1
|
Ervens B. Average Cloud Droplet Size and Composition: Good Assumptions for Predicting Oxidants in the Atmospheric Aqueous Phase? J Phys Chem A 2022; 126:8295-8304. [PMID: 36318926 PMCID: PMC9662182 DOI: 10.1021/acs.jpca.2c05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/21/2022] [Indexed: 11/05/2022]
Abstract
Chemical models that describe the atmospheric multiphase (gas/aqueous) system often include detailed kinetic and mechanistic schemes describing chemical reactions in both phases. The present study explores the importance of properties including the chemical composition of droplet populations, such as pH value and iron present in only a few droplets, as well as droplet size and their distribution. It is found that the assumption of evenly distributed iron in all cloud droplets leads to an underestimate by up to 1 order of magnitude of OH concentrations in the aqueous phase, whereas the predicted iron(II)/iron(total) ratio is overestimated by up to a factor of 2. While the sulfate mass formed in cloud droplets is not largely affected by any of the assumptions, the predicted secondary organic aerosol mass varies by an order of magnitude. This sensitivity study reveals that multiphase chemistry model studies should focus not only on chemical mechanism development but also on careful considerations of droplet properties to comprehensively describe the atmospheric multiphase chemical system.
Collapse
Affiliation(s)
- Barbara Ervens
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, 63000Clermont-Ferrand, France
| |
Collapse
|
2
|
Lee JY, Peterson PK, Vear LR, Cook RD, Sullivan AP, Smith E, Hawkins LN, Olson NE, Hems R, Snyder PK, Pratt KA. Wildfire Smoke Influence on Cloud Water Chemical Composition at Whiteface Mountain, New York. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2022JD037177. [PMID: 36590830 PMCID: PMC9787799 DOI: 10.1029/2022jd037177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 06/17/2023]
Abstract
Wildfires significantly impact air quality and climate, including through the production of aerosols that can nucleate cloud droplets and participate in aqueous-phase reactions. Cloud water was collected during the summer months (June-September) of 2010-2017 at Whiteface Mountain, New York and examined for biomass burning influence. Cloud water samples were classified by their smoke influence based on backward air mass trajectories and satellite-detected smoke. A total of 1,338 cloud water samples collected over 485 days were classified by their probability of smoke influence, with 49% of these days categorized as having moderate to high probability of smoke influence. Carbon monoxide and ozone levels were enhanced during smoke influenced days at the summit of Whiteface Mountain. Smoke-influenced cloud water samples were characterized by enhanced concentrations of potassium, sulfate, ammonium, and total organic carbon, compared to samples lacking identified influence. Five cloud water samples were examined further for the presence of dissolved organic compounds, insoluble particles, and light-absorbing components. The five selected cloud water samples contained the biomass burning tracer levoglucosan at 0.02-0.09 μM. Samples influenced by air masses that remained aloft, above the boundary layer during transport, had lower insoluble particle concentrations, larger insoluble particle diameters, and larger oxalate:sulfate ratios, suggesting cloud processing had occurred. These findings highlight the influence that local and long-range transported smoke have on cloud water composition.
Collapse
Affiliation(s)
- Jamy Y. Lee
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
| | - Peter K. Peterson
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
- Now at Department of ChemistryWhittier CollegeWhittierCAUSA
| | - Logan R. Vear
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
| | - Ryan D. Cook
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
| | - Amy P. Sullivan
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| | - Ellie Smith
- Department of ChemistryHarvey Mudd CollegeClaremontCAUSA
| | | | | | - Rachel Hems
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
| | | | - Kerri A. Pratt
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
- Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
3
|
Yang D, Schaefer T, Wen L, Herrmann H. Temperature- and pH- Dependent OH Radical Reaction Kinetics of Tartaric and Mucic Acids in the Aqueous Phase. J Phys Chem A 2022; 126:6244-6252. [PMID: 36057982 DOI: 10.1021/acs.jpca.2c03044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tartaric acid and mucic acid are dicarboxylic acids (DCAs), a substance class often found in atmospheric aerosols and cloud droplets. The hydroxyl radical (•OH)-induced oxidation in the aqueous phase is known to be an important loss process of organic compounds such as DCAs. However, the study of •OH kinetics of DCAs in the aqueous phase is still incomplete. In the present study, the rate constants of the •OH reactions of tartaric acid and mucic acid in the aqueous phase were determined by the thiocyanate competition kinetics method as a function of temperature and pH. The following T-dependent Arrhenius expressions (in units of L mol-1 s-1) were first derived for the •OH reactions with tartaric acid─k(T, H2A) = (3.3 ± 0.1) × 1010 exp[(-1350 ± 110 K)/T], k(T, HA-) = (3.6 ± 0.1) × 1010 exp[(-580 ± 110 K)/T], and k(T, A2-) = (3.3 ± 0.1) × 1010 exp[(-1190 ± 170 K)/T]─as well as mucic acid─k(T, H2A) = (2.2 ± 0.1) × 1010 exp[(-1140 ± 150 K)/T], k(T, HA-) = (4.8 ± 0.1) × 1010 exp[(-1280 ± 170 K)/T], and k(T, A2-) = (2.1 ± 0.1) × 1010 exp[(-970 ± 70 K)/T]. A general trend of the •OH rate constant is found as kA2- > kHA- > kH2A. The pH- and temperature-dependent rate constants of the OH radical reactions allow an accurate description of the source and sink processes in the tropospheric aqueous phase.
Collapse
Affiliation(s)
- Dong Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.,Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Permoserstraße 15, Leipzig 04318, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Permoserstraße 15, Leipzig 04318, Germany
| | - Liang Wen
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Permoserstraße 15, Leipzig 04318, Germany
| | - Hartmut Herrmann
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.,Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Permoserstraße 15, Leipzig 04318, Germany
| |
Collapse
|
4
|
Influence of Ambient Atmospheric Environments on the Mixing State and Source of Oxalate-Containing Particles at Coastal and Suburban Sites in North China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Photodegradation is a key process impacting the lifetime of oxalate in the atmosphere, but few studies investigated this process in the field due to the complex mixing and sources of oxalate. Oxalate-containing particles were measured via single-particle aerosol mass spectrometry at coastal and suburban sites in Qingdao, a coastal city in North China in the summer of 2016. The mixing state and influence of different ambient conditions on the source and photodegradation of oxalate were investigated. Generally, 6.3% and 12.3% of the total particles (by number) contained oxalate at coastal and suburban sites, respectively. Twelve major types of oxalate-containing particles were identified, and they were classified into three groups. Biomass burning (BB)-related oxalate–K and oxalate–carbonaceous particles were the dominant groups, respectively, accounting for 68.9% and 13.6% at the coastal site and 72.0% and 16.8% at the suburban site. Oxalate–Heavy metals (HM)-related particles represented 14.6% and 9.3% of the oxalate particles at coastal and suburban sites, respectively, which were mainly from industrial emissions (Cu-rich, Fe-rich, Pb-rich), BB (Zn-rich), and residual fuel oil combustion (V-rich). The peak area of oxalate at the coastal site decreased immediately after sunrise, while it increased during the daytime at the suburban site. However, the oxalate peak area of Fe-rich particles at both sites decreased after sunrise, indicating that iron plays an important role in oxalate degradation in both environments. The decay rates (k) of Fe-rich and BB-Fe particles at the coastal site (−0.978 and −0.859 h−1, respectively), were greater than those at the suburban site (−0.512 and −0.178 h−1, respectively), owing to the high-water content of particles and fewer oxalate precursors. The estimated k values of oxalate peak area for different ambient conditions were in the same order of magnitude, which can help establish or validate the future atmospheric models.
Collapse
|
5
|
Barquilla MDP, Mayes ML. Role of hydrogen bonding in bulk aqueous phase decomposition, complexation, and covalent hydration of pyruvic acid. Phys Chem Chem Phys 2022; 24:25151-25170. [DOI: 10.1039/d2cp03579k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The behavior of hydrogen bonding changes between the gas and aqueous phase, altering the mechanisms of various pyruvic acid processes and consequently affecting the aerosol formation in different environments.
