1
|
Riekeles M, Santos B, Youssef SAM, Schulze-Makuch D. Viability and Motility of Escherichia coli Under Elevated Martian Salt Stresses. Life (Basel) 2024; 14:1526. [PMID: 39768235 PMCID: PMC11676641 DOI: 10.3390/life14121526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigates the effects of three Martian-relevant salts-sodium chlorate, sodium perchlorate, and sodium chloride-on the viability and motility of Escherichia coli, a model organism for understanding microbial responses to environmental stress. These salts are abundant on Mars and play a crucial role in forming brines, one of the few sources of stable liquid water on the planet. We analyze the survivability under different salt concentrations using colony plating. Additionally, we perform a semi-automated motility analysis, analyzing microbial speeds and motility patterns. Our results show that sodium perchlorate is the most toxic, followed by sodium chlorate, with sodium chloride being the least harmful. Both survivability and motility are affected by salt concentration and exposure time. Notably, we observe a short-lived increase in motility at certain concentrations, particularly under sodium chlorate and sodium perchlorate stress, despite rapid declines in cell viability, suggesting a stress response mechanism. Given that motility might enhance an organism's ability to navigate harsh and variable environments, it holds promise as a key biosignature in the search for life on Mars.
Collapse
Affiliation(s)
- Max Riekeles
- Astrobiology Group, Center of Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany; (B.S.); (S.A.-M.Y.); (D.S.-M.)
| | - Berke Santos
- Astrobiology Group, Center of Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany; (B.S.); (S.A.-M.Y.); (D.S.-M.)
- Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Sherif Al-Morssy Youssef
- Astrobiology Group, Center of Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany; (B.S.); (S.A.-M.Y.); (D.S.-M.)
| | - Dirk Schulze-Makuch
- Astrobiology Group, Center of Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany; (B.S.); (S.A.-M.Y.); (D.S.-M.)
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), 14473 Potsdam, Germany
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
| |
Collapse
|
2
|
Bickel VT, Thomas N, Pommerol A, Tornabene LL, El-Maarry MR, Rangarajan VG. A Global Dataset of Potential Chloride Deposits on Mars as Identified by TGO CaSSIS. Sci Data 2024; 11:845. [PMID: 39097645 PMCID: PMC11298006 DOI: 10.1038/s41597-024-03685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024] Open
Abstract
Chloride deposits are markers for early Mars' aqueous past, with important implications for our understanding of the martian climate and habitability. The Colour and Stereo Surface Imaging System (CaSSIS) onboard ESA's Trace Gas Orbiter provides high-resolution color-infrared images, enabling a planet-wide search for (small) potentially chloride-bearing deposits. Here, we use a neural network to map potentially chloride-bearing deposits in CaSSIS images over a significant fraction of the planet. We identify 965 chloride deposit candidates with diameters ranging from <300 to >3000 m, including previously unknown deposits, 136 (~14%) of which are located in the highlands north of the equator, up to ~36°N. Northern chloride candidates tend to be smaller than in the south and are predominantly located in small-scale topographic depressions in low-albedo Noachian and Hesperian highland terranes. Our new dataset augments existing chloride deposit maps, informs current and future imaging campaigns, and enables future modelling work towards a better understanding of the distribution of near-surface water in Mars' distant past.
Collapse
Affiliation(s)
- V T Bickel
- Center for Space and Habitability, University of Bern, Bern, Switzerland.
| | - N Thomas
- Physikalisches Institut, University of Bern, Bern, Switzerland
| | - A Pommerol
- Physikalisches Institut, University of Bern, Bern, Switzerland
| | - L L Tornabene
- Institute for Earth and Space Exploration, University of Western Ontario, London, Canada
- The SETI Institute, Mountain View, CA, USA
| | - M R El-Maarry
- Space and Planetary Science Center, Khalifa University, Abu Dhabi, UAE
| | - V G Rangarajan
- Institute for Earth and Space Exploration, University of Western Ontario, London, Canada
| |
Collapse
|
3
|
Bramble MS, Hand KP. Spectral evidence for irradiated halite on Mars. Sci Rep 2024; 14:5503. [PMID: 38448458 PMCID: PMC10917766 DOI: 10.1038/s41598-024-55979-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
The proposed chloride salt-bearing deposits on Mars have an enigmatic composition due to the absence of distinct spectral absorptions for the unique mineral at all wavelengths investigated. We report on analyses of remote visible-wavelength spectroscopic observations that exhibit properties indicative of the mineral halite (NaCl) when irradiated. Visible spectra of halite are generally featureless, but when irradiated by high-energy particles they develop readily-identifiable spectral alterations in the form of color centers. Consistent spectral characteristics observed in the reflectance data of the chloride salt-bearing deposits support the presence of radiation-formed color centers of halite on the surface of Mars. We observe a seasonal cycle of color center formation with higher irradiated halite values during winter months, with the colder temperatures interpreted as increasing the formation efficiency and stability. Irradiated halite identified on the surface of Mars suggests that the visible surface is being irradiated to the degree that defects are forming in alkali halide crystal structures.
Collapse
Affiliation(s)
- Michael S Bramble
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA.
| | - Kevin P Hand
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| |
Collapse
|
4
|
Cai W, Yu K, Yang W, Mu R, Lian C, Xie L, Yan Y, Liao S, Wang F. Prokaryotic Community Structure, Abundances, and Potential Ecological Functions in a Mars Analog Salt Lake. ASTROBIOLOGY 2023; 23:550-562. [PMID: 37130293 DOI: 10.1089/ast.2022.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Barkol Lake, situated northeast of the Tianshan Mountains, Xinjiang, is a hypersaline lake with abundant sulfate and chloride minerals, which can be a potential analog for microbial saline paleolakes on Mars. The lake water, sediments, and surrounding soils of Barkol Lake were sampled for geochemical analysis and 16S rRNA gene sequencing to investigate the prokaryotic community structure, abundances, interactions, and ecological functions. Results show that (1) prokaryotic community structure differs significantly between biotopes (water, sediment, and soil), with the highest abundances of archaea occurring in water samples and highest prokaryotic diversities in soil samples; (2) archaeal communities are dominated by Halobacterota, Nanoarchaeota, Thermoplasmatota, and Crenarchaeota, while bacterial communities are mainly Proteobacteria, Bacteroidetes, Actinobacteria, Desulfobacterota, Chloroflexi, Gemmatimonadetes, Firmicutes, and Cyanobacteria; (3) the prokaryotic community network for soil is far more complicated and stable than those for water and sediment; (4) soil prokaryotic communities could be significantly affected by environmental factors such as salinity, pH, total sulfur, and Ca2+; (5) archaeal communities may play an important role in the nitrogen cycle, while bacterial communities may mainly participate in the sulfur cycle. This study extends the data set of prokaryotic communities for hypersaline environments, which will provide perspectives into identification of the counterparts and help to understand potential microbial interactions and biogeochemical cycles occurring on Mars.
Collapse
Affiliation(s)
- Wenqi Cai
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Wanting Yang
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Rong Mu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Chunang Lian
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Luhua Xie
- Key Laboratory of Ocean and Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Yan
- Key Laboratory of Ocean and Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Shibin Liao
- Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Fan Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China
| |
Collapse
|
5
|
Phillips MS, Moersch JE, Cabrol NA, Candela A, Wettergreen D, Warren-Rhodes K, Hinman NW. Planetary Mapping Using Deep Learning: A Method to Evaluate Feature Identification Confidence Applied to Habitats in Mars-Analog Terrain. ASTROBIOLOGY 2023; 23:76-93. [PMID: 36520604 DOI: 10.1089/ast.2022.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The goals of Mars exploration are evolving beyond describing environmental habitability at global and regional scales to targeting specific locations for biosignature detection, sample return, and eventual human exploration. An increase in the specificity of scientific goals-from follow the water to find the biosignatures-requires parallel developments in strategies that translate terrestrial Mars-analog research into confident identification of rover-explorable targets on Mars. Precisely how to integrate terrestrial, ground-based analyses with orbital data sets and transfer those lessons into rover-relevant search strategies for biosignatures on Mars remains an open challenge. Here, leveraging small Unmanned Aerial System (sUAS) technology and state-of-the-art fully convolutional neural networks for pixel-wise classification, we present an end-to-end methodology that applies Deep Learning to map geomorphologic units and quantify feature identification confidence. We used this method to assess the identification confidence of rover-explorable habitats in the Mars-analog Salar de Pajonales over a range of spatial resolutions and found that spatial resolutions two times better than are available from Mars would be necessary to identify habitats in this study at the 1-σ (85%) confidence level. The approach we present could be used to compare the identifiability of habitats across Mars-analog environments and focus Mars exploration from the scale of regional habitability to the scale of specific habitats. Our methods could also be adapted to map dome- and ridge-like features on the surface of Mars to further understand their origin and astrobiological potential.
