1
|
Donovan FM, Ampel NM, Thompson GR. Coccidioidomycosis. Infect Dis Clin North Am 2025; 39:183-197. [PMID: 39710556 DOI: 10.1016/j.idc.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Coccidioidomycosis is the clinical disease caused by the dimorphic pathogenic fungi Coccidioides immitis and C posadasii. The number of clinically recognized coccidioidomycosis cases continues to increase yearly including in regions outside the traditional regions of endemicity. Following inhalation of Coccidioides spores, the course may range from asymptomatic exposure with resultant immunity, to a subacute pulmonary illness, to life-threatening disseminated infection. This review will summarize recent advances in our understanding of the infection and will include the ecology of Coccidioides, epidemiology and risk factors for infection, vaccine and novel antifungals in development, and management of immunosuppressed patients.
Collapse
Affiliation(s)
- Fariba M Donovan
- Internal Medicine, Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, USA; Department of Internal Medicine, Division of Infectious Diseases, University of Arizona Medical Center, Tucson, AZ, USA
| | - Neil M Ampel
- College of Medicine, University of Arizona, 1656 E Mabel Street, Tucson, AZ 85724, USA
| | - George R Thompson
- Division of Infectious Diseases, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA; Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA; Center for Valley Fever, Davis, California, USA.
| |
Collapse
|
2
|
Zheng X, Chang HH, Ebelt ST, D’Souza R, Hohsfield K, Crooks JL. Dust Storms and Emergency Department Visits in 3 Southwestern States Using NWS Storm Reports. JAMA Netw Open 2025; 8:e2457666. [PMID: 39937479 PMCID: PMC11822549 DOI: 10.1001/jamanetworkopen.2024.57666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/26/2024] [Indexed: 02/13/2025] Open
Abstract
Importance Dust storms are projected to increase with climate change. The short-term health outcomes associated with dust storms in the US are not well characterized, especially for morbidity outcomes. Objective To estimate associations between dust storms and diagnosis-specific emergency department (ED) visits during 2005 to 2018. Design, Setting, and Participants In this cross-sectional study using a time-stratified case-crossover design, short-term associations between dust storms and ED visits were estimated at the zip code level using conditional Poisson analysis with adjustment for meteorology and within-month trends. Same-day dust storm events and storm events within a lag period of up to 7 days were considered. State-wide patient-level ED visit records acquired from 3 state health departments (Arizona, California, and Utah) were analyzed. Data were analyzed between April 21 and November 12, 2024. Exposures Dust storm events were reported by the US National Weather Service and assigned to each patient zip code that had at least a 5% areal overlap with the National Weather Service forecast zone. Main Outcomes and Measures Patient-level ED visits for asthma, chronic obstructive pulmonary disease, culture-negative pneumonia, congestive heart failure (CHF), cerebrovascular disease, ischemic heart disease, and visits due to motor vehicle accidents. Results The analysis included 33 500 ED visits among the outcomes of interest (5717 children aged 0-17 years [17.1%] and 11 150 adults aged >65 years [33.3%]; 17 394 male [51.9%] and 16 104 female [48.1%]; 2829 Black [8.4%] and 22 537 White [67.2%]; 9256 Hispanic [27.6%]) and 206 dust-impacted zip codes. The strongest associations between dust storms and ED visits were found for asthma (lag 0-2 relative risk [RR], 1.06; 95% CI, 1.01-1.11; P = .03), culture-negative pneumonia (lag 0-7 RR, 1.06; 95% CI, 1.02-1.10; P = .002), CHF (lag 0-7 RR, 1.06; 95% CI, 1.01-1.10; P = .01), and motor vehicle accidents (lag 0 RR, 1.13; 95% CI, 1.04-1.23; P = .003). Associations of dust storm exposure with ischemic heart disease were mostly protective (eg, lag 0-2 RR, 0.89; 95% CI, 0.84-0.95; P < .001). Associations of dust storm exposure with risk of ED visits for CHF and motor vehicle accidents were robust against adjustment for ambient ozone (eg, CHF: RR, 1.08; 95% CI, 1.03-1.13; P = .003) and nitrogen dioxide (eg, CHF: RR, 1.08; 95% CI, 1.03-1.13; P = .003) air pollution. Conclusions and Relevance In this study, dust storms were positively associated with ED visits for asthma, pneumonia, heart failure, and motor vehicle accidents. These findings contribute to our understanding of the association of dust storms with morbidity in the US and potential outcomes under a changing climate.
