1
|
Frampton S, Smith R, Ferson L, Gibson J, Hollox EJ, Cragg MS, Strefford JC. Fc gamma receptors: Their evolution, genomic architecture, genetic variation, and impact on human disease. Immunol Rev 2024; 328:65-97. [PMID: 39345014 PMCID: PMC11659932 DOI: 10.1111/imr.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fc gamma receptors (FcγRs) are a family of receptors that bind IgG antibodies and interface at the junction of humoral and innate immunity. Precise regulation of receptor expression provides the necessary balance to achieve healthy immune homeostasis by establishing an appropriate immune threshold to limit autoimmunity but respond effectively to infection. The underlying genetics of the FCGR gene family are central to achieving this immune threshold by regulating affinity for IgG, signaling efficacy, and receptor expression. The FCGR gene locus was duplicated during evolution, retaining very high homology and resulting in a genomic region that is technically difficult to study. Here, we review the recent evolution of the gene family in mammals, its complexity and variation through copy number variation and single-nucleotide polymorphism, and impact of these on disease incidence, resolution, and therapeutic antibody efficacy. We also discuss the progress and limitations of current approaches to study the region and emphasize how new genomics technologies will likely resolve much of the current confusion in the field. This will lead to definitive conclusions on the impact of genetic variation within the FCGR gene locus on immune function and disease.
Collapse
Affiliation(s)
- Sarah Frampton
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Rosanna Smith
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Lili Ferson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Jane Gibson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Edward J. Hollox
- Department of Genetics, Genomics and Cancer SciencesCollege of Life Sciences, University of LeicesterLeicesterUK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Jonathan C. Strefford
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
2
|
Edgar JE, Bournazos S. Fc-FcγR interactions during infections: From neutralizing antibodies to antibody-dependent enhancement. Immunol Rev 2024; 328:221-242. [PMID: 39268652 PMCID: PMC11659939 DOI: 10.1111/imr.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Advances in antibody technologies have resulted in the development of potent antibody-based therapeutics with proven clinical efficacy against infectious diseases. Several monoclonal antibodies (mAbs), mainly against viruses such as SARS-CoV-2, HIV-1, Ebola virus, influenza virus, and hepatitis B virus, are currently undergoing clinical testing or are already in use. Although these mAbs exhibit potent neutralizing activity that effectively blocks host cell infection, their antiviral activity results not only from Fab-mediated virus neutralization, but also from the protective effector functions mediated through the interaction of their Fc domains with Fcγ receptors (FcγRs) on effector leukocytes. Fc-FcγR interactions confer pleiotropic protective activities, including the clearance of opsonized virions and infected cells, as well as the induction of antiviral T-cell responses. However, excessive or inappropriate activation of specific FcγR pathways can lead to disease enhancement and exacerbated pathology, as seen in the context of dengue virus infections. A comprehensive understanding of the diversity of Fc effector functions during infection has guided the development of engineered antiviral antibodies optimized for maximal effector activity, as well as the design of targeted therapeutic approaches to prevent antibody-dependent enhancement of disease.
Collapse
Affiliation(s)
- Julia E. Edgar
- The London School of Hygiene and Tropical MedicineLondonUK
| | - Stylianos Bournazos
- The Laboratory of Molecular Genetics and ImmunologyThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
3
|
Spiegel F, Trollmann MFW, Kara S, Pöhnl M, Brandner AF, Nimmerjahn F, Lux A, Böckmann RA. Role of lipid nanodomains for inhibitory FcγRIIb function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540011. [PMID: 37214871 PMCID: PMC10197649 DOI: 10.1101/2023.05.09.540011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The inhibitory Fcγ receptor FcγRIIb is involved in immune regulation and is known to localize to specific regions of the plasma membrane called lipid rafts. Previous studies suggested a link between the altered lateral receptor localization within the plasma membrane and the functional impairment of the FcγRIIb-I232T variant that is associated with systemic lupus erythematosus. Here, we conducted microsecond all-atom molecular dynamics simulations and IgG binding assays to investigate the lipid nano-environment of FcγRIIb monomers and of the FcγRIIb-I232T mutant within a plasma membrane model, the orientation of the FcγRIIb ectodomain, and its accessibility to IgG ligands. In contrast to previously proposed models, our simulations indicated that FcγRIIb does not favor a cholesterol- or a sphingolipid-enriched lipid environment. Interestingly, cholesterol was depleted for all studied FcγRIIb variants within a 2-3 nm environment of the receptor, counteracting the usage of raft terminology for models on receptor functionality. Instead, the receptor interacts with lipids that have poly-unsaturated fatty acyl chains and with (poly-) anionic lipids within the cytosolic membrane leaflet. We also found that FcγRIIb monomers adopt a conformation that is not suitable for binding to its IgG ligand, consistent with a lack of detectable binding of monomeric IgG in experiments on primary immune cells. However, our results propose that multivalent IgG complexes might stabilize FcγRIIb in a binding-competent conformation. We suggest differences in receptor complex formation within the membrane as a plausible cause of the altered membrane localization or clustering and the altered suppressive function of the FcγRIIb-I232T variant.