Collapse
Affiliation(s)
- Michael S Phillips
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Jeffrey E Moersch
- Department of Earth and Planetary Sciences, The University of Tennessee, Knoxville, Tennessee, USA
| | - Nathalie A Cabrol
- SETI Institute/NASA Ames Research Center, Moffett Field, California, USA
| | - Alberto Candela
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - David Wettergreen
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | | - Nancy W Hinman
- Department of Geosciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
6
|
Eolian erosion of polygons in the Atacama Desert as a proxy for hyper-arid environments on Earth and beyond. Sci Rep 2022; 12:12394. [PMID: 35859102 PMCID: PMC9300690 DOI: 10.1038/s41598-022-16404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Polygonal networks occur on various terrestrial and extraterrestrial surfaces holding valuable information on the pedological and climatological conditions under which they develop. However, unlike periglacial polygons that are commonly used as an environmental proxy, the information that polygons in the hyper-arid Atacama Desert can provide is little understood. To promote their use as a proxy, we investigated a polygonal network within an inactive channel that exhibits uncommonly diverse surface morphologies and mineral compositions, using geochemical and remote sensing techniques. Our findings show that the polygons belong to a continuous network of the same genetic origin. Their differences result from post-formational differential eolian erosion up to 50 cm depth, exposing indurated subsurface horizons rich in sulfate or nitrate and chloride. Their location in an ancient channel could lead to the misinterpretation of fluvial polygon erosion, however, we find no such signs but evidence for aqueous resurfacing of microtopography by fog and minimal rainwater infiltration. Our findings extend the use of polygons as proxies in the Atacama Desert, indicating saline soils and hyper-arid conditions. We conclude that this example of polygon erosion can guide future polygon research, especially regarding the use of erosional surfaces on Earth and beyond to gain valuable subsurface insights.
Collapse
|
7
|
Kong X, Zhu S, Shavorskiy A, Li J, Liu W, Corral Arroyo P, Signorell R, Wang S, Pettersson JBC. Surface solvation of Martian salt analogues at low relative humidities. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:137-145. [PMID: 35419521 PMCID: PMC8929290 DOI: 10.1039/d1ea00092f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022]
Abstract
Salt aerosols play important roles in many processes related to atmospheric chemistry and the climate systems on both Earth and Mars. Complicated and still poorly understood processes occur on the salt surfaces when interacting with water vapor. In this study, ambient pressure X-ray photoelectron spectroscopy (APXPS) is used to characterize the surface chemical environment of Martian salt analogues originating from saline lakes and playas, as well as their responses to varying relative humidities. Generally, APXPS shows similar ionic compositions to those observed by ion chromatography (IC). However, XPS is a surface-sensitive method while IC is bulk-sensitive and differences are observed for species that preferentially partition to the surface or the bulk. Element-selective surface enhancement of Cl- is observed, likely caused by the presence of SO4 2-. In addition, Mg2+ is concentrated on the surface while Na+ is relatively depleted in the surface layer. Hence, the cations (Na+ and Mg2+) and the anions (Cl- and SO4 2-) show competitive correlations. At elevated relative humidity (RH), no major spectral changes were observed in the XPS results, except for the growth of an oxygen component originating from condensed H2O. Near-edge X-ray absorption fine structure (NEXAFS) measurements show that the magnesium and sodium spectra are sensitive to the presence of water, and the results imply that the surface is fully solvated already at RH = 5%. The surface solvation is also fully reversible as the RH is reduced. No major differences are observed between sample types and sample locations, indicating that the salts originated from saline lakes commonly have solvated surfaces under the environmental conditions on Earth.
Collapse
Affiliation(s)
- Xiangrui Kong
- Department of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg SE-41296 Gothenburg Sweden
| | - Suyun Zhu
- MAX IV Laboratory, Lund University SE221-00 Lund Sweden
| | | | - Jun Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University Xi'an 710127 China
| | - Wanyu Liu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University Xi'an 710127 China
| | - Pablo Corral Arroyo
- Department of Chemistry and Applied Biosciences, ETH Zurich Zurich Switzerland
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zurich Zurich Switzerland
| | - Sen Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University Xi'an 710127 China
| | - Jan B C Pettersson
- Department of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg SE-41296 Gothenburg Sweden
| |
Collapse
|
8
|
Barkatt A, Okutsu M. Obtaining elemental sulfur for Martian sulfur concrete. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221080729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A potential candidate material for the construction of Mars habitats is concrete made from the Martian regolith and sulfur extracted from the regolith itself. Sulfur concrete, which has excellent mechanical properties, can be prepared at a low temperature (<150 °) and without water (unlike Portland-cement concrete). The surface of Mars has a much higher concentration of sulfur than those of the Earth, the Moon, or the asteroids. Sulfur on Mars, however, exists not as elemental sulfur—which is needed in concrete production—but as sulfates (usually hydrated) and sulfides. This paper surveys thermochemical and electrochemical methods that might be used to produce elemental sulfur from its compounds contained in the minerals on Mars. Possible methods include chemical or electrochemical oxidation or decomposition of sulfides, which include sulfides that exist naturally on Mars as well as sulfides that are produced via chemical or electrochemical reduction of sulfates. Some of the methods to obtain elemental sulfur—such as chemical or electrochemical oxidation or decomposition of metal sulfides or hydrogen sulfide—have already been demonstrated. The methods of producing elemental sulfur from sulfur-containing minerals on Mars will have the added benefit of generating byproducts (e.g. water, hydrogen, oxygen, and metals) that are useful for explorations of the Red Planet. In the future, chemical processes for the production of elemental sulfur may also have important industrial applications on Earth.
Collapse
Affiliation(s)
- Aaron Barkatt
- The Catholic University of America, Washington, DC, USA
| | | |
Collapse
|
9
|
Cockell CS. Bridging the gap between microbial limits and extremes in space: space microbial biotechnology in the next 15 years. Microb Biotechnol 2022; 15:29-41. [PMID: 34534397 PMCID: PMC8719799 DOI: 10.1111/1751-7915.13927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 12/01/2022] Open
Abstract
The establishment of a permanent human settlement in space is one of humanity's ambitions. To achieve this, microorganisms will be used to carry out many functions such as recycling, food and pharmaceutical production, mining and other processes. However, the physical and chemical extremes in all locations beyond Earth exceed known growth limits of microbial life. Making microbes more tolerant of a greater range of extraterrestrial extremes will not produce organisms that can grow in unmodified extraterrestrial environments since in many of them not even liquid water can exist. However, by narrowing the gap, the engineering demands on bioindustrial processes can be reduced and greater robustness can be incorporated into the biological component. I identify and describe these required microbial biotechnological modifications and speculate on long-term possibilities such as microbial biotechnology on Saturn's moon Titan to support a human presence in the outer Solar System and bioprocessing of asteroids. A challenge for space microbial biotechnology in the coming decades is to narrow the microbial gap by systemically identifying the genes required to do this and incorporating them into microbial systems that can be used to carry out bioindustrial processes of interest.
Collapse
Affiliation(s)
- Charles S. Cockell
- UK Centre for AstrobiologySchool of Physics and AstronomyUniversity of EdinburghEdinburghUK
| |
Collapse
|
10
|
Recognition of Sedimentary Rock Occurrences in Satellite and Aerial Images of Other Worlds—Insights from Mars. REMOTE SENSING 2021. [DOI: 10.3390/rs13214296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sedimentary rocks provide records of past surface and subsurface processes and environments. The first step in the study of the sedimentary rock record of another world is to learn to recognize their occurrences in images from instruments aboard orbiting, flyby, or aerial platforms. For two decades, Mars has been known to have sedimentary rocks; however, planet-wide identification is incomplete. Global coverage at 0.25–6 m/pixel, and observations from the Curiosity rover in Gale crater, expand the ability to recognize Martian sedimentary rocks. No longer limited to cases that are light-toned, lightly cratered, and stratified—or mimic original depositional setting (e.g., lithified deltas)—Martian sedimentary rocks include dark-toned examples, as well as rocks that are erosion-resistant enough to retain small craters as well as do lava flows. Breakdown of conglomerates, breccias, and even some mudstones, can produce a pebbly regolith that imparts a “smooth” appearance in satellite and aerial images. Context is important; sedimentary rocks remain challenging to distinguish from primary igneous rocks in some cases. Detection of ultramafic, mafic, or andesitic compositions do not dictate that a rock is igneous, and clast genesis should be considered separately from the depositional record. Mars likely has much more sedimentary rock than previously recognized.