Collapse
Affiliation(s)
- Xiaping Zheng
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Howard H. Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Stefanie T. Ebelt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Rohan D’Souza
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Kirk Hohsfield
- Department of Epidemiology, Colorado School of Public Health
| | - James L. Crooks
- Department of Epidemiology, Colorado School of Public Health
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado
| |
Collapse
|
3
|
Weaver AK, Keeney N, Head JR, Heaney AK, Camponuri SK, Collender P, Bhattachan A, Okin GS, Eisen EA, Sondermeyer-Cooksey G, Yu A, Vugia DJ, Jain S, Balmes J, Taylor J, Remais JV, Strickland MJ. Estimating the Exposure-Response Relationship between Fine Mineral Dust Concentration and Coccidioidomycosis Incidence Using Speciated Particulate Matter Data: A Longitudinal Surveillance Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:17003. [PMID: 39804964 PMCID: PMC11729455 DOI: 10.1289/ehp13875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Coccidioidomycosis, caused by inhalation of Coccidioides spp. spores, is an emerging infectious disease that is increasing in incidence throughout the southwestern US. The pathogen is soil-dwelling, and spore dispersal and human exposure are thought to co-occur with airborne mineral dust exposures, yet fundamental exposure-response relationships have not been conclusively estimated. OBJECTIVES We estimated associations between fine mineral dust concentration and coccidioidomycosis incidence in California from 2000 to 2017 at the census tract level, spatiotemporal heterogeneity in exposure-response, and effect modification by antecedent climate conditions. METHODS We acquired monthly census tract-level coccidioidomycosis incidence data and modeled fine mineral dust concentrations from 2000 to 2017. We fitted zero-inflated distributed-lag nonlinear models to estimate overall exposure-lag-response relationships and identified factors contributing to heterogeneity in exposure-responses. Using a random-effects meta-analysis approach, we estimated county-specific and pooled exposure-responses for cumulative exposures. RESULTS We found a positive exposure-response relationship between cumulative fine mineral dust exposure in the 1-3 months before estimated disease onset and coccidioidomycosis incidence across the study region [incidence rate ratio (IRR) for an increase from 0.1 to 1.1 μ g / m 3 = 1.60 ; 95% CI: 1.46, 1.74]. Positive, supralinear associations were observed between incidence and modeled fine mineral dust exposures 1 [IRR = 1.13 (95% CI: 1.10, 1.17)], 2 [IRR = 1.15 (95% CI: 1.09, 1.20)] and 3 [IRR = 1.08 (95% CI: 1.04, 1.12)] months before estimated disease onset, with the highest exposures being particularly associated. The cumulative exposure-response relationship varied significantly by county [lowest IRR, western Tulare: 1.05 (95% CI: 0.54, 2.07); highest IRR, San Luis Obispo: 3.01 (95% CI: 2.05, 4.42)]. Season of exposure and prior wet winter were modest effect modifiers. DISCUSSION Lagged exposures to fine mineral dust were strongly associated with coccidioidomycosis incidence in the endemic regions of California from 2000 to 2017. https://doi.org/10.1289/EHP13875.
