1
|
Effects of Sodium Pyruvate on Vanadyl Sulphate-Induced Reactive Species Generation and Mitochondrial Destabilisation in CHO-K1 Cells. Antioxidants (Basel) 2022; 11:antiox11050909. [PMID: 35624773 PMCID: PMC9137755 DOI: 10.3390/antiox11050909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Vanadium is ranked as one of the world’s critical metals considered important for economic growth with wide use in the steel industry. However, its production, applications, and emissions related to the combustion of vanadium-containing fuels are known to cause harm to the environment and human health. Pyruvate, i.e., a glucose metabolite, has been postulated as a compound with multiple cytoprotective properties, including antioxidant and anti-inflammatory effects. The aim of the present study was to examine the antioxidant potential of sodium pyruvate (4.5 mM) in vanadyl sulphate (VOSO4)-exposed CHO-K1 cells. Dichloro-dihydro-fluorescein diacetate and dihydrorhodamine 123 staining were performed to measure total and mitochondrial generation of reactive oxygen species (ROS), respectively. Furthermore, mitochondrial damage was investigated using MitoTell orange and JC-10 staining assays. We demonstrated that VOSO4 alone induced a significant rise in ROS starting from 1 h to 3 h after the treatment. Additionally, after 24 and 48 h of exposure, VOSO4 elicited both extensive hyperpolarisation and depolarisation of the mitochondrial membrane potential (MMP). The two-way ANOVA analysis of the results showed that, through antagonistic interaction, pyruvate prevented VOSO4-induced total ROS generation, which could be observed at the 3 h time point. In addition, through the independent action and antagonistic interaction with VOSO4, pyruvate provided a pronounced protective effect against VOSO4-mediated mitochondrial toxicity at 24-h exposure, i.e., prevention of VOSO4-induced hyperpolarisation and depolarisation of MMP. In conclusion, we found that pyruvate exerted cytoprotective effects against vanadium-induced toxicity at least in part by decreasing ROS generation and preserving mitochondrial functions
Collapse
|
2
|
Abstract
Influenza A virus (IAV) causes seasonal epidemics annually and pandemics every few decades. Most antiviral treatments used for IAV are only effective if administered during the first 48 h of infection and antiviral resistance is possible. Therapies that can be initiated later during IAV infection and that are less likely to elicit resistance will significantly improve treatment options. Pyruvate, a key metabolite, and an end product of glycolysis, has been studied for many uses, including its anti-inflammatory capabilities. Sodium pyruvate was recently shown by us to decrease inflammasome activation during IAV infection. Here, we investigated sodium pyruvate’s effects on IAV in vivo. We found that nebulizing mice with sodium pyruvate decreased morbidity and weight loss during infection. Additionally, treated mice consumed more chow during infection, indicating improved symptoms. There were notable improvements in pro-inflammatory cytokine production (IL-1β) and lower virus titers on day 7 post-infection in mice treated with sodium pyruvate compared to control animals. As pyruvate acts on the host immune response and metabolic pathways and not directly on the virus, our data demonstrate that sodium pyruvate is a promising treatment option that is safe, effective, and unlikely to elicit antiviral resistance.
Collapse
|
3
|
Yu XH, Wu JX, Chen L, Gu YD. Inflammation and apoptosis accelerate progression to irreversible atrophy in denervated intrinsic muscles of the hand compared with biceps: proteomic analysis of a rat model of obstetric brachial plexus palsy. Neural Regen Res 2020; 15:1326-1332. [PMID: 31960820 PMCID: PMC7047792 DOI: 10.4103/1673-5374.272619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In treating patients with obstetric brachial plexus palsy, we noticed that denervated intrinsic muscles of the hand become irreversibly atrophic at a faster than denervated biceps. In a rat model of obstetric brachial plexus palsy, denervated intrinsic musculature of the forepaw entered the irreversible atrophy far earlier than denervated biceps. In this study, isobaric tags for relative and absolute quantitation were examined in the intrinsic musculature of forepaw and biceps on denervated and normal sides at 3 and 5 weeks to identify dysregulated proteins. Enrichment of pathways mapped by those proteins was analyzed by Kyoto Encyclopedia of Genes and Genomes analysis. At 3 weeks, 119 dysregulated proteins in denervated intrinsic musculature of the forepaw were mapped to nine pathways for muscle regulation, while 67 dysregulated proteins were mapped to three such pathways at 5 weeks. At 3 weeks, 27 upregulated proteins were mapped to five pathways involving inflammation and apoptosis, while two upregulated proteins were mapped to one such pathway at 5 weeks. At 3 and 5 weeks, 53 proteins from pathways involving regrowth and differentiation were downregulated. At 3 weeks, 64 dysregulated proteins in denervated biceps were mapped to five pathways involving muscle regulation, while, five dysregulated proteins were mapped to three such pathways at 5 weeks. One protein mapped to inflammation and apoptotic pathways was upregulated from one pathway at 3 weeks, while three proteins were downregulated from two other pathways at 5 weeks. Four proteins mapped to regrowth and differentiation pathways were upregulated from three pathways at 3 weeks, while two proteins were downregulated in another pathway at 5 weeks. These results implicated inflammation and apoptosis as critical factors aggravating atrophy of denervated intrinsic muscles of the hand during obstetric brachial plexus palsy. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Fudan University, China (approval No. DF-325) in January 2015.
Collapse
Affiliation(s)
- Xiao-Heng Yu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Ji-Xin Wu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Liang Chen
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Yu-Dong Gu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| |
Collapse
|
4
|
Marom A, Berkovitch Y, Toume S, Alvarez-Elizondo MB, Weihs D. Non-damaging stretching combined with sodium pyruvate supplement accelerate migration of fibroblasts and myoblasts during gap closure. Clin Biomech (Bristol, Avon) 2019; 62:96-103. [PMID: 30711737 DOI: 10.1016/j.clinbiomech.2019.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 01/09/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sustained, low- and mid-level (3-6%), radial stretching combined with varying concentrations of sodium pyruvate (NaPy) supplement increase the migration rate during microscale gap closure following an in vitro injury; NaPy is a physiological supplement often used in cell-culture media. Recently we showed that low-level tensile strains accelerate in vitro kinematics during en masse cell migration; topically applied mechanical deformations also accelerate in vivo healing in larger wounds. The constituents and nutrients at injury sites change. Thus, we combine a supplement with stretching conditions to effectively accelerate wound healing. METHODS Monolayers of murine fibroblasts (NIH3T3) or myoblasts (C2C12) were cultured in 1 mM NaPy on stretchable, linear-elastic substrates. Monolayers were subjected to 0, 3, or 6% stretching using a custom three-dimensionally printed stretching apparatus, micro-damage was immediately induced, media was replaced with fresh media containing 0, 1, or 5 mM NaPy, and cell migration kinematics during gap-closure were quantitatively evaluated. FINDINGS In myoblasts, the smallest evaluated strain (3%, minimal risk of damage) combined with preinjury (1 mM) and post-injury exogenous NaPy supplements accelerated gap closure in a statistically significant manner; response was NaPy concentration dependent. In both fibroblasts and myoblasts, when cells were pre-exposed to NaPy, yet no supplement was provided post-injury, mid-level stretches (6%) compensated for post-injury deficiency in exogenous NaPy and accelerated gap-closure in a statistically significant manner. INTERPRETATION Small deformations combined with NaPy supplement prior-to and following cell-damage accelerate en masse cell migration and can be applied in wound healing, e.g. to preventatively accelerate closure of microscale gaps.