Collapse
|
11
|
Complex Brines and Their Implications for Habitability. Life (Basel) 2021; 11:life11080847. [PMID: 34440591 PMCID: PMC8398403 DOI: 10.3390/life11080847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
There is evidence that life on Earth originated in cold saline waters around scorching hydrothermal vents, and that similar conditions might exist or have existed on Mars, Europa, Ganymede, Enceladus, and other worlds. Could potentially habitable complex brines with extremely low freezing temperatures exist in the shallow subsurface of these frigid worlds? Earth, Mars, and carbonaceous chondrites have similar bulk elemental abundances, but while the Earth is depleted in the most volatile elements, the Icy Worlds of the outer solar system are expected to be rich in them. The cooling of ionic solutions containing substances that likely exist in the Icy Worlds could form complex brines with the lowest eutectic temperature possible for the compounds available in them. Indeed, here, we show observational and theoretical evidence that even elements present in trace amounts in nature are concentrated by freeze–thaw cycles, and therefore contribute significantly to the formation of brine reservoirs that remain liquid throughout the year in some of the coldest places on Earth. This is interesting because the eutectic temperature of water–ammonia solutions can be as low as ~160 K, and significant fractions of the mass of the Icy Worlds are estimated to be water substance and ammonia. Thus, briny solutions with eutectic temperature of at least ~160 K could have formed where, historically, temperature have oscillated above and below ~160 K. We conclude that complex brines must exist in the shallow subsurface of Mars and the Icy Worlds, and that liquid saline water should be present where ice has existed, the temperature is above ~160 K, and evaporation and sublimation have been inhibited.
Collapse
|
12
|
Bishop JL, Yeşilbaş M, Hinman NW, Burton ZFM, Englert PAJ, Toner JD, McEwen AS, Gulick VC, Gibson EK, Koeberl C. Martian subsurface cryosalt expansion and collapse as trigger for landslides. SCIENCE ADVANCES 2021; 7:eabe4459. [PMID: 33536216 PMCID: PMC7857681 DOI: 10.1126/sciadv.abe4459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/15/2020] [Indexed: 05/16/2023]
Abstract
On Mars, seasonal martian flow features known as recurring slope lineae (RSL) are prevalent on sun-facing slopes and are associated with salts. On Earth, subsurface interactions of gypsum with chlorides and oxychlorine salts wreak havoc: instigating sinkholes, cave collapse, debris flows, and upheave. Here, we illustrate (i) the disruptive potential of sulfate-chloride reactions in laboratory soil crust experiments, (ii) the formation of thin films of mixed ice-liquid water "slush" at -40° to -20°C on salty Mars analog grains, (iii) how mixtures of sulfates and chlorine salts affect their solubilities in low-temperature environments, and (iv) how these salt brines could be contributing to RSL formation on Mars. Our results demonstrate that interactions of sulfates and chlorine salts in fine-grained soils on Mars could absorb water, expand, deliquesce, cause subsidence, form crusts, disrupt surfaces, and ultimately produce landslides after dust loading on these unstable surfaces.
Collapse
Affiliation(s)
- J L Bishop
- Carl Sagan Center, SETI Institute, Mountain View, CA 94043, USA.
- Space Science and Astrobiology, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - M Yeşilbaş
- Carl Sagan Center, SETI Institute, Mountain View, CA 94043, USA
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - N W Hinman
- Department of Geosciences, University of Montana, Missoula, MT 59812, USA
| | - Z F M Burton
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| | - P A J Englert
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - J D Toner
- Department of Earth & Space Sciences, University of Washington, Seattle, WA 98195, USA
| | - A S McEwen
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA
| | - V C Gulick
- Carl Sagan Center, SETI Institute, Mountain View, CA 94043, USA
- Space Science and Astrobiology, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - E K Gibson
- Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, TX 77058, USA
| | - C Koeberl
- Department of Lithospheric Research, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Azua-Bustos A, Fairén AG, Silva CG, Carrizo D, Fernández-Martínez MÁ, Arenas-Fajardo C, Fernández-Sampedro M, Gil-Lozano C, Sánchez-García L, Ascaso C, Wierzchos J, Rampe EB. Inhabited subsurface wet smectites in the hyperarid core of the Atacama Desert as an analog for the search for life on Mars. Sci Rep 2020; 10:19183. [PMID: 33154541 PMCID: PMC7645800 DOI: 10.1038/s41598-020-76302-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/16/2020] [Indexed: 01/21/2023] Open
Abstract
The modern Martian surface is unlikely to be habitable due to its extreme aridity among other environmental factors. This is the reason why the hyperarid core of the Atacama Desert has been studied as an analog for the habitability of Mars for more than 50 years. Here we report a layer enriched in smectites located just 30 cm below the surface of the hyperarid core of the Atacama. We discovered the clay-rich layer to be wet (a phenomenon never observed before in this region), keeping a high and constant relative humidity of 78% (aw 0.780), and completely isolated from the changing and extremely dry subaerial conditions characteristic of the Atacama. The smectite-rich layer is inhabited by at least 30 halophilic species of metabolically active bacteria and archaea, unveiling a previously unreported habitat for microbial life under the surface of the driest place on Earth. The discovery of a diverse microbial community in smectite-rich subsurface layers in the hyperarid core of the Atacama, and the collection of biosignatures we have identified within the clays, suggest that similar shallow clay deposits on Mars may contain biosignatures easily reachable by current rovers and landers.
Collapse
Affiliation(s)
- Armando Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain.
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
| | - Alberto G Fairén
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain.
- Department of Astronomy, Cornell University, Ithaca, NY, 14853, USA.