Collapse
Affiliation(s)
- Franziska Spiegel
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Marius F W Trollmann
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- Erlangen National High-Performance Computing Center (NHR@FAU)
| | - Sibel Kara
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Matthias Pöhnl
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Astrid F Brandner
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- Current address: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Anja Lux
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Rainer A Böckmann
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- Erlangen National High-Performance Computing Center (NHR@FAU)
| |
Collapse
|
4
|
Typiak M, Rękawiecki B, Rębała K, Dubaniewicz A. Comparative Analysis of FCGR Gene Polymorphism in Pulmonary Sarcoidosis and Tuberculosis. Cells 2023; 12:cells12091221. [PMID: 37174624 PMCID: PMC10177102 DOI: 10.3390/cells12091221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The clinical outcome of sarcoidosis (SA) is very similar to tuberculosis (TB); however, they are treated differently and should not be confused. In search for their biomarkers, we have previously revealed changes in the phagocytic activity of monocytes in sarcoidosis and tuberculosis. On these monocytes we found a higher expression of receptors for the Fc fragment of immunoglobulin G (FcγR) in SA and TB patients vs. healthy controls. FcγRs are responsible for the binding of immune complexes (ICs) to initiate an (auto)immune response and for ICs clearance. Surprisingly, our SA patients had a high blood level of ICs, despite the abundant presence of FcγRs. It pointed to FcγR disfunction, presumably caused by the polymorphism of their (FCGR) genes. Therefore, we present here an analysis of the occurrence of FCGR2A, FCGR2B, FCGR2C, FCGR3A and FCGR3B variants in Caucasian SA and TB patients, and healthy individuals with the use of polymerase chain reaction (PCR) and real-time PCR. The presented data point to a possibility of supporting the differential diagnosis of SA and TB by analyzing FCGR2C, FCGR3A and FCGR3B polymorphism, while for severe stages of SA also by studying FCGR2A variants. Additionally, the genotyping of FCGR2A and FCGR3B might serve as a marker of SA progression.
Collapse
Affiliation(s)
- Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | | | - Krzysztof Rębała
- Department of Forensic Medicine, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Anna Dubaniewicz
- Department of Pulmonology, Medical University of Gdansk, 80-214 Gdansk, Poland
| |
Collapse
|
5
|
Delpire B, Van Loon E, Naesens M. The Role of Fc Gamma Receptors in Antibody-Mediated Rejection of Kidney Transplants. Transpl Int 2022; 35:10465. [PMID: 35935272 PMCID: PMC9346079 DOI: 10.3389/ti.2022.10465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
For the past decades, complement activation and complement-mediated destruction of allograft cells were considered to play a central role in anti-HLA antibody-mediated rejection (AMR) of kidney transplants. However, also complement-independent mechanisms are relevant in the downstream immune activation induced by donor-specific antibodies, such as Fc-gamma receptor (FcγR)-mediated direct cellular activation. This article reviews the literature regarding FcγR involvement in AMR, and the potential contribution of FcγR gene polymorphisms to the risk for antibody mediated rejection of kidney transplants. There is large heterogeneity between the studies, both in the definition of the clinical phenotypes and in the technical aspects. The study populations were generally quite small, except for two larger study cohorts, which obviates drawing firm conclusions regarding the associations between AMR and specific FcγR polymorphisms. Although FcγR are central in the pathophysiology of AMR, it remains difficult to identify genetic risk factors for AMR in the recipient’s genome, independent of clinical risk factors, independent of the donor-recipient genetic mismatch, and in the presence of powerful immunosuppressive agents. There is a need for larger, multi-center studies with standardised methods and endpoints to identify potentially relevant FcγR gene polymorphisms that represent an increased risk for AMR after kidney transplantation.