Collapse
Affiliation(s)
- Michael Dave P. Barquilla
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Maricris L. Mayes
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| |
Collapse
|
6
|
Degradation of Ciprofloxacin by Titanium Dioxide (TiO2) Nanoparticles: Optimization of Conditions, Toxicity, and Degradation Pathway. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.4.11355.752-762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The popular use of ciprofloxacin is often irrational, so it causes environmental pollution such as resistance. The solution to overcome environmental pollution due to ciprofloxacin is degradation by using TiO2 nanoparticles. TiO2 nanoparticles performance is influenced by environment such as light source, pH solvent, duration of lighting and TiO2 nanoparticles mass. The residual levels determination of ciprofloxacin was carried out by using a UV-Vis spectrophotometer. Toxicity test of ciprofloxacin degradation products with TiO2 nanoparticles used Escherichia coli bacteria. Liquid Chromatography Mass Spectrometry (LCMS) was used to determine the type of ciprofloxacin degradation product with TiO2 nanoparticles. The optimum condition for the ciprofloxacin degradation with TiO2 nanoparticles is lighting for 5 hours by using a white mercury UV lamp and 50 mg TiO2 nanoparticles with pH solvent of 5.5. The toxicity of ciprofloxacin degradation product with TiO2 nanoparticles was low. The smallest degradation product identified with m/z was p-fluoraniline (m/z 111). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
7
|
Liu J, Zhou S, Zhang Z, Kawamura K, Zhao W, Wang X, Shao M, Jiang F, Liu J, Sun X, Hang J, Zhao J, Pei C, Zhang J, Fu P. Characterization of dicarboxylic acids, oxoacids, and α-dicarbonyls in PM 2.5 within the urban boundary layer in southern China: Sources and formation pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117185. [PMID: 33957507 DOI: 10.1016/j.envpol.2021.117185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/28/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Low-molecular-weight dicarboxylic acids, which are important components of secondary organic aerosols, have been extensively studied in recent years. Many studies have focused on ground-level observations and literature reports on the vertical distribution of the organic aerosols within the urban boundary layer are limited. In this study, the vertical profiles of dicarboxylic acids and related organic compounds (DCRCs) in PM2.5 were investigated at altitudinal levels (ground level and 488 m above the ground level) at the Canton Tower in Guangzhou, southern China, to elucidate their primary sources and secondary formation processes. The concentrations of DCRCs at ground level were generally higher than those at 488 m. Oxalic acid (C2) was the most abundant species, followed by succinic acid (C4) and malonic acid (C3) at both heights. The higher ratio of DCRCs-bound carbon to organic carbon (i.e., DCRCs-C/OC) at 488 m (4.8 ± 1.2%) relative to that at ground level (2.7 ± 0.5%) indicated a higher degree of aerosol aging at 488 m. The abundance of C2 was increased and the conversion of C4 to C3 was enhanced due to the photochemical oxidation of its homologues during long-range transport periods. The increase in C2 was associated with in-cloud processes during pollution periods. Principal component analysis showed that DCRCs were mainly derived from atmospheric secondary processing and biomass burning was also an important source of long-chain carboxylic acids during autumn in Guangzhou. Our results illustrate that secondary processing and biomass burning play prominent roles in controlling the abundance of DCRCs. Furthermore, DCRCs are affected by air masses from regional areas, oxidation of their precursors via vertical transport and in-cloud processes.
Collapse
Affiliation(s)
- Jianing Liu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 511443, PR China
| | - Shengzhen Zhou
- School of Atmospheric Sciences and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, PR China.
| | - Zhimin Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, PR China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan
| | - Wanyu Zhao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, PR China
| | - Xuemei Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 511443, PR China
| | - Min Shao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 511443, PR China
| | - Fan Jiang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 511443, PR China
| | - Junwen Liu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 511443, PR China
| | - Xi Sun
- School of Atmospheric Sciences and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, PR China
| | - Jian Hang
- School of Atmospheric Sciences and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, PR China
| | - Jun Zhao
- School of Atmospheric Sciences and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, PR China
| | - Chenglei Pei
- Guangzhou Environmental Monitoring Center, Guangzhou, 510030, PR China
| | - Jingpu Zhang
- Guangzhou Environmental Monitoring Center, Guangzhou, 510030, PR China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
8
|
Chen Y, Guo H, Nah T, Tanner DJ, Sullivan AP, Takeuchi M, Gao Z, Vasilakos P, Russell AG, Baumann K, Huey LG, Weber RJ, Ng NL. Low-Molecular-Weight Carboxylic Acids in the Southeastern U.S.: Formation, Partitioning, and Implications for Organic Aerosol Aging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6688-6699. [PMID: 33902278 DOI: 10.1021/acs.est.1c01413] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While carboxylic acids are important components in both particle and gas phases in the atmosphere, their sources and partitioning are not fully understood. In this study, we present real-time measurements of both particle- and gas-phase concentrations for five of the most common and abundant low-molecular-weight carboxylic acids (LMWCA) in a rural region in the southeastern U.S. in Fall 2016. Through comparison with secondary organic aerosol (SOA) tracers, we find that isoprene was the most important local precursor for all five LMWCA but via different pathways. We propose that monocarboxylic acids (formic and acetic acids) were mainly formed through gas-phase photochemical reactions, while dicarboxylic acids (oxalic, malonic, and succinic acids) were predominantly from aqueous processing. Unexpectedly high concentrations of particle-phase formic and acetic acids (in the form of formate and acetate, respectively) were observed and likely the components of long-range transport organic aerosol (OA), decoupled from their gas-phase counterparts. In addition, an extraordinarily strong correlation (R2 = 0.90) was observed between a particulate LMWCA and aged SOA, which we tentatively attribute to boundary layer dynamics.
Collapse
Affiliation(s)
- Yunle Chen
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hongyu Guo
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Theodora Nah
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David J Tanner
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Amy P Sullivan
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Masayuki Takeuchi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ziqi Gao
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Petros Vasilakos
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Karsten Baumann
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - L Gregory Huey
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nga L Ng
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Meng J, Li Z, Zhou R, Chen M, Li Y, Yi Y, Ding Z, Li H, Yan L, Hou Z, Wang G. Enhanced photochemical formation of secondary organic aerosols during the COVID-19 lockdown in Northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143709. [PMID: 33223177 PMCID: PMC7666554 DOI: 10.1016/j.scitotenv.2020.143709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 05/09/2023]
Abstract
To eliminate the spread of a novel coronavirus breaking out in the end of 2019 (COVID-19), the Chinese government has implemented a nationwide lockdown policy after the Chinese lunar New Year of 2020, resulting in a sharp reduction in air pollutant emissions. To investigate the impact of the lockdown on aerosol chemistry, the number fraction, size distribution and formation process of oxalic acid (C2) containing particles and its precursors were studied using a single particle aerosol mass spectrometer (SPAMS) at the urban site of Liaocheng in the North China Plain (NCP). Our results showed that five air pollutants (i.e., PM2.5, PM10, SO2, NO2, and CO) decreased by 30.0-59.8% during the lockdown compared to those before the lockdown, while O3 increased by 63.9% during the lockdown mainly due to the inefficient titration effect of O3 via NO reduction. The increased O3 concentration can boost the atmospheric oxidizing capacity and further enhance the formation of secondary organic aerosols, thereby significantly enhancing the C2 particles and its precursors as observed during the lockdown. Before the lockdown, C2 particles were significantly originated from biomass burning emissions and their subsequent aqueous-phase oxidation. The hourly variation patterns and correlation analysis before the lockdown suggested that relative humidity (RH) and aerosol liquid water content (ALWC) played a key role in the formation of C2 particles and the increased aerosol acidity can promote the conversion of precursors such as glyoxal (Gly) and methyglyoxal (mGly) into C2 particles in the aqueous phase. RH and ALWC decreased sharply but O3 concentration and solar radiation increased remarkably during the lockdown, the O3-dominated photochemical pathways played an important role in the formation of C2 particles in which aerosol acidity was ineffective. Our study indicated that air pollution treatment sponges on a joint-control and balanced strategy for controlling numerous pollutants.