| | | | - Daniel Carrizo
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain
| | | | | | | | - Carolina Gil-Lozano
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain
- Laboratory of Planetology and Geodynamics, Université de Nantes, 44322, Nantes, France
| | | | - Carmen Ascaso
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - Jacek Wierzchos
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - Elizabeth B Rampe
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| |
Collapse
|
14
|
Cockell CS, Wilhelm MB, Perl S, Wadsworth J, Payler S, McMahon S, Paling S, Edwards T. 0.25 Ga Salt Deposits Preserve Signatures of Habitable Conditions and Ancient Lipids. ASTROBIOLOGY 2020; 20:864-877. [PMID: 32286848 DOI: 10.1089/ast.2019.2053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polygonal features in a ∼250 million-year-old Permian evaporitic deposit were investigated for their geological and organic content to test the hypothesis that they could preserve the signature of ancient habitable conditions and biological activity. Investigations on evaporitic rock were carried out as part of the MIne Analog Research (MINAR) project at Boulby Mine, the United Kingdom. The edges of the polygons have a higher clay content and contain higher abundances of minerals such as quartz and microcline, and clays such as illite and chlorite, compared with the interior of polygons, suggesting that the edges were preferred locations for the accumulation of weathering products during their formation. The mineral content and its strontium isotope ratio suggest that the material is from continental weathering at the borders of the Permian Zechstein Sea. The edges of the polygons contain material with mean δ13C and δ15N values of -20.8 and 5.3, respectively. Lipids, including alkanes and hopanes, were extracted from the interior and edges of the polygons, which are inferred to represent organic material entrained in the evaporites when they were formed. The presence of long-chain alkanes (C20-C35) that lack a carbon preference, low abundances of C23-C29 hopanes, and lack of marine, evaporitic, or thermal maturity indicators show that lipid biomarkers were, at least in part, potentially derived from a continental source and have not undergone significant thermal maturation since deposition. Lipid extractions using weak acids revealed significantly more lipids than those without acid, potentially indicating that encapsulation was not the only type of preservation mechanism occurring in Boulby salts. These data demonstrate the potential for ancient evaporites and their polygons to preserve information on local geological conditions, ancient habitability, and evidence of life. The data show that analogous martian evaporitic deposits are good targets for future life detection missions and the investigation of ancient martian habitability.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Mary Beth Wilhelm
- Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, California
| | - Scott Perl
- California Institute of Technology/NASA Jet Propulsion Laboratory, Pasadena, California
| | - Jennifer Wadsworth
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Sam Payler
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- European Astronaut Centre, Cologne, Germany
| | - Sean McMahon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Sean Paling
- STFC Boulby Underground Laboratory, Boulby, United Kingdom
| | - Thomas Edwards
- STFC Boulby Underground Laboratory, Boulby, United Kingdom
| |
Collapse
|
15
|
Aerts JW, Riedo A, Melton DJ, Martini S, Flahaut J, Meierhenrich UJ, Meinert C, Myrgorodska I, Lindner R, Ehrenfreund P. Biosignature Analysis of Mars Soil Analogs from the Atacama Desert: Challenges and Implications for Future Missions to Mars. ASTROBIOLOGY 2020; 20:766-784. [PMID: 32167834 DOI: 10.1089/ast.2019.2063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The detection of biosignatures on Mars is of outstanding interest in the current field of astrobiology and drives various fields of research, ranging from new sample collection strategies to the development of more sensitive detection techniques. Detailed analysis of the organic content in Mars analog materials collected from extreme environments on Earth improves the current understanding of biosignature preservation and detection under conditions similar to those of Mars. In this article, we examined the biological fingerprint of several locations in the Atacama Desert (Chile), which include different wet and dry, and intermediate to high elevation salt flats (also named salars). Liquid chromatography and multidimensional gas chromatography mass spectrometry measurement techniques were used for the detection and analysis of amino acids extracted from the salt crusts and sediments by using sophisticated extraction procedures. Illumina 16S amplicon sequencing was used for the identification of microbial communities associated with the different sample locations. Although amino acid load and organic carbon and nitrogen quantities were generally low, it was found that most of the samples harbored complex and versatile microbial communities, which were dominated by (extremely) halophilic microorganisms (most notably by species of the Archaeal family Halobacteriaceae). The dominance of salts (i.e., halites and sulfates) in the investigated samples leaves its mark on the composition of the microbial communities but does not appear to hinder the potential of life to flourish since it can clearly adapt to the higher concentrations. Although the Atacama Desert is one of the driest and harshest environments on Earth, it is shown that there are still sub-locations where life is able to maintain a foothold, and, as such, salt flats could be considered as interesting targets for future life exploration missions on Mars.
Collapse
Affiliation(s)
- Joost W Aerts
- Molecular Cell Biology, Faculty of Science, VU University Amsterdam, Amsterdam, The Netherlands
| | - Andreas Riedo
- Astrobiology Laboratory, Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| | - Daniel J Melton
- Astrobiology Laboratory, Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| | - Simone Martini
- Astrobiology Laboratory, Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| | - Jessica Flahaut
- CRPG, CNRS/University of Lorraine, Vandoeuvre-les-Nancy, France
| | - Uwe J Meierhenrich
- CNRS, Institut de Chimie de Nice UMR 7272, Université Côte d'Azur, Nice, France
| | - Cornelia Meinert
- CNRS, Institut de Chimie de Nice UMR 7272, Université Côte d'Azur, Nice, France
| | | | - Robert Lindner
- Life Support and Physical Sciences Instrumentation Section, European Space Agency, ESTEC, Noordwijk, The Netherlands
| | - Pascale Ehrenfreund
- Astrobiology Laboratory, Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| |
Collapse
|
16
|
Carrier B, Beaty D, Meyer M, Blank J, Chou L, DasSarma S, Des Marais D, Eigenbrode J, Grefenstette N, Lanza N, Schuerger A, Schwendner P, Smith H, Stoker C, Tarnas J, Webster K, Bakermans C, Baxter B, Bell M, Benner S, Bolivar Torres H, Boston P, Bruner R, Clark B, DasSarma P, Engelhart A, Gallegos Z, Garvin Z, Gasda P, Green J, Harris R, Hoffman M, Kieft T, Koeppel A, Lee P, Li X, Lynch K, Mackelprang R, Mahaffy P, Matthies L, Nellessen M, Newsom H, Northup D, O'Connor B, Perl S, Quinn R, Rowe L, Sauterey B, Schneegurt M, Schulze-Makuch D, Scuderi L, Spilde M, Stamenković V, Torres Celis J, Viola D, Wade B, Walker C, Wiens R, Williams A, Williams J, Xu J. Mars Extant Life: What's Next? Conference Report. ASTROBIOLOGY 2020; 20:785-814. [PMID: 32466662 PMCID: PMC7307687 DOI: 10.1089/ast.2020.2237] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/24/2020] [Indexed: 05/19/2023]
Abstract
On November 5-8, 2019, the "Mars Extant Life: What's Next?" conference was convened in Carlsbad, New Mexico. The conference gathered a community of actively publishing experts in disciplines related to habitability and astrobiology. Primary conclusions are as follows: A significant subset of conference attendees concluded that there is a realistic possibility that Mars hosts indigenous microbial life. A powerful theme that permeated the conference is that the key to the search for martian extant life lies in identifying and exploring refugia ("oases"), where conditions are either permanently or episodically significantly more hospitable than average. Based on our existing knowledge of Mars, conference participants highlighted four potential martian refugium (not listed in priority order): Caves, Deep Subsurface, Ices, and Salts. The conference group did not attempt to reach a consensus prioritization of these candidate environments, but instead felt that a defensible prioritization would require a future competitive process. Within the context of these candidate environments, we identified a variety of geological search strategies that could narrow the search space. Additionally, we summarized a number of measurement techniques that could be used to detect evidence of extant life (if present). Again, it was not within the scope of the conference to prioritize these measurement techniques-that is best left for the competitive process. We specifically note that the number and sensitivity of detection methods that could be implemented if samples were returned to Earth greatly exceed the methodologies that could be used at Mars. Finally, important lessons to guide extant life search processes can be derived both from experiments carried out in terrestrial laboratories and analog field sites and from theoretical modeling.