Collapse
Affiliation(s)
- Anat Marom
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yulia Berkovitch
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Samer Toume
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Daphne Weihs
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
5
|
Ramos-Ibeas P, Barandalla M, Colleoni S, Lazzari G. Pyruvate antioxidant roles in human fibroblasts and embryonic stem cells. Mol Cell Biochem 2017; 429:137-150. [PMID: 28247212 DOI: 10.1007/s11010-017-2942-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/16/2017] [Indexed: 12/21/2022]
Abstract
Oxidative stress has been related to multiple diseases, especially during early embryonic development, when environmental alterations can lead to long-term deleterious effects. In vitro studies of oxidative stress have been mainly focused on somatic cells, but embryonic stem cells (ESCs) represent a promising model of early embryonic development as they are the in vitro equivalent to pluripotent cells in the embryo. Human fibroblasts and ESCs were exposed to different pro-oxidant agents (hydrogen peroxide, tert-butyl hydroperoxide (TBHP), and rotenone) and antioxidants (sodium pyruvate, N-acetylcysteine, Trolox, and sodium selenite) during a 72 h oxidative stress treatment. Then, cell viability, oxidative stress, mitochondrial activity, and gene expression were analyzed, focusing on the antioxidant effect of pyruvate. Pyruvate protected both somatic and pluripotent cells against different pro-oxidant agents, showing strong ROS scavenging capacity, protecting mitochondrial membrane potential, and regulating gene expression and cell metabolism through different mechanisms in fibroblasts and ESCs. In fibroblasts, pyruvate avoided NFKβ nuclear translocation and the upregulation of genes related to the oxidative stress response, while in ESCs pyruvate stimulated the expression of genes involved in anaerobic glycolysis. Fibroblasts and ESCs reacted in different ways to oxidative stress and antioxidant treatment, and pyruvate was the most complete antioxidant, protecting both cell types at different levels.
Collapse
Affiliation(s)
| | - Maria Barandalla
- Avantea, Laboratory of Reproductive Technologies, 26100, Cremona, Italy
| | - Silvia Colleoni
- Avantea, Laboratory of Reproductive Technologies, 26100, Cremona, Italy
| | - Giovanna Lazzari
- Avantea, Laboratory of Reproductive Technologies, 26100, Cremona, Italy
| |
Collapse
|
6
|
ACSS2-mediated acetyl-CoA synthesis from acetate is necessary for human cytomegalovirus infection. Proc Natl Acad Sci U S A 2017; 114:E1528-E1535. [PMID: 28167750 DOI: 10.1073/pnas.1614268114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent studies have shown that human cytomegalovirus (HCMV) can induce a robust increase in lipid synthesis which is critical for the success of infection. In mammalian cells the central precursor for lipid biosynthesis, cytosolic acetyl CoA (Ac-CoA), is produced by ATP-citrate lyase (ACLY) from mitochondria-derived citrate or by acetyl-CoA synthetase short-chain family member 2 (ACSS2) from acetate. It has been reported that ACLY is the primary enzyme involved in making cytosolic Ac-CoA in cells with abundant nutrients. However, using CRISPR/Cas9 technology, we have shown that ACLY is not essential for HCMV growth and virally induced lipogenesis. Instead, we found that in HCMV-infected cells glucose carbon can be used for lipid synthesis by both ACLY and ACSS2 reactions. Further, the ACSS2 reaction can compensate for the loss of ACLY. However, in ACSS2-KO human fibroblasts both HCMV-induced lipogenesis from glucose and viral growth were sharply reduced. This reduction suggests that glucose-derived acetate is being used to synthesize cytosolic Ac-CoA by ACSS2. Previous studies have not established a mechanism for the production of acetate directly from glucose metabolism. Here we show that HCMV-infected cells produce more glucose-derived pyruvate, which can be converted to acetate through a nonenzymatic mechanism.
Collapse
|
7
|
Natoli R, Rutar M, Lu YZ, Chu-Tan JA, Chen Y, Saxena K, Madigan M, Valter K, Provis JM. The Role of Pyruvate in Protecting 661W Photoreceptor-Like Cells Against Light-Induced Cell Death. Curr Eye Res 2016; 41:1473-1481. [PMID: 27217092 DOI: 10.3109/02713683.2016.1139725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE Light is a requirement for the function of photoreceptors in visual processing. However, prolonged light exposure can be toxic to photoreceptors, leading to increased reactive oxygen species (ROS), lipid peroxidation, and photoreceptor cell death. We used the 661W mouse cone photoreceptor-like cell line to study the effects of pyruvate in protecting these cells from light-induced toxicity. METHODS 661W cells were exposed to 15,000 lux continuous bright light for 5 hours and incubated in Dulbecco's modified eagle medium (DMEM) with various concentrations of pyruvate. Following light damage, cells were assessed for changes in morphology, cell toxicity, viability, and ROS production. Mitochondrial respiration and anaerobic glycolysis were also assessed using a Seahorse Xfe96 extracellular flux analyzer. RESULTS We found that cell death caused by light damage in 661W cells was dramatically reduced in the presence of pyruvate. Cells with pyruvate-supplemented media also showed attenuation of oxidative stress and maintained normal levels of ATP. We also found that alterations in the concentrations of pyruvate had no effect on mitochondrial respiration or glycolysis in light-damaged cells. CONCLUSIONS Taken together, the results show that pyruvate is protective against light damage but does not alter the metabolic output of the cells, indicating an alternative role for pyruvate in reducing oxidative stress. Thus, sodium pyruvate is a possible candidate for the treatment against the oxidative stress component of retinal degenerations.
Collapse
Affiliation(s)
- Riccardo Natoli
- a John Curtin School of Medical Research, Australian National University , Canberra , Australia
- b ANU Medical School, The Australian National University , Canberra , Australia
| | - Matt Rutar
- a John Curtin School of Medical Research, Australian National University , Canberra , Australia
| | - Yen-Zhen Lu
- a John Curtin School of Medical Research, Australian National University , Canberra , Australia
| | - Joshua A Chu-Tan
- a John Curtin School of Medical Research, Australian National University , Canberra , Australia
| | - Yuwei Chen
- a John Curtin School of Medical Research, Australian National University , Canberra , Australia
| | - Kartik Saxena
- a John Curtin School of Medical Research, Australian National University , Canberra , Australia
| | - Michele Madigan
- c School of Optometry and Vision Sciences, University of New South Wales , Sydney , Australia
- d The Save Sight Institute, University of Sydney , Sydney , Australia
| | - Krisztina Valter
- a John Curtin School of Medical Research, Australian National University , Canberra , Australia
- b ANU Medical School, The Australian National University , Canberra , Australia
| | - Jan M Provis
- a John Curtin School of Medical Research, Australian National University , Canberra , Australia
- b ANU Medical School, The Australian National University , Canberra , Australia
| |
Collapse
|
8
|
Veres G, Hegedűs P, Barnucz E, Zöller R, Klein S, Schmidt H, Radovits T, Korkmaz S, Karck M, Szabó G. Endothelial dysfunction of bypass graft: direct comparison of in vitro and in vivo models of ischemia-reperfusion injury. PLoS One 2015; 10:e0124025. [PMID: 25875813 PMCID: PMC4398487 DOI: 10.1371/journal.pone.0124025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/09/2015] [Indexed: 11/23/2022] Open
Abstract
Background Although, ischemia/reperfusion induced vascular dysfunction has been widely described, no comparative study of in vivo- and in vitro-models exist. In this study, we provide a direct comparison between models (A) ischemic storage and in-vitro reoxygenation (B) ischemic storage and in vitro reperfusion (C) ischemic storage and in-vivo reperfusion. Methods and Results Aortic arches from rats were stored for 2 hours in saline. Arches were then (A) in vitro reoxygenated (B) in vitro incubated in hypochlorite for 30 minutes (C) in vivo reperfused after heterotransplantation (2, 24 hours and 7 days reperfusion). Endothelium-dependent and independent vasorelaxations were assessed in organ bath. DNA strand breaks were assessed by TUNEL-method, mRNA expressions (caspase-3, bax, bcl-2, eNOS) by quantitative real-time PCR, proteins by Western blot analysis and the expression of CD-31 by immunochemistry. Endothelium-dependent maximal relaxation was drastically reduced in the in-vivo models compared to ischemic storage and in-vitro reperfusion group, and no difference showed between ischemic storage and control group. CD31-staining showed significantly lower endothelium surface ratio in-vivo, which correlated with TUNEL-positive ratio. Increased mRNA and protein levels of pro- and anti-apoptotic gens indicated a significantly higher damage in the in-vivo models. Conclusion Even short-period of ischemia induces severe endothelial damage (in-vivo reperfusion model). In-vitro models of ischemia-reperfusion injury can be limitedly suited for reliable investigations. Time course of endothelial stunning is also described.
