1
|
Park DI, Dournes C, Sillaber I, Ising M, Asara JM, Webhofer C, Filiou MD, Müller MB, Turck CW. Delineation of molecular pathway activities of the chronic antidepressant treatment response suggests important roles for glutamatergic and ubiquitin-proteasome systems. Transl Psychiatry 2017; 7:e1078. [PMID: 28375208 PMCID: PMC5416684 DOI: 10.1038/tp.2017.39] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to identify molecular pathways related to antidepressant response. We administered paroxetine to the DBA/2J mice for 28 days. Following the treatment, the mice were grouped into responders or non-responders depending on the time they spent immobile in the forced swim test. Hippocampal metabolomics and proteomics analyses revealed that chronic paroxetine treatment affects glutamate-related metabolite and protein levels differentially in the two groups. We found significant differences in the expression of N-methyl-d-aspartate receptor and neuronal nitric oxide synthase proteins between the two groups, without any significant alterations in the respective transcript levels. In addition, we found that chronic paroxetine treatment altered the levels of proteins associated with the ubiquitin-proteasome system (UPS). The soluble guanylate cyclase-β1, proteasome subunit α type-2 and ubiquitination levels were also affected in peripheral blood mononuclear cells from antidepressant responder and non-responder patients suffering from major depressive disorder. We submit that the glutamatergic system and UPS have a crucial role in the antidepressant treatment response in both mice and humans.
Collapse
Affiliation(s)
- D I Park
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - C Dournes
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - M Ising
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - J M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - C Webhofer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - M D Filiou
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - M B Müller
- Division of Experimental Psychiatry, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany,Division of Experimental Psychiatry, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, 55128 Mainz, Germany or , Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany. E-mail: or
| | - C W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany,Division of Experimental Psychiatry, Focus Program Translational Neuroscience, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, 55128 Mainz, Germany or , Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany. E-mail: or
| |
Collapse
|
2
|
Hutson P, Finger E, Magliaro B, Smith S, Converso A, Sanderson P, Mullins D, Hyde L, Eschle B, Turnbull Z, Sloan H, Guzzi M, Zhang X, Wang A, Rindgen D, Mazzola R, Vivian J, Eddins D, Uslaner J, Bednar R, Gambone C, Le-Mair W, Marino M, Sachs N, Xu G, Parmentier-Batteur S. The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one) enhances synaptic plasticity and cognitive function in rodents. Neuropharmacology 2011; 61:665-76. [DOI: 10.1016/j.neuropharm.2011.05.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/05/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
|
3
|
Information processing deficits and nitric oxide signalling in the phencyclidine model of schizophrenia. Psychopharmacology (Berl) 2010; 212:643-51. [PMID: 20802999 DOI: 10.1007/s00213-010-1992-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/04/2010] [Indexed: 12/22/2022]
Abstract
RATIONALE Schizophrenia-like cognitive deficits induced by phencyclidine (PCP), a drug commonly used to model schizophrenia in experimental animals, are attenuated by nitric oxide (NO) synthase inhibitors. Furthermore, PCP increases NO levels and sGC/cGMP signalling in the prefrontal cortex in rodents. Hence, a cortical NO/sGC/cGMP signalling pathway may constitute a target for novel pharmacological therapies in schizophrenia. OBJECTIVES The objective of this study was to further investigate the role of NO signalling for a PCP-induced deficit in pre-attentive information processing. MATERIALS AND METHODS Male Sprague-Dawley rats were surgically implanted with NO-selective amperometric microsensors aimed at the prefrontal cortex, ventral hippocampus or nucleus accumbens, and NO levels and prepulse inhibition (PPI) were simultaneously assessed. RESULTS PCP treatment increased NO levels in the prefrontal cortex and ventral hippocampus, but not in the nucleus accumbens. The increase in NO levels was not temporally correlated to the deficit in PPI induced by PCP. Furthermore, pretreatment with the neuronal NO synthase inhibitor N-propyl-L-arginine dose-dependently attenuated both the increase in prefrontal cortex NO levels and the deficit in PPI. CONCLUSIONS These findings support a demonstrated role of NO in the behavioural and neurochemical effects of PCP. Furthermore, this effect is brain region-specific and mainly involves the neuronal isoform of NOS. However, a temporal correlation between a PCP-induced disruption of PPI and an increase in prefrontal cortex NO levels was not demonstrated, suggesting that the interaction between PCP and the NO system is more complex than previously thought.