Collapse
Affiliation(s)
- Amanda K. Weaver
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Nicole Keeney
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Jennifer R. Head
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Alexandra K. Heaney
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Simon K. Camponuri
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Philip Collender
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | | | - Gregory S. Okin
- Department of Geography, University of California, Los Angeles, Los Angeles, California, USA
| | - Ellen A. Eisen
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | | | - Alexander Yu
- Infectious Diseases Branch, California Department of Public Health, Richmond, California, USA
| | - Duc J. Vugia
- Infectious Diseases Branch, California Department of Public Health, Richmond, California, USA
| | - Seema Jain
- Infectious Diseases Branch, California Department of Public Health, Richmond, California, USA
| | - John Balmes
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California, USA
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - John Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Justin V. Remais
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Matthew J. Strickland
- Department of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Nevada, Reno, Reno, Nevada, USA
| |
Collapse
|
4
|
Jackson KM, Teixeira MDM, Barker BM. From soil to clinic: current advances in understanding Coccidioides and coccidioidomycosis. Microbiol Mol Biol Rev 2024; 88:e0016123. [PMID: 39365073 DOI: 10.1128/mmbr.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYCoccidioides immitis and Coccidioides posadasii are fungal pathogens that cause systemic mycoses and are prevalent in arid regions in the Americas. While C. immitis mainly occurs in California and Washington, C. posadasii is widely distributed across North and South America. Both species induce coccidioidomycosis (San Joaquin Valley fever or, more commonly, Valley fever), with reported cases surging in the United States, notably in California and Arizona. Moreover, cases in Argentina, Brazil, and Mexico are on the rise. Climate change and environmental alterations conducive to Coccidioides spp. proliferation have been recently explored. Diagnostic challenges contribute to delayed treatment initiation, compounded by limited therapeutic options. Although antifungal drugs are often effective treatments, some patients do not respond to current therapies, underscoring the urgent need for a vaccine, particularly for vulnerable populations over 60 years old relocating to endemic areas. Despite recent progress, gaps persist in the understanding of Coccidioides ecology, host immune responses, and vaccine development. This review synthesizes recent research advancements in Coccidioides ecology, genomics, and immune responses, emphasizing ongoing efforts to develop a human vaccine.
Collapse
Affiliation(s)
- Katrina M Jackson
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Marcus de Melo Teixeira
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- Faculty of Medicine, University of Brasília, Brasília-DF, Brasília, Brazil
| | - Bridget M Barker
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
5
|
Kahn D, Chen W, Linden Y, Corbeil KA, Lowry S, Higham CA, Mendez KS, Burch P, DiFondi T, Verhougstraete M, De Roos AJ, Haas CN, Gerba C, Hamilton KA. A microbial risk assessor's guide to Valley Fever (Coccidioides spp.): Case study and review of risk factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170141. [PMID: 38242485 PMCID: PMC10923130 DOI: 10.1016/j.scitotenv.2024.170141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Valley Fever is a respiratory disease caused by inhalation of arthroconidia, a type of spore produced by fungi within the genus Coccidioides spp. which are found in dry, hot ecosystems of the Western Hemisphere. A quantitative microbial risk assessment (QMRA) for the disease has not yet been performed due to a lack of dose-response models and a scarcity of quantitative occurrence data from environmental samples. A literature review was performed to gather data on experimental animal dosing studies, environmental occurrence, human disease outbreaks, and meteorological associations. As a result, a risk framework is presented with information for parameterizing QMRA models for Coccidioides spp., with eight new dose-response models proposed. A probabilistic QMRA was conducted for a Southwestern US agricultural case study, evaluating eight scenarios related to farming occupational exposures. Median daily workday risks for developing severe Valley Fever ranged from 2.53 × 10-7 (planting by hand while wearing an N95 facemask) to 1.33 × 10-3 (machine harvesting while not wearing a facemask). The literature review and QMRA synthesis confirmed that exposure to aerosolized arthroconidia has the potential to result in high attack rates but highlighted that the mechanistic relationships between environmental conditions and disease remain poorly understood. Recommendations for Valley Fever risk assessment research needs in order to reduce disease risks are discussed, including interventions for farmers.