Collapse
Affiliation(s)
- Gábor Veres
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Péter Hegedűs
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
- Heart Center, Semmelweis University, Budapest, Hungary
| | - Enikő Barnucz
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Raphael Zöller
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Stephanie Klein
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Harald Schmidt
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | | | - Sevil Korkmaz
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Wang X, Zhang R, Gu L, Zhang Y, Zhao X, Bi K, Chen X. Cell-based screening identifies the active ingredients from Traditional Chinese Medicine formula Shixiao San as the inhibitors of atherosclerotic endothelial dysfunction. PLoS One 2015; 10:e0116601. [PMID: 25699522 PMCID: PMC4336328 DOI: 10.1371/journal.pone.0116601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 12/12/2014] [Indexed: 12/25/2022] Open
Abstract
In this study, we performed a phenotypic screening in human endothelial cells exposed to oxidized low density lipoprotein (an in vitro model of atherosclerotic endothelial dysfunction) to identify the effective compounds in Shixiao San. After investigating the suitability and reliability of the cell-based screening method using atorvastatin as the positive control drug, this method was applied in screening Shixiao San and its extracts. The treatment of n-butanol fraction on endothelial cells exhibited stronger healing effects against oxidized low density lipoprotein-induced insult when compared with other fractions. Cell viability, the level of nitric oxide, endothelial nitric oxide synthase and endothelin-1 were measured, respectively. The assays revealed n-butanol fraction significantly elevated the survival ratio of impaired cells in culture. In parallel, n-butanol fraction exhibited the highest inhibition of inflammation. The generation of prostaglandin-2 and adhesion molecule (soluble intercellular adhesion molecule-1) was obviously declined. Furthermore, n-butanol fraction suppressed the production of reactive oxygen species and malondialdehyde, and restored the activity of superoxide dismutase. Compounds identification of the n-butanol fraction was carried out by ultra high liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry. The active ingredients including quercetin-3-O-(2G-α-l-rhamnosyl)-rutinoside, quercetin-3-O-neohesperidoside, isorhamnetin-3-O-neohesperidoside and isorhamnetin-3-O-rutinoside revealed the ability of anti-atherosclerosis after exposing on endothelial cells. The current work illustrated the pharmacology effect of Shixiao San and clearly indicated the major active components in Shixiao San. More importantly, the proposed cell-based screening method might be particularly suitable for fast evaluating the anti-atherosclerosis efficacy of Traditional Chinese Medicines and screening out the interesting ingredients of Traditional Chinese Medicines.
Collapse
Affiliation(s)
- Xiaofan Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruowen Zhang
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, United States of America
| | - Liqiang Gu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuanyuan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xu Zhao
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaohui Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- * E-mail:
| |
Collapse
|
10
|
A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol Cell 2014; 56:400-413. [PMID: 25458841 DOI: 10.1016/j.molcel.2014.09.026] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/08/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022]
Abstract
Cancer cells are typically subject to profound metabolic alterations, including the Warburg effect wherein cancer cells oxidize a decreased fraction of the pyruvate generated from glycolysis. We show herein that the mitochondrial pyruvate carrier (MPC), composed of the products of the MPC1 and MPC2 genes, modulates fractional pyruvate oxidation. MPC1 is deleted or underexpressed in multiple cancers and correlates with poor prognosis. Cancer cells re-expressing MPC1 and MPC2 display increased mitochondrial pyruvate oxidation, with no changes in cell growth in adherent culture. MPC re-expression exerted profound effects in anchorage-independent growth conditions, however, including impaired colony formation in soft agar, spheroid formation, and xenograft growth. We also observed a decrease in markers of stemness and traced the growth effects of MPC expression to the stem cell compartment. We propose that reduced MPC activity is an important aspect of cancer metabolism, perhaps through altering the maintenance and fate of stem cells.
Collapse
|
11
|
Wang TY, Li Q, Li Q, Li H, Zhu J, Cui W, Jiao GZ, Tan JH. Non-frozen preservation protocols for mature mouse oocytes dramatically extend their developmental competence by reducing oxidative stress. Mol Hum Reprod 2013; 20:318-29. [DOI: 10.1093/molehr/gat088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
12
|
Li Q, Wang G, Zhang J, Zhou P, Wang TY, Cui W, Luo MJ, Tan JH. Combined Inhibitory Effects of Pyruvate and Low Temperature on Postovulatory Aging of Mouse Oocytes1. Biol Reprod 2012; 87:105. [DOI: 10.1095/biolreprod.112.103127] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
13
|
Metabolomics of oxidative stress in recent studies of endogenous and exogenously administered intermediate metabolites. Int J Mol Sci 2011; 12:6469-501. [PMID: 22072900 PMCID: PMC3210991 DOI: 10.3390/ijms12106469] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/13/2011] [Accepted: 09/21/2011] [Indexed: 11/19/2022] Open
Abstract
Aerobic metabolism occurs in a background of oxygen radicals and reactive oxygen species (ROS) that originate from the incomplete reduction of molecular oxygen in electron transfer reactions. The essential role of aerobic metabolism, the generation and consumption of ATP and other high energy phosphates, sustains a balance of approximately 3000 essential human metabolites that serve not only as nutrients, but also as antioxidants, neurotransmitters, osmolytes, and participants in ligand-based and other cellular signaling. In hypoxia, ischemia, and oxidative stress, where pathological circumstances cause oxygen radicals to form at a rate greater than is possible for their consumption, changes in the composition of metabolite ensembles, or metabolomes, can be associated with physiological changes. Metabolomics and metabonomics are a scientific disciplines that focuse on quantifying dynamic metabolome responses, using multivariate analytical approaches derived from methods within genomics, a discipline that consolidated innovative analysis techniques for situations where the number of biomarkers (metabolites in our case) greatly exceeds the number of subjects. This review focuses on the behavior of cytosolic, mitochondrial, and redox metabolites in ameliorating or exacerbating oxidative stress. After reviewing work regarding a small number of metabolites—pyruvate, ethyl pyruvate, and fructose-1,6-bisphosphate—whose exogenous administration was found to ameliorate oxidative stress, a subsequent section reviews basic multivariate statistical methods common in metabolomics research, and their application in human and preclinical studies emphasizing oxidative stress. Particular attention is paid to new NMR spectroscopy methods in metabolomics and metabonomics. Because complex relationships connect oxidative stress to so many physiological processes, studies from different disciplines were reviewed. All, however, shared the common goal of ultimately developing “omics”-based, diagnostic tests to help influence therapies.