Collapse
Affiliation(s)
- B.L. Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - D.W. Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - J.G. Blank
- NASA Ames Research Center, Moffett Field, California, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - L. Chou
- Georgetown University, Washington, DC, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - S. DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | - N.L. Lanza
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - A.C. Schuerger
- University of Florida/Space Life Sciences Laboratory, Kennedy Space Center, Florida, USA
| | - P. Schwendner
- University of Florida/Space Life Sciences Laboratory, Kennedy Space Center, Florida, USA
| | - H.D. Smith
- NASA Ames Research Center, Moffett Field, California, USA
| | - C.R. Stoker
- NASA Ames Research Center, Moffett Field, California, USA
| | - J.D. Tarnas
- Brown University, Providence, Rhode Island, USA
| | - K.D. Webster
- Planetary Science Institute, Tucson, Arizona, USA
| | - C. Bakermans
- Pennsylvania State University, Altoona, Pennsylvania, USA
| | - B.K. Baxter
- Westminster College, Salt Lake City, Utah, USA
| | - M.S. Bell
- NASA Johnson Space Center, Houston, Texas, USA
| | - S.A. Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
| | - H.H. Bolivar Torres
- Universidad Nacional Autonoma de Mexico, Coyoacan, Distrito Federal Mexico, Mexico
| | - P.J. Boston
- NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, California, USA
| | - R. Bruner
- Denver Museum of Nature and Science, Denver, Colorado, USA
| | - B.C. Clark
- Space Science Institute, Littleton, Colorado, USA
| | - P. DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Z.E. Gallegos
- University of New Mexico, Albuquerque, New Mexico, USA
| | - Z.K. Garvin
- Princeton University, Princeton, New Jersey, USA
| | - P.J. Gasda
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - J.H. Green
- Texas Tech University, Lubbock, Texas, USA
| | - R.L. Harris
- Princeton University, Princeton, New Jersey, USA
| | - M.E. Hoffman
- University of New Mexico, Albuquerque, New Mexico, USA
| | - T. Kieft
- New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | | | - P.A. Lee
- College of Charleston, Charleston, South Carolina, USA
| | - X. Li
- University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - K.L. Lynch
- Lunar and Planetary Institute/USRA, Houston, Texas, USA
| | - R. Mackelprang
- California State University Northridge, Northridge, California, USA
| | - P.R. Mahaffy
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - L.H. Matthies
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - H.E. Newsom
- University of New Mexico, Albuquerque, New Mexico, USA
| | - D.E. Northup
- University of New Mexico, Albuquerque, New Mexico, USA
| | | | - S.M. Perl
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - R.C. Quinn
- NASA Ames Research Center, Moffett Field, California, USA
| | - L.A. Rowe
- Valparaiso University, Valparaiso, Indiana, USA
| | | | | | | | - L.A. Scuderi
- University of New Mexico, Albuquerque, New Mexico, USA
| | - M.N. Spilde
- University of New Mexico, Albuquerque, New Mexico, USA
| | - V. Stamenković
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - J.A. Torres Celis
- Universidad Nacional Autonoma de Mexico, Coyoacan, Distrito Federal Mexico, Mexico
| | - D. Viola
- NASA Ames Research Center, Moffett Field, California, USA
| | - B.D. Wade
- Michigan State University, East Lansing, Michigan, USA
| | - C.J. Walker
- Delaware State University, Dover, Delaware, USA
| | - R.C. Wiens
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - J.M. Williams
- University of New Mexico, Albuquerque, New Mexico, USA
| | - J. Xu
- University of Texas, El Paso, Texas, USA
| |
Collapse
|
17
|
Cockell CS. Persistence of Habitable, but Uninhabited, Aqueous Solutions and the Application to Extraterrestrial Environments. ASTROBIOLOGY 2020; 20:617-627. [PMID: 32105517 DOI: 10.1089/ast.2019.2179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In most environments on Earth, habitable environments contain life. Experiments were conducted to investigate the decoupling of the presence of habitable conditions and life. A set of microcosms habitable for known groups of organisms, but uninhabited (i.e., uninhabited habitats), was exposed to external environmental conditions to test the hypothesis that extreme habitable environments can remain uninhabited for sustained time periods. These microcosms were made of tubes containing liquid water and inorganic N, P, and S. Organics (used as electron donors and as a C source) were provided as L and D amino acids. One set of uninhabited habitats contained no additional salts, one set contained saturated NaCl, and one set contained saturated MgSO4. A ddH2O control and a complex medium for Halobacterium were used as controls. The presence of organisms was tested by enumeration of colonists and sequencing of extracted DNA. At each time point, inoculation into fresh medium was used to test for growth of organisms. After 1 week, the "no salt" and saturated MgSO4 solutions were colonized. After 6 months, both the NaCl-saturated and Halobacterium solutions remained uninhabited, but all other samples were colonized. These experiments demonstrate that certain types of habitable liquid water environments exposed to microbial atmospheric inoculation, even on Earth, can remain devoid of reproducing life for many months. On other planetary bodies, such as Mars, these data imply the possibility of preserved transient water bodies that would record habitable conditions, but no evidence of life, even if life existed elsewhere on the planet.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, James Clerk Maxwell Building, The King's Buildings, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Thomas NH, Ehlmann BL, Meslin P, Rapin W, Anderson DE, Rivera‐Hernández F, Forni O, Schröder S, Cousin A, Mangold N, Gellert R, Gasnault O, Wiens RC. Mars Science Laboratory Observations of Chloride Salts in Gale Crater, Mars. GEOPHYSICAL RESEARCH LETTERS 2019; 46:10754-10763. [PMID: 31894167 PMCID: PMC6919417 DOI: 10.1029/2019gl082764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 05/09/2023]
Abstract
The Mars Science Laboratory Curiosity rover is traversing a sequence of stratified sedimentary rocks in Gale crater that contain varied eolian, fluviodeltaic, and lake deposits, with phyllosilicates, iron oxides, and sulfate salts. Here, we report the chloride salt distribution along the rover traverse. Chlorine is detected at low levels (<3 wt.%) in soil and rock targets with multiple MSL instruments. Isolated fine-scale observations of high chlorine (up to ≥15 wt.% Cl), detected using the ChemCam instrument, are associated with elevated Na2O and interpreted as halite grains or cements in bedrock. Halite is also interpreted at the margins of veins and in nodular, altered textures. We have not detected halite in obvious evaporitic layers. Instead, its scattered distribution indicates that chlorides emplaced earlier in particular members of the Murray formation were remobilized and reprecipitated by later groundwaters within Murray formation mudstones and in diagenetic veins and nodules.
Collapse
Affiliation(s)
- N. H. Thomas
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - B. L. Ehlmann
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - P.‐Y. Meslin
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, UPS, CNESToulouseFrance
| | - W. Rapin
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - D. E. Anderson
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - O. Forni
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, UPS, CNESToulouseFrance
| | | | - A. Cousin
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, UPS, CNESToulouseFrance
| | - N. Mangold
- Laboratoire de Planétologie et Géodynamique, UMR6112, CNRS, Université de NantesNantesFrance
| | - R. Gellert
- Department of PhysicsUniversity of GulephGulephOntarioCanada
| | - O. Gasnault
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, UPS, CNESToulouseFrance
| | - R. C. Wiens
- Los Alamos National LaboratoryLos AlamosNMUSA
| |
Collapse
|
19
|
Aerts JW, van Spanning RJM, Flahaut J, Molenaar D, Bland PA, Genge MJ, Ehrenfreund P, Martins Z. Microbial Communities in Sediments From Four Mildly Acidic Ephemeral Salt Lakes in the Yilgarn Craton (Australia) - Terrestrial Analogs to Ancient Mars. Front Microbiol 2019; 10:779. [PMID: 31133990 PMCID: PMC6512757 DOI: 10.3389/fmicb.2019.00779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/27/2019] [Indexed: 11/24/2022] Open
Abstract
The Yilgarn Craton in Australia has a large number of naturally occurring shallow ephemeral lakes underlain by a dendritic system of paleodrainage channels. Processes like evaporation, flooding, erosion, as well as inflow of saline, often acidic and ion-rich groundwater contribute to the (dynamic) nature of the lakes and the composition of the sediments. The region has previously been described as an analog environment for early Mars due to its geological and geophysical similarities. Here, we investigated sediment samples of four lake environments aimed at getting a fundamental understanding of the native microbial communities and the mineralogical and (bio)chemical composition of the sediments they are associated with. The dominant mineral phases in the sediments were quartz, feldspars and amphiboles, while halite and gypsum were the only evaporites detected. Element analysis revealed a rich and complex image, in which silicon, iron, and aluminum were the dominant ions, but relative high concentrations of trace elements such as strontium, chromium, zirconium, and barium were also found. The concentrations of organic carbon, nitrogen, and phosphorus were generally low. 16S amplicon sequencing on the Illumina platform showed the presence of diverse microbial communities in all four lake environments. We found that most of the communities were dominated by extremely halophilic Archaea of the Halobacteriaceae family. The dynamic nature of these lakes appears to influence the biological, biochemical, and geological components of the ecosystem to a large effect. Inter- and intra-lake variations in the distributions of microbial communities were significant, and could only to a minor degree be explained by underlying environmental conditions. The communities are likely significantly influenced by small scale local effects caused by variations in geological settings and dynamic interactions caused by aeolian transport and flooding and evaporation events.
Collapse
Affiliation(s)
- Joost W Aerts
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rob J M van Spanning
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jessica Flahaut
- Centre de Recherches Pétrographiques et Géochimiques, Centre National de la Recherche Scientifique/Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Douwe Molenaar
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Phil A Bland
- Department of Applied Geology, Curtin University, Perth, WA, Australia
| | - Matt J Genge
- Department of Earth Science and Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Pascale Ehrenfreund
- Leiden Observatory, Leiden University, Leiden, Netherlands.,Space Policy Institute, Elliott School of International Affairs, George Washington University, Washington, DC, United States
| | - Zita Martins
- Centro de Química-Física Molecular-Institute of Nanoscience and Nanotechnology (CQFM-IN), Institute for Bioengineering and Biosciences (iBB), Departamento de Engenharia Química, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
Fornaro T, Steele A, Brucato JR. Catalytic/Protective Properties of Martian Minerals and Implications for Possible Origin of Life on Mars. Life (Basel) 2018; 8:life8040056. [PMID: 30400661 PMCID: PMC6315534 DOI: 10.3390/life8040056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022] Open
Abstract
Minerals might have played critical roles for the origin and evolution of possible life forms on Mars. The study of the interactions between the "building blocks of life" and minerals relevant to Mars mineralogy under conditions mimicking the harsh Martian environment may provide key insight into possible prebiotic processes. Therefore, this contribution aims at reviewing the most important investigations carried out so far about the catalytic/protective properties of Martian minerals toward molecular biosignatures under Martian-like conditions. Overall, it turns out that the fate of molecular biosignatures on Mars depends on a delicate balance between multiple preservation and degradation mechanisms, often regulated by minerals, which may take place simultaneously. Such a complexity requires more efforts in simulating realistically the Martian environment in order to better inspect plausible prebiotic pathways and shed light on the nature of the organic compounds detected both in meteorites and on the surface of Mars through in situ analysis.