Collapse
Affiliation(s)
- Boris Delpire
- University Hospitals Leuven, Leuven, Belgium
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Elisabet Van Loon
- University Hospitals Leuven, Leuven, Belgium
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Naesens
- University Hospitals Leuven, Leuven, Belgium
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
- *Correspondence: Maarten Naesens,
| |
Collapse
|
6
|
Immunogenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:213-257. [DOI: 10.1007/978-3-030-92616-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
B Cell Aberrance in Lupus: the Ringleader and the Solution. Clin Rev Allergy Immunol 2021; 62:301-323. [PMID: 33534064 DOI: 10.1007/s12016-020-08820-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease with high heterogeneity but the common characterization of numerous autoantibodies and systemic inflammation which lead to the damage of multiple organs. Aberrance of B cells plays a pivotal role in the immunopathogenesis of SLE via both antibody-dependent and antibody-independent manners. Escape of autoreactive B cells from the central and peripheral tolerance checkpoints, over-activation of B cells and their excessive cytokines release which drive T cells and dendritic cells stimulation, and dysregulated surface molecules, as well as intracellular signal pathways involved in B cell biology, are all contributing to B cell aberrance and participating in the pathogenesis of SLE. Based on that rationale, targeting aberrance of B cells and relevant molecules and pathways is expected to be a promising strategy for lupus control. Multiple approaches targeting B cells through different mechanisms have been attempted, including B-cell depletion via monoclonal antibodies against B-cell-specific molecules, blockade of B-cell survival and activation factors, suppressing T-B crosstalk by interrupting costimulatory molecules and inhibiting intracellular activation signaling cascade by targeting pathway molecules in B cells. Though most attempts ended in failure, the efficacy of B-cell targeting has been encouraged by the FDA approval of belimumab that blocks B cell-activating factor (BAFF) and the recommended use of anti-CD20 as a remedial therapy in refractory lupus. Still, quantities of clinical trials targeting B cells or relevant molecules are ongoing and some of them have displayed promising preliminary results. Additionally, advances in multi-omics studies help deepen our understandings of B cell biology in lupus and may promote the discovery of novel potential therapeutic targets. The combination of real-world data with basic research achievements may pave the road to conquering lupus.
Collapse
|
8
|
Allaf FL, Khodashahi M, Saadati N, Sahebari M. Does periodontitis play a causal role in the Systemic lupus erythematosus? A systematic review. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
9
|
Amiah MA, Ouattara A, Okou DT, N'Guetta SPA, Yavo W. Polymorphisms in Fc Gamma Receptors and Susceptibility to Malaria in an Endemic Population. Front Immunol 2020; 11:561142. [PMID: 33281811 PMCID: PMC7689034 DOI: 10.3389/fimmu.2020.561142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Repeated infections by Plasmodium falciparum result in a humoral response that could reduce disease symptoms and prevent the development of clinical malaria. The principal mechanism underlying this humoral response is that immunoglobulin G (IgG) binds directly to the parasites, thus causing their neutralization. However, the action of antibodies alone is not always sufficient to eliminate pathogens from an organism. One key element involved in the recognition of IgG that plays a crucial role in the destruction of the parasites responsible for spreading malaria is the family of Fc gamma receptors. These receptors are expressed on the surface of immune cells. Several polymorphisms have been detected in the genes encoding these receptors, associated with susceptibility or resistance to malaria in different populations. In this review, we describe identified polymorphisms within the family of Fc gamma receptors and the impact of these variations on the response of a host to infection as well as provide new perspectives for the design of an effective vaccine for malaria.