Collapse
|
14
|
Li Q, Miao DQ, Zhou P, Wu YG, Gao D, Wei DL, Cui W, Tan JH. Glucose Metabolism in Mouse Cumulus Cells Prevents Oocyte Aging by Maintaining Both Energy Supply and the Intracellular Redox Potential1. Biol Reprod 2011; 84:1111-8. [DOI: 10.1095/biolreprod.110.089557] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
15
|
Wang YK, Hong YJ, Wei M, Wu Y, Huang ZQ, Chen RZ, Chen HZ. Curculigoside attenuates human umbilical vein endothelial cell injury induced by H2O2. JOURNAL OF ETHNOPHARMACOLOGY 2010; 132:233-239. [PMID: 20713149 DOI: 10.1016/j.jep.2010.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 08/06/2010] [Accepted: 08/07/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY Vessel endothelium injury caused by reactive oxygen species (ROS) including H(2)O(2) plays a critical role in the pathogenesis of cardiovascular disorders. Therefore, agents or antioxidants that can inhibit production of ROS has highly clinical values in cardiovascular therapy. Curculigoside is the major bioactive compounds present in Curculigo orchioides, and possess potent antioxidant properties against oxidative stress insults through undefined mechanism(s). The present study was designed to test the hypothesis that curculigoside can inhibit H(2)O(2)-induced injury in human umbilical vein endothelial cells. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were treated with curculigoside in the presence/absence of hydrogen peroxide (H(2)O(2)). The protective effects of curculigoside OP-D against H(2)O(2) were evaluated. RESULTS HUVECs incubated with 400 μM H(2)O(2) had significantly decreased the viability of endothelial cells, which was accompanied with apparent cells apoptosis, the activation of caspase-3 and the upregulation of p53 mRNA expression. In addition, H(2)O(2) treatment induced a marked increase of MDA, LDH content and in intracellular ROS, decreased the content of nitric oxide (NO) and GSH-Px activities in endothelial cells. However, pretreatment with 0.5.5,10 μM curculigoside resulted in a significant recovery from H(2)O(2)-induced cell apoptosis. Also, it decreased other H(2)O(2)-induced damages in a concentration-dependent manner. Furthermore, pretreatment with curculigoside decreased the activity of caspase-3 and p53 mRNA expression, which was known to play a key role in H(2)O(2)-induced cell apoptosis. CONCLUSION The present study shows that curculigoside can protect endothelial cells against oxidative injury induced by H(2)O(2), suggesting that this compound may constitute a promising intervention against cardiovascular disorders.
Collapse
Affiliation(s)
- Yun Kai Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ryou MG, Flaherty DC, Hoxha B, Sun J, Gurji H, Rodriguez S, Bell G, Olivencia-Yurvati AH, Mallet RT. Pyruvate-fortified cardioplegia evokes myocardial erythropoietin signaling in swine undergoing cardiopulmonary bypass. Am J Physiol Heart Circ Physiol 2009; 297:H1914-22. [PMID: 19767525 DOI: 10.1152/ajpheart.01213.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pyruvate-fortified cardioplegia protects myocardium and hastens postsurgical recovery of patients undergoing cardiopulmonary bypass (CPB). Pyruvate reportedly suppresses degradation of the alpha-subunit of hypoxia-inducible factor-1 (HIF-1), an activator of the gene encoding the cardioprotective cytokine erythropoietin (EPO). This study tested the hypothesis that pyruvate-enriched cardioplegia evoked EPO expression and mobilized EPO signaling mechanisms in myocardium. Hearts of pigs maintained on CPB were arrested for 60 min with 4:1 blood-crystalloid cardioplegia. The crystalloid component contained 188 mM glucose + or - 24 mM pyruvate. After 30-min cardiac reperfusion with cardioplegia-free blood, the pigs were weaned from CPB. Left ventricular myocardium was sampled 4 h after CPB for immunoblot assessment of HIF-1alpha, EPO and its receptor, the signaling kinases Akt and ERK, and endothelial nitric oxide synthase (eNOS), an effector of EPO signaling. Pyruvate-fortified cardioplegia stabilized arterial pressure post-CPB, induced myocardial EPO mRNA expression, and increased HIF-1alpha, EPO, and EPO-R protein contents by 60, 58, and 123%, respectively, vs. control cardioplegia (P < 0.05). Pyruvate cardioplegia also increased ERK phosphorylation by 61 and 118%, respectively, vs. control cardioplegia-treated and non-CPB sham myocardium (P < 0.01), but did not alter Akt phosphorylation. Nitric oxide synthase (NOS) activity and eNOS content fell 32% following control CPB vs. sham, but pyruvate cardioplegia prevented these declines, yielding 49 and 80% greater NOS activity and eNOS content vs. respective control values (P < 0.01). Pyruvate-fortified cardioplegia induced myocardial EPO expression and mobilized the EPO-ERK-eNOS mechanism. By stabilizing HIF-1alpha, pyruvate-fortified cardioplegia may evoke sustained activation of EPO's cardioprotective signaling cascade in myocardium.
Collapse
Affiliation(s)
- Myoung-Gwi Ryou
- Department of Integrative Physiology, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu N, Wu YG, Lan GC, Sui HS, Ge L, Wang JZ, Liu Y, Qiao TW, Tan JH. Pyruvate prevents aging of mouse oocytes. Reproduction 2009; 138:223-34. [PMID: 19465488 DOI: 10.1530/rep-09-0122] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inhibiting oocyte aging is important not only for healthy reproduction but also for the success of assisted reproduction techniques. Although our previous studies showed that cumulus cells accelerated aging of mouse oocytes, the underlying mechanism is unknown. The objective of this paper was to study the effects of pyruvate and cumulus cells on mouse oocyte aging. Freshly ovulated mouse cumulus-oocyte complexes (COCs) or cumulus-denuded oocytes (DOs) were cultured in Chatot-Ziomek-Bavister (CZB) medium or COC-conditioned CZB medium supplemented with different concentrations of pyruvate before being examined for aging signs and developmental potential. Pyruvate supplementation to CZB medium decreased rates of ethanol-induced activation in both COCs and DOs by maintaining their maturation-promoting factor activities, but more pyruvate was needed for COCs than for DOs. Addition of pyruvate to the COC-conditioned CZB also alleviated aging of DOs. Observations on cortical granules, level of BCL2 proteins, histone acetylation, intracellular concentration of glutathione, and embryo development all confirmed that pyruvate supplementation inhibited aging of mouse oocytes. It is concluded that the aging of mouse oocytes, facilitated by culture in COCs, can be partially prevented by the addition of pyruvate to the culture medium.
Collapse
Affiliation(s)
- Na Liu
- Laboratory for Animal Reproduction and Embryology, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-An City, Shandong Province, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Radovits T, Lin LN, Zotkina J, Gero D, Szabó C, Karck M, Szabó G. Poly(ADP-ribose) polymerase inhibition improves endothelial dysfunction induced by reactive oxidant hydrogen peroxide in vitro. Eur J Pharmacol 2007; 564:158-66. [PMID: 17397824 DOI: 10.1016/j.ejphar.2007.02.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/21/2007] [Accepted: 02/26/2007] [Indexed: 11/25/2022]
Abstract
Reactive oxygen species, such as hydrogen peroxide (H(2)O(2)) induce oxidative stress and DNA-injury. The subsequent activation of poly(ADP-ribose) polymerase (PARP) has been implicated in the pathogenesis of various cardiovascular diseases including ischaemia-reperfusion injury, circulatory shock, diabetic complications and atherosclerosis. We investigated the effect of PARP-inhibition on endothelial dysfunction induced by H(2)O(2). In vascular reactivity measurements on isolated rat aortic rings we investigated the phenylephrine-induced contraction, and endothelium-dependent and -independent vasorelaxation by using cumulative concentrations of acetylcholine and sodium nitroprusside. Endothelial dysfunction was induced by exposing the rings to H(2)O(2) (200 and 400 muM) for 30 min. In the treatment group, rings were preincubated with the potent PARP-inhibitor INO-1001. DNA strand breaks were assessed by the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) method. Immunohistochemical analysis was performed for poly(ADP-ribose) (the enzymatic product of PARP) and for apoptosis inducing factor (a pro-apoptotic factor regulated by PARP). Exposure to H(2)O(2) resulted in reduced contraction forces and a dose-dependent impairment of endothelium-dependent vasorelaxation of aortic rings (maximal relaxation to acetylcholine: 86.21+/-1.574% control vs. 72.55+/-1.984% H(2)O(2) 200 muM vs. 66.86+/-1.961% H(2)O(2) 400 muM; P<0.05). PARP-inhibition significantly improved the acetylcholine-induced vasorelaxation (77.75+/-3.019% vs. 66.86+/-1.961%; P<0.05), while the contractility remained unaffected. The dose-response curves of endothelium-independent vasorelaxation to sodium nitroprusside did not differ in any groups studied. In the H(2)O(2) groups immunohistochemical analysis showed enhanced PARP-activation and nuclear translocation of apoptosis inducing factor, which were prevented by INO-1001. Our results demonstrate that PARP activation contributes to the pathogenesis of H(2)O(2)-induced endothelial dysfunction, which can be prevented by PARP inhibitors.
