Effect of Clonidine (an antihypertensive drug) treatment on oxidative stress markers in the heart of spontaneously hypertensive rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:927214. [PMID: 23766863 PMCID: PMC3671561 DOI: 10.1155/2013/927214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 04/04/2013] [Indexed: 02/05/2023]
Abstract
Hypertension is a risk factor for several cardiovascular diseases and oxidative stress suggested to be involved in the pathophysiology. Antihypertensive drug Clonidine action in ameliorating oxidative stress was not well studied. Therefore, this study investigate the effect of Clonidine on oxidative stress markers and nitric oxide (NO) in SHR and nitric oxide synthase inhibitor, N-nitro-L-arginine methyl ester (L-NAME) administered SHR. Male rats were divided into four groups [SHR, SHR+Clonidine (SHR-C), SHR+L-NAME, SHR+Clonidine+L-NAME(SHRC+L-NAME)]. Rats (SHRC) were administered with Clonidine (0.5 mg kg−1 day−1) from 4 weeks to 28 weeks in drinking water and L-NAME (25 mg kg−1 day−1) from 16 weeks to 28 weeks to SHRC+L-NAME. Systolic blood pressure (SBP) was measured. At the end of 28 weeks, all rats were sacrificed and in their heart homogenate, oxidative stress parameters and NO was assessed. Clonidine treatment significantly enhanced the total antioxidant status (TAS) (P < 0.001) and reduced the thibarbituric acid reactive substances (TBARS) (P < 0.001) and protein carbonyl content (PCO) (P < 0.05). These data suggest that oxidative stress is involved in the hypertensive organ damage and Clonidine not only lowers the SBP but also ameliorated the oxidative stress in the heart of SHR and SHR+L-NAME.
Collapse
|
12
|
Ikuta T, Kanno K, Arihiro K, Matsuda S, Kishikawa N, Fujita K, Tazuma S. Spontaneously hypertensive rats develop pronounced hepatic steatosis induced by choline-deficient diet: Evidence for hypertension as a potential enhancer in non-alcoholic steatohepatitis. Hepatol Res 2012; 42:310-20. [PMID: 22176027 DOI: 10.1111/j.1872-034x.2011.00920.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Patients with non-alcoholic steatohepatitis (NASH) frequently have many co-morbidities including essential hypertension, which is reported to increase vascular production of reactive oxygen species (ROS) and alter the hepatic anti-oxidant defense system. Since ROS play a role in the pathogenesis of NASH, it is hypothesized that hypertension modulates the hepatic oxidative status and influences the development of NASH. The aim of this study was to investigate the potential effects of hypertension on the progression of NASH. METHODS Spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats as normotensive controls were fed choline-deficient (CD) diet for 5 weeks. Histological changes, messenger RNA (mRNA) expression and thiobarbituric acid reactive substances (TBARS) levels in the liver were assessed in each group. RESULTS Choline-deficient diet led to pronounced hepatic steatosis in SHR with an 8-fold increase of the hepatic triglyceride content, while there was no significant increase in WKY. These changes in SHR were associated with significant reduction in the expression of mRNA for peroxisome proliferator activated receptor α, acyl-CoA oxidase, microsomal triglyceride transfer protein, and apolipoprotein B100. Consistent with the significant reduction of hepatic superoxide dismutase activity and marked downregulation of the gene expression of hepatic antioxidant enzymes, the hepatic TBARS level and the plasma level of alanine aminotransferase were only increased in SHR on CD diet. CONCLUSIONS Spontaneously hypertensive rats receiving CD diet showed severe hepatic steatosis associated with reduction of hepatic anti-oxidant capacity, leading to increased hepatic oxidative stress and tissue damage. Accordingly, hypertension might have a potential effect on the progression of NASH.
Collapse
Affiliation(s)
- Takuya Ikuta
- Departments of General Internal Medicine Anatomical Pathology Pharmaceutical Services, Hiroshima University Hospital, Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Honey supplementation in spontaneously hypertensive rats elicits antihypertensive effect via amelioration of renal oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:374037. [PMID: 22315654 PMCID: PMC3270456 DOI: 10.1155/2012/374037] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/05/2011] [Accepted: 09/25/2011] [Indexed: 02/07/2023]
Abstract
Oxidative stress is implicated in the pathogenesis and/or maintenance of elevated blood pressure in hypertension. This study investigated the effect of honey on elevated systolic blood pressure (SBP) in spontaneously hypertensive rats (SHR). It also evaluated the effect of honey on the amelioration of oxidative stress in the kidney of SHR as a possible mechanism of its antihypertensive effect. SHR and Wistar Kyoto (WKY) rats were randomly divided into 2 groups and administered distilled water or honey by oral gavage once daily for 12 weeks. The control SHR had significantly higher SBP and renal malondialdehyde (MDA) levels than did control WKY. The mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione S-transferase (GST) were significantly downregulated while total antioxidant status (TAS) and activities of GST and catalase (CAT) were higher in the kidney of control SHR. Honey supplementation significantly reduced SBP and MDA levels in SHR. Honey significantly reduced the activities of GST and CAT while it moderately but insignificantly upregulated the Nrf2 mRNA expression level in the kidney of SHR. These results indicate that Nrf2 expression is impaired in the kidney of SHR. Honey supplementation considerably reduces elevated SBP via amelioration of oxidative stress in the kidney of SHR.