Collapse
Affiliation(s)
- David Kahn
- Department of Civil Architectural and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - William Chen
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yarrow Linden
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karalee A Corbeil
- Department of Water Management and Hydrological Science, Texas A&M University, College Station, TX 79016, USA
| | - Sarah Lowry
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ciara A Higham
- Leeds Institute for Fluid Dynamics, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Karla S Mendez
- The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX 77030, USA
| | - Paige Burch
- Seaford High School, 1575 Seamans Neck Rd, Seaford, NY 11783, USA
| | - Taylor DiFondi
- Seaford High School, 1575 Seamans Neck Rd, Seaford, NY 11783, USA
| | - Marc Verhougstraete
- University of Arizona, Mel and Enid Zuckerman College of Public Health, 1295 N. Marton Ave., Tucson, AZ 85724, USA
| | - Anneclaire J De Roos
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA
| | - Charles N Haas
- Department of Civil Architectural and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Charles Gerba
- University of Arizona, Mel and Enid Zuckerman College of Public Health, 1295 N. Marton Ave., Tucson, AZ 85724, USA
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
6
|
Tastassa AC, Sharaby Y, Lang-Yona N. Aeromicrobiology: A global review of the cycling and relationships of bioaerosols with the atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168478. [PMID: 37967625 DOI: 10.1016/j.scitotenv.2023.168478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Airborne microorganisms and biological matter (bioaerosols) play a key role in global biogeochemical cycling, human and crop health trends, and climate patterns. Their presence in the atmosphere is controlled by three main stages: emission, transport, and deposition. Aerial survival rates of bioaerosols are increased through adaptations such as ultra-violet radiation and desiccation resistance or association with particulate matter. Current research into modern concerns such as climate change, global gene transfer, and pathogenicity often neglects to consider atmospheric involvement. This comprehensive review outlines the transpiring of bioaerosols across taxa in the atmosphere, with significant focus on their interactions with environmental elements including abiotic factors (e.g., atmospheric composition, water cycle, and pollution) and events (e.g., dust storms, hurricanes, and wildfires). The aim of this review is to increase understanding and shed light on needed research regarding the interplay between global atmospheric phenomena and the aeromicrobiome. The abundantly documented bacteria and fungi are discussed in context of their cycling and human health impacts. Gaps in knowledge regarding airborne viral community, the challenges and importance of studying their composition, concentrations and survival in the air are addressed, along with understudied plant pathogenic oomycetes, and archaea cycling. Key methodologies in sampling, collection, and processing are described to provide an up-to-date picture of ameliorations in the field. We propose optimization to microbiological methods, commonly used in soil and water analysis, that adjust them to the context of aerobiology, along with other directions towards novel and necessary advancements. This review offers new perspectives into aeromicrobiology and calls for advancements in global-scale bioremediation, insights into ecology, climate change impacts, and pathogenicity transmittance.
Collapse
Affiliation(s)
- Ariel C Tastassa
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Yehonatan Sharaby
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Naama Lang-Yona
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel.
| |
Collapse
|
7
|
Porter WT, Gade L, Montfort P, Mihaljevic JR, Bowers JR, Willman A, Klimowski BA, LaFleur BJ, Sunenshine RH, Collins J, Adame G, Brady S, Komatsu KK, Williams S, Toda M, Chiller T, Litvintseva AP, Engelthaler DM. Understanding the exposure risk of aerosolized Coccidioides in a Valley fever endemic metropolis. Sci Rep 2024; 14:1311. [PMID: 38225347 PMCID: PMC10789871 DOI: 10.1038/s41598-024-51407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Coccidioides is the fungal causative agent of Valley fever, a primarily pulmonary disease caused by inhalation of fungal arthroconidia, or spores. Although Coccidioides has been an established pathogen for 120 years and is responsible for hundreds of thousands of infections per year, little is known about when and where infectious Coccidioides arthroconidia are present within the ambient air in endemic regions. Long-term air sampling programs provide a means to investigate these characteristics across space and time. Here we present data from > 18 months of collections from 11 air sampling sites across the Phoenix, Arizona, metropolitan area. Overall, prevalence was highly variable across space and time with no obvious spatial or temporal correlations. Several high prevalence periods were identified at select sites, with no obvious spatial or temporal associations. Comparing these data with weather and environmental factor data, wind gusts and temperature were positively associated with Coccidioides detection, while soil moisture was negatively associated with Coccidioides detection. These results provide critical insights into the frequency and distribution of airborne arthroconidia and the associated risk of inhalation and potential disease that is present across space and time in a highly endemic locale.
Collapse
Affiliation(s)
- W Tanner Porter
- Pathogen & Microbiome Division, Translational Genomics Research Institute, Flagstaff, AZ, USA.