Collapse
Affiliation(s)
- Tamás Radovits
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University of Heidelberg, OG 2, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Hinoi E, Takarada T, Tsuchihashi Y, Fujimori S, Moriguchi N, Wang L, Uno K, Yoneda Y. A molecular mechanism of pyruvate protection against cytotoxicity of reactive oxygen species in osteoblasts. Mol Pharmacol 2006; 70:925-35. [PMID: 16766717 DOI: 10.1124/mol.106.024398] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrated previously that exogenous pyruvate has a protective action against cell death by hydrogen peroxide in cultured osteoblasts through a mechanism associated with its antioxidative property. In the present study, we have evaluated possible participation of monocarboxylate transporters (MCTs) responsible for the bidirectional membrane transport of pyruvate in the cytoprotective property in osteoblasts. Expression of the MCT2 isoform was found in cultured rat calvarial osteoblasts and in osteoblasts located on mouse tibia at both mRNA and protein levels. The accumulation of [14C]pyruvate occurred in a temperature- and pH-dependent manner in osteoblasts cultured for 7 days with high sensitivity to a specific MCT inhibitor, whereas pyruvate was released into extracellular spaces from cultured osteoblasts in a fashion sensitive to the MCT inhibitor. Transient overexpression of the MCT2 isoform led to reduced vulnerability to the cytotoxicity of hydrogen peroxide with an increased activity of [14C]pyruvate accumulation in murine osteoblastic MC3T3-E1 cells. Ovariectomy significantly decreased the content of pyruvate in femoral bone marrows in mice in vivo, whereas daily i.p. administration of pyruvate at 0.25 g/kg significantly prevented alterations of several histomorphometric parameters as well as cancellous bone loss in femurs by ovariectomy on 28 days after the operation. These results suggest that MCTs may be functionally expressed by osteoblasts to play a pivotal role in mechanisms related to the cytoprotective property of pyruvate.
Collapse
Affiliation(s)
- Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Faucher K, Rabinovitch-Chable H, Cook-Moreau J, Barrière G, Sturtz F, Rigaud M. Overexpression of human GPX1 modifies Bax to Bcl-2 apoptotic ratio in human endothelial cells. Mol Cell Biochem 2005; 277:81-7. [PMID: 16132718 DOI: 10.1007/s11010-005-5075-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 04/06/2005] [Indexed: 02/07/2023]
Abstract
As they scavenge reactive oxygen species, antioxidants were studied for their ability to interfere with apoptotic processes. However, their mechanisms of action remain unclear. In this study, we measured the expression of two Bcl-2 family members, Bax and Bcl-2, in a human endothelial like cell-line overexpressing the organic hydroperoxide-scavenging enzyme glutathione peroxidase (GPX1), in the absence of any apoptotic/oxidant stimulus. ECV304 were stably transfected with the GPX1 cDNA and used for quantification of Bax (pro-apoptotic) and Bcl-2 (antiapoptotic) mRNA and protein levels, by quantitative RT-PCR and Western-blot. We found that, compared to control cells, cells from a clone showing a 13.2 fold increase in GPX1 activity had unchanged mRNA or protein Bcl-2 levels but expressed 42.6% and 46.1% less Bax mRNA and Bax protein respectively. Subsequently to Bax decrease, the Bax/Bcl-2 ratio, reflecting the apoptotic state of the cells, was also lower in cells overexpressing GPX1. Noticeably, the mRNA and the protein level of the cell-cycle protein p53, known to activate Bax expression, was unchanged. Our study showed that overexpressing an antioxidant gene such as GPX1 in endothelial cells is able to change the basal mRNA and protein Bax levels without affecting those of p53 and Bcl-2. This phenomenon could be useful to antiatherogenic therapies which use antioxidants with the aim of protecting the vascular wall against oxidative stress injury.
Collapse
Affiliation(s)
- Karine Faucher
- School of Medicine, University of Limoges, EA3839, Molecular Medicine Laboratory, 2, Rue du Dr Marcland, 87025, Limoges Cedex, France.
| | | | | | | | | | | |
Collapse
|
21
|
Tretter L, Liktor B, Adam-Vizi V. Dual Effect of Pyruvate in Isolated Nerve Terminals: Generation of Reactive Oxygen Species and Protection of Aconitase. Neurochem Res 2005; 30:1331-8. [PMID: 16341595 DOI: 10.1007/s11064-005-8805-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2005] [Indexed: 11/26/2022]
Abstract
Generation of reactive oxygen species (ROS) in synaptosomes was investigated in the presence of different substrates. When pyruvate was used as a substrate an increased rate of hydrogen peroxide formation was detected by the Amplex Red fluorescent assay, but aconitase, which is known to be a highly sensitive enzyme to ROS was not inhibited. In contrast, pyruvate exerted a partial protection on aconitase against a time-dependent inactivation that occurred when synaptosomes were incubated in the absence of substrates. Disruption of synaptosomal membranes with Triton X-100 prevented the protective effect of pyruvate. It is suggested that citrate and/or isocitrate formed in the metabolism of pyruvate could be responsible for a partial protection of aconitase. Therefore while pyruvate could have a prooxidant effect it could also exert a protective effect on the aconitase.
Collapse
Affiliation(s)
- Laszlo Tretter
- Department of Medical Biochemistry, Semmelweis University, Hungarian Academy of Sciences, Szentágothai János Knowledge Center, Budapest, Hungary
| | | | | |
Collapse
|
22
|
Wang YK, Huang ZQ. Protective effects of icariin on human umbilical vein endothelial cell injury induced by H2O2 in vitro. Pharmacol Res 2005; 52:174-82. [PMID: 15967384 DOI: 10.1016/j.phrs.2005.02.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 02/17/2005] [Accepted: 02/24/2005] [Indexed: 01/24/2023]
Abstract
Icariin is a flavonoid isolated from Epimedium and is considered to be the major pharmacological active component of Epimedii Herba. In the present investigation, we studied and confirmed the protective activity of icariin on H2O2-induced injury in human umbilical vein endothelial cell line: ECV-304. Eighteen-hour treatment with 750 micromol l(-1) H2O2 significantly decreased the viability of ECV-304 cells, which was accompanied with apparent apoptotic features, including distinct cell morphological alteration and the increase of caspase-3 expression. In addition, it is observed that H2O2 increased the amounts of malondialdenhyde (MDA) and the dehydrogenase (LDH), and decreased the content of nitric oxide (NO) in ECV-304 cells. However, pretreatment with 0.1-50 micromol l(-1) icariin resulted in a significant recovery from H2O2-induced cell apoptosis. Also, it decreased other H2O2-induced damage in a concentration-dependent manner. Furthermore, pretreatment with icariin decreased the expression of caspase-3, which was known to be involved as a key role executor in H2O2-induced cell apoptosis. The endothelial cells apoptosis were detected by acridine orange/ethidium bromide (AO/EB) dual staining as well as flow cytometry, and the expression of pro-apoptotic factor caspase-3 were detected by immunocytochemical method. Taken together, these data suggest that protective effects of icariin against oxidative injuries of ECV-304 cells may be achieved via decreasing of caspase expression.