Collapse
Affiliation(s)
- Mireille Ahou Amiah
- Malaria Research and Control Center, National Public Health Institute, Abidjan, Côte d'Ivoire.,Laboratory of Genetics, Unité de Formation et de Recherche (UFR) BIOSCIENCES, Félix Houphouët-Boigny University, Abidjan, Côte d'Ivoire
| | - Amed Ouattara
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - David Tea Okou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Simon-Pierre Assanvo N'Guetta
- Laboratory of Genetics, Unité de Formation et de Recherche (UFR) BIOSCIENCES, Félix Houphouët-Boigny University, Abidjan, Côte d'Ivoire
| | - William Yavo
- Malaria Research and Control Center, National Public Health Institute, Abidjan, Côte d'Ivoire.,Department of Parasitology and Mycology, Faculty of Pharmacy, Félix Houphouët-Boigny University, Abidjan, Côte d'Ivoire
| |
Collapse
|
10
|
Sungnak W, Wagner A, Kowalczyk MS, Bod L, Kye YC, Sage PT, Sharpe AH, Sobel RA, Quintana FJ, Rozenblatt-Rosen O, Regev A, Wang C, Yosef N, Kuchroo VK. T Follicular Regulatory Cell-Derived Fibrinogen-like Protein 2 Regulates Production of Autoantibodies and Induction of Systemic Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2020; 205:3247-3262. [PMID: 33168576 DOI: 10.4049/jimmunol.2000748] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/15/2020] [Indexed: 11/19/2022]
Abstract
T follicular regulatory (TFR) cells limit Ab responses, but the underlying mechanisms remain largely unknown. In this study, we identify Fgl2 as a soluble TFR cell effector molecule through single-cell gene expression profiling. Highly expressed by TFR cells, Fgl2 directly binds to B cells, especially light-zone germinal center B cells, as well as to T follicular helper (TFH) cells, and directly regulates B cells and TFH in a context-dependent and type 2 Ab isotype-specific manner. In TFH cells, Fgl2 induces the expression of Prdm1 and a panel of checkpoint molecules, including PD1, TIM3, LAG3, and TIGIT, resulting in TFH cell dysfunction. Mice deficient in Fgl2 had dysregulated Ab responses at steady-state and upon immunization. In addition, loss of Fgl2 results in expansion of autoreactive B cells upon immunization. Consistent with this observation, aged Fgl2-/- mice spontaneously developed autoimmunity associated with elevated autoantibodies. Thus, Fgl2 is a TFR cell effector molecule that regulates humoral immunity and limits systemic autoimmunity.
Collapse
Affiliation(s)
- Waradon Sungnak
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Allon Wagner
- Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California, Berkeley, CA 94720
| | - Monika S Kowalczyk
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Lloyd Bod
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Yoon-Chul Kye
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Peter T Sage
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Arlene H Sharpe
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Raymond A Sobel
- Department of Pathology, Stanford University, Stanford, CA 94305; and
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115
| | | | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Chao Wang
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California, Berkeley, CA 94720
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; .,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115
| |
Collapse
|
11
|
Zhao Y, Zhu R, Tian D, Liu X. Genetic polymorphisms in Guillain-Barré Syndrome: A field synopsis and systematic meta-analysis. Autoimmun Rev 2020; 19:102665. [PMID: 32949724 DOI: 10.1016/j.autrev.2020.102665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Guillain-Barré Syndrome (GBS) is considered to be a complex immune-mediated neuropathy. In the past few years, numerous studies were performed to detect the association between genetic polymorphisms and GBS risk. However, the findings of these studies were controversial. Thus, we conducted this field synopsis and systematic meta-analysis for further evaluating the possible associations between all available genetic polymorphisms and GBS susceptibility. METHODS Relevant studies focusing on the association between all genetic polymorphisms and GBS risk were obtained by a comprehensive literature search. The pooled odds ratios (ORs) as well as 95% confidence intervals (CIs) were used for assessing the strength of association. Subgroup analyses stratified by ethnicity and GBS subtype were further performed. Moreover, sensitive analysis and publication bias were conducted for evaluating the reliability of the results. RESULTS Among the initial identified 333 articles, 41 articles reporting on 220 genetic polymorphisms were extracted for conducting this systematic review. Then, we performed 95 primary and 94 subgroup meta-analyses for 59 variants with at least three independent studies available. The results showed significant association between four variants (FcγR IIA rs1801274, TNF-α rs1800629, HLA DRB1*0401 and HLA DRB1*1301) and GBS susceptibility. In the subgroup analysis, three (TNF-α rs1800629, TNF-α rs1800630 and TLR4 rs4986790) and two (FcγR IIA rs1801274, HLA DRB1*14) variants showed association with increased GBS risk in Asian and Caucasian population, respectively. Also, TNF-α rs1800629 was significant associated with AMAN subtypes of GBS. Furthermore, sensitivity analysis, funnel plots and Egger's test displayed robust results, except for FcγR IIA rs1801274. Additionally, for 161 variants with less than three studies, 17 genetic variants have been found to be significantly related with GBS risk in our systematic review. INTERPRETATION In our study, we assessed the association between all available genetic polymorphisms and GBS susceptibility. We hope our findings would be helpful for identifying novel genetic biomarkers and potential therapeutic targets for GBS.