Collapse
|
4
|
Lamotrigine differently modulates 7-nitroindazole and L-arginine influence on rat maximal dentate gyrus activation. J Neural Transm (Vienna) 2007; 115:27-34. [DOI: 10.1007/s00702-007-0824-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 09/17/2007] [Indexed: 11/26/2022]
|
5
|
Chen MJ, Russo-Neustadt AA. Nitric oxide signaling participates in norepinephrine-induced activity of neuronal intracellular survival pathways. Life Sci 2007; 81:1280-90. [PMID: 17915260 PMCID: PMC2435382 DOI: 10.1016/j.lfs.2007.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/08/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
Much evidence has gathered that nitric oxide (NO) signaling, via cGMP-dependent mechanisms, may activate pro-survival pathways in hippocampal neurons and inhibit apoptosis. Past research has revealed that the enhancement of monoaminergic neurotransmission via exercise or treatment with antidepressant medications leads to an enhanced expression of brain-derived neurotrophic factor (BDNF). In isolated hippocampal neurons, norepinephrine (NE) application also increases the immunoreactivity of BDNF and several pro-survival signaling molecules. The data herein support the possibility that NO signaling plays an important role in enhancing neurotrophin expression and activation of the pro-survival phosphatidylinositol 3' kinase (PI-3K) pathway stimulated by NE. In isolated hippocampal neurons, the NO donor, sodium nitroprusside, increases BDNF, PI-3K, and phospho-ERK1 immunoreactivity. Specific inhibitors of the NO system suggest that NE-induced increases in hippocampal BDNF and the PI-3K pathway, but not stimulation of the MAPK pathway, depend upon NO signaling. In addition, inhibiting cGMP suggest that the effects of NE on BDNF immunoreactivity and Akt phosphorylation are also cGMP-dependent. Finally, the application of l-NAME to hippocampal neurons increases cell death. This is the first study of its kind demonstrating the involvement of NE-induced pro-survival signaling in three distinct signaling pathways: PI-3K, MAPK, and NO/cGMP. Possible mechanisms are discussed in light of the results.
Collapse
Affiliation(s)
- Michael J Chen
- Department of Biological Sciences, California State University, 5151 State University Drive, Los Angeles, CA 90032, USA.
| | | |
Collapse
|
6
|
Sardo P, Ferraro G. Modulatory effects of nitric oxide-active drugs on the anticonvulsant activity of lamotrigine in an experimental model of partial complex epilepsy in the rat. BMC Neurosci 2007; 8:47. [PMID: 17605830 PMCID: PMC1950521 DOI: 10.1186/1471-2202-8-47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 07/03/2007] [Indexed: 11/22/2022] Open
Abstract
Background The effects induced by administering the anticonvulsant lamotrigine, the preferential inhibitor of neuronal nitric oxide synthase 7-nitroindazole and the precursor of NO synthesis L-arginine, alone or in combination, on an experimental model of partial complex seizures (maximal dentate gyrus activation) were studied in urethane anaesthetized rats. The epileptic activity of the dentate gyrus was obtained through the repetitive stimulation of the angular bundle and maximal dentate gyrus activation latency, duration and post-stimulus afterdischarge duration were evaluated. Results Either Lamotrigine (10 mg kg-1) or 7-nitroindazole (75 mg kg-1) i.p. administration had an anticonvulsant effect, significantly reducing the number of animals responding to angular bundle stimulation. On the contrary, i.p. injection of L-arginine (1 g kg-1) induced an aggravation of the epileptiform phenomena, demonstrated by the significant augmentation of the duration of both maximal dentate activation and afterdischarge. Furthermore, the injection of lamotrigine and 7-nitroindazole in combination significantly increased the anticonvulsant effects induced by the same drugs separately, either reducing the number of responding animals or decreasing both maximal dentate gyrus activation and afterdischarge durations. On the contrary, the combined treatment with L-arginine and lamotrigine did not modify the maximal dentate gyrus activation parameters suggesting an adversative effect of L-arginine-increased nitric oxide levels on the lamotrigine-induced anticonvulsant action. Conclusion The present results indicate that the nitrergic neurotransmission exerts a significant modulatory role in the control of the development of paroxystic phenomena in the maximal dentate gyrus activation model of epilepsy. Finally, our data suggest a functional relationship between the nitric oxide system and the anticonvulsant effect of lamotrigine which could be enhanced by reducing nitric oxide levels and, conversely, dampened by an increased nitrergic activity.