Collapse
Affiliation(s)
- Yun-Kai Wang
- Department of Cardiology, The affiliated Hospital of Traditional Chinese Medicine College, HangZhou 310006, PR China
| | | |
Collapse
|
23
|
Wang YK, Hong YJ, Huang ZQ. Protective effects of silybin on human umbilical vein endothelial cell injury induced by H2O2 in vitro. Vascul Pharmacol 2005; 43:198-206. [PMID: 16111923 DOI: 10.1016/j.vph.2005.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2004] [Revised: 02/17/2005] [Accepted: 06/02/2005] [Indexed: 10/25/2022]
Abstract
Oxidative injury induces cellular and nuclear damages that lead to cell injury. Agents or antioxidants that can inhibit production of reactive oxygen species can prevent injury. We tested the hypothesis that silybin can inhibit H2O2-induced injury in human umbilical vein endothelial cells. Eighteen hours of treatment with 750 micromol l(-1) H2O2 significantly stimulated expression of caspase-3 and cell apoptosis. In addition, it is observed that H2O2 increased the amounts of malondialdenhyde (MDA), the dehydrogenase (LDH) leakage, and decreased the activity of GSH-Px and NO contents in ECV-304 cells. In the H2O2 apoptosis model, the addition of 6.25-25 mg/L of silybin, which has in vitro radical scavenging activity, partially restored cell viability with a reduction in H2O2-induced apoptotic DNA damage, and decreased the expression of caspase-3. Moreover, it decreased other H2O2-induced damage in a concentration-dependent manner. The endothelial cell apoptosis was detected by AO/EB dual staining as well as flow cytometry, and the activity of pro-apoptotic factor caspase-3 was detected by immunocytochemical method. Our results suggest that the antioxidant, silybin, protects ECV-304 cells against H2O2-induced injury probably through its antioxidant activity, increasing the NO content, the activity GSH-Px and inhibiting signaling pathways mediated by caspase-3.
Collapse
Affiliation(s)
- Yun-Kai Wang
- Department of Cardiology, The Affiliated Hospital of Zhejiang Traditional Medicine College, Hangzhou 310006, PR China
| | | | | |
Collapse
|
24
|
Choi YJ, Lee MK, Lee YJ, Jeong YJ, Yoon Park JH, Sung Lim S, Kang YH. Inhibition of Hydrogen Peroxide-Induced Endothelial Apoptosis by 2′,4′,7-Trihydroxyflavanone, a Flavonoid Form. J Med Food 2004; 7:408-16. [PMID: 15671682 DOI: 10.1089/jmf.2004.7.408] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Oxidative stress contributes to cellular injury following clinical and experimental ischemia/reperfusion episodes. Oxidative injury can induce cellular and subcellular damage that results in apoptotic cell death. We tested whether 2',4',7-trihydroxyflavanone, a synthetic flavonoid derivative, inhibits hydrogen peroxide (H(2)O(2))-induced toxicity in human umbilical endothelial cells (HUVECs). Cultured HUVECs were incubated for 30 minutes with 0.2 mM H(2)O(2) in the absence and presence of 2',4',7-trihydroxyflavanone at a non-toxic concentration of 50 microM. The effect of 2',4',7-trihydroxyflavanone on apoptosis parameters was compared with that of naringenin and two flavonol derivatives, 2',4',7-trihydroxyflavonol and 2',4',6-trihydroxyflavonol. H(2)O(2) induced cell death within 24 hours over the range of 0.05-1.0 mM, and decreased cell viability by approximately 30% at 0.2 mM. This cytotoxicity was associated with nuclear condensation and DNA fragmentation, indicating induction of apoptosis. 2',4',7-Trihydroxyflavanone, as well as naringenin, was effective as an inhibitor of oxidative stress, protecting cell viability with >/=85% viable cells compared with the control, and no apparent nuclear condensation or DNA fragmentation. In contrast, the flavonol derivatives had no such effect. In addition, immunocytochemical data and Western blot analysis revealed that, unlike flavonol derivatives, the expression of Bcl-2 was markedly up-regulated, and that the expression of Bax and activation of caspase-3 were strongly inhibited by this flavanone derivative, thereby implicating antioxidant activity-related anti-apoptotic mechanisms of 2',4',7-trihydroxyflavanone. These results indicate that the synthetic flavonoid derivative 2',4',7-trihydroxyflavanone is an effective antioxidant, preventing endothelial apoptosis induced by H(2)O(2).
Collapse
Affiliation(s)
- Yean-Jung Choi
- Division of Life Sciences, Hallym University, Chuncheon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Jeong DW, Kim TS, Cho IT, Kim IY. Modification of glycolysis affects cell sensitivity to apoptosis induced by oxidative stress and mediated by mitochondria. Biochem Biophys Res Commun 2004; 313:984-91. [PMID: 14706639 DOI: 10.1016/j.bbrc.2003.12.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The effect of alteration of the glycolytic pathway on cell damage induced by oxidative stress was investigated with dihydrofolate reductase-deficient Chinese hamster ovary (CHO) cells that either overexpress cytosolic glycerol-3-phosphate dehydrogenase (CHO/cGPDH cells) or are depleted of the A subunit of lactate dehydrogenase as a result of anti-sense RNA expression (CHO/anti-LDH cells). The extent of oxidative phosphorylation in CHO/anti-LDH and CHO/cGPDH cells was increased and decreased, respectively, relative to that in parental CHO cells, as revealed by measurement of the intracellular content of ATP, the rate of cellular O(2) consumption, the mitochondrial membrane potential (DeltaPsi(m)), and the generation of reactive oxygen species. The sensitivity of these cell lines to cell death induced by the exogenous oxidant tert-butyl hydroperoxide decreased according to the rank order CHO/anti-LDH>CHO>CHO/cGPDH. Exogenous pyruvate markedly increased the sensitivity of CHO/cGPDH cells to oxidant-induced death. The differences among the three cell lines in susceptibility to oxidant-induced death were reflected in the proportion of oxidant-treated cells with a subdiploid DNA content, with a collapsed DeltaPsi(m), and with cytochrome c in the cytosol, indicating that death was mediated by apoptosis. These results demonstrate that the influx of respiratory substrate into mitochondria is an important determinant of cell sensitivity to oxidant-induced apoptosis.