Collapse
Affiliation(s)
- Jingjing Meng
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Zheng Li
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Ruiwen Zhou
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Min Chen
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Yuanyuan Li
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Yanan Yi
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Zhijian Ding
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200062, China
| | - Hongji Li
- College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, China
| | - Li Yan
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Zhanfang Hou
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Gehui Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
10
|
Zhu S, Wang Q, Qiao L, Zhou M, Wang S, Lou S, Huang D, Wang Q, Jing S, Wang H, Chen C, Huang C, Yu JZ. Tracer-based characterization of source variations of PM 2.5 and organic carbon in Shanghai influenced by the COVID-19 lockdown. Faraday Discuss 2020; 226:112-137. [PMID: 33241247 DOI: 10.1039/d0fd00091d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Air quality in megacities is significantly impacted by emissions from vehicles and other urban-scale human activities. Amid the outbreak of Coronavirus (COVID-19) in January 2020, strict policies were in place to restrict people's movement, bringing about steep reductions in pollution activities and notably lower ambient concentrations of primary pollutants. In this study, we report hourly measurements of fine particulate matter (i.e., PM2.5) and its comprehensive chemical speciation, including elemental and molecular source tracers, at an urban site in Shanghai spanning a period before the lockdown restriction (BR) (1 to 23 Jan. 2020) and during the restriction (DR) (24 Jan. to 9 Feb. 2020). The overall PM2.5 was reduced by 27% from 56.2 ± 40.9 (BR) to 41.1 ± 25.3 μg m-3 (DR) and the organic carbon (OC) in PM2.5 was similar, averaged at 5.45 ± 2.37 (BR) and 5.42 ± 1.75 μgC m-3 (DR). Reduction in nitrate was prominent, from 18.1 (BR) to 9.2 μg m-3 (DR), accounting for most of the PM2.5 decrease. Source analysis of PM2.5 using positive matrix factorization modeling of comprehensive chemical composition, resolved nine primary source factors and five secondary source factors. The quantitative source analysis confirms reduced contributions from primary sources affected by COVID-19, with vehicular emissions showing the largest drop, from 4.6 (BR) to 0.61 μg m-3 (DR) and the percentage change (-87%) in par with vehicle traffic volume and fuel sale statistics (-60% to -90%). In the same time period, secondary sources are revealed to vary in response to precursor reductions from the lockdown, with two sources showing consistent enhancement while the other three showing reductions, highlighting the complexity in secondary organic aerosol formation and the nonlinear response to broad primary precursor pollutants. The combined contribution from the two secondary sources to PM2.5 increased from 7.3 ± 6.6 (BR) to 14.8 ± 9.3 μg m-3 (DR), partially offsetting the reductions from primary sources and nitrate while their increased contribution to OC, from 1.6 ± 1.4 (BR) to 3.2 ± 2.0 μgC m-3 (DR), almost offset the decrease coming from the primary sources. Results from this work underscore challenges in predicting the benefits to PM2.5 improvement from emission reductions of common urban primary sources.
Collapse
Affiliation(s)
- Shuhui Zhu
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lyu X, Guo H, Yao D, Lu H, Huo Y, Xu W, Kreisberg N, Goldstein AH, Jayne J, Worsnop D, Tan Y, Lee SC, Wang T. In Situ Measurements of Molecular Markers Facilitate Understanding of Dynamic Sources of Atmospheric Organic Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11058-11069. [PMID: 32805105 DOI: 10.1021/acs.est.0c02277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reducing the amount of organic aerosol (OA) is crucial to mitigation of particulate pollution in China. We present time and air-origin dependent variations of OA markers and source contributions at a regionally urban background site in South China. The continental air contained primary OA markers indicative of source categories, such as levoglucosan, fatty acids, and oleic acid. Secondary OA (SOA) markers derived from isoprene and monoterpenes also exhibited higher concentrations in continental air, due to more emissions of their precursors from terrestrial ecosystems and facilitation of anthropogenic sulfate for monoterpenes SOA. The marine air and continental-marine mixed air had more abundant hydroxyl dicarboxylic acids (OHDCA), with anthropogenic unsaturated organics as potential precursors. However, OHDCA formation in continental air was likely attributable to both biogenic and anthropogenic precursors. The production efficiency of OHDCA was highest in marine air, related to the presence of sulfur dioxide and/or organic precursors in ship emissions. Regional biomass burning (BB) was identified as the largest contributor of OA in continental air, with contributions fluctuating from 8% to 74%. In contrast, anthropogenic SOA accounted for the highest fraction of OA in marine (37 ± 4%) and mixed air (31 ± 3%), overriding the contributions from BB. This study demonstrates the utility of molecular markers for discerning OA pollution sources in the offshore marine atmosphere, where continental and marine air pollutants interact and atmospheric oxidative capacity may be enhanced.
Collapse
Affiliation(s)
- Xiaopu Lyu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong
| | - Hai Guo
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong
| | - Dawen Yao
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong
| | - Haoxian Lu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong
| | - Yunxi Huo
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong
| | - Wen Xu
- Center for Aerosol and Cloud Chemistry, Aerodyne Research Incorporated, Billerica, Massachusetts 01821, United States
| | - Nathan Kreisberg
- Aerosol Dynamics Incorporated, Berkeley, California 94710, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - John Jayne
- Center for Aerosol and Cloud Chemistry, Aerodyne Research Incorporated, Billerica, Massachusetts 01821, United States
| | - Douglas Worsnop
- Center for Aerosol and Cloud Chemistry, Aerodyne Research Incorporated, Billerica, Massachusetts 01821, United States
| | - Yan Tan
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong
| | - Shun-Cheng Lee
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong
| | - Tao Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
12
|
Zhou Y, Zhang Y, Griffith SM, Wu G, Li L, Zhao Y, Li M, Zhou Z, Yu JZ. Field Evidence of Fe-Mediated Photochemical Degradation of Oxalate and Subsequent Sulfate Formation Observed by Single Particle Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6562-6574. [PMID: 32339453 DOI: 10.1021/acs.est.0c00443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we deployed a single particle aerosol mass spectrometer (SPAMS) at a suburban coastal site in Hong Kong from February 04 to April 17, 2013 to study individual oxalate particles and a monitor for aerosols and gases in ambient air (MARGA) to track the bulk oxalate concentrations in particle matter smaller than 2.5 μm in diameter (PM2.5). A shallow dip in the bulk oxalate concentration was consistently observed before 10:00 am in the morning throughout the observation campaign, corresponding to a 20% decrease in the oxalate concentration on average during the decay process. Such a decrease in PM oxalate was found to be coincident with a decrease in Fe-containing oxalate particles, providing persuasive evidence of Fe-mediated photochemical degradation of oxalate. Oxalate mixed with Fe and Fe_NaK particles, from industry sources, were identified as the dominant factors for oxalate decay in the early morning. We further found an increase of sulfate intensity by a factor of 1.6 on these individual Fe-containing particles during the oxalate decomposition process, suggesting a facilitation of sulfur oxidation. This is the first report on the oxalate-Fe decomposition process with individual particle level information and provides unique evidence to advance our current understanding of oxalate and Fe cycling. The present work also indicates the importance of anthropogenic sourced iron in oxalate-Fe photochemical processing. In addition, V-containing oxalate particles, from ship emissions, also showed evidence of morning photodegradation and need further attention since current models rarely consider photochemical processing of oxalate_V particles.