Collapse
Affiliation(s)
- Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Ruixia Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Dandan Tian
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|
12
|
Costa AS, Agostini S, Guerini FR, Mancuso R, Clerici M, Pandey JP. Relation between FCGRIIB rs1050501 and HSV-1 specific IgG antibodies in Alzheimer's disease. J Transl Med 2020; 18:325. [PMID: 32859213 PMCID: PMC7455989 DOI: 10.1186/s12967-020-02495-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/20/2020] [Indexed: 01/08/2023] Open
Abstract
Background Alzheimer’s Disease (AD) is a chronic neurodegenerative disorder characterized by extracellular plaques, intracellular neurofibrillary tangles and neuronal loss in the central nervous system (CNS). Pathogens are suspected to have a role in the development of AD; herpes simplex virus type 1 (HSV-1), in particular, is suggested to be a risk factor for the disease. The gamma receptor for the Fc portion of IgG molecules (FCGRs) plays a crucial role in regulating immune responses, and among FCGRs, FCGRIIB is endowed with an inhibitory function. Notably, the rs1050501 polymorphism of FCGRIIB gene associates with autoimmune diseases and with neuronal uptake and interneuronal accumulation of amyloid beta in animal AD models. Methods Genotype and allelic distribution of ApoE4 and FCGRIIB rs1050501 were evaluated in a case–control population of 225 AD patients, 93 MCI individuals and 201 sex and age matched healthy controls (HC). HSV-1 total IgG titers and IgG subclasses were detected and quantified in a subgroup of the main study population by ELISA. Results Genotype and allelic distribution of FCGRIIB was comparable in the study population. HSV-1-specific antibody titers were significantly higher in AD and MCI compared to HC (p < 0.01 for both); IgG3 titers, in particular, were increased in MCI compared to AD (p = 0.04). Analyses of possible correlations between the FCGRIIB rs1050501 genotype polymorphism and IgG subclasses showed that the presence of IgG3 was more frequent in MCI carrying the FCGRIIB TT (94.1%) compared to those carrying the CT genotype (63.6%) (p = 0.03). Conclusion Results herein show an association between humoral immune response against HSV-1 and FCGRIIB rs1050501 genetic variation in the first stage of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Janardan P Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
13
|
Xu Y, Wei H, Zou J, Ma Y. Association of FcγRIIA‐R/H131 polymorphism and systemic lupus erythematosus lupus nephritis risk: A meta‐analysis. Int J Rheum Dis 2020; 23:853-867. [DOI: 10.1111/1756-185x.13815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/04/2020] [Accepted: 02/08/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Yuan Xu
- School of Basic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Hui‐Ting Wei
- School of Basic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jun‐Ju Zou
- School of Basic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yue‐Rong Ma
- School of Basic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
14
|
Costa Neto A, Santos F, Ribeiro I, Oliveira V, Dezan M, Kashima S, Covas D, Pereira A, Fonseca G, Moreira F, Krieger J, Gualandro S, Rocha V, Mendrone A, Dinardo CL. FcγR2B B2.4 haplotype predicts increased risk of red blood cell alloimmunization in sickle cell disease patients. Transfusion 2020; 60:1573-1578. [PMID: 32681817 DOI: 10.1111/trf.15832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 03/17/2020] [Accepted: 03/29/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Red blood cell (RBC) alloimmunization is an important transfusion complication which is prevalent among sickle cell disease (SCD) patients. Autoimmune diseases are a known risk factor for RBC alloimmunization, suggesting that autoimmunity and post-transfusion alloantibody development occur through similar physiopathological pathways. Polymorphisms in the FcγR2B gene have already been associated with several autoimmune disorders and hypothetically could be associated with RBC alloimmunization. Our goal was to evaluate if important polymorphisms of FcγR2B have an impact on the risk of RBC alloimmunization among SCD patients. STUDY DESIGN AND METHODS This was a case-control study in which alloimmunized and non-alloimmunized SCD patients were compared in terms of the genotype frequency of the FcγR2B polymorphisms -386G/C, -120 T/A, and 695C/T, genotyped through direct Sanger sequencing. RESULTS A total of 237 patients met the eligibility criteria, 120 cases (alloimmunized) and 117 controls (non-alloimmunized). RBC alloimmunization was associated with female sex (p < 0.001), lifetime number of RBC units transfused (p = 0.002) and 120 T/A FcγR2B genotype (p = 0.031). The FcγR2B promoter region haplotype 2B.4 (386C120A) was positively associated with RBC alloimunization (p = 0.045). The logistic regression (LR) model identified female sex (OR 10.03, CI 95% 5.16-19.49; p < 0.001) and FcγR2B 2B.4 haplotype (OR 4.55, CI95% 1.1118.65; p = 0.035) as independent predictors of RBC alloimmunization in SCD patients. CONCLUSION SCD patients with the FcγR2B 2B.4 haplotype had over a fourfold higher risk for RBC alloimmunization. This highlights the role played by FcγR2B on RBC alloimmunization and may be helpful in identifying the immune responders.