Collapse
Affiliation(s)
- Dae-won Jeong
- BK21 Human Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
26
|
Kristo G, Yoshimura Y, Niu J, Keith BJ, Mentzer RM, Bünger R, Lasley RD. The intermediary metabolite pyruvate attenuates stunning and reduces infarct size in in vivo porcine myocardium. Am J Physiol Heart Circ Physiol 2004; 286:H517-24. [PMID: 14551043 DOI: 10.1152/ajpheart.00777.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intermediary metabolite pyruvate has been shown to exert significant beneficial effects in in vitro models of myocardial oxidative stress and ischemia-reperfusion injury. However, there have been few reports of the ability of pyruvate to attenuate myocardial stunning or reduce infarct size in vivo. This study tested whether supraphysiological levels of pyruvate protect against reversible and irreversible in vivo myocardial ischemia-reperfusion injury. Anesthetized, open-chest pigs ( n = 7/group) underwent 15 min of left anterior descending coronary artery (LAD) occlusion and 3 h of reperfusion to induce stunning. Load-insensitive contractility measurements of regional preload recruitable stroke work (PRSW) and PRSW area (PRSWA) were generated. Vehicle or pyruvate (100 mg/kg iv bolus + 10 mg·kg–1·min–1 intra-atrial infusion) was administered during ischemia and for the first hour of reperfusion. In infarct studies, pigs ( n = 6/group) underwent 1 h of LAD ischemia and 3 h of reperfusion. Group I pigs received vehicle or pyruvate for 30 min before and throughout ischemia. In group II, the infusion was extended through 1 h of reperfusion. In the stunning protocol, pyruvate significantly improved the recovery of PRSWA at 1 h (50 ± 4% vs. 23 ± 3% in controls) and 3 h (69 ± 5% vs. 39 ± 3% in controls) reperfusion. Control pigs exhibited infarct sizes of 66 ± 1% of the area at risk. The pyruvate I protocol was associated with an infarct size of 49 ± 3% ( P < 0.05), whereas the pyruvate II protocol was associated with an infarct size of 30 ± 2% ( P < 0.05 vs. control and pyruvate I). These findings suggest that pyruvate attenuates stunning and decreases myocardial infarction in vivo in part by reduction of reperfusion injury. Metabolic interventions such as pyruvate should be considered when designing the optimal therapeutic strategies for limiting myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Gentian Kristo
- Department of Surgery, University of Kentucky College of Medicine, Lexington 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Tanaka M, Kanatsuka H, Ong BH, Tanikawa T, Uruno A, Komaru T, Koshida R, Shirato K. Cytochrome P-450 metabolites but not NO, PGI2, and H2O2 contribute to ACh-induced hyperpolarization of pressurized canine coronary microvessels. Am J Physiol Heart Circ Physiol 2003; 285:H1939-48. [PMID: 12881219 DOI: 10.1152/ajpheart.00190.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endothelium-dependent hyperpolarization of cells has a crucial role in regulating vascular tone, especially in microvessels. Nitric oxide (NO) and prostacyclin (PGI2), in addition to endothelium-derived hyperpolarizing factor (EDHF), have been reported to hyperpolarize vascular smooth muscle in several organs. Studies have reported the hyperpolarizing effects of these factors are increased by a stretch in large coronary arteries. EDHF has not yet been identified and cytochrome P-450 metabolites and H2O2 are candidates for EDHF. With the use of the membrane potential-sensitive fluorescent dye bis-(1,3-dibutylbarbituric acid)trimethione oxonol [DiBAC4(3)], we examined whether NO, PGI2, cytochrome P-450 metabolites, and H2O2 contribute to ACh-induced hyperpolarization in pressurized coronary microvessels. Canine coronary arterial microvessels (60-356 mum internal diameter) were cannulated and pressurized at 60 cmH2O in a vessel chamber perfused with physiological salt solution containing DiBAC4(3). Fluorescence intensity and diameter were measured on a computer. There was a linear correlation between changes in the fluorescence intensity and membrane potential. ACh significantly decreased the fluorescence intensity (hyperpolarization) of the microvessels without any inhibitors. Endothelial damage caused by air perfusion abolished the ACh-induced decrease in fluorescence intensity. The inhibitors of NO synthase and cyclooxygenase did not affect the ACh-induced decreases in the fluorescence intensity. The addition of 17-octadecynoic acid, a cytochrome P-450 monooxygenase inhibitor, to those inhibitors significantly attenuated the ACh-induced decreases in fluorescence intensity, whereas catalase, an enzyme that dismutates H2O2 to form water and oxygen, did not. Furthermore, catalase did not affect the vasodilation produced by ACh. These results indicate that NO and PGI2 do not contribute to the ACh-induced hyperpolarization and that the cytochrome P-450 metabolites but not H2O2 are involved in EDHF-mediated hyperpolarization in canine coronary arterial microvessels.
Collapse
Affiliation(s)
- Mitsuaki Tanaka
- Department of Comprehensive Medicine, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lee YJ, Kang IJ, Bünger R, Kang YH. Enhanced survival effect of pyruvate correlates MAPK and NF-kappaB activation in hydrogen peroxide-treated human endothelial cells. J Appl Physiol (1985) 2003; 96:793-801; discussion 792. [PMID: 14578369 DOI: 10.1152/japplphysiol.00797.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently reported that pyruvate inhibited translocation and activation of p53 caused by DNA damage due to oxidant injury (Lee YJ, Kang IJ, Bünger R, and Kang YH. Microvasc Res 66: 91-101, 2003); this was associated with increased expression of apoptosis-related bcl-2 and decreased expression of bax gene. This study attempted to delineate possible regulatory sites and mechanisms of antiapoptotic pyruvate, focusing on reactive oxygen species-mediated signaling in a human umbilical vein endothelial cell model. We compared the effects of the cytosolic reductant l-lactate and malate-aspartate shuttle blocker aminooxyacetate, both of which increase cytosolic NADH, on the downstream signaling pathway. Hydrogen peroxide (0.5 mM H2O2) depleted intracellular total glutathione that was prevented by pyruvate but not by l-lactate or aminooxyacetate. Activation of caspase-3 and the cleavage of procaspase-6 and procaspase-7 were strongly inhibited by pyruvate but markedly enhanced by l-lactate and aminooxyacetate, implicating redox-related antiapoptotic mechanisms of pyruvate. Western blot analysis and immunochemical data revealed that H2O2-induced transactivation of nuclear factor-kappaB (NF-kappaB) was also inhibited by pyruvate but not by l-lactate or aminooxyacetate. In addition, H2O2 downregulated extracellular signal-regulated kinase (ERK1/2) and phosphorylated p38 mitogen-activated protein kinase (MAPK), effects that were fully reversed by pyruvate within 2 h. Collectively, these findings indicate that pyruvate can protect cellular glutathione, thus enhancing cellular antioxidant potential, and that enhanced antioxidant potential can desensitize NF-kappaB transactivation due to reactive oxygen species, suggesting possible metabolic redox relations to NF-kappaB. Furthermore, pyruvate blocked the p38 MAPK pathway and activated the ERK pathway in an apparently redox-sensitive manner, which may regulate expression of genes believed to prevent apoptosis and promote cell survival. Thus pyruvate may have therapeutic potential for reducing endothelial dysfunction and improving survival during oxidative stress.
Collapse
Affiliation(s)
- Yong-Jin Lee
- Division of Life Sciences and Silver Biotechnology Research Center, Hallym University, Chuncheon 200-702, Korea
| | | | | | | |
Collapse
|
29
|
Lee YJ, Kang IJ, Bünger R, Kang YH. Mechanisms of pyruvate inhibition of oxidant-induced apoptosis in human endothelial cells. Microvasc Res 2003; 66:91-101. [PMID: 12935767 DOI: 10.1016/s0026-2862(03)00052-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently demonstrated that the redox reactant pyruvate prevents hydrogen peroxide (H2O2)-induced endothelial apoptosis and that its anti-apoptotic feature is mediated partially through the mitochondrial compartment. However, little is known about molecular signal pathways that mediate the anti-apoptotic feature of pyruvate. A biochemical approach to elucidate such signal pathways was attempted in human umbilical vein endothelial cells (HUVECs). Effects of antioxidant pyruvate were compared with those of cytosolic reductant L-lactate, redox-neutral acetate, and malate-aspartate shuttle blocker aminooxyacetate. Various indices of endothelial apoptosis were correlated with cell viability. Submillimolar H2O2 caused >50% cell killing, as manifested by its oxidant insult. The massive cell death induced by H2O2 was inhibited by pyruvate but not by L-lactate or aminooxyacetate, suggesting a role of cytosolic NADH reducing equivalents, possibly via stimulated oxidant generation. The induction and nuclear translocation of p53 by H2O2 was blocked by pyruvate and appeared to be somewhat enhanced by L-lactate or aminooxyacetate in association with oxidant generation. Nuclear translocation of p53 accompanied the transactivation of bax and downregulation of bcl-2. The pyruvate-related redox manipulation inhibited the H2O2-induced p53 activation, restored the downregulated bcl-2 and the upregulated bax, and hence enhanced the bcl-2/bax expression ratio. In contrast, L-lactate, acetate, or aminooxyacetate had no such effect. These results indicate that pyruvate could modulate key regulatory signal pathways in cytosol and mitochondrial matrix, thereby inactivating endothelial death pathways. Furthermore, it is suggested that stabilizing the expression of bcl-2 and bax genes by metabolic antioxidants may be an effective strategy for endothelial protection against oxidative stress.