Collapse
|
14
|
Morrissey C, Grieve IC, Heinig M, Atanur S, Petretto E, Pravenec M, Hubner N, Aitman TJ. Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat. Physiol Genomics 2011; 43:1207-18. [PMID: 21846806 PMCID: PMC3217321 DOI: 10.1152/physiolgenomics.00210.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spontaneously hypertensive rat (SHR) is a widely used rodent model of hypertension and metabolic syndrome. Previously we identified thousands of cis-regulated expression quantitative trait loci (eQTLs) across multiple tissues using a panel of rat recombinant inbred (RI) strains derived from Brown Norway and SHR progenitors. These cis-eQTLs represent potential susceptibility loci underlying physiological and pathophysiological traits manifested in SHR. We have prioritized 60 cis-eQTLs and confirmed differential expression between the parental strains by quantitative PCR in 43 (72%) of the eQTL transcripts. Quantitative trait transcript (QTT) analysis in the RI strains showed highly significant correlation between cis-eQTL transcript abundance and clinically relevant traits such as systolic blood pressure and blood glucose, with the physical location of a subset of the cis-eQTLs colocalizing with “physiological” QTLs (pQTLs) for these same traits. These colocalizing correlated cis-eQTLs (c3-eQTLs) are highly attractive as primary susceptibility loci for the colocalizing pQTLs. Furthermore, sequence analysis of the c3-eQTL genes identified single nucleotide polymorphisms (SNPs) that are predicted to affect transcription factor binding affinity, splicing and protein function. These SNPs, which potentially alter transcript abundance and stability, represent strong candidate factors underlying not just eQTL expression phenotypes, but also the correlated metabolic and physiological traits. In conclusion, by integration of genomic sequence, eQTL and QTT datasets we have identified several genes that are strong positional candidates for pathophysiological traits observed in the SHR strain. These findings provide a basis for the functional testing and ultimate elucidation of the molecular basis of these metabolic and cardiovascular phenotypes.
Collapse
Affiliation(s)
- Catherine Morrissey
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Department of Epidemiology and Public Health, Faculty of Medicine, Imperial College, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Simeonova RL, Vitcheva VB, Kondeva-Burdina MS, Krasteva IN, Nikolov SD, Mitcheva MK. Effect of purified saponin mixture from Astragalus corniculatus on enzyme- and non-enzyme-induced lipid peroxidation in liver microsomes from spontaneously hypertensive rats and normotensive rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:346-349. [PMID: 20129766 DOI: 10.1016/j.phymed.2009.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 06/30/2009] [Accepted: 08/31/2009] [Indexed: 05/28/2023]
Abstract
The aim of the following study was to evaluate the effect of a purified saponin mixture (PSM), isolated from Astragalus corniculatus Bieb. (Fabaceae), on enzyme-induced and non-enzyme-induced lipid peroxidation (LPO), in liver microsomes from spontaneously hypertensive rats (SHRs) - strain Okamoto Aoki, as compared to normotensive Wistar rats (NTRs). The enzyme-induced lipid peroxidation was performed by incubating rat liver microsomes with carbonetetrachloride (CCl(4)) in the presence of NADPH. In nonenzyme-induced LPO, the microsomes were incubated with a solution of iron sulphate and ascorbinic acid (Fe(2+)/AA). The effect of PSM (196.5 microg/ml) was assessed at 20 minutes' incubation time. MDA, a product of LPO, was measured spectrophotometrically. The results of our study showed that the initial MDA quantity in SHRs was significantly higher, than in NTRs. The incubation of the microsomes from both strains with PSM (196.5 microg/ml), resulted in significant reduction of MDA level, by 25% in SHRs. In NTRs, the formation of MDA was unchanged. In enzyme-induced LPO model, PSM significantly decreased the formation of MDA, by 55% in NTRs and by 35% in SHRs, compared to the respective control groups. In the model of non-enzyme induced LPO, PSM significantly decreased the formation of MDA by 95% in NTRs and practically restored it to the control level. The MDA quantity in SHR's microsomes was reduced by 25%. According to the results of this experiment we could conclude that PSM, isolated from Astragalus corniculatus, shows antioxidant activity both in SHRs and NTRs and the effect in NTRs is more pronounced.