Collapse
Affiliation(s)
- Yang Zhou
- Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
- Institute of Environment, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Yanjing Zhang
- Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Stephen M Griffith
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan
| | - Guanru Wu
- Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Lei Li
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University, Guangdong 510632, China
| | - Yunhui Zhao
- Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Mei Li
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University, Guangdong 510632, China
| | - Zhen Zhou
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University, Guangdong 510632, China
| | - Jian Zhen Yu
- Institute of Environment, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|
13
|
Meng J, Liu X, Hou Z, Yi Y, Yan L, Li Z, Cao J, Li J, Wang G. Molecular characteristics and stable carbon isotope compositions of dicarboxylic acids and related compounds in the urban atmosphere of the North China Plain: Implications for aqueous phase formation of SOA during the haze periods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135256. [PMID: 31838425 DOI: 10.1016/j.scitotenv.2019.135256] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
In the past five years, Chinese government has promulgated stringent measures to mitigate air pollution. However, PM2.5 levels in the China North Plain (NCP), which is one of the regions with the heaviest air pollution in the world, are still far beyond the World Health Organization (WHO) standard. To improve our understanding on the sources and formation mechanisms of haze in the NCP, PM2.5 samples were collected during the winter of 2017 on a day/night basis at the urban site of Liaocheng, which is one of the most polluted cities in the NCP. The samples were determined for molecular distributions and stable carbon isotope compositions of dicarboxylic acids and their precursors (ketocarboxylic acids and α-dicarbonyls), levoglucosan, elemental carbon (EC), organic carbon (OC) and water-soluble organic carbon (WSOC). Our results showed that oxalic acid (C2) is the dominant dicarboxylic acid, followed by succinic acid (C4) and malonic acid (C3), and glyoxylic acid (ωC2) is the most abundant ketocarboxylic acids. Concentrations of C2, glyoxal (Gly) and methylglyoxal (mGly) presented robust correlations with levoglucosan, suggesting that biomass burning is a significant source of PM2.5 in the NCP. Moreover, C2 and Gly and mGly linearly correlated with SO42-, relative humidity (RH), aerosol liquid water content (LWC) as well as particle in-situ pH (pHis), indicating that aqueous-phase oxidation is the major formation pathway of these SOA, and is driven by acid-catalyzed oxidation. Concentrations and relative abundances of secondary species including SNA (SO42-, NO3- and NH4+), dicarboxylic acids, and aerosol LWC in PM2.5 are much higher in the haze periods than in the clean periods, suggesting that aqueous reaction is a vital role in the haze formation. In comparison with those in the clean periods, stable carbon isotopic compositions (δ13C) of major dicarboxylic acids and related SOA and the mass ratios of C2/diacids, C2/Gly and C2/mGly are higher in the haze periods, indicating that haze particles were more aged and enriched in secondary species.
Collapse
Affiliation(s)
- Jingjing Meng
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China; State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Xiaodi Liu
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Zhanfang Hou
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China; State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Yanan Yi
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Li Yan
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Zheng Li
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Gehui Wang
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
14
|
Brook JR, Cober SG, Freemark M, Harner T, Li SM, Liggio J, Makar P, Pauli B. Advances in science and applications of air pollution monitoring: A case study on oil sands monitoring targeting ecosystem protection. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:661-709. [PMID: 31082314 DOI: 10.1080/10962247.2019.1607689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potential environmental impact of air pollutants emitted from the oil sands industry in Alberta, Canada, has received considerable attention. The mining and processing of bitumen to produce synthetic crude oil, and the waste products associated with this activity, lead to significant emissions of gaseous and particle air pollutants. Deposition of pollutants occurs locally (i.e., near the sources) and also potentially at distances downwind, depending upon each pollutant's chemical and physical properties and meteorological conditions. The Joint Oil Sands Monitoring Program (JOSM) was initiated in 2012 by the Government of Canada and the Province of Alberta to enhance or improve monitoring of pollutants and their potential impacts. In support of JOSM, Environment and Climate Change Canada (ECCC) undertook a significant research effort via three components: the Air, Water, and Wildlife components, which were implemented to better estimate baseline conditions related to levels of pollutants in the air and water, amounts of deposition, and exposures experienced by the biota. The criteria air contaminants (e.g., nitrogen oxides [NOx], sulfur dioxide [SO2], volatile organic compounds [VOCs], particulate matter with an aerodynamic diameter <2.5 μm [PM2.5]) and their secondary atmospheric products were of interest, as well as toxic compounds, particularly polycyclic aromatic compounds (PACs), trace metals, and mercury (Hg). This critical review discusses the challenges of assessing ecosystem impacts and summarizes the major results of these efforts through approximately 2018. Focus is on the emissions to the air and the findings from the Air Component of the ECCC research and linkages to observations of contaminant levels in the surface waters in the region, in aquatic species, as well as in terrestrial and avian species. The existing evidence of impact on these species is briefly discussed, as is the potential for some of them to serve as sentinel species for the ongoing monitoring needed to better understand potential effects, their potential causes, and to detect future changes. Quantification of the atmospheric emissions of multiple pollutants needs to be improved, as does an understanding of the processes influencing fugitive emissions and local and regional deposition patterns. The influence of multiple stressors on biota exposure and response, from natural bitumen and forest fires to climate change, complicates the current ability to attribute effects to air emissions from the industry. However, there is growing evidence of the impact of current levels of PACs on some species, pointing to the need to improve the ability to predict PAC exposures and the key emission source involved. Although this critical review attempts to integrate some of the findings across the components, in terms of ECCC activities, increased coordination or integration of air, water, and wildlife research would enhance deeper scientific understanding. Improved understanding is needed in order to guide the development of long-term monitoring strategies that could most efficiently inform a future adaptive management approach to oil sands environmental monitoring and prevention of impacts. Implications: Quantification of atmospheric emissions for multiple pollutants needs to be improved, and reporting mechanisms and standards could be adapted to facilitate such improvements, including periodic validation, particularly where uncertainties are the largest. Understanding of baseline conditions in the air, water and biota has improved significantly; ongoing enhanced monitoring, building on this progress, will help improve ecosystem protection measures in the oil sands region. Sentinel species have been identified that could be used to identify and characterize potential impacts of wildlife exposure, both locally and regionally. Polycyclic aromatic compounds are identified as having an impact on aquatic and terrestrial wildlife at current concentration levels although the significance of these impacts and attribution to emissions from oil sands development requires further assessment. Given the improvement in high resolution air quality prediction models, these should be a valuable tool to future environmental assessments and cumulative environment impact assessments.
Collapse
Affiliation(s)
- J R Brook
- a Dalla Lana School of Public Health and Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto , Ontario , Canada
| | - S G Cober
- b Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario , Canada
| | - M Freemark
- c National Wildlife Research Centre, Environment and Climate Change, Ottawa , Canada
| | - T Harner
- b Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario , Canada
| | - S M Li
- b Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario , Canada
| | - J Liggio
- b Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario , Canada
| | - P Makar
- b Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario , Canada
| | - B Pauli
- c National Wildlife Research Centre, Environment and Climate Change, Ottawa , Canada
| |
Collapse
|
15
|
Liu H, Kawamura K, Kunwar B, Cao J, Zhang J, Zhan C, Zheng J, Yao R, Liu T, Xiao W. Dicarboxylic acids and related compounds in fine particulate matter aerosols in Huangshi, central China. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:513-526. [PMID: 30526445 DOI: 10.1080/10962247.2018.1557089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples were collected in Huangshi, central China, from March 2012 to February 2013 and were analyzed for dicarboxylic acids (diacids) and related compounds (DARCs). Oxalic acid (C2; 416 ng m-3) was the most abundant species, followed by phthalic (Ph; 122 ng m-3), terephthalic (tPh; 116 ng m-3), succinic (C4; 70.4 ng m-3), azelaic (C9; 67.9 ng m-3), and adipic (C6; 57.8 ng m-3) acids. Relatively high abundances of Ph and tPh differed from the distribution in urban and marine aerosols, indicating contributions from nearby anthropogenic sources. Glyoxylic acid (ωC2; 41.4 ng m-3) was the dominant oxoacid, followed by 9-oxononanoic (ωC9; 40.8 ng m-3) and pyruvic (Pyr; 24.1 ng m-3) acids. Glyoxal (Gly; 35.5 ng m-3) was the dominant α-dicarbonyl. Highest average concentrations were found for C2, ωC2, and C9 in autumn, for C4, for Pyr and C6 in spring, for Ph, ωC9, and Gly in summer, whereas the lowest values were observed in winter. Seasonal variations and correlation coefficients of DARCs demonstrate that both primary emissions and secondary production are important sources. Principal component analysis of selected DARCs species suggests that a mixing of air masses from anthropogenic and biogenic sources contribute to the Huangshi aerosols. Implications: Both primary emissions and secondary production are important sources of diacids and related compounds in PM2.5 from Huangshi, central China. Principal component analysis of selected diacids in Huangshi aerosols suggests that mixing of air masses from anthropogenic and biogenic sources contribute to ambient aerosols in central China.