Collapse
Affiliation(s)
- Pierangelo Sardo
- Dipartimento di Medicina sperimentale, Sezione di Fisiologia umana "G. Pagano", Università degli Studi di Palermo, C.so Tukory, 129 – 90134 Palermo, Italy
| | - Giuseppe Ferraro
- Dipartimento di Medicina sperimentale, Sezione di Fisiologia umana "G. Pagano", Università degli Studi di Palermo, C.so Tukory, 129 – 90134 Palermo, Italy
| |
Collapse
|
7
|
Hepp R, Tricoire L, Hu E, Gervasi N, Paupardin-Tritsch D, Lambolez B, Vincent P. Phosphodiesterase type 2 and the homeostasis of cyclic GMP in living thalamic neurons. J Neurochem 2007; 102:1875-1886. [PMID: 17561940 DOI: 10.1111/j.1471-4159.2007.04657.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ubiquitous second messenger cyclic GMP (cGMP) is synthesized by soluble guanylate cyclases in response to nitric oxide (NO) and degraded by phosphodiesterases (PDE). We studied the homeostasis of cGMP in living thalamic neurons by using the genetically encoded fluorescence resonance energy transfer sensor Cygnet, expressed in brain slices through viral gene transfer. Natriuretic peptides had no effect on cGMP. Basal cGMP levels decreased upon inhibition of NO synthases or soluble guanylate cyclases and increased when PDEs were inhibited. Single cell RT-PCR analysis showed that thalamic neurons express PDE1, PDE2, PDE9, and PDE10. Basal cGMP levels were increased by the PDE2 inhibitors erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) and BAY60-7550 but were unaffected by PDE1 or PDE10 inhibitors. We conclude that PDE2 regulates the basal cGMP concentration in thalamic neurons. In addition, in the presence of 3-isobutyl-1-methylxanthine (IBMX), cGMP still decreased after application of a NO donor. Probenecid, a blocker of cGMP transporters, had no effect on this decrease, leaving PDE9 as a possible candidate for decreasing cGMP concentration. Basal cGMP level is poised at an intermediate level from which it can be up or down-regulated according to the cyclase and PDE activities.
Collapse
Affiliation(s)
- R Hepp
- Université Pierre et Marie Curie-Paris6, CNRS, UMR 7102, Paris, France
| | - L Tricoire
- Université Pierre et Marie Curie-Paris6, CNRS, UMR 7102, Paris, France
| | - E Hu
- Université Pierre et Marie Curie-Paris6, CNRS, UMR 7102, Paris, France
| | - N Gervasi
- Université Pierre et Marie Curie-Paris6, CNRS, UMR 7102, Paris, France
| | | | - B Lambolez
- Université Pierre et Marie Curie-Paris6, CNRS, UMR 7102, Paris, France
| | - P Vincent
- Université Pierre et Marie Curie-Paris6, CNRS, UMR 7102, Paris, France
| |
Collapse
|
8
|
Sardo P, Carletti F, D'Agostino S, Rizzo V, Ferraro G. Involvement of nitric oxide-soluble guanylyl cyclase pathway in the control of maximal dentate gyrus activation in the rat. J Neural Transm (Vienna) 2006; 113:1855-61. [PMID: 16736237 DOI: 10.1007/s00702-006-0491-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 04/05/2006] [Indexed: 10/24/2022]
Abstract
Nitric oxide/soluble Guanylyl cyclase (NO/sGC) pathway on the maximal dentate gyrus activation (MDA) was studied in rats. The cerebral NO levels were modified by administrating 7-Nitroindazole (7-NI), a selective inhibitor of neuronal NOS, and L-arginine, a precursor of the synthesis of NO. 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ), a specific inhibitor of the NO-sGC pathway, was administered to study the involvement of cGMP pathway. The epileptic activity of the dentate gyrus was obtained through the repetitive stimulation of the angular bundle; MDA parameters studied were: onset time, MDA duration and post-stimulus afterdischarge (AD) duration. 7-NI caused an increase of MDA onset time and a decrease of MDA and AD duration. L-arginine, induced an aggravation of the epileptiform phenomena. ODQ induced modifications of MDA parameters as those caused by 7-NI. Our results indicate that the nitrergic neurotransmission exerts a modulatory role in the proneness to the epileptogenic phenomena through the activation of sGC metabolic pathway.