Collapse
Affiliation(s)
- R L Simeonova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University, 2 Dunav St., 1000 Sofia, Bulgaria
| | | | | | | | | | | |
Collapse
|
16
|
Polizio AH, Balestrasse KB, Yannarelli GG, Noriega GO, Gorzalczany S, Taira C, Tomaro ML. Angiotensin II regulates cardiac hypertrophy via oxidative stress but not antioxidant enzyme activities in experimental renovascular hypertension. Hypertens Res 2008; 31:325-34. [PMID: 18360053 DOI: 10.1291/hypres.31.325] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to provide new insights into the role of angiotensin II and arterial pressure in the regulation of antioxidant enzyme activities in a renovascular model of cardiac hypertrophy. For this purpose, aortic coarcted rats were treated with losartan or minoxidil for 7 days. Angiotensin II induced cardiac hypertrophy and oxidative stress via Nox4, p22(phox) and p47(phox), which are components of the NAD(P)H oxidase. Antioxidant enzymes were regulated by arterial pressure and were not implicated in cardiac hypertrophy. Heme oxygenase-1, the rate-limiting enzyme in heme catabolism, behaved as a catalase and glutathione peroxidase, and is regulated by arterial pressure. In summary, the present report indicates that cardiac hypertrophy, induced by renovascular hypertension, depends on angiotensin II through reactive oxygen species and is not prevented by the action of antioxidant enzymes.
Collapse
Affiliation(s)
- Ariel H Polizio
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
17
|
Impact of Chronic Treatment With Red Wine Polyphenols (RWP) on Cerebral Arterioles in the Spontaneous Hypertensive Rat. J Cardiovasc Pharmacol 2008; 51:304-10. [DOI: 10.1097/fjc.0b013e318163a946] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Tian N, Rose RA, Jordan S, Dwyer TM, Hughson MD, Manning RD. N-Acetylcysteine improves renal dysfunction, ameliorates kidney damage and decreases blood pressure in salt-sensitive hypertension. J Hypertens 2006; 24:2263-70. [PMID: 17053549 DOI: 10.1097/01.hjh.0000249705.42230.73] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Salt-sensitive hypertension in humans and experimental animals causes progressive increases in renal damage and dysfunction. The Dahl salt-sensitive (S) rat closely mimics human salt-sensitive hypertension. AIM Our goal was to test the hypothesis that enhancing the glutathione system with dietary N-acetylcysteine administration in Dahl S rats on a high sodium intake for 5 weeks will attenuate the increases in arterial pressure, the decreases in renal hemodynamics and the increases in renal damage that normally occur in S rats on high sodium. METHODS Forty-four 7- to 8-week-old Dahl S/Rapp strain rats were maintained on a high sodium (8%), high sodium + N-acetylcysteine (4 g/kg per day), or low sodium (0.3%) diet for 5 weeks. Rats had arterial and venous catheters implanted at day 21. RESULTS By day 35 in the high-sodium rats, N-acetylcysteine treatment significantly increased the renal reduced-to-oxidized glutathione ratio, glomerular filtration rate, and renal plasma flow, and decreased renal cortical and medullary O2 release, urinary protein excretion, renal tubulointerstitial damage and glomerular necrosis. At this time, mean arterial pressure increased to 183 +/- 1 mmHg, and N-acetylcysteine reduced this arterial pressure to 121 +/- 4 mmHg. By day 35 in S high-sodium rats, N-acetylcysteine had caused a 91% decrease in glomerular necrosis and an 83% decrease in tubulointerstitial damage. CONCLUSIONS In Dahl S rats on high sodium intake, arterial pressure increases significantly and renal injury is pronounced. Treatment with N-acetylcysteine enhances the renal glutathione system, improves renal dysfunction and markedly decreases arterial pressure and renal injury in Dahl salt-sensitive hypertension.