| | - Lalitha Gade
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Parker Montfort
- Pathogen & Microbiome Division, Translational Genomics Research Institute, Flagstaff, AZ, USA
| | - Joseph R Mihaljevic
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Jolene R Bowers
- Pathogen & Microbiome Division, Translational Genomics Research Institute, Flagstaff, AZ, USA
| | | | | | - Bonnie J LaFleur
- College of Pharmacy, The University of Arizona, Phoenix, AZ, USA
| | | | | | | | - Shane Brady
- Arizona Department of Health Services, Phoenix, AZ, USA
| | | | - Samantha Williams
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mitsuru Toda
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - David M Engelthaler
- Pathogen & Microbiome Division, Translational Genomics Research Institute, Flagstaff, AZ, USA
| |
Collapse
|
8
|
Hohsfield K, Rowan C, D’Souza R, Ebelt S, Chang H, Crooks J. Evaluating Data Product Exposure Metrics for Use in Epidemiologic Studies of Dust Storms. GEOHEALTH 2023; 7:e2023GH000824. [PMID: 37637996 PMCID: PMC10459620 DOI: 10.1029/2023gh000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Dust storms are increasing in frequency and correlate with adverse health outcomes but remain understudied in the United States (U.S.), partially due to the limited spatio-temporal coverage, resolution, and accuracy of current data sets. In this work, dust-related metrics from four public areal data products were compared to a monitor-based "gold standard" dust data set. The data products included the National Weather Service (NWS) storm event database, the Modern-Era Retrospective analysis for Research and Applications-Version 2, the EPA's Air QUAlity TimE Series (EQUATES) Project using the Community Multiscale Air Quality Modeling System (CMAQ), and the Copernicus Atmosphere Monitoring Service global reanalysis product. California, Nevada, Utah, and Arizona, which account for most dust storms reported in the U.S., were examined. Dichotomous and continuous metrics based on reported dust storms, particulate matter concentrations (PM10 and PM2.5), and aerosol-type variables were extracted or derived from the data products. Associations between these metrics and a validated dust storm detection method utilizing Interagency Monitoring of Protected Visual Environments monitors were estimated via quasi-binomial regression. In general, metrics from CAMS yielded the strongest associations with the "gold standard," followed by the NWS storm database metric. Dust aerosol (0.9-20 μm) mixing ratio, vertically integrated mass of dust aerosol (9-20 μm), and dust aerosol optical depth at 550 nm from CAMS generated the highest standardized odds ratios among all metrics. Future work will apply machine-learning methods to the best-performing metrics to create a public dust storm database suitable for long-term epidemiologic studies.
Collapse
Affiliation(s)
- Kirk Hohsfield
- Department of EpidemiologyColorado School of Public HealthUniversity of Colorado—Denver|Anschutz Medical CampusAuroraCOUSA
- Division of Biostatistics and BioinformaticsNational Jewish HealthDenverCOUSA
| | - Claire Rowan
- Department of EpidemiologyRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Rohan D’Souza
- Department of Biostatistics and BioinformaticsRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Stefanie Ebelt
- Department of EpidemiologyRollins School of Public HealthEmory UniversityAtlantaGAUSA
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Howard Chang
- Department of Biostatistics and BioinformaticsRollins School of Public HealthEmory UniversityAtlantaGAUSA
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - James Crooks
- Department of EpidemiologyColorado School of Public HealthUniversity of Colorado—Denver|Anschutz Medical CampusAuroraCOUSA
- Division of Biostatistics and BioinformaticsNational Jewish HealthDenverCOUSA
| |
Collapse
|
9
|
Abstract
Coccidioides immitis, a pathogenic environmental fungus that causes Valley fever (coccidioidomycosis) primarily in the American Southwest and parts of Central and South America, has emerged over the past 12 years in the Columbia River Basin region, near the confluence with the Yakima River, in southcentral Washington state, USA. An initial autochthonous Washington human case was found in 2010, stemming from a wound derived from soil contamination during an all-terrain vehicle crash. Subsequent analysis identified multiple positive soil samples from the park where the crash occurred (near the Columbia River in Kennewick, WA), and from another riverside location several kilometers upstream from the park location. Intensified disease surveillance identified several more cases of coccidioidomycosis in the region that lacked any relevant travel history to known endemic locales. Genomic analysis of both patient and soil isolates from the Washington cases determined that all samples from the region are phylogenetically closely related. Given the genomic and the epidemiological link between case and environment, C. immitis was declared to be a newly endemic fungus in the region, spawning many questions as to the scope of its presence, the causes of its recent emergence, and what it predicts about the changing landscape of this disease. Here, we review this discovery through a paleo-epidemiological lens in the context of what is known about C. immitis biology and pathogenesis and propose a novel hypothesis for the cause of the emergence in southcentral Washington. We also try to place it in the context of our evolving understanding of this regionally specific pathogenic fungus.