Collapse
Affiliation(s)
- P Sardo
- Dipartimento di Medicina sperimentale, Sezione di Fisiologia umana G. Pagano, Università degli Studi di Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
9
|
Nishijima T, Soya H. Evidence of functional hyperemia in the rat hippocampus during mild treadmill running. Neurosci Res 2006; 54:186-91. [PMID: 16364480 DOI: 10.1016/j.neures.2005.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 11/01/2005] [Accepted: 11/14/2005] [Indexed: 11/29/2022]
Abstract
Exercise appears to improve hippocampal plasticity and cognitive function, leading us to postulate that exercise may activate hippocampal neurons, which in turn increase hippocampal cerebral blood flow (Hip-CBF). Recent studies using laser-Doppler flowmetry (LDF) have shown that Hip-CBF increases with behavior and locomotion, but it has not been examined whether these changes are due to neuronal activation. We aimed to examine whether functional hyperemia, an increase in cerebral blood flow in response to neuronal activation, can occur in the exercising rat hippocampus. We applied a treadmill running model of rats and LDF combined with microdialysis. Prolonged mild treadmill running (10 m/min) resulted in an increase in Hip-CBF of 26+/-9% versus basal level. When tetrodotoxin was infused via microdialysis into the loci where Hip-CBF was monitored, the increased Hip-CBF with running was completely suppressed. These results provide evidence that functional hyperemia occurs in the rat hippocampus during mild treadmill running and suggest that our running animal model may be useful for examining the underlying mechanisms of exercise-induced hippocampal functional hyperemia.
Collapse
Affiliation(s)
- Takeshi Nishijima
- Laboratory of Exercise Biochemistry, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba 305-8574, Ibaraki, Japan
| | | |
Collapse
|
10
|
Guix FX, Uribesalgo I, Coma M, Muñoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 2005; 76:126-52. [PMID: 16115721 DOI: 10.1016/j.pneurobio.2005.06.001] [Citation(s) in RCA: 480] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 06/10/2005] [Accepted: 06/14/2005] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) is a molecule with pleiotropic effects in different tissues. NO is synthesized by NO synthases (NOS), a family with four major types: endothelial, neuronal, inducible and mitochondrial. They can be found in almost all the tissues and they can even co-exist in the same tissue. NO is a well-known vasorelaxant agent, but it works as a neurotransmitter when produced by neurons and is also involved in defense functions when it is produced by immune and glial cells. NO is thermodynamically unstable and tends to react with other molecules, resulting in the oxidation, nitrosylation or nitration of proteins, with the concomitant effects on many cellular mechanisms. NO intracellular signaling involves the activation of guanylate cyclase but it also interacts with MAPKs, apoptosis-related proteins, and mitochondrial respiratory chain or anti-proliferative molecules. It also plays a role in post-translational modification of proteins and protein degradation by the proteasome. However, under pathophysiological conditions NO has damaging effects. In disorders involving oxidative stress, such as Alzheimer's disease, stroke and Parkinson's disease, NO increases cell damage through the formation of highly reactive peroxynitrite. The paradox of beneficial and damaging effects of NO will be discussed in this review.