Collapse
Affiliation(s)
- Niu Tian
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Martin H, Abadie C, Heyd B, Mantion G, Richert L, Berthelot A. N-Acetylcysteine Partially Reverses Oxidative Stress and Apoptosis Exacerbated by Mg-Deficiency Culturing Conditions in Primary Cultures of Rat and Human Hepatocytes. J Am Coll Nutr 2006; 25:363-9. [PMID: 17031004 DOI: 10.1080/07315724.2006.10719547] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The effects of magnesium (Mg) deficiency on the rate of oxidative stress and apoptosis in primary cultures of human hepatocytes were compared to cultured rat hepatocytes. The possible reversion by N-acetylcysteine (NAC) in Mg-deficient culturing conditions was evaluated. METHODS Incubations were conducted for up to 72 h in media containing a deficient (0-0.4 mM) or a physiological (0.8 mM) Mg concentration, and in the presence or absence of NAC after 24 h of culture in these Mg concentration conditions. RESULTS We obtained similar profiles in terms of apoptosis and oxidative stress in primary cultures of human hepatocytes, as compared to rat hepatocytes, i.e. a Mg concentration-dependent effect on the caspase-3 activity and GSH levels after 72 h of culture, caspase-3 activity being highest and GSH levels being lowest in Mg-free cultures. The addition of NAC to culture media after the first 24 h of culture increased GSH concentrations. This was accompanied in Mg-deficient cultures by a decrease in both the caspase-3 activity and the lipid peroxidation. However, when culturing hepatocytes with physiological Mg concentrations, an increase in both caspase-3 activity and lipid peroxidation was observed. CONCLUSIONS Our results indicate that Mg deficiency exacerbates the rate of apoptosis in cultured hepatocytes, associated with an increase in oxidative stress, the sensitivity of human hepatocytes being equivalent to that of rat hepatocytes. They also indicate a dual role of NAC and/or GSH, i.e. protective for hepatocytes placed in a Mg-deficient environment, while deleterious for hepatocytes placed in a Mg-physiological environment.
Collapse
Affiliation(s)
- Hélène Martin
- Laboratoire de Biologie Cellulaire, EA 3921, UFR des Sciences Médicales et Pharmaceutiques, Place Saint-Jacques, 25030 Besançon cedex, France.
| | | | | | | | | | | |
Collapse
|
20
|
Ribeiro MCP, de Avila DS, Schneider CYM, Hermes FS, Furian AF, Oliveira MS, Rubin MA, Lehmann M, Krieglstein J, Mello CF. α-Tocopherol protects against pentylenetetrazol- and methylmalonate-induced convulsions. Epilepsy Res 2005; 66:185-94. [PMID: 16162400 DOI: 10.1016/j.eplepsyres.2005.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 08/08/2005] [Accepted: 08/10/2005] [Indexed: 11/26/2022]
Abstract
Increased excitatory amino acid transmission and decreased GABAergic inhibitory responses seem to be important mechanisms in the genesis of convulsions, where reactive oxygen species (ROS) have recently been suggested to play a critical role. Therefore, administration of antioxidants may be potentially beneficial for the treatment of convulsive states. In the current study we investigated the effect of the systemic Vitamin E administration, an antioxidant, on the convulsions and oxidative damage induced by two convulsant agents with different mechanisms of action: methylmalonic acid (MMA), which induces convulsions through energy depletion and secondary activation of glutamatergic mechanisms and ROS production and pentylenetetrazol (PTZ), which is a chemical convulsant that causes convulsions by blocking the GABAA receptor-coupled chloride ionophore. Adult male Wistar rats (270-300 g) were injected with vehicle (5% Tween 80 in 0.9% NaCl; 1 ml/kg, i.p.) or alpha-tocopherol (25, 75 or 225 mg/kg, i.p.), once a day for 7 days. On the seventh day of antioxidant treatment, the animals were injected with the antioxidant (or vehicle) and, 30 min later, they were intrastriatally injected with NaCl (9 micromol/2 microl) or with MMA (6 micromol/2 microl) or PTZ (3.26 mmicromol/2 microl). The animals were observed for the appearance of convulsive behavior and the striatal content of thiobarbituric acid-reactive substances (TBARS) and total protein carbonylation were determined. Intrastriatal injection of increasing amounts of PTZ and of MMA caused the appearance of convulsive behavior. PTZ- and MMA-induced convulsions, TBARS production and total protein carbonylation were attenuated by alpha-tocopherol in a dose-dependent manner.
Collapse
Affiliation(s)
- Marinei Cristina Pereira Ribeiro
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nair J, Strand S, Frank N, Knauft J, Wesch H, Galle PR, Bartsch H. Apoptosis and age-dependant induction of nuclear and mitochondrial etheno-DNA adducts in Long-Evans Cinnamon (LEC) rats: enhanced DNA damage by dietary curcumin upon copper accumulation. Carcinogenesis 2005; 26:1307-15. [PMID: 15790590 DOI: 10.1093/carcin/bgi073] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Long-Evans Cinnamon (LEC) rats, a model for human Wilson's disease, develop chronic hepatitis and liver tumors owing to accumulation of copper and induced oxidative stress. Lipid peroxidation (LPO)-induced etheno-DNA adducts in nuclear- and mitochondrial-DNA along with apoptosis was measured in LEC rat liver. Levels of etheno-DNA adducts (1,N6-ethenodeoxyadenosine and 3,N4-ethenodeoxycytidine) increased with age reaching a peak at 8 and 12 weeks in nuclear and mitochondrial DNA, respectively. This is the first demonstration that etheno-DNA adducts are also formed in mitochondrial DNA. Apoptosis was assessed by TUNEL+ cells in liver sections. CD95L RNA expression was also measured by in situ hybridization in the same sections. The highest nuclear DNA adduct levels coincided with a reduced apoptotic rate at 8 weeks. Mitochondrial-DNA adducts peaked at 12 weeks that coincided with the highest apoptotic rate, suggesting a link of etheno-DNA adducts in mitochondrial DNA to apoptosis. The DNA damage in liver was further enhanced and sustained by 0.5% curcumin in the diet. Treatment for 2 weeks elevated etheno-DNA adducts 9- to 25-fold in nuclear DNA and 3- to 4-fold in mitochondrial-DNA, providing a plausible explanation as to why in our earlier study [Frank et al. (2003) Mutat. Res., 523-524, 127-135], curcumin failed to prevent liver tumors in LEC rats. Our results also confirm the reported in vitro DNA damaging potential of curcumin in the presence of copper ions by reactive oxygen species. LPO-induced adduct formation in nuclear and mitochondrial DNA appear as early lesions in LEC rat liver carcinogenesis and are discussed in relation to apoptotic events in the progression of malignant disease.