Collapse
Affiliation(s)
- Hongxia Liu
- a Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Environmental Science and Engineering , Hubei Polytechnic University , Huangshi , People's Republic of China
- b Institute of Low Temperature Science , Hokkaido University , Sapporo , Japan
| | - Kimitaka Kawamura
- b Institute of Low Temperature Science , Hokkaido University , Sapporo , Japan
- c Now at Chubu Institute for Advanced Studies , Chubu University , Kasugai , Japan
| | - Bhagawati Kunwar
- b Institute of Low Temperature Science , Hokkaido University , Sapporo , Japan
- c Now at Chubu Institute for Advanced Studies , Chubu University , Kasugai , Japan
| | - Junji Cao
- d Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment , Chinese Academy of Sciences , Xi'an , People's Republic of China
| | - Jiaquan Zhang
- a Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Environmental Science and Engineering , Hubei Polytechnic University , Huangshi , People's Republic of China
| | - Changlin Zhan
- a Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Environmental Science and Engineering , Hubei Polytechnic University , Huangshi , People's Republic of China
| | - Jingru Zheng
- a Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Environmental Science and Engineering , Hubei Polytechnic University , Huangshi , People's Republic of China
| | - Ruizhen Yao
- a Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Environmental Science and Engineering , Hubei Polytechnic University , Huangshi , People's Republic of China
| | - Ting Liu
- a Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Environmental Science and Engineering , Hubei Polytechnic University , Huangshi , People's Republic of China
| | - Wensheng Xiao
- a Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Environmental Science and Engineering , Hubei Polytechnic University , Huangshi , People's Republic of China
| |
Collapse
|
16
|
Chemical Composition of Aerosol over the Arctic Ocean from Summer ARctic EXpedition (AREX) 2011–2012 Cruises: Ions, Amines, Elemental Carbon, Organic Matter, Polycyclic Aromatic Hydrocarbons, n-Alkanes, Metals, and Rare Earth Elements. ATMOSPHERE 2019. [DOI: 10.3390/atmos10020054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During the summers of 2011 and 2012, two scientific cruises were carried out over the Arctic Ocean aiming at the determination of the aerosol chemical composition in this pristine environment. First, mass spectrometry was applied to study the concentration and gas/particle partitioning of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes. Experimental and modelled data of phase partitioning were compared: results demonstrated an equilibrium between gas and particle phase for PAHs, while n-alkanes showed a particle-oriented partitioning, due to the local marine origin of them, confirmed by the extremely low value of their carbon preference index. Moreover, the inorganic and organic ions (carboxylic acids and amines) concentrations, together with those of elemental carbon (EC) and organic matter (OM), were analyzed: 63% of aerosol was composed of ionic compounds (>90% from sea-salt) and the OM content was very high (30.5%; close to 29.0% of Cl−) in agreement with n-alkanes’ marine signature. Furthermore, the amines’ (dimethylamine, trimethylamine, diethylamine) concentrations were 3.98 ± 1.21, 1.70 ± 0.82, and 1.06 ± 0.56 p.p.t.v., respectively, fully in keeping with concentration values used in the CLOUD (Cosmics Leaving OUtdoor Droplet)-chamber experiments to simulate the ambient nucleation rate in a H2SO4-DMA-H2O system, showing the amines’ importance in polar regions to promote new particle formation. Finally, high resolution mass spectrometry was applied to determine trace elements, including Rare Earth Elements (REEs), highlighting the dominant natural versus anthropic inputs for trace metals (e.g., Fe, Mn, Ti vs. As, Cd, Ni) and possible signatures of such anthropic activity.
Collapse
|
17
|
Tao Y, Murphy JG. Evidence for the Importance of Semivolatile Organic Ammonium Salts in Ambient Particulate Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:108-116. [PMID: 30512929 DOI: 10.1021/acs.est.8b03800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The gas/particle phase partitioning behavior of NH3/NH4+ and other semivolatile constituents was measured by a custom-designed Denuder-MOUDI-Denuder integrated sampling system in Toronto, Canada. In this setup, upstream denuders were used to capture alkaline and acidic gaseous components, and particle phase components were captured by the filters on MOUDI stages. Downstream denuders captured any alkaline and acidic gases that exited the MOUDI apparatus, likely representing semivolatile constituents. In the ambient gas phase HCOOH was the most abundant acidic gas, with an average mixing ratio ∼2-3 times higher than that of SO2 and HNO3. It was found that the majority (49-96%) of filter-collected NH4+ volatilized during collection. NO3- volatilization could only explain 0.9-15% of NH4+ loss from the filters. Instead, a strong correlation and nearly 1:1 molar ratio between downstream HCOO- and NH4+ indicated that most of the semivolatile NH4+ was originally balanced by organic acids in the ambient particle phase. The thermodynamic properties of HCOOH/HCOO- suggest that it should not have been present at high levels in the ambient particle phase, and we interpret its detection in the downstream denuder as evidence for larger organic acids that reacted to generate HCOOH prior to our offline measurement.
Collapse
Affiliation(s)
- Ye Tao
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , Toronto , Ontario M1C 1A4 , Canada
| | - Jennifer G Murphy
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| |
Collapse
|
18
|
Tomaz S, Cui T, Chen Y, Sexton KG, Roberts JM, Warneke C, Yokelson RJ, Surratt JD, Turpin BJ. Photochemical Cloud Processing of Primary Wildfire Emissions as a Potential Source of Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11027-11037. [PMID: 30153017 DOI: 10.1021/acs.est.8b03293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We investigated the gas-phase chemical composition of biomass burning (BB) emissions and their role in aqueous secondary organic aerosol (aqSOA) formation through photochemical cloud processing. A high-resolution time-of-flight chemical ionization mass spectrometer using iodide reagent ion chemistry detected more than 100 gas-phase compounds from the emissions of 30 different controlled burns during the 2016 Fire Influence on Regional and Global Environments Experiment (FIREX) at the Fire Science Laboratory. Compounds likely to partition to cloudwater were selected based on high atomic oxygen-to-carbon ratio and abundance. Water solubility was confirmed by detection of these compounds in water after mist chamber collection during controlled burns and analysis using ion chromatography and electrospray ionization interfaced to high-resolution time-of-flight mass spectrometry. Known precursors of aqSOA were found in the primary gaseous BB emissions (e.g., phenols, acetate, and pyruvate). Aqueous OH oxidation of the complex biomass burning mixtures led to rapid depletion of many compounds (e.g., catechol, levoglucosan, methoxyphenol) and formation of others (e.g., oxalate, malonate, mesoxalate). After 150 min of oxidation (approximatively 1 day of cloud processing), oxalate accounted for 13-16% of total dissolved organic carbon. Formation of known SOA components suggests that cloud processing of primary BB emissions forms SOA.
Collapse
Affiliation(s)
- Sophie Tomaz
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Tianqu Cui
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kenneth G Sexton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - James M Roberts
- Chemical Sciences Division , NOAA Earth System Research Laboratory , Boulder , Colorado 80305 , United States
| | - Carsten Warneke
- Chemical Sciences Division , NOAA Earth System Research Laboratory , Boulder , Colorado 80305 , United States
- Cooperative Institute for Research in Environmental Sciences , University of Colorado , Boulder , Colorado 80309 , United States
| | - Robert J Yokelson
- Department of Chemistry and Biochemistry , University of Montana , Missoula , Montana 59812 , United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
19
|
Crosbie E, Brown MD, Shook M, Ziemba L, Moore RH, Shingler T, Winstead E, Lee Thornhill K, Robinson C, MacDonald AB, Dadashazar H, Sorooshian A, Beyersdorf A, Eugene A, Collett J, Straub D, Anderson B. Development and characterization of a high-efficiency, aircraft-based axial cyclone cloud water collector. ATMOSPHERIC MEASUREMENT TECHNIQUES 2018; 11:5025-5048. [PMID: 33868504 PMCID: PMC8051007 DOI: 10.5194/amt-11-5025-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A new aircraft-mounted probe for collecting samples of cloud water has been designed, fabricated, and extensively tested. Following previous designs, the probe uses inertial separation to remove cloud droplets from the airstream, which are subsequently collected and stored for offline analysis. We report details of the design, operation, and modelled and measured probe performance. Computational fluid dynamics (CFD) was used to understand the flow patterns around the complex interior geometrical features that were optimized to ensure efficient droplet capture. CFD simulations coupled with particle tracking and multiphase surface transport modelling provide detailed estimates of the probe performance across the entire range of flight operating conditions and sampling scenarios. Physical operation of the probe was tested on a Lockheed C-130 Hercules (fuselage mounted) and de Havilland Twin Otter (wing pylon mounted) during three airborne field campaigns. During C-130 flights on the final field campaign, the probe reflected the most developed version of the design and a median cloud water collection rate of 4.5 mL min-1 was achieved. This allowed samples to be collected over 1-2 min under optimal cloud conditions. Flights on the Twin Otter featured an inter-comparison of the new probe with a slotted-rod collector, which has an extensive airborne campaign legacy. Comparison of trace species concentrations showed good agreement between collection techniques, with absolute concentrations of most major ions agreeing within 30 %, over a range of several orders of magnitude.