Collapse
Affiliation(s)
- Yong-Jin Lee
- Division of Life Sciences and Silver Biotechnology Research Center, Hallym University, Chuncheon, Kangwon-do, South Korea
| | | | | | | |
Collapse
|
30
|
Choi YJ, Kang JS, Park JHY, Lee YJ, Choi JS, Kang YH. Polyphenolic flavonoids differ in their antiapoptotic efficacy in hydrogen peroxide-treated human vascular endothelial cells. J Nutr 2003; 133:985-91. [PMID: 12672908 DOI: 10.1093/jn/133.4.985] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oxidative injury induces cellular and nuclear damage that leads to apoptotic cell death. Agents or antioxidants that can inhibit production of reactive oxygen species can prevent apoptosis. We tested the hypothesis that flavonoids can inhibit H(2)O(2)-induced apoptosis in human umbilical vein endothelial cells. A 30-min pulse treatment with 0.25 mmol/L H(2)O(2) decreased endothelial cell viability within 24 h by approximately 40% (P < 0.05) with distinct nuclear condensation and DNA fragmentation. In the H(2)O(2) apoptosis model, the addition of 50 micro mol/L of the flavanol (-)epigallocatechin gallate and the flavonol quercetin, which have in vitro radical scavenging activity, partially (P < 0.05) restored cell viability with a reduction in H(2)O(2)-induced apoptotic DNA damage. In contrast, the flavones, luteolin and apigenin, at the nontoxic dose of 50 micro mol/L, intensified cell loss (P < 0.05) after exposure to H(2)O(2) and did not protect cells from oxidant-induced apoptosis. The flavanones, hesperidin and naringin, did not have cytoprotective effects. The antioxidants, (-)epigallocatechin gallate and quercetin, inhibited endothelial apoptosis, enhanced the expression of bcl-2 protein and inhibited the expression of bax protein and the cleavage and activation of caspase-3. Therefore, flavanols and flavonols, in particular (-)epigallocatechin gallate and quercetin, qualify as potent antioxidants and are effective in preventing endothelial apoptosis caused by oxidants, suggesting that flavonoids have differential antiapoptotic efficacies. The antiapoptotic activity of flavonoids appears to be mediated at the mitochondrial bcl-2 and bax gene level.
Collapse
Affiliation(s)
- Yean-Jung Choi
- Division of Life Sciences and Silver Biotechnology Research Center, Hallym University, Chuncheon, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Zanetti M, Katusic ZS, O'Brien T. Adenoviral-mediated overexpression of catalase inhibits endothelial cell proliferation. Am J Physiol Heart Circ Physiol 2002; 283:H2620-6. [PMID: 12427601 DOI: 10.1152/ajpheart.00358.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although hydrogen peroxide (H(2)O(2)) induces proliferation of vascular smooth muscle cells, its role in endothelial cell proliferation is unclear. Our aim was to study the role of hydrogen peroxide in endothelial cell proliferation by overexpressing catalase. Human aortic endothelial cells were transduced with adenoviral vectors encoding beta-galactosidase (Adbetagal) or catalase (AdCat) or were exposed to diluent alone (control). Transgene expression was demonstrated by beta-galactosidase staining, Western analysis, and significantly increased enzyme activity in AdCat-transduced cells. Overexpression of catalase decreased DNA synthesis in AdCat compared with control and Adbetagal-transduced cells (536.8 +/- 31 vs. 1,875.1 +/- 132.9 vs. 1,347.5 +/- 93.7 dpm/well, respectively; P < 0.05 vs. control and Adbetagal). Six days after transduction with AdCat (multiplicity of infection = 50), cell numbers were significantly reduced (AdCat: 38 +/- 1.8% of cell counts in control, P < 0.05; and 45 +/- 2% of cell count in Adbetagal, P < 0.05). Incubation with aminotriazole 10 mmol/l, an inhibitor of catalase, prevented this effect. The number of apoptotic cells was increased one- and threefold 2 and 4 days, respectively, after transduction with AdCat. Exogenous administration of low concentrations of H(2)O(2) (50 microM) significantly increased cell proliferation, whereas it was inhibited by higher concentrations. These results suggest that H(2)O(2) is an important modulator of endothelial cell proliferation.
Collapse
Affiliation(s)
- Michela Zanetti
- Department of Endocrinology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
32
|
Florea BI, Meaney C, Junginger HE, Borchard G. Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. AAPS PHARMSCI 2002; 4:E12. [PMID: 12423061 PMCID: PMC2751351 DOI: 10.1208/ps040312] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the present study, we evaluated polyethylenimine (PEI) of different molecular weights (MWs) as a DNA complexing agent for its efficiency in transfecting nondifferentiated COS-1 (green monkey fibroblasts) and well-differentiated human submucosal airway epithelial cells (Calu-3). Studying the effect of particle size, zeta potential, presence of serum proteins or chloroquine, it appeared that transfection efficiency depends on the experimental conditions and not on the MW of the PEI used. Comparing transfection efficiencies in both cell lines, we found that PEI was 3 orders of magnitude more effective in COS-1 than in Calu-3 cells, because Calu-3 cells are differentiated and secrete mucins, which impose an additional barrier to gene delivery. Transfection efficiency was strongly correlated to PEI cytotoxicity. Also, some evidence for PEI-induced apoptosis in both cell lines was found. In conclusion, our results indicate that PEI is a useful vector for nonviral transfection in undifferentiated cell lines. However, results from studies in differentiated bronchial epithelial cells suggest that PEI has yet to be optimized for successful gene therapy of cystic fibrosis (CF).
Collapse
Affiliation(s)
- Bogdan I. Florea
- Division of Pharmaceutical Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Clare Meaney
- Division of Pharmaceutical Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hans E. Junginger
- Division of Pharmaceutical Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gerrit Borchard
- Division of Pharmaceutical Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
33
|
Hinoi E, Fujimori S, Takemori A, Yoneda Y. Cell death by pyruvate deficiency in proliferative cultured calvarial osteoblasts. Biochem Biophys Res Commun 2002; 294:1177-83. [PMID: 12074601 DOI: 10.1016/s0006-291x(02)00578-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cell survival was significantly decreased in primary cultured rat calvarial osteoblasts in vitro at Day 0, 1, and 3 by replacement of the standard culture medium (alpha-modified minimum essential medium; alpha-MEM) with Dulbecco's modified eagle's medium (DMEM). Decreased cell survival was also observed following medium replacement in cultures of murine calvaria-derived osteoblastic cell line MC3T3-E1. Staining with Hoechst33342 revealed apoptotic cells with fragmented or condensed nuclei, while a fraction of the cell culture was stained with propidum iodide, indicating necrosis. Marked increases in DNA binding of both activator protein-1 and nuclear factor-kappaB were found in nuclear extracts of cells following medium replacement. The addition of either pyruvate or cysteine at each concentration found in alpha-MEM almost entirely prevented cell death associated with medium replacement at Day 3. These results suggest that pyruvate and cysteine may be essential factors for cell growth and survival in osteoblast cultures at the proliferative phase.
Collapse
Affiliation(s)
- Eiichi Hinoi
- Department of Molecular Pharmacology, Kanazawa University Faculty of Pharmaceutical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | | | | | | |
Collapse
|