Collapse
Affiliation(s)
- Teresa Fornaro
- Geophysical Laboratory of the Carnegie Institution for Science, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA.
| | - Andrew Steele
- Geophysical Laboratory of the Carnegie Institution for Science, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA.
| | - John Robert Brucato
- INAF-Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125 Firenze, Italy.
| |
Collapse
|
21
|
Wang A, Sobron P, Kong F, Zheng M, Zhao YYS. Dalangtan Saline Playa in a Hyperarid Region on Tibet Plateau: II. Preservation of Salts with High Hydration Degrees in Subsurface. ASTROBIOLOGY 2018; 18:1254-1276. [PMID: 30152704 DOI: 10.1089/ast.2018.1829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Based on a field expedition to the Dalangtan (DLT) saline playa located in a hyperarid region (Qaidam Basin) on the Tibet Plateau and follow-up investigations, we report the mineralogy and geochemistry of the salt layers in two vertical stratigraphic cross sections in the DLT playa. Na-, Ca-, Mg-, KCaMg-sulfates; Na-, K-, KMg-chlorides; mixed (K, Mg)-chloride-sulfate; and chlorate and perchlorate were identified in the collected samples. This mineral assemblage represents the last-stage precipitation products from Na-K-Mg-Ca-Cl-SO4 brine and the oxychlorine formation from photochemistry reaction similar to other hyperarid regions on Earth. The spatial distributions of these salts in both stratigraphic cross sections suggest very limited brine volumes during the precipitation episodes in the Holocene era. More importantly, sulfates and chlorides with a high degree of hydrations were found preserved within the subsurface salt-rich layers of DLT saline playa, where the environmental conditions at the surface are controlled by the hyperaridity in the Qaidam Basin on the Tibet Plateau. Our findings suggest a very different temperature and relative humidity environment maintained by the hydrous salts in a subsurface salty layer, where the climatic conditions at surface have very little or no influence. This observation bears some similarities with four observations on Mars, which implies not only a large humidity reservoir in midlatitude and equatorial regions on Mars but also habitability potential that warrants further investigation.
Collapse
Affiliation(s)
- Alian Wang
- 1 Department of Earth and Planetary Sciences, McDonnell Center for Space Sciences, Washington University in St. Louis , St. Louis, Missouri
| | - Pablo Sobron
- 2 SETI Institute , Mountain View, California
- 3 Impossible Sensing , St. Louis, Missouri
| | - Fanjing Kong
- 4 MLR Key Laboratory of Saline Lake Environments and Resources, Institute of Mineral Resources , Chinese Academy of Geological Sciences, Beijing, China
| | - Mianping Zheng
- 4 MLR Key Laboratory of Saline Lake Environments and Resources, Institute of Mineral Resources , Chinese Academy of Geological Sciences, Beijing, China
| | - Yu-Yan Sara Zhao
- 5 Institute of Geochemistry , Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
22
|
Rongier G, Pankratius V. Computer-Aided Exploration of the Martian Geology. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2018; 5:393-407. [PMID: 31032384 PMCID: PMC6473513 DOI: 10.1029/2018ea000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/19/2018] [Accepted: 08/02/2018] [Indexed: 06/09/2023]
Abstract
Motivated by growing amounts of data and enhanced resolution from orbiters and rovers, systems for computer-aided decision support are becoming invaluable in planetary exploration. This article illustrates the value of such systems for a case study on the exploration of the Martian geology, along with improvements in assessing the favorability for landing. Under the current technical status quo for landing and rover's mobility, results show that Eastern Margaritifer Terra and Meridiani Planum stand out due to their high density of scientific targets and flat surfaces. However, our approach allows us to scale the analysis using different scenarios for the entire planet, quantifying the substantial benefits should higher landing elevations and higher rover speeds be realized in the future. This analysis offers new insights into the interplay of technical and scientific constraints.
Collapse
Affiliation(s)
- Guillaume Rongier
- Datascience in Astro‐ & Geoinformatics GroupMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Victor Pankratius
- Datascience in Astro‐ & Geoinformatics GroupMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
23
|
Huang 黄俊 J, Salvatore MR, Edwards CS, Harris RL, Christensen PR. A Complex Fluviolacustrine Environment on Early Mars and Its Astrobiological Potentials. ASTROBIOLOGY 2018; 18:1081-1091. [PMID: 30074400 DOI: 10.1089/ast.2017.1757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chloride-bearing deposits and phyllosilicates-bearing units are widely distributed in the southern highlands of Mars, but these phases are rarely found together in fluviolacustrine environments. The study of the coexistence of these minerals can provide important insights into geochemistry, water activity, and ultimately the climate and habitability of early Mars. Here we use high-resolution compositional and morphological orbiter data to identify and characterize the context of diverse minerals in a Noachian fluviolacustrine environment west of Knobel crater (6.7°S, 226.8°W). The chlorides in this region are likely formed through the evaporation of brines in a closed topographic basin. The formation age of chlorides is older than 3.7 Ga, based on stratigraphic relationships identified and previously obtained crater retention ages. The timing of the alteration of basaltic materials to iron-magnesium smectites in relation to the chloride formation in this location is enigmatic and is unable to be resolved with currently available remote sensing data. Importantly, we find that this close relationship between these key minerals revealed by the currently available data details a complex and intimate history of aqueous activity in the region. Of critical importance are the evaporitic deposits as analogous terrestrial deposits have been shown to preserve ancient biosignatures and possibly even sustain microbial communities for hundreds of millions of years. These salts could have protected organic matter from ultraviolet radiation, or even allow modern habitable microenvironments in the shallow subsurface through periodic deliquescence. The high astrobiology potential of this site makes it a good candidate for future landed and sample return missions (e.g., the Chinese 2020 Mars mission).
Collapse
Affiliation(s)
- Jun Huang 黄俊
- 1 Planetary Science Institute, State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences , Wuhan, China
- 2 Lunar and Planetary Science Laboratory, Macau University of Science and Technology-Partner Laboratory of Key Laboratory of Lunar and Deep Space Exploration , Chinese Academy of Sciences, Macau, China
- 5 School of Earth and Space Exploration, Arizona State University , Tempe, Arizona
| | - Mark R Salvatore
- 3 Department of Physics and Astronomy, Northern Arizona University , Flagstaff, Arizona
| | - Christopher S Edwards
- 3 Department of Physics and Astronomy, Northern Arizona University , Flagstaff, Arizona
| | - Rachel L Harris
- 4 Department of Geosciences, Princeton University , Princeton, New Jersey
| | - Philip R Christensen
- 5 School of Earth and Space Exploration, Arizona State University , Tempe, Arizona
| |
Collapse
|
24
|
Cheng Z, Xiao L, Wang H, Yang H, Li J, Huang T, Xu Y, Ma N. Bacterial and Archaeal Lipids Recovered from Subsurface Evaporites of Dalangtan Playa on the Tibetan Plateau and Their Astrobiological Implications. ASTROBIOLOGY 2017; 17:1112-1122. [PMID: 28926282 DOI: 10.1089/ast.2016.1526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Qaidam Basin (Tibetan Plateau) is considered an applicable analogue to Mars with regard to sustained extreme aridity and abundant evaporites. To investigate the possibility of the preservation of microbial lipids under these Mars analog conditions, we conducted a mineralogical and organic geochemistry study on samples collected from two Quaternary sections in Dalangtan Playa, northwestern Qaidam Basin, which will enhance our understanding of the potential preservation of molecular biomarkers on Mars. Two sedimentary units were identified along two profiles: one salt unit characterized by a predominance of gypsum and halite, and one detrital unit with a decrease of gypsum and halite and enrichment in siliciclastic minerals. Bacterial fatty acids and archaeal acyclic diether and tetraether membrane lipids were detected, and they varied throughout the sections in concentration and abundance. Bacterial and archaeal biomolecules indicate a dominance of Gram-positive bacteria and halophilic archaea in this hypersaline ecosystem that is similar to those in other hypersaline environments. Furthermore, the abundance of bacterial lipids decreases with the increase of salinity, whereas archaeal lipids showed a reverse trend. The detection of microbial lipids in hypersaline environments would indicate, for example on Mars, a high potential for the detection of microbial biomarkers in evaporites over geological timescales. Key Words: Dalangtan playa-The Qaidam Basin-Subsurface evaporites-Lipid biomarkers-Mars. Astrobiology 17, 1112-1122.