Collapse
|
10
|
Gorris ME, Ardon-Dryer K, Campuzano A, Castañón-Olivares LR, Gill TE, Greene A, Hung CY, Kaufeld KA, Lacy M, Sánchez-Paredes E. Advocating for Coccidioidomycosis to Be a Reportable Disease Nationwide in the United States and Encouraging Disease Surveillance across North and South America. J Fungi (Basel) 2023; 9:83. [PMID: 36675904 PMCID: PMC9863933 DOI: 10.3390/jof9010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Coccidioidomycosis (Valley fever) has been a known health threat in the United States (US) since the 1930s, though not all states are currently required to report disease cases. Texas, one of the non-reporting states, is an example of where both historical and contemporary scientific evidence define the region as endemic, but we don't know disease incidence in the state. Mandating coccidioidomycosis as a reportable disease across more US states would increase disease awareness, improve clinical outcomes, and help antifungal drug and vaccine development. It would also increase our understanding of where the disease is endemic and the relationships between environmental conditions and disease cases. This is true for other nations in North and South America that are also likely endemic for coccidioidomycosis, especially Mexico. This commentary advocates for US state and territory epidemiologists to define coccidioidomycosis as a reportable disease and encourages disease surveillance in other endemic regions across North and South America in order to protect human health and reduce disease burden.
Collapse
Affiliation(s)
- Morgan E. Gorris
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Karin Ardon-Dryer
- Department of Geosciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Althea Campuzano
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Laura R. Castañón-Olivares
- Unidad de Micología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Thomas E. Gill
- Environmental Science and Engineering Program, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Earth, Environmental and Resource Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Andrew Greene
- Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Kimberly A. Kaufeld
- Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Mark Lacy
- Infectious Disease, Pediatrics, Internal Medicine, University of New Mexico Health, Albuquerque, NM 87106, USA
| | - Edith Sánchez-Paredes
- Unidad de Micología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
11
|
Ardon‐Dryer K, Gill TE, Tong DQ. When a Dust Storm Is Not a Dust Storm: Reliability of Dust Records From the Storm Events Database and Implications for Geohealth Applications. GEOHEALTH 2023; 7:e2022GH000699. [PMID: 36618584 PMCID: PMC9813799 DOI: 10.1029/2022gh000699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Windblown dust impacts human health, air quality, and climate. The National Weather Service Storm Events Database (SED) is a widely used dataset of significant or unusual weather, including dust storms (DS), and resulting deaths, injuries, and material losses in the USA. The SED is frequently used by medical, social, and atmospheric scientists. However, it is uncertain whether this dataset reliably represents spatial and temporal variations and trends of DS. Analyzing the SED from 2000 to 2020 identified 1,167 DS reports; removing reports of the same event from multiple locations left 647 DS in 21 USA states. The number of DS ranged from 12 in 2008 to 53 in 2018, with no strong interannual trends detected (R 2 was 0.3). By examining the DS events reported in the SED based on meteorological observations including wind speed, visibility, and weather codes, we determined that the SED was not only missing many DS (visibility <1 km), but also included many blowing dust (BLDU) events. 49.9% of 491 reported DS events in SED had visibility >1 km and were incorrectly reported as DS. Underrepresentation of DS and inclusion of BLDU may be partially due to the diverse sources contributing to the SED and a lack of verification of the reports and their consistency. Although the SED is an extremely useful and valuable database of impactful weather, including DS, the issues found in this study warrant caution in use of this dataset for many geohealth applications.
Collapse
Affiliation(s)
- K. Ardon‐Dryer
- Department of GeosciencesTexas Tech UniversityLubbockTXUSA
| | - T. E. Gill
- Department of Earth, Environmental and Resource SciencesThe University of Texas at El PasoEl PasoTXUSA
| | - D. Q. Tong
- Department of Atmospheric, Oceanic and Earth Sciences/Center for Spatial Information Science and SystemsGeorge Mason UniversityFairfaxVAUSA
| |
Collapse
|
12
|
Gewin V. Dust-up over dust storm link to 'Valley Fever' disease. Nature 2022:10.1038/d41586-022-02089-w. [PMID: 35915191 DOI: 10.1038/d41586-022-02089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Tong DQ, Gorris ME, Gill TE, Ardon‐Dryer K, Wang J, Ren L. Dust Storms, Valley Fever, and Public Awareness. GEOHEALTH 2022; 6:e2022GH000642. [PMID: 35949254 PMCID: PMC9356325 DOI: 10.1029/2022gh000642] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
We discuss several issues raised by Comrie (2021, https://doi.org/10.1029/2021GH000504), which uses a crowdsourced data set to study dust storms and coccidioidomycosis (Valley fever). There is inconsistency in the term "dust storm" used by science communities. The dust data from National Oceanic and Atmospheric Administration Storm Events Database are from diverse sources, unsuitable for assessing dust-coccidioidomycosis relationships. Population exposure to dust or Coccidioides needs to consider the frequency, magnitude, and duration of dust events. Given abundant evidence that dust storms are a viable driver to transport pathogens, it is in best public interest to advocate dust storms may put people at risk for contracting Valley fever.