Collapse
Affiliation(s)
- F X Guix
- Laboratori de Fisiologia Molecular, Unitat de Senyalització Cellular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Carrer Dr. Aiguader, 80, Barcelona 08003, Spain
| | | | | | | |
Collapse
|
11
|
Oosthuizen F, Wegener G, Harvey BH. Nitric oxide as inflammatory mediator in post-traumatic stress disorder (PTSD): evidence from an animal model. Neuropsychiatr Dis Treat 2005; 1:109-23. [PMID: 18568056 PMCID: PMC2413191 DOI: 10.2147/nedt.1.2.109.61049] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a severe anxiety disorder that may develop after experiencing or witnessing a traumatic event. Recent clinical evidence has suggested the involvement of neurodegenerative pathology in the illness, particularly with brain imaging studies revealing a marked reduction in hippocampal volume. Of greater significance is that these anatomical changes appear to be positively correlated with the degree of cognitive deficit noted in these patients. Stress-induced increases in plasma cortisol have been implicated in this apparent atrophy. Although not definitive, clinical studies have observed a marked suppression of plasma cortisol in PTSD. The basis for hippocampal neurodegeneration and cognitive decline therefore remains unclear. Stress and glucocorticoids increase glutamate release, which is recognized as an important mediator of glucocorticoid-induced neurotoxicity. Recent preclinical studies have also noted that glutamate and nitric oxide (NO) play a causal role in anxiety-related behaviors. Because of the prominent role of NO in neuronal toxicity, cellular memory processes, and as a neuromodulator, nitrergic pathways may have an important role in stress-related hippocampal degenerative pathology and cognitive deficits seen in patients with PTSD. This paper reviews the preclinical evidence for involvement of the NO-pathway in PTSD, and emphasizes studies that have addressed these issues using time-dependent sensitization - a putative animal model of PTSD.
Collapse
Affiliation(s)
- Frasia Oosthuizen
- School of Pharmacy (Pharmacology), Faculty of Health Sciences, North West University, Potchefstroom, South Africa.
| | | | | |
Collapse
|
12
|
Bidmon HJ, Starbatty J, Görg B, Zilles K, Behrends S. Cerebral expression of the α2-subunit of soluble guanylyl cyclase is linked to cerebral maturation and sensory pathway refinement during postnatal development. Neurochem Int 2004; 45:821-32. [PMID: 15312976 DOI: 10.1016/j.neuint.2004.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soluble guanylyl cylase (sGC) has been identified for being a receptor for the gaseous transmitters nitric oxide and carbon monoxide. Currently four subunits alpha1, alpha2, beta1, and beta2 have been characterized. Heterodimers of alpha and beta-subunits as well as homodimers of the beta2-subunit are known to constitute functional sGC which use GTP to form cGMP a potent signal molecule in a multitude of second messenger cascades. Since NO-cGMP signaling plays a pivotal role in neuronal development we analyzed the maturational expression pattern of the newly characterized alpha2-subunit of sGC within the brain of Wistar rats by means of RNase protection assay and immunohistochemistry. alpha2-subunit mRNA as well as immunoreactive alpha2-protein increased during postnatal cerebral development. Topographical analysis revealed a selective high expression of the alpha2-subunit in the choroid plexus and within developing sensory systems involving the olfactory and somatosensory system of the forebrain as well as parts of the auditory and visual system within the hindbrain. In cultured cortical neurons the alpha2-subunit was localized to the cell membrane, especially along neuronal processes. During the first 11 days of postnatal development several cerebral regions showed a distinct expression of the alpha2-subunit which was not paralleled by the alpha1/beta1-subunits especially within the developing thalamo-cortical circuitries of the somatosensory system. However, at later developmental stages all three subunits became more homogenously distributed among most cerebral regions, indicating that functional alpha1/beta1 and alpha2/beta1 heterodimers of sGC could be formed. Our findings indicate that the alpha2-subunit is an essential developmentally regulated constituent of cerebral sensory systems during maturation. In addition the alpha2-subunit may serve other functions than forming a functional heterodimer of sGC during the early phases of sensory pathway refinement.
Collapse
Affiliation(s)
- Hans-J Bidmon
- C.& O. Vogt Institute of Brain Research, Heinrich-Heine-University, University Street 1, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
13
|
Abstract
Already 30 years ago, it became apparent that there exists a relationship between acetylcholine and cGMP in the brain. Acetylcholine plays a role in a great number of processes in the brain, however, the role of cGMP in these processes is not known. A review of the data shows that, although the connection between NO-mediated cGMP synthesis and acetylcholine is firmly established, the complexities of the heterosynaptic pathways and the oligosynaptic structures involved preclude a clear definition of the role of cGMP in the functioning of acetylcholine presently.