Collapse
Affiliation(s)
- Ewan Crosbie
- NASA Langley Research Center, Hampton, VA 23666, USA
- Science Systems and Applications, Inc. Hampton, VA 23666, USA
| | - Matthew D. Brown
- NASA Langley Research Center, Hampton, VA 23666, USA
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Michael Shook
- NASA Langley Research Center, Hampton, VA 23666, USA
| | - Luke Ziemba
- NASA Langley Research Center, Hampton, VA 23666, USA
| | | | - Taylor Shingler
- NASA Langley Research Center, Hampton, VA 23666, USA
- Science Systems and Applications, Inc. Hampton, VA 23666, USA
| | - Edward Winstead
- NASA Langley Research Center, Hampton, VA 23666, USA
- Science Systems and Applications, Inc. Hampton, VA 23666, USA
| | - K. Lee Thornhill
- NASA Langley Research Center, Hampton, VA 23666, USA
- Science Systems and Applications, Inc. Hampton, VA 23666, USA
| | - Claire Robinson
- NASA Langley Research Center, Hampton, VA 23666, USA
- Science Systems and Applications, Inc. Hampton, VA 23666, USA
| | - Alexander B. MacDonald
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Hossein Dadashazar
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Andreas Beyersdorf
- Department of Chemistry and Biochemistry, California State University, San Bernardino, CA 92407, USA
| | - Alexis Eugene
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jeffrey Collett
- Atmospheric Science Department, Colorado State University, Fort Collins, CO 80523, USA
| | - Derek Straub
- Department of Earth and Environmental Sciences, Susquehanna University, Selinsgrove, PA 17870, USA
| | | |
Collapse
|
20
|
Duncan S, Sexton KG, Turpin B. Oxygenated VOCs, aqueous chemistry, and potential impacts on residential indoor air composition. INDOOR AIR 2018; 28:198-212. [PMID: 28833580 PMCID: PMC5745158 DOI: 10.1111/ina.12422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/16/2017] [Indexed: 05/03/2023]
Abstract
Dampness affects a substantial percentage of homes and is associated with increased risk of respiratory ailments; yet, the effects of dampness on indoor chemistry are largely unknown. We hypothesize that the presence of water-soluble gases and their aqueous processing alters the chemical composition of indoor air and thereby affects inhalation and dermal exposures in damp homes. Herein, we use the existing literature and new measurements to examine the plausibility of this hypothesis, summarize existing evidence, and identify key knowledge gaps. While measurements of indoor volatile organic compounds (VOCs) are abundant, measurements of water-soluble organic gases (WSOGs) are not. We found that concentrations of total WSOGs were, on average, 15 times higher inside homes than immediately outside (N = 13). We provide insights into WSOG compounds likely to be present indoors using peer-reviewed literature and insights from atmospheric chemistry. Finally, we discuss types of aqueous chemistry that may occur on indoor surfaces and speculate how this chemistry could affect indoor exposures. Liquid water quantities, identities of water-soluble compounds, the dominant chemistry, and fate of aqueous products are poorly understood. These limitations hamper our ability to determine the effects of aqueous indoor chemistry on dermal and inhalation exposures in damp homes.
Collapse
Affiliation(s)
- Sara Duncan
- Rutgers University, New Brunswick, New Jersey
- University of North Carolina, Chapel Hill, North Carolina
| | | | - Barbara Turpin
- University of North Carolina, Chapel Hill, North Carolina
- Corresponding author:
| |
Collapse
|
21
|
Sources and Formation Processes of Short-Chain Saturated Diacids (C2–C4) in Inhalable Particles (PM10) from Huangshi City, Central China. ATMOSPHERE 2017. [DOI: 10.3390/atmos8110213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Liu MJ, Wiegel AA, Wilson KR, Houle FA. Aerosol Fragmentation Driven by Coupling of Acid–Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals. J Phys Chem A 2017; 121:5856-5870. [DOI: 10.1021/acs.jpca.7b04892] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew J. Liu
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Aaron A. Wiegel
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702, United States
| | - Kevin R. Wilson
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702, United States
| | - Frances A. Houle
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702, United States
| |
Collapse
|
23
|
Reed Harris AE, Pajunoja A, Cazaunau M, Gratien A, Pangui E, Monod A, Griffith EC, Virtanen A, Doussin JF, Vaida V. Multiphase Photochemistry of Pyruvic Acid under Atmospheric Conditions. J Phys Chem A 2017; 121:3327-3339. [DOI: 10.1021/acs.jpca.7b01107] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Allison E. Reed Harris
- Department
of Chemistry and Biochemistry, CIRES, University of Colorado, Boulder, Colorado 80309, United States
| | - Aki Pajunoja
- Department
of Applied Physics, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211 Kuopio, Finland
| | - Mathieu Cazaunau
- LISA, UMR
CNRS 7583,
Université Paris Est Cretéil (UPEC), Université
Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Cretéil, France
| | - Aline Gratien
- LISA, UMR
CNRS 7583,
Université Paris Est Cretéil (UPEC), Université
Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Cretéil, France
| | - Edouard Pangui
- LISA, UMR
CNRS 7583,
Université Paris Est Cretéil (UPEC), Université
Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Cretéil, France
| | - Anne Monod
- Aix Marseille
Université, CNRS, LCE, 13331, Marseille, France
| | - Elizabeth C. Griffith
- Department
of Chemistry and Biochemistry, CIRES, University of Colorado, Boulder, Colorado 80309, United States
| | - Annele Virtanen
- Department
of Applied Physics, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211 Kuopio, Finland
| | - Jean-Francois Doussin
- LISA, UMR
CNRS 7583,
Université Paris Est Cretéil (UPEC), Université
Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Cretéil, France
| | - Veronica Vaida
- Department
of Chemistry and Biochemistry, CIRES, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
24
|
Deshmukh DK, Kawamura K, Deb MK. Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from central India: Sources and formation processes. CHEMOSPHERE 2016; 161:27-42. [PMID: 27414241 DOI: 10.1016/j.chemosphere.2016.06.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
The size distributions of aerosols can provide evidences for their sources and formation processes in the atmosphere. Size-segregated aerosols (9-sizes) were collected in urban site (Raipur: 21.2°N and 82.3°E) in central India during winter of 2012-2013. The samples were analyzed for dicarboxylic acids (C2-C12), ω-oxocarboxylic acids (ωC2-ωC9), pyruvic acid and α-dicarbonyls (C2-C3) as well as elemental carbon (EC), organic carbon (OC), water-soluble OC (WSOC) and inorganic ions. Diacids showed a predominance of oxalic acid (C2) followed by succinic and azelaic acid whereas ω-oxoacids exhibited a predominance of glyoxylic acid and glyoxal was more abundant than methylglyoxal in all the sizes. Diacids, ω-oxoacids and α-dicarbonyls showed bimodal size distribution with peaks in fine and coarse modes. High correlations of fine mode diacids and related compounds with potassium and levoglucosan suggest that they were presumably due to a substantial contribution of primary emission from biomass burning and secondary production from biomass burning derived precursors. High correlations of C2 with higher carbon number diacids (C3-C9) suggest that they have similar sources and C2 may be produced via the decay of its higher homologous diacids in fine mode. Considerable portions of diacids and related compounds in coarse mode suggest that they were associated with mineral dust particles by their adsorption and photooxidation of anthropogenic and biogenic precursors via heterogeneous reaction on dust surface. This study demonstrates that biomass burning and dust particles are two major factors to control the size distribution of diacids and related compounds in the urban aerosols from central India.
Collapse
Affiliation(s)
- Dhananjay K Deshmukh
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan.
| | - Kimitaka Kawamura
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan.
| | - Manas K Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India
| |
Collapse
|
25
|
Structure and dynamics of solvated hydrogenoxalate and oxalate anions: a theoretical study. J Mol Model 2016; 22:210. [DOI: 10.1007/s00894-016-3075-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/27/2016] [Indexed: 11/26/2022]
|
26
|
Zhao H, Zhang Q, Du L. Hydrogen bonding in cyclic complexes of carboxylic acid–sulfuric acid and their atmospheric implications. RSC Adv 2016. [DOI: 10.1039/c6ra16782a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Carboxylic acids form cyclic ring structures with sulfuric acid and they could potentially be important in new particle formation.