Collapse
Affiliation(s)
- Daniel Q. Tong
- Department of Atmospheric, Oceanic and Earth SciencesCenter for Spatial Information Science and SystemsGeorge Mason UniversityFairfaxVAUSA
| | - Morgan E. Gorris
- Information Systems and Modeling & Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosNMUSA
| | - Thomas E. Gill
- Department of Earth, Environmental and Resource SciencesThe University of Texas at El PasoEl PasoTXUSA
| | | | - Julian Wang
- Department of Atmospheric, Oceanic and Earth SciencesCenter for Spatial Information Science and SystemsGeorge Mason UniversityFairfaxVAUSA
| | - Ling Ren
- Department of Atmospheric, Oceanic and Earth SciencesCenter for Spatial Information Science and SystemsGeorge Mason UniversityFairfaxVAUSA
| |
Collapse
|
14
|
Williams SL, Chiller T. Update on the Epidemiology, Diagnosis, and Treatment of Coccidioidomycosis. J Fungi (Basel) 2022; 8:666. [PMID: 35887423 PMCID: PMC9316141 DOI: 10.3390/jof8070666] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Coccidioidomycosis is a fungal infection caused by Coccidioides immitis and Coccidioides posadasii. The dimorphic fungi live in the soils of arid and semi-arid regions of the western United States, as well as parts of Mexico, Central America, and South America. Incidence of disease has risen consistently in recent years, and the geographic distribution of Coccidioides spp. appears to be expanding beyond previously known areas of endemicity. Climate factors are predicted to further extend the range of environments suitable for the growth and dispersal of Coccidioides species. Most infections are asymptomatic, though a small proportion result in severe or life-threatening forms of disease. Primary pulmonary coccidioidomycosis is commonly mistaken for community-acquired pneumonia, often leading to inappropriate antibacterial treatment and unnecessary healthcare costs. Diagnosis of coccidioidomycosis is challenging and often relies on clinician suspicion to pursue laboratory testing. Advancements in diagnostic tools and antifungal therapy developments seek to improve the early detection and effective management of infection. This review will highlight recent updates and summarize the current understanding of the epidemiology, diagnosis, and treatment of coccidioidomycosis.
Collapse
Affiliation(s)
- Samantha L. Williams
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| | | |
Collapse
|
15
|
Coccidioidomycosis (Valley Fever), Soil Moisture, and El Nino Southern Oscillation in California and Arizona. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127262. [PMID: 35742514 PMCID: PMC9223181 DOI: 10.3390/ijerph19127262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
The soil-borne fungal disease coccidioidomycosis (Valley fever) is prevalent across the southwestern United States (US). Previous studies have suggested that the occurrence of this infection is associated with anomalously wet or dry soil moisture states described by the "grow and blow" hypothesis. The growth of coccidioidomycosis is favored by moist conditions both at the surface and in the root zone. A statistical analysis identified two areas in Arizona and central California, with a moderate-to-high number of coccidioidomycosis cases. A Wavelet Transform Coherence (WTC) analysis between El Nino Southern Oscillation (ENSO), coccidioidomycosis cases, surface soil moisture (SSM; 0 to 5 cm) from European Space Agency-Climate Change Initiative (ESA-CCI), and shallow root zone soil moisture (RZSM; 0 to 40 cm depth) from Soil MERGE (SMERGE) was executed for twenty-four CA and AZ counties. In AZ, only SSM was modulated by ENSO. When case values were adjusted for overreporting between 2009 to 2012, a moderate but significant connection between ENSO and cases was observed at a short periodicity (2.1 years). In central CA, SSM, RZSM, and cases all had a significant link to ENSO at longer periodicities (5-to-7 years). This study provides an example of how oceanic-atmospheric teleconnections can impact human health.