Collapse
Affiliation(s)
- Jagadeesan Nair
- Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Robin S, Courderot-Masuyer C, Nicod L, Jacqueson A, Richert L, Berthelot A. Opposite effect of methionine-supplemented diet, a model of hyperhomocysteinemia, on plasma and liver antioxidant status in normotensive and spontaneously hypertensive rats. J Nutr Biochem 2004; 15:80-9. [PMID: 14972347 DOI: 10.1016/j.jnutbio.2003.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2002] [Indexed: 10/26/2022]
Abstract
Hyperhomocysteinemia is often associated with an increase in blood pressure. However our previous study has shown that methionine supplementation induced an increase in blood pressure in Wistar-Kyoto (WKY) rats and a decrease in blood pressure in spontaneously hypertensive rats (SHR) with significant differences in plasma homocysteine (Hcy) metabolites levels. Previously liver antioxidant status has been shown to be decreased in SHR compared to WKY rats. It has been suggested that oxidative stress may predispose to a decrease in NO bioavailability and induce the flux of Hcy through the liver transsulfuration pathway. Thus the aim of this study was 1) to investigate the effect of methionine supplementation on NO-derived metabolites in plasma and urine 2) to investigate whether abnormalities in Hcy metabolism may be responsible for the discrepancies observed between WKY rats and SHR concerning blood pressure and 3) to investigate whether a methionine-enriched diet, differently modified plasma and liver antioxidant status in WKY rats an SHR. We conclude that the increase in blood pressure in WKY rats is related to high plasma cysteine levels and is not due to a decrease in NO bioavailability and that the decrease in blood pressure in SHR is associated with high plasma GSH levels after methionine supplementation. So GSH synthesis appears to be stimulated by liver oxidative stress and GSH is redistributed into blood in SHR. So the great GSH synthesis can be rationalized as an autocorrective response that leads to a decreased blood pressure in SHR.
Collapse
Affiliation(s)
- Sophie Robin
- Laboratoire de Physiologie, Pharmacologie et Nutrition Préventive Expérimentale, Besançon, France.
| | | | | | | | | | | |
Collapse
|
23
|
Tanito M, Nakamura H, Kwon YW, Teratani A, Masutani H, Shioji K, Kishimoto C, Ohira A, Horie R, Yodoi J. Enhanced oxidative stress and impaired thioredoxin expression in spontaneously hypertensive rats. Antioxid Redox Signal 2004; 6:89-97. [PMID: 14713339 DOI: 10.1089/152308604771978381] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As oxidative stress plays a crucial role in the development and pathogenesis of hypertension, we analyzed the redox (reduction/oxidation) status in tissues from Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR), and stroke-prone SHR (SHRSP). Expressions of 8-hydroxy-2'-deoxyguanosine, a marker for oxidative stress-induced DNA damage, and protein carbonylation, a marker for oxidation status of proteins, were enhanced in aorta, heart, and kidney from SHR and SHRSP compared with WKY. The expression of redox regulating protein, thioredoxin (TRX), estimated by immunohistochemistry and western blot, and expression of TRX gene estimated by real-time RT-PCR were markedly suppressed in those tissues from SHR and SHRSP compared with WKY. Induction of TRX was impaired after angiotension II treatment in peripheral blood mononuclear cells isolated from SHR and SHRSP compared with those isolated from WKY. Although previous reports have shown that TRX is induced by a variety of oxidative stress in tissues, the present study shows the impaired induction of TRX in tissues from genetically hypertensive rats despite the relative increment of oxidative stress. Redox imbalance in essential organs may play a crucial role in the development and pathogenesis of hypertension.