Collapse
Affiliation(s)
- Abel Costa Neto
- Serviço de Hematologia, Hemoterapia e Terapia Celular do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo/Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Flávia Santos
- Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ingrid Ribeiro
- Serviço de Hematologia, Hemoterapia e Terapia Celular do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo/Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil.,Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Valeria Oliveira
- Serviço de Hematologia, Hemoterapia e Terapia Celular do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo/Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil.,Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Marcia Dezan
- Serviço de Hematologia, Hemoterapia e Terapia Celular do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo/Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil.,Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Simone Kashima
- Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimas Covas
- Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo, São Paulo, Brazil
| | - Guilherme Fonseca
- Serviço de Hematologia, Hemoterapia e Terapia Celular do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo/Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Frederico Moreira
- Serviço de Hematologia, Hemoterapia e Terapia Celular do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo/Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - José Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo, São Paulo, Brazil
| | - Sandra Gualandro
- Serviço de Hematologia, Hemoterapia e Terapia Celular do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo/Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Vanderson Rocha
- Serviço de Hematologia, Hemoterapia e Terapia Celular do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo/Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil.,Department of Hematology, Churchill Hospital, NHS BT, Oxford University, Oxford, UK
| | - Alfredo Mendrone
- Serviço de Hematologia, Hemoterapia e Terapia Celular do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo/Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Carla L Dinardo
- Serviço de Hematologia, Hemoterapia e Terapia Celular do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo/Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil.,Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Talathi SP, Shaikh NN, Pandey SS, Saxena VA, Mamulwar MS, Thakar MR. FcγRIIIa receptor polymorphism influences NK cell mediated ADCC activity against HIV. BMC Infect Dis 2019; 19:1053. [PMID: 31842762 PMCID: PMC6916223 DOI: 10.1186/s12879-019-4674-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-specific Antibody Dependent Cell Cytotoxicity (ADCC) has shown to be important in HIV control and resistance. The ADCC is mediated primarily by natural killer cell activated through the binding of FcγRIIIa receptor to the Fc portion of antibody bound to the antigen expressed on the infected cells. However, no data is available on the influence of the polymorphism in FcγRIIIa receptor on HIV-specific ADCC response. METHODS The Sanger's method of sequencing was used to sequence the exon of FcγRIIIa receptor while the ADCC activity was determined using NK cell activation assay. The polymorphism in FcγRIIIa receptor was assessed in HIV-infected Indian individuals with or without HIV-specific ADCC antibodies and its influence on the magnitude of HIV-specific ADCC responses was analyzed. RESULTS Two polymorphisms: V176F (rs396991) and Y158H (rs396716) were observed. The Y158H polymorphism is reported for the first time in Indian population. Both, V176F (V/V genotype) (p = 0.004) and Y158H (Y/H genotype) (p = 0.032) were found to be significantly associated with higher magnitude of HIV-specific ADCC response. CONCLUSION The study underscores the role of polymorphism in the FcγRIIIa receptor on HIV-specific ADCC response and suggests that the screening of the individuals for FcγRIIIa-V176F and Y158H polymorphisms could be useful for prediction of efficient treatment in monoclonal antibody-based therapies aimed at ADCC in HIV infection.