Collapse
Affiliation(s)
- Hailiang Zhao
- Environment Research Institute
- Shandong University
- China
| | - Qun Zhang
- Environment Research Institute
- Shandong University
- China
| | - Lin Du
- Environment Research Institute
- Shandong University
- China
| |
Collapse
|
27
|
CCN Properties of Organic Aerosol Collected Below and within Marine Stratocumulus Clouds near Monterey, California. ATMOSPHERE 2015. [DOI: 10.3390/atmos6111590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Ervens B. Modeling the processing of aerosol and trace gases in clouds and fogs. Chem Rev 2015; 115:4157-98. [PMID: 25898144 DOI: 10.1021/cr5005887] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Barbara Ervens
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80302, United States.,Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado 80305, United States
| |
Collapse
|
29
|
Affiliation(s)
| | | | - Sergey A. Nizkorodov
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
30
|
He N, Kawamura K, Okuzawa K, Pochanart P, Liu Y, Kanaya Y, Wang ZF. Diurnal and temporal variations of water-soluble dicarboxylic acids and related compounds in aerosols from the northern vicinity of Beijing: implication for photochemical aging during atmospheric transport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 499:154-165. [PMID: 25181047 DOI: 10.1016/j.scitotenv.2014.08.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/16/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
Aerosol samples were collected in autumn 2007 on day- and nighttime basis in the northern receptor site of Beijing, China. The samples were analyzed for total carbon (TC) and water-soluble dicarboxylic acids (C2-C12), oxocarboxylic acids (C2-C9), glyoxal and methylglyoxal to better understand the photochemical aging of organic aerosols in the vicinity of Beijing. Concentrations of TC are 50% greater in daytime when winds come from Beijing than in nighttime when winds come from the northern forest areas. Most diacids showed higher concentrations in daytime, suggesting that the organics emitted from the urban Beijing and delivered to the northern vicinity in daytime are subjected to photo-oxidation to result in diacids. However, oxalic acid (C2), which is the most abundant diacid followed by C3 or C4, became on average 30% more abundant in nighttime together with azelaic, ω-oxooctanoic and ω-oxononanoic acids, which are specific oxidation products of biogenic unsaturated fatty acids. Methylglyoxal, an oxidation product of isoprene and a precursor of oxalic acid, also became 29% more abundant in nighttime. Based on a positive correlation between C2 and glyoxylic acid (ωC2) in nighttime when relative humidity significantly enhanced, we propose a nighttime aqueous phase production of C2 via the oxidation of ωC2. We found an increase in the contribution of diacids to TC by 3 folds during consecutive clear days. This study demonstrates that diacids and related compounds are largely produced in the northern vicinity of Beijing via photochemical processing of organic precursors emitted from urban center and forest areas.
Collapse
Affiliation(s)
- Nannan He
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo 060-0819, Japan; Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo 060-0810, Japan
| | - Kimitaka Kawamura
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo 060-0819, Japan.
| | - K Okuzawa
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo 060-0819, Japan; Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo 060-0810, Japan
| | - P Pochanart
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Japan
| | - Y Liu
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Japan
| | - Y Kanaya
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Japan
| | - Z F Wang
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Hodas N, Sullivan AP, Skog K, Keutsch FN, Collett JL, Decesari S, Facchini MC, Carlton AG, Laaksonen A, Turpin BJ. Aerosol liquid water driven by anthropogenic nitrate: implications for lifetimes of water-soluble organic gases and potential for secondary organic aerosol formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11127-36. [PMID: 25191968 DOI: 10.1021/es5025096] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Aerosol liquid water (ALW) influences aerosol radiative properties and the partitioning of gas-phase water-soluble organic compounds (WSOCg) to the condensed phase. A recent modeling study drew attention to the anthropogenic nature of ALW in the southeastern United States, where predicted ALW is driven by regional sulfate. Herein, we demonstrate that ALW in the Po Valley, Italy, is also anthropogenic but is driven by locally formed nitrate, illustrating regional differences in the aerosol components responsible for ALW. We present field evidence for the influence of controllable ALW on the lifetimes and atmospheric budgets of reactive organic gases and note the role of ALW in the formation of secondary organic aerosol (SOA). Nitrate is expected to increase in importance due to increased emissions of nitrate precursors, as well as policies aimed at reducing sulfur emissions. We argue that the impacts of increased particulate nitrate in future climate and air quality scenarios may be under predicted because they do not account for the increased potential for SOA formation in nitrate-derived ALW, nor do they account for the impacts of this ALW on reactive gas budgets and gas-phase photochemistry.
Collapse
Affiliation(s)
- Natasha Hodas
- Department of Environmental Sciences, Rutgers University , New Brunswick, New Jersey 08901, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Weller C, Tilgner A, Bräuer P, Herrmann H. Modeling the impact of iron-carboxylate photochemistry on radical budget and carboxylate degradation in cloud droplets and particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5652-5659. [PMID: 24678692 DOI: 10.1021/es4056643] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To quantify the effects of an advanced iron photochemistry scheme, the chemical aqueous-phase radical mechanism (CAPRAM 3.0i) has been updated with several new Fe(III)-carboxylate complex photolysis reactions. Newly introduced ligands are malonate, succinate, tartrate, tartronate, pyruvate, and glyoxalate. Model simulations show that more than 50% of the total Fe(III) is coordinated by oxalate and up to 20% of total Fe(III) is bound in the newly implemented 1:1 complexes with tartronate, malonate, and pyruvate. Up to 20% of the total Fe(III) is found in hydroxo and sulfato complexes. The fraction of [Fe(oxalate)2](-) and [Fe(pyruvate)](2+) is significantly higher during nighttime than during daytime, which points toward a strong influence of photochemistry on these species. Fe(III) complex photolysis is an important additional sink for tartronate, pyruvate, and oxalate, with a complex photolysis contribution to overall degradation of 46, 40, and 99%, respectively, compared to all possible sink reactions with atmospheric aqueous-phase radicals, such as (•)OH, NO3(•), and SO4(•) (-). Simulated aerosol particles have a much lower liquid water content than cloud droplets, thus leading to high concentrations of species and, consequently, an enhancement of the photolysis sink reactions in the aerosol particles. The simulations showed that Fe(III) photochemistry should not be neglected when considering the fate of carboxylic acids, which constitute a major part of aqueous secondary organic aerosol (aqSOA) in tropospheric cloud droplets and aqueous particles. Failure to consider this loss pathway has the potential to result in a significant overestimate of aqSOA production.
Collapse
Affiliation(s)
- Christian Weller
- Leibniz-Institut für Troposphärenforschung , Permoserstraße 15, 04318 Leipzig, Germany
| | | | | | | |
Collapse
|
33
|
Vaida V, Donaldson DJ. Red-light initiated atmospheric reactions of vibrationally excited molecules. Phys Chem Chem Phys 2014; 16:827-36. [DOI: 10.1039/c3cp53543f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Regional Air Quality Model Application of the Aqueous-Phase Photo Reduction of Atmospheric Oxidized Mercury by Dicarboxylic Acids. ATMOSPHERE 2013. [DOI: 10.3390/atmos5010001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Gordon TD, Tkacik DS, Presto AA, Zhang M, Jathar SH, Nguyen NT, Massetti J, Truong T, Cicero-Fernandez P, Maddox C, Rieger P, Chattopadhyay S, Maldonado H, Maricq MM, Robinson AL. Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:14137-46. [PMID: 24261886 DOI: 10.1021/es403556e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.