Collapse
Affiliation(s)
- Ziye Cheng
- 1 State Key Laboratory of Geological Processes and Mineral Resources, Planetary Science Institute, School of Earth Sciences, China University of Geosciences , Wuhan, China
| | - Long Xiao
- 1 State Key Laboratory of Geological Processes and Mineral Resources, Planetary Science Institute, School of Earth Sciences, China University of Geosciences , Wuhan, China
- 2 Macau University of Science and Technology , Macau, China
| | - Hongmei Wang
- 3 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan, China
| | - Huan Yang
- 3 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan, China
| | - Jingjing Li
- 4 State Key Laboratory of Lake Sciences and Environment, Nanjing Institute of Geography and Limnology , Chinese Academy of Sciences, Nanjing, China
| | - Ting Huang
- 1 State Key Laboratory of Geological Processes and Mineral Resources, Planetary Science Institute, School of Earth Sciences, China University of Geosciences , Wuhan, China
| | - Yi Xu
- 2 Macau University of Science and Technology , Macau, China
| | - Nina Ma
- 5 Key Laboratory of Saline Lake Resources and Environments, Chinese Academy of Geological Sciences , Beijing, China
| |
Collapse
|
25
|
Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nat Commun 2017; 8:15978. [PMID: 28691699 PMCID: PMC5508135 DOI: 10.1038/ncomms15978] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/18/2017] [Indexed: 11/08/2022] Open
Abstract
The Eridania region in the southern highlands of Mars once contained a vast inland sea with a volume of water greater than that of all other Martian lakes combined. Here we show that the most ancient materials within Eridania are thick (>400 m), massive (not bedded), mottled deposits containing saponite, talc-saponite, Fe-rich mica (for example, glauconite-nontronite), Fe- and Mg-serpentine, Mg-Fe-Ca-carbonate and probable Fe-sulphide that likely formed in a deep water (500-1,500 m) hydrothermal setting. The Eridania basin occurs within some of the most ancient terrain on Mars where striking evidence for remnant magnetism might suggest an early phase of crustal spreading. The relatively well-preserved seafloor hydrothermal deposits in Eridania are contemporaneous with the earliest evidence for life on Earth in potentially similar environments 3.8 billion years ago, and might provide an invaluable window into the environmental conditions of early Earth.
Collapse
|
26
|
Hays LE, Graham HV, Des Marais DJ, Hausrath EM, Horgan B, McCollom TM, Parenteau MN, Potter-McIntyre SL, Williams AJ, Lynch KL. Biosignature Preservation and Detection in Mars Analog Environments. ASTROBIOLOGY 2017; 17:363-400. [PMID: 28177270 PMCID: PMC5478115 DOI: 10.1089/ast.2016.1627] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 363-400.
Collapse
Affiliation(s)
- Lindsay E. Hays
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Korablev OI, Dobrolensky Y, Evdokimova N, Fedorova AA, Kuzmin RO, Mantsevich SN, Cloutis EA, Carter J, Poulet F, Flahaut J, Griffiths A, Gunn M, Schmitz N, Martín-Torres J, Zorzano MP, Rodionov DS, Vago JL, Stepanov AV, Titov AY, Vyazovetsky NA, Trokhimovskiy AY, Sapgir AG, Kalinnikov YK, Ivanov YS, Shapkin AA, Ivanov AY. Infrared Spectrometer for ExoMars: A Mast-Mounted Instrument for the Rover. ASTROBIOLOGY 2017; 17:542-564. [PMID: 28731817 DOI: 10.1089/ast.2016.1543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
ISEM (Infrared Spectrometer for ExoMars) is a pencil-beam infrared spectrometer that will measure reflected solar radiation in the near infrared range for context assessment of the surface mineralogy in the vicinity of the ExoMars rover. The instrument will be accommodated on the mast of the rover and will be operated together with the panoramic camera (PanCam), high-resolution camera (HRC). ISEM will study the mineralogical and petrographic composition of the martian surface in the vicinity of the rover, and in combination with the other remote sensing instruments, it will aid in the selection of potential targets for close-up investigations and drilling sites. Of particular scientific interest are water-bearing minerals, such as phyllosilicates, sulfates, carbonates, and minerals indicative of astrobiological potential, such as borates, nitrates, and ammonium-bearing minerals. The instrument has an ∼1° field of view and covers the spectral range between 1.15 and 3.30 μm with a spectral resolution varying from 3.3 nm at 1.15 μm to 28 nm at 3.30 μm. The ISEM optical head is mounted on the mast, and its electronics box is located inside the rover's body. The spectrometer uses an acousto-optic tunable filter and a Peltier-cooled InAs detector. The mass of ISEM is 1.74 kg, including the electronics and harness. The science objectives of the experiment, the instrument design, and operational scenarios are described. Key Words: ExoMars-ISEM-Mars-Surface-Mineralogy-Spectroscopy-AOTF-Infrared. Astrobiology 17, 542-564.
Collapse
Affiliation(s)
| | | | | | | | - Ruslan O Kuzmin
- 1 Space Research Institute IKI , Moscow, Russia
- 2 Vernadsky Institute of Geochemistry and Analytical Chemistry GEOKHI , Moscow, Russia
| | - Sergei N Mantsevich
- 1 Space Research Institute IKI , Moscow, Russia
- 3 Department of Physics, Lomonosov Moscow State University , Russia
| | | | - John Carter
- 5 Institut d'Astrophysique Spatiale IAS-CNRS/Université Paris Sud , Orsay, France
| | - Francois Poulet
- 5 Institut d'Astrophysique Spatiale IAS-CNRS/Université Paris Sud , Orsay, France
| | - Jessica Flahaut
- 6 Université Lyon 1 , ENS-Lyon, CNRS, UMR 5276 LGL-TPE, Villeurbanne, France
| | - Andrew Griffiths
- 7 Mullard Space Science Laboratory, University College London , Dorking, United Kingdom
| | - Matthew Gunn
- 8 Department of Physics, Aberystwyth University , Aberystwyth, United Kingdom
| | | | - Javier Martín-Torres
- 10 Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology , Kiruna, Sweden
- 11 Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR) , Granada, Spain
| | - Maria-Paz Zorzano
- 10 Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology , Kiruna, Sweden
- 12 Centro de Astrobiología (INTA-CSIC) , Madrid, Spain
| | | | | | - Alexander V Stepanov
- 1 Space Research Institute IKI , Moscow, Russia
- 3 Department of Physics, Lomonosov Moscow State University , Russia
| | | | | | | | | | - Yurii K Kalinnikov
- 14 National Research Institute for Physicotechnical and Radio Engineering Measurements VNIIFTRI , Mendeleevo, Russia
| | - Yurii S Ivanov
- 15 Main Astronomical Observatory MAO NASU , Kyiv, Ukraine
| | | | | |
Collapse
|
28
|
Martín-Torres J, Zorzano MP. Should We Invest in Martian Brine Research to Reduce Mars Exploration Costs? ASTROBIOLOGY 2017; 17:3-7. [PMID: 28026989 PMCID: PMC5278815 DOI: 10.1089/ast.2016.1602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Javier Martín-Torres
- Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Kiruna, Sweden
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Granada, Spain
| | - María-Paz Zorzano
- Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Kiruna, Sweden
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| |
Collapse
|
29
|
Anderson FS, Levine J, Whitaker TJ. Rb-Sr resonance ionization geochronology of the Duluth Gabbro: A proof of concept for in situ dating on the Moon. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1457-1464. [PMID: 26212160 PMCID: PMC5008139 DOI: 10.1002/rcm.7253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 05/31/2023]
Abstract
RATIONALE We report new (87) Rb-(87) Sr isochron data for the Duluth Gabbro, obtained with a laser ablation resonance ionization mass spectrometer that is a prototype spaceflight instrument. The gabbro has a Rb abundance and a range of Rb/Sr ratios that are similar to those of KREEP-rich basalts found on the nearside of the Moon. Dating of previously un-sampled young lunar basalts, which generally have a KREEP-rich composition, is critical for understanding the bombardment history of the Moon since 3.5 Ga, which in turn informs the chronology of the solar system. Measurements of lunar analogs like the Duluth Gabbro are a proof of concept for in situ dating of rocks on the Moon to constrain lunar history. METHODS Using the laser ablation resonance ionization mass spectrometer we ablated hundreds of locations on a sample, and at each one measured the relative abundances of the isotopes of Rb and Sr. A delay between the resonant photoionization processes separates the elements in time, eliminating the potential interference between (87) Rb and (87) Sr. This enables the determination of (87) Rb-(87) Sr isochron ages without sophisticated sample preparation that would be impractical in a spaceflight context. RESULTS We successfully dated the Duluth Gabbro to 800 ± 300 Ma using traditional isochron methods like those used in our earlier analysis of the Martian meteorite Zagami. However, we were able to improve this to 1100 ± 200 Ma, an accuracy of <1σ, using a novel normalization approach. Both these results agree with the age determined by Faure et al. in 1969, but our novel normalization improves our precision. CONCLUSIONS Demonstrating that this technique can be used for measurements at this level of difficulty makes ~32% of the lunar nearside amenable to in situ dating, which can complement or supplement a sample return program. Given these results and the scientific value of dating young lunar basalts, we have recently proposed a spaceflight mission called the Moon Age and Regolith Explorer (MARE).