Collapse
Affiliation(s)
- Sneha Pramod Talathi
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Nawaj Najir Shaikh
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Sudhanshu Shekhar Pandey
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Vandana Ashish Saxena
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Megha Sunil Mamulwar
- Department of Epidemiology, National AIDS Research Institute, Pune, 411026, India
| | - Madhuri Rajeev Thakar
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India.
| |
Collapse
|
16
|
Understanding Inter-Individual Variability in Monoclonal Antibody Disposition. Antibodies (Basel) 2019; 8:antib8040056. [PMID: 31817205 PMCID: PMC6963779 DOI: 10.3390/antib8040056] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/29/2022] Open
Abstract
Monoclonal antibodies (mAbs) are currently the largest and most dominant class of therapeutic proteins. Inter-individual variability has been observed for several mAbs; however, an understanding of the underlying mechanisms and factors contributing to inter-subject differences in mAb disposition is still lacking. In this review, we analyze the mechanisms of antibody disposition and the putative mechanistic determinants of inter-individual variability. Results from in vitro, preclinical, and clinical studies were reviewed evaluate the role of the neonatal Fc receptor and Fc gamma receptors (expression and polymorphism), target properties (expression, shedding, turnover, internalization, heterogeneity, polymorphism), and the influence of anti-drug antibodies. Particular attention is given to the influence of co-administered drugs and disease, and to the physiological relevance of covariates identified by population pharmacokinetic modeling, as determinants of variability in mAb pharmacokinetics.
Collapse
|
17
|
Verbeek JS, Hirose S, Nishimura H. The Complex Association of FcγRIIb With Autoimmune Susceptibility. Front Immunol 2019; 10:2061. [PMID: 31681256 PMCID: PMC6803437 DOI: 10.3389/fimmu.2019.02061] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
FcγRIIb is the only inhibitory Fc receptor and controls many aspects of immune and inflammatory responses. The observation 19 years ago that Fc γ RIIb -/- mice generated by gene targeting in 129 derived ES cells developed severe lupus like disease when backcrossed more than 7 generations into C57BL/6 background initiated extensive research on the functional understanding of this strong autoimmune phenotype. The genomic region in the distal part of Chr1 both in human and mice in which the Fc γ R gene cluster is located shows a high level of complexity in relation to the susceptibility to SLE. Specific haplotypes of closely linked genes including the Fc γ RIIb and Slamf genes are associated with increased susceptibility to SLE both in mice and human. Using forward and reverse genetic approaches including in human GWAS and in mice congenic strains, KO mice (germline and cell type specific, on different genetic background), knockin mice, overexpressing transgenic mice combined with immunological models such as adoptive transfer of B cells from Ig transgenic mice the involved genes and the causal mutations and their associated functional alterations were analyzed. In this review the results of this 19 years extensive research are discussed with a focus on (genetically modified) mouse models.
Collapse
Affiliation(s)
- J Sjef Verbeek
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Sachiko Hirose
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Hiroyuki Nishimura
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| |
Collapse
|
18
|
Lu KL, Wu MY, Wang CH, Wang CW, Hung SI, Chung WH, Chen CB. The Role of Immune Checkpoint Receptors in Regulating Immune Reactivity in Lupus. Cells 2019; 8:E1213. [PMID: 31597242 PMCID: PMC6829486 DOI: 10.3390/cells8101213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint receptors with co-stimulatory and co-inhibitory signals are important modulators for the immune system. However, unrestricted co-stimulation and/or inadequate co-inhibition may cause breakdown of self-tolerance, leading to autoimmunity. Systemic lupus erythematosus (SLE) is a complex multi-organ disease with skewed and dysregulated immune responses interacting with genetics and the environment. The close connections between co-signaling pathways and SLE have gradually been established in past research. Also, the recent success of immune checkpoint blockade in cancer therapy illustrates the importance of the co-inhibitory receptors in cancer immunotherapy. Moreover, immune checkpoint blockade could result in substantial immune-related adverse events that mimic autoimmune diseases, including lupus. Together, immune checkpoint regulators represent viable immunotherapeutic targets for the treatment of both autoimmunity and cancer. Therefore, it appears reasonable to treat SLE by restoring the out-of-order co-signaling axis or by manipulating collateral pathways to control the pathogenic immune responses. Here, we review the current state of knowledge regarding the relationships between SLE and the co-signaling pathways of T cells, B cells, dendritic cells, and neutrophils, and highlight their potential clinical implications. Current clinical trials targeting the specific co-signaling axes involved in SLE help to advance such knowledge, but further in-depth exploration is still warranted.