Collapse
|
24
|
Bobillier-Chaumont S, Nicod L, Richert L, Berthelot A. Antioxidant status in the liver of hypertensive and metallothionein-deficient mice. Can J Physiol Pharmacol 2003; 81:929-36. [PMID: 14608409 DOI: 10.1139/y03-089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because oxidative stress is involved in arterial hypertension, impairment of hepatic antioxidant defences could develop in the course of this disease. Metallothionein (MT), an antioxidant protein, is present in high rates in the liver. The aim of this study was to investigate the effect of a mineralocorticoid-salt treatment on blood pressure, hepatic antioxidant enzyme activities, and cardiac MT levels in transgenic MT null mice compared with control mice to further clarify the role of MT during the experimental development of arterial hypertension. Control and transgenic MT / mice were submitted to an 8-week mineralocorticoid-salt treatment. Hepatic glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase activities and cardiac MT and mineral levels were measured. Mineralocorticoid-salt treatment induced an increase in blood pressure in both transgenic MT / and control mice that was associated with an impairment of liver antioxidant status. MT deficiency was associated with modifications of hepatic antioxidant enzyme activities and with a decrease in cardiac iron levels. Adaptive processes of antioxidant systems may explain the absence of an effect of metallothionein deficiency on the development of mineralocorticoid-salt hypertension. The interactions that occur between the in vivo antioxidant systems probably produce a complex regulation of the oxidative balance and consequently prevent antioxidant deficiency.Key words: hepatic antioxidant enzymes, metallothionein, transgenic mice, DOCA-salt hypertension.
Collapse
Affiliation(s)
- Sylvie Bobillier-Chaumont
- Laboratoire de Physiologie et de Pharmacologie, Nutrition Préventive Expémentale, Faculté de Médecine et de Pharmacie, Besançcon, France.
| | | | | | | |
Collapse
|
25
|
Martin H, Richert L, Berthelot A. Magnesium deficiency induces apoptosis in primary cultures of rat hepatocytes. J Nutr 2003; 133:2505-11. [PMID: 12888628 DOI: 10.1093/jn/133.8.2505] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of extracellular magnesium (Mg) concentration on the rate of apoptosis in rat hepatocytes in primary culture were examined. After overnight attachment, incubations were conducted for up to 72 h in serum-free media containing low (0-0.4 mmol/L), physiological (0.8 mmol/L) or high (2 and 5.6 mmol/L) Mg concentrations. At 72 h, we observed numerous rounded hepatocytes on top of a shrunken cell monolayer at extracellular Mg concentrations < 0.8 mmol/L. These morphological features were associated with Mg-dependent differences in the total protein levels. The various Mg concentrations did not affect DNA synthesis; however, at a concentration < 0.8 mmol/L, the susceptibility of cultured rat hepatocytes to oxidative stress was increased as shown by the reduced glutathione concentration (10.6 +/- 2.8 vs. 37.3 +/- 4.1 nmol/mg protein with 0 and 0.8 mmol/L, respectively; P < 0.05) and increased lipid peroxidation (0.36 +/- 0.03 vs. 0.21 +/- 0.01 nmol malondialdehyde/mg protein with 0 and 0.8 mmol/L, respectively; P < 0.05). Fluorescence microscopy after Hoechst dye staining revealed numerous apoptotic figures in Mg-free monolayers compared with 0.8 and 5.6 mmol/L Mg conditions. These observations were confirmed quantitatively by flow-cytometric analysis after propidium iodide staining. The proportion of subdiploid cells decreased with increasing Mg concentration; for example, it was greater at 72 h in Mg-free cultures (76%) than in cultures containing 0.8 mmol/L or 5.6 mmol/L Mg (28%; P < 0.05). Caspase-3 was highly activated in Mg-free cultures after 48 h of treatment compared with 0.8 and 5.6 mmol/L conditions (P < 0.05). Overall, these results show that extracellular Mg deficiency has a negative effect on the survival of cultured rat hepatocytes by inducing apoptosis; however, supplementation of extracellular Mg did not reduce the spontaneous apoptosis that occurred over time in rat hepatocyte cultures.
Collapse
Affiliation(s)
- Hélène Martin
- Laboratoire de Physiologie, UFR des Sciences Médicales et Pharmaceutiques, Besançon, France
| | | | | |
Collapse
|
26
|
Hacioglu G, Agar A, Ozkaya G, Yargicoglu P, Gumuslu S. The effect of different hypertension models on active avoidance learning. Brain Cogn 2003; 52:216-22. [PMID: 12821104 DOI: 10.1016/s0278-2626(03)00072-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study tested the effects of different hypertension models on active avoidance learning in rats. Three-month-old male Wistar rats were divided randomly into six groups as follows: control (C), sham operated (sham), two kidney-one clip (2K-1C), one kidney-one clip (1K-1C), deoxycorticosterone-salt (DOCA), and N-omega-nitro-L-arginine-methyl ester (L-NAME) groups. Mean arterial blood pressures were significantly higher in four hypertensive groups compared with control and sham groups. The active avoidance training results indicated that hypertension state is associated with learning impairment. Thiobarbituric acid-reactive substances (TBARS) were determined as an indicator of lipid peroxidation in brain and hippocampus. Additionally, brain and hippocampus nitrite levels were studied.