Collapse
Affiliation(s)
- F Scott Anderson
- Southwest Research Institute, Suite 300, 1050 Walnut St, Boulder, CO, 80302, USA
| | - Jonathan Levine
- Department of Physics and Astronomy, Colgate University, Hamilton, NY, 13346, USA
| | - Tom J Whitaker
- Southwest Research Institute, Suite 300, 1050 Walnut St, Boulder, CO, 80302, USA
| |
Collapse
|
30
|
Evidence of in situ microbial activity and sulphidogenesis in perennially sub-0 °C and hypersaline sediments of a high Arctic permafrost spring. Extremophiles 2014; 19:1-15. [DOI: 10.1007/s00792-014-0703-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
31
|
Bishop JL, Quinn R, Dyar MD. Spectral and thermal properties of perchlorate salts and implications for Mars. THE AMERICAN MINERALOGIST 2014; 99:1580-1592. [PMID: 32042202 PMCID: PMC7008933 DOI: 10.2138/am.2014.4707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
K+, Na+, Ca2+, Mg2+, Fe2+, Fe3+, and Al3+ perchlorate salts were studied to provide spectral and thermal data for detecting and characterizing their possible presence on Mars. Spectral and thermal analyses are coordinated with structural analyses to understand how different cations and different hydration levels affect the mineral system. Near-infrared (NIR) spectral features for perchlorates are dominated by H2O bands that occur at 0.978-1.01, 1.17-1.19, 1.42-1.48, 1.93-1.99, and 2.40-2.45 μm. Mid-IR spectral features are observed for vibrations of the tetrahedral ClO 4 - ion and occur as reflectance peaks at 1105-1130 cm-1 (~8.6-9 μm), 760-825 cm-1 (~12-13 μm), 630 cm-1 (~15.9 μm), 460-495 (~20-22 μm), and 130-215 (~50-75 μm). The spectral bands in both regions are sensitive to the type of cation present because the polarizing power is related to the band center for many of the spectral features. Band assignments were confirmed for many of the spectral features due to opposing trends in vibrational energies for the ClO 4 - and H2O groups connected to different octahedral cations. Differential scanning calorimetry (DSC) data show variable patterns of water loss and thermal decomposition temperatures for perchlorates with different cations, consistent with changes in spectral features measured under varying hydration conditions. Results of the DSC analyses indicate that the bond energies of H2O in perchlorates are different for each cation and hydration state. Structural parameters are available for Mg perchlorates (Robertson and Bish 2010) and the changes in structure due to hydration state are consistent with DSC parameters and spectral features. Analyses of changes in the Mg perchlorate structures with H2O content inform our understanding of the effects of hydration on other perchlorates, for which the specific structures are less well defined. Spectra of the hydrated Fe2+ and Fe3+ perchlorates changed significantly upon heating to 100 °C or measurement under low-moisture conditions indicating that they are less stable than other perchlorates under dehydrated conditions. The perchlorate abundances observed by Phoenix and MSL are likely too low to be identified from orbit by CRISM, but may be sufficient to be identifiable by a VNIR imager on a future rover.
Collapse
Affiliation(s)
- Janice L. Bishop
- SETI Institute, Carl Sagan Center, Mountain View, California, 94043, U.S.A
- Space Science and Astrobiology Division, NASA-Ames Research Center, Moffett Field, California, 94035, U.S.A
| | - Richard Quinn
- SETI Institute, Carl Sagan Center, Mountain View, California, 94043, U.S.A
- Space Science and Astrobiology Division, NASA-Ames Research Center, Moffett Field, California, 94035, U.S.A
| | - M. Darby Dyar
- Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts, 01075, U.S.A
| |
Collapse
|
32
|
An Alternative Approach to Mapping Thermophysical Units from Martian Thermal Inertia and Albedo Data Using a Combination of Unsupervised Classification Techniques. REMOTE SENSING 2014. [DOI: 10.3390/rs6065184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Goordial J, Lamarche-Gagnon G, Lay CY, Whyte L. Left Out in the Cold: Life in Cryoenvironments. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-94-007-6488-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
34
|
Ruesch O, Poulet F, Vincendon M, Bibring JP, Carter J, Erkeling G, Gondet B, Hiesinger H, Ody A, Reiss D. Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Stivaletta N, Barbieri R, Billi D. Microbial colonization of the salt deposits in the driest place of the Atacama Desert (Chile). ORIGINS LIFE EVOL B 2012; 42:187-200. [PMID: 22661023 DOI: 10.1007/s11084-012-9289-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 02/13/2012] [Indexed: 11/27/2022]
Abstract
The Atacama Desert (Chile), one of the most arid places on Earth, shows hostile conditions for the development of epilithic microbial communities. In this study, we report the association of cyanobacteria (Chroococcidiopsis sp.) and bacteria belonging to Actinobacteria and Beta-Gammaproteobacteria and Firmicutes phyla inhabiting the near surface of salt (halite) deposits of the Salar Grande Basin, Atacama Desert (Chile). The halite deposits were investigated by using optical, confocal and field emission scanning electron microscopes, whereas culture-independent molecular techniques, 16S rDNA clone library, alongside RFLP analysis and 16S rRNA gene sequencing were applied to investigate the bacterial diversity. These microbial communities are an example of life that has adapted to extreme environmental conditions caused by dryness, high irradiation, and metal concentrations. Their adaptation is, therefore, important in the investigation of the environmental conditions that might be expected for life outside of Earth.
Collapse
Affiliation(s)
- Nunzia Stivaletta
- Dipartimento di Scienze della Terra e Geologico-Ambientali, Università di Bologna, Via Zamboni 67, 40126, Bologna, Italy.
| | | | | |
Collapse
|
36
|
Le Deit L, Flahaut J, Quantin C, Hauber E, Mège D, Bourgeois O, Gurgurewicz J, Massé M, Jaumann R. Extensive surface pedogenic alteration of the Martian Noachian crust suggested by plateau phyllosilicates around Valles Marineris. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003983] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Abstract
Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.
Collapse
|
38
|
McEwen AS, Ojha L, Dundas CM, Mattson SS, Byrne S, Wray JJ, Cull SC, Murchie SL, Thomas N, Gulick VC. Seasonal flows on warm Martian slopes. Science 2011; 333:740-3. [PMID: 21817049 DOI: 10.1126/science.1204816] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25° to 40°) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48°S to 32°S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ~250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.
Collapse
Affiliation(s)
- Alfred S McEwen
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wray JJ, Milliken RE, Dundas CM, Swayze GA, Andrews-Hanna JC, Baldridge AM, Chojnacki M, Bishop JL, Ehlmann BL, Murchie SL, Clark RN, Seelos FP, Tornabene LL, Squyres SW. Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003694] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Hynek BM, Beach M, Hoke MRT. Updated global map of Martian valley networks and implications for climate and hydrologic processes. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003548] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|