Collapse
|
16
|
Vergadi E, Rouva G, Angeli M, Galanakis E. Infectious Diseases Associated with Desert Dust Outbreaks: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116907. [PMID: 35682493 PMCID: PMC9180817 DOI: 10.3390/ijerph19116907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023]
Abstract
Background: Desert dust outbreaks and dust storms are the major source of particulate matter globally and pose a major threat to human health. We investigated the microorganisms transported with desert dust particles and evaluated their potential impact on human health. Methods: A systematic review of all reports on the association between non-anthropogenic desert dust pollution, dust microorganisms and human health is conducted. Results: In total, 51 articles were included in this review. The affected regions studied were Asia (32/51, 62.7%) followed by Europe (9/51, 17.6%), America (6/51, 11.8%), Africa (4/51, 7.8%) and Australia (1/51, 2.0%). The Sahara Desert was the most frequent source of dust, followed by Asian and American deserts. In 39/51 studies the dust-related microbiome was analyzed, while, in 12/51 reports, the association of desert dust with infectious disease outbreaks was examined. Pathogenic and opportunistic agents were isolated from dust in 24/39 (61.5%) and 29/39 (74.4%) of the studies, respectively. A significant association of dust events with infectious disease outbreaks was found in 10/12 (83.3%) reports. The infectious diseases that were mostly investigated with dust outbreaks were pneumonia, respiratory tract infections, COVID-19, pulmonary tuberculosis and coccidioidomycosis. Conclusions: Desert dust outbreaks are vehicles of a significant number of pathogenic or opportunistic microorganisms and limited data indicate an association between dust events and infectious disease outbreaks. Further research is required to strengthen the correlation between dust events and infectious diseases and subsequently guide preventive public health measures.
Collapse
|
17
|
PM10 and Other Climatic Variables Are Important Predictors of Seasonal Variability of Coccidioidomycosis in Arizona. Microbiol Spectr 2022; 10:e0148321. [PMID: 35319247 PMCID: PMC9045372 DOI: 10.1128/spectrum.01483-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coccidioidomycosis (Valley fever) is a disease caused by the fungal pathogens Coccidioides immitis and Coccidioides posadasii that are endemic to the southwestern United States and parts of Mexico and South America. Throughout the range where the pathogens are endemic, there are seasonal patterns of infection rates that are associated with certain climatic variables. Previous studies that looked at annual and monthly relationships of coccidioidomycosis and climate suggest that infection numbers are linked with precipitation and temperature fluctuations; however, these analytic methods may miss important nonlinear, nonmonotonic seasonal relationships between the response (Valley fever cases) and explanatory variables (climate) influencing disease outbreaks. To improve our current knowledge and to retest relationships, we used case data from three counties of high endemicity in southern Arizona paired with climate data to construct a generalized additive statistical model that explores which meteorological parameters are most useful in predicting Valley fever incidence throughout the year. We then use our model to forecast the pattern of Valley fever cases by month. Our model shows that maximum monthly temperature, average PM10, and total precipitation 1 month prior to reported cases (lagged model) were all significant in predicting Valley fever cases. Our model fits Valley fever case data in the region of endemicity of southern Arizona and captures the seasonal relationships that predict when the public is at higher risk of being infected. This study builds on and retests relationships described by previous studies regarding climate variables that are important for predicting risk of infection and understanding this fungal pathogen. IMPORTANCE The inhalation of environmental infectious propagules from the fungal pathogens Coccidioides immitis and Coccidioides posadasii by susceptible mammals can result in coccidioidomycosis (Valley fever). Arizona is known to be a region where the pathogen is hyperendemic, and reported cases are increasing throughout the western United States. Coccidioides spp. are naturally occurring fungi in arid soils. Little is known about ecological factors that influence the growth of these fungi, and a higher environmental burden may result in increases in human exposure and therefore case rates. By examining case and climate data from Arizona and using generalized additive statistical models, we were able to examine the relationship between disease outbreaks and climatic variables and predict seasonal time points of increased infection risk.
Collapse
|