Collapse
Affiliation(s)
- Gulay Hacioglu
- Department of Physiology, Faculty of Medicine, Akdeniz University, Arapsuyu 07070, Antalya, Turkey.
| | | | | | | | | |
Collapse
|
27
|
Binda D, Lasserre-Bigot D, Bonet A, Thomassin M, Come MP, Guinchard C, Bars R, Jacqueson A, Richert L. Time course of cytochromes P450 decline during rat hepatocyte isolation and culture: effect of L-NAME. Toxicol In Vitro 2003; 17:59-67. [PMID: 12537963 DOI: 10.1016/s0887-2333(02)00118-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present work describes an isozyme-related effect of collagenase perfusion on hepatocyte microsomal cytochrome (CYP)-dependent monooxygenase activities: CYP 1A1/2-, 2B1/2-, 3A1/2- and 2E1-dependent activities in microsomes from rat hepatocytes after isolation were about 60% of that of liver microsomes, and CYP 4A1-dependent activity was equivalent to liver microsomes. In contrast, the microsomal protein content of the various CYP isoforms was not affected by hepatocyte isolation. This is in accordance with the hypothesis of CYP inactivation during the process of hepatocyte isolation by collagenase digestion. L-NAME (1 mM) was found unable to protect from the decline of CYP-dependent monooxygenase activities following hepatocyte isolation. It is possible that the decrease in glutathione peroxidase activity observed in the presence of L-NAME, namely depression of defense against peroxynitrite, could counteract the beneficial effect of L-NAME on nitric oxide synthesis inhibition. The present work also shows that L-NAME could not avoid the progressive, isoform-specific, most probably turnover-related, decline of CYP proteins and related monooxygenase activities in cultured hepatocytes. Dysregulations in the mechanisms of CYP expression in rat hepatocyte cultures, presently unknown but nitric oxide independent, thus appear to occur in cultured rat hepatocytes.
Collapse
Affiliation(s)
- D Binda
- Laboratoire de Biologie Cellulaire, Faculté de Médecine et Pharmacie, place Saint-Jacques, 25030 Besançon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Johnson P. Antioxidant enzyme expression in health and disease: effects of exercise and hypertension. Comp Biochem Physiol C Toxicol Pharmacol 2002; 133:493-505. [PMID: 12458178 DOI: 10.1016/s1532-0456(02)00120-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antioxidant enzymes (superoxide dismutases, catalase and glutathione peroxidase) are components of an organism's mechanisms for combating oxidative stress which is generated in normal metabolism and which may also be a reaction in response to external stimuli. This review identifies the general significance of antioxidant enzymes in health and disease, and some of the diseases that are now believed to have oxidative stress as a component. A discussion is then presented of the molecular mechanisms by which antioxidant enzyme expression is controlled at the transcriptional and post-transcriptional levels. The final sections of the review highlight the effects of exercise and hypertension on antioxidant enzyme expression in a number of different tissues, and the possibilities for future studies in these areas are discussed.
Collapse
Affiliation(s)
- Peter Johnson
- Department of Biomedical Sciences, Ohio University, Athens, Ohio 45701, USA.
| |
Collapse
|
29
|
Elhaïmeur F, Courderot-Masuyer C, Nicod L, Guyon C, Richert L, Berthelot A. Dietary vitamin C supplementation decreases blood pressure in DOCA-salt hypertensive male Sprague-Dawley rats and this is associated with increased liver oxidative stress. Mol Cell Biochem 2002; 237:77-83. [PMID: 12236589 DOI: 10.1023/a:1016587201108] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The effects of a vitamin C supplemented diet on blood pressure, body and liver weights, liver antioxidant status, iron and copper levels were investigated in DOCA-salt treated and untreated Sprague-Dawley (SD) male rats after 8 weeks of treatment. Vitamin C supplementation had no effect on blood pressure in SD rats but induced a significant decrease in blood pressure in DOCA-salt treated rats, the decrease being more efficient at 50 mg/kg of vitamin C than at 500 mg/kg. Hepatic lipid peroxidation and iron levels were significantly increased in DOCA-salt hypertensive rats whereas total hepatic antioxidant capacity (HAC), glutathione peroxidase (GSH-Px) and catalase (CAT) activities were decreased. Vitamin C supplementation did not affect the overall antioxidant defences of control SD rat livers. In contrast, vitamin C supplementation accentuated the DOCA-salt induced accumulation of liver iron and lipid peroxidation. This occurred without any notable aggravation in the antioxidant deficiency of vitamin C supplemented DOCA-salt treated rat livers. Our data suggest that DOCA-salt treatment induces an accumulation of iron in rat livers which is responsible for the prooxidant effect of vitamin C. The normalization of blood pressure in DOCA-salt treated rats by vitamin C supplementation appears thus independent from liver antioxidant status.