Collapse
Affiliation(s)
- Jan de Vente
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience (EURON), Maastricht University, UNS50, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
14
|
Brask J, Kristensson K, Hill RH. Exposure to interferon-γ during synaptogenesis increases inhibitory activity after a latent period in cultured rat hippocampal neurons. Eur J Neurosci 2004; 19:3193-201. [PMID: 15217375 DOI: 10.1111/j.0953-816x.2004.03445.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Certain disorders of the nervous system may have their origin in disturbances in the development of synaptic connections and network structure that may not become overt until later in life. As inflammatory cytokines can influence synaptic activity in neuronal cultures, we analysed whether cytokine exposure during synaptogenesis can lead to imbalances in a neuronal network. Short-term application of interferon-gamma (IFN-gamma), but not tumour necrosis factor-alpha, during peak synaptogenesis (but not before or after) in Sprague-Dawley rat hippocampal cultures, caused both a decrease in the frequency of spontaneous excitatory postsynaptic currents (EPSCs) and an increase in the frequency of spontaneous inhibitory postsynaptic currents (IPSCs). These effects were only detected in recordings made weeks later. This was not due to a depression of glutamatergic synapses or to a change in the relative number of neurons containing glutamic acid decarboxylase (GAD). There was an increase in the average amplitude of miniature IPSCs, and in GAD-expressing neurons the amplitude of miniature EPSCs were larger as well as the responses to glutamate. This indicates that IFN-gamma-treatment induced increased inhibition via postsynaptic changes. These effects of IFN-gamma treatment were not observed when neuronal nitric oxide synthase was inhibited. Our study therefore shows that exposure to IFN-gamma during a restricted period of development, which coincides with the peak of excitatory synaptogenesis, can cause progressive changes in synaptic activity in the network. Thus, cytokine exposure at a critical period of development may constitute a 'hit-and-run' mechanism for certain nervous system disorders that become manifest after a latency period.
Collapse
Affiliation(s)
- Johan Brask
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177, Stockholm, Sweden
| | | | | |
Collapse
|
15
|
Araújo IM, Ambrósio AF, Leal EC, Santos PF, Carvalho AP, Carvalho CM. Neuronal nitric oxide synthase proteolysis limits the involvement of nitric oxide in kainate-induced neurotoxicity in hippocampal neurons. J Neurochem 2003; 85:791-800. [PMID: 12694405 DOI: 10.1046/j.1471-4159.2003.01731.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this work, we investigated the role of nitric oxide (NO) in neurotoxicity triggered by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor activation in cultured hippocampal neurons. In the presence of cyclothiazide (CTZ), short-term exposures to kainate (KA; 5 and 15 min, followed by 24-h recovery) decreased cell viability. Both NBQX and d-AP-5 decreased the neurotoxicity caused by KA plus CTZ. Long-term exposures to KA plus CTZ (24 h) resulted in increased toxicity. In short-, but not in long-term exposures, the presence of NO synthase (NOS) inhibitors (l-NAME and 7-NI) decreased the toxicity induced by KA plus CTZ. We also found that KA plus CTZ (15-min exposure) significantly increased cGMP levels. Furthermore, short-term exposures lead to decreased intracellular ATP levels, which was prevented by NBQX, d-AP-5 and NOS inhibitors. Immunoblot analysis revealed that KA induced neuronal NOS (nNOS) proteolysis, gradually lowering the levels of nNOS according to the time of exposure. Calpain, but not caspase-3 inhibitors, prevented this effect. Overall, these results show that NO is involved in the neurotoxicity caused by activation of non-desensitizing AMPA receptors, although to a limited extent, since AMPA receptor activation triggers mechanisms that lead to nNOS proteolysis by calpains, preventing a further contribution of NO to the neurotoxic process.
Collapse
Affiliation(s)
- Inês M Araújo
- Center for Neuroscience and Cell Biology, Department of Zoology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|