Collapse
Affiliation(s)
- Timothy D Gordon
- Center for Atmospheric Particle Studies, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Arakaki T, Anastasio C, Kuroki Y, Nakajima H, Okada K, Kotani Y, Handa D, Azechi S, Kimura T, Tsuhako A, Miyagi Y. A general scavenging rate constant for reaction of hydroxyl radical with organic carbon in atmospheric waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8196-8203. [PMID: 23822860 DOI: 10.1021/es401927b] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hydroxyl radical (OH) is an important oxidant in atmospheric aqueous phases such as cloud and fog drops and water-containing aerosol particles. We find that numerical models nearly always overestimate aqueous hydroxyl radical concentrations because they overpredict its rate of formation and, more significantly, underpredict its sinks. To address this latter point, we examined OH sinks in atmospheric drops and aqueous particles using both new samples and an analysis of published data. Although the molecular composition of organic carbon, the dominant sink of OH, is extremely complex and poorly constrained, this sink behaves very similarly in different atmospheric waters and even in surface waters. Thus, the sink for aqueous OH can be estimated as the concentration of dissolved organic carbon multiplied by a general scavenging rate constant [kC,OH = (3.8 ± 1.9) × 10(8) L (mol C)(-1) s(-1)], a simple process that should significantly improve estimates of OH concentrations in atmospheric drops and aqueous particles.
Collapse
Affiliation(s)
- Takemitsu Arakaki
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus , 1 Senbaru Nishihara-cho, Okinawa 903-0213, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sorooshian A, Wang Z, Coggon MM, Jonsson HH, Ervens B. Observations of sharp oxalate reductions in stratocumulus clouds at variable altitudes: organic acid and metal measurements during the 2011 E-PEACE campaign. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7747-56. [PMID: 23786214 DOI: 10.1021/es4012383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This work examines organic acid and metal concentrations in northeastern Pacific Ocean stratocumulus cloudwater samples collected by the CIRPAS Twin Otter between July and August 2011. Correlations between a suite of various monocarboxylic and dicarboxylic acid concentrations are consistent with documented aqueous-phase mechanistic relationships leading up to oxalate production. Monocarboxylic and dicarboxylic acids exhibited contrasting spatial profiles reflecting their different sources; the former were higher in concentration near the continent due to fresh organic emissions. Concentrations of sea salt crustal tracer species, oxalate, and malonate were positively correlated with low-level wind speed suggesting that an important route for oxalate and malonate entry in cloudwater is via some combination of association with coarse particles and gaseous precursors emitted from the ocean surface. Three case flights show that oxalate (and no other organic acid) concentrations drop by nearly an order of magnitude relative to samples in the same vicinity. A consistent feature in these cases was an inverse relationship between oxalate and several metals (Fe, Mn, K, Na, Mg, Ca), especially Fe. By means of box model studies we show that the loss of oxalate due to the photolysis of iron oxalato complexes is likely a significant oxalate sink in the study region due to the ubiquity of oxalate precursors, clouds, and metal emissions from ships, the ocean, and continental sources.
Collapse
Affiliation(s)
- Armin Sorooshian
- Chemical and Environmental Engineering, University of Arizona , Tucson, Arizona 85721, USA.
| | | | | | | | | |
Collapse
|
38
|
van Pinxteren D, Teich M, Herrmann H. Hollow fibre liquid-phase microextraction of functionalised carboxylic acids from atmospheric particles combined with capillary electrophoresis/mass spectrometric analysis. J Chromatogr A 2012; 1267:178-88. [DOI: 10.1016/j.chroma.2012.06.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/11/2012] [Accepted: 06/24/2012] [Indexed: 11/24/2022]
|
39
|
Wonaschuetz A, Sorooshian A, Ervens B, Chuang PY, Feingold G, Murphy SM, de Gouw J, Warneke C, Jonsson HH. Aerosol and gas re-distribution by shallow cumulus clouds: An investigation using airborne measurements. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018089] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Liu J, Horowitz LW, Fan S, Carlton AG, Levy H. Global in-cloud production of secondary organic aerosols: Implementation of a detailed chemical mechanism in the GFDL atmospheric model AM3. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017838] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Voisin D, Jaffrezo JL, Houdier S, Barret M, Cozic J, King MD, France JL, Reay HJ, Grannas A, Kos G, Ariya PA, Beine HJ, Domine F. Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016612] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Douglas TA, Domine F, Barret M, Anastasio C, Beine HJ, Bottenheim J, Grannas A, Houdier S, Netcheva S, Rowland G, Staebler R, Steffen A. Frost flowers growing in the Arctic ocean-atmosphere-sea ice-snow interface: 1. Chemical composition. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016460] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Simon H, Bhave PV. Simulating the degree of oxidation in atmospheric organic particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:331-9. [PMID: 22107341 DOI: 10.1021/es202361w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Modeled ratios of organic mass to organic carbon (OM/OC) and oxygen to carbon (n(O)/n(C)) in organic particulate matter are presented across the US for the first time and evaluated extensively against ambient measurements. The base model configuration systematically underestimates OM/OC ratios during winter and summer months. Model performance is greatly improved by applying source-specific OM/OC ratios to the primary organic aerosol (POA) emissions and incorporating a new parametrization to simulate oxidative aging of POA in the atmosphere. These model improvements enable simulation of urban-scale gradients in OM/OC with values in urban areas as much as 0.4 lower than in the surrounding regions. Modeled OM/OC and n(O)/n(C) ratios in January range from 1.4 to 2.0 and 0.2 to 0.6, respectively. In July, modeled OM/OC and n(O)/n(C) ratios range from 1.4 to 2.2 and 0.2 to 0.8, respectively. Improved model performance during winter is attributed entirely to our application of source-specific OM/OC ratios to the inventory. During summer, our treatment of oxidative aging also contributes to improved performance. Advancements described in this paper are codified in the latest public release of the Community Multiscale Air Quality model, CMAQv5.0.
Collapse
Affiliation(s)
- Heather Simon
- Office of Air Quality Planning and Standards, Atmospheric Modeling and Analysis Division, US EPA, Research Triangle Park, North Carolina 27711, United States.
| | | |
Collapse
|
44
|
Houdier S, Barret M, Dominé F, Charbouillot T, Deguillaume L, Voisin D. Sensitive determination of glyoxal, methylglyoxal and hydroxyacetaldehyde in environmental water samples by using dansylacetamidooxyamine derivatization and liquid chromatography/fluorescence. Anal Chim Acta 2011; 704:162-73. [DOI: 10.1016/j.aca.2011.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 11/28/2022]
|
45
|
Rinaldi M, Decesari S, Carbone C, Finessi E, Fuzzi S, Ceburnis D, O'Dowd CD, Sciare J, Burrows JP, Vrekoussis M, Ervens B, Tsigaridis K, Facchini MC. Evidence of a natural marine source of oxalic acid and a possible link to glyoxal. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015659] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Huang XHH, Ip HSS, Yu JZ. Secondary organic aerosol formation from ethylene in the urban atmosphere of Hong Kong: A multiphase chemical modeling study. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd014121] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
De Haan DO, Hawkins LN, Kononenko JA, Turley JJ, Corrigan AL, Tolbert MA, Jimenez JL. Formation of nitrogen-containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:984-91. [PMID: 21171623 DOI: 10.1021/es102933x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Reactions of methylglyoxal with amino acids, methylamine, and ammonium sulfate can take place in aqueous aerosol and evaporating cloud droplets. These processes are simulated by drying droplets and bulk solutions of these compounds (at low millimolar and 1 M concentrations, respectively) and analyzing the residuals by scanning mobility particle sizing, nuclear magnetic resonance, aerosol mass spectrometry (AMS), and electrospray ionization MS. The results are consistent with imine (but not diimine) formation on a time scale of seconds, followed by the formation of nitrogen-containing oligomers, methylimidazole, and dimethylimidazole products on a time scale of minutes to hours. Measured elemental ratios are consistent with imidazoles and oligomers being major reaction products, while effective aerosol densities suggest extensive reactions take place within minutes. These reactions may be a source of the light-absorbing, nitrogen-containing oligomers observed in urban and biomass-burning aerosol particles.
Collapse
Affiliation(s)
- David O De Haan
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, California 92110, United States.
| | | | | | | | | | | | | |
Collapse
|
48
|
Miyazaki Y, Kawamura K, Sawano M. Size distributions and chemical characterization of water-soluble organic aerosols over the western North Pacific in summer. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd014439] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Jung J, Tsatsral B, Kim YJ, Kawamura K. Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids, andα-dicarbonyls. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd014339] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Kundu S, Kawamura K, Lee M. Seasonal variations of diacids, ketoacids, andα-dicarbonyls in aerosols at Gosan, Jeju Island, South Korea: Implications for sources, formation, and degradation during long-range transport. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd013973] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|