Collapse
Affiliation(s)
- Fatiha Elhaïmeur
- Laboratoire de Physiologie, UFR Médecine-Pharmacie, Besançon, France
| | | | | | | | | | | |
Collapse
|
30
|
Leary SC, Michaud D, Lyons CN, Hale TM, Bushfield TL, Adams MA, Moyes CD. Bioenergetic remodeling of heart during treatment of spontaneously hypertensive rats with enalapril. Am J Physiol Heart Circ Physiol 2002; 283:H540-8. [PMID: 12124199 DOI: 10.1152/ajpheart.00032.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used spontaneously hypertensive rats to study remodeling of cardiac bioenergetics associated with changes in blood pressure. Blood pressure was manipulated with aggressive antihypertensive treatment combining low dietary salt and the angiotensin-converting enzyme inhibitor enalapril. Successive cycles of 2 wk on, 2 wk off treatment led to rapid, reversible changes in left ventricular (LV) mass (30% change in <10 days). Despite changes in LV mass, specific activities of bioenergetic (cytochrome-c oxidase, citrate synthase, lactate dehydrogenase) and reactive oxygen species (ROS) (total cellular superoxide dismutase) enzymes were actively maintained within relatively narrow ranges regardless of treatment duration, organismal age, or transmural region. Although enalapril led to parallel declines in mitochondrial enzyme content and ventricular mass, total ventricular mtDNA content was unaffected. Altered enzymatic content occurred without significant changes in relevant mRNA and protein levels. Transcript levels of gene products involved in mtDNA maintenance (Tfam), mitochondrial protein degradation (LON protease), fusion (fuzzy onion homolog), and fission (dynamin-like protein, synaptojanin-2alpha) were also unchanged. In contrast, enalapril-mediated ventricular and mitochondrial remodeling was accompanied by a twofold increase in specific activity of catalase, an indicator of oxidative stress, suggesting that rapid cardiac adaptation is accompanied by tight regulation of mitochondrial enzyme activities and increased ROS production.
Collapse
Affiliation(s)
- S C Leary
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | | | |
Collapse
|
31
|
Richert L, Binda D, Hamilton G, Viollon-Abadie C, Alexandre E, Bigot-Lasserre D, Bars R, Coassolo P, LeCluyse E. Evaluation of the effect of culture configuration on morphology, survival time, antioxidant status and metabolic capacities of cultured rat hepatocytes. Toxicol In Vitro 2002; 16:89-99. [PMID: 11812644 DOI: 10.1016/s0887-2333(01)00099-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We evaluated the antioxidant status, namely cellular lipid peroxidation, by measuring thiobarbituric acid reactive substances (TBARS), cellular reduced glutathione (GSH) content, glutathione reductase (GSSG-R), glutathione transferase (GST), glutathione peroxidase (GSH-Px) and catalase activities in rat liver, hepatocytes immediately after isolation and in two-dimensional (2D) culture (on non-coated or collagen-coated dishes, as collagen-collagen or collagen-Matrigel sandwich cultures) or three-dimensional (3D) culture on Matrigel-coated dishes. Microsomal cytochrome P450 (CYP)- and UDP-glucuronosyl transferase (UGT)- dependent activities were also assessed in rat livers and hepatocyte cultures. The overall antioxidant status of rat hepatocytes immediately after isolation was not significantly different from that of rat livers. During culture, GSH was increased in 2D but not in 3D cultures in accordance with morphological observations; that is that matrix-cell interactions involving GSH, important in 2D, are minimal in 3D cultures. While UGT- and GST-dependent activities were equivalent in cultured hepatocytes and in rat livers, both catalase and GSH-Px activities decreased with time in all culture configurations. Constitutive CYP-dependent activities were drastically decreased in hepatocytes after isolation and attachment and did not recover in any culture configuration tested. Our results highlight that, although 2D sandwich cultures and 3D cultures on Matrigel allow longevity of rat hepatocyte cultures and optimal induction of CYPs, an imbalance in phase I/phase II detoxication processes in cultured rat hepatocytes occurs, whatever the culture configuration.
Collapse
Affiliation(s)
- Lysiane Richert
- Laboratoire de Biologie Cellulaire, Faculté de Médecine et Pharmacie, place Saint-Jacques, 25030 Besançon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shimada H, Nagano M, Yasutake A, Imamura Y. Wistar-Imamichi Rats Exhibit a Strong Resistance to Cadmium Toxicity. ACTA ACUST UNITED AC 2002. [DOI: 10.1248/jhs.48.201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|