Collapse
Affiliation(s)
- Kun-Lin Lu
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
| | - Ming-Ying Wu
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
| | - Chi-Hui Wang
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
| | - Chuang-Wei Wang
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Shuen-Iu Hung
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Wen-Hung Chung
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361000, China
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
| | - Chun-Bing Chen
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361000, China
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
| |
Collapse
|
19
|
Hu W, Zhang Y, Sun X, Zhang T, Xu L, Xie H, Li Z, Liu W, Lou J, Chen W. FcγRIIB-I232T polymorphic change allosterically suppresses ligand binding. eLife 2019; 8:46689. [PMID: 31343409 PMCID: PMC6711707 DOI: 10.7554/elife.46689] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/25/2019] [Indexed: 01/02/2023] Open
Abstract
FcγRIIB binding to its ligand suppresses immune cell activation. A single-nucleotide polymorphic (SNP) change, I232T, in the transmembrane (TM) domain of FcγRIIB loses its suppressive function, which is clinically associated with systemic lupus erythematosus (SLE). Previously, we reported that I232T tilts FcγRIIB’s TM domain. In this study, combining with molecular dynamics simulations and single-cell FRET assay, we further reveal that such tilting by I232T unexpectedly bends the FcγRIIB’s ectodomain toward plasma membrane to allosterically impede FcγRIIB’s ligand association. I232T substitution reduces in situ two-dimensional binding affinities and association rates of FcγRIIB to interact with its ligands, IgG1, IgG2 and IgG3 by three to four folds. This allosteric regulation by an SNP provides an intrinsic molecular mechanism for the functional loss of FcγRIIB-I232T in SLE patients. Left unchecked the immune system can cause devastating damage to healthy tissue. To prevent this from happening, immune cells have built-in off switches that dampen their activation. One such switch is a protein called FcγRIIB that sits on the outer surface of immune cells and binds to proteins known as antibodies, which are produced as part of the immune response. Its role is to act as a brake on the immune system, and stop it from getting out of control. Overactive immune cells can lead to autoimmune diseases such as systemic lupus erythematosus, also known as SLE for short, which causes damage to the skin, joints and other organs. Previous work suggests that SLE is correlated with a specific mutation in the FcγRIIB gene, but it is unclear how the mutation and the disease are connected. Proteins are made out of building blocks called amino acids, which have different chemical properties. A swap of one amino acid for another can have big consequences for the structure of a protein. In the case of FcγRIIB, the mutation that correlates with SLE changes an amino acid called isoleucine for another called threonine. Isoleucine does not mix well with water and is commonly found buried in the middle of proteins or inside cell membranes. Threonine, on the other hand, can readily interact with the hydrogen atoms in water and other amino acids. Hu, Zhang, Sun et al. used computer simulations and imaged single human cells to find out how the isoleucine to threonine change causes immune cells to become over-activated. The experiments revealed that threonine interacts with a nearby amino acid, putting a kink in the FcγRIIB protein. This kink causes the outer part of the FcγRIIB protein to bend towards the immune cell membrane, stopping it from binding to antibodies, and putting a break on immune cells that have become hyper-activated. There is currently no cure for SLE, but understanding its causes could take us a step closer to better management of the disease. Small molecule drug treatments often target the three-dimensional shape of certain proteins, so understanding the effect of mutations at the molecular level could help with the design of new treatments in the future.
Collapse
Affiliation(s)
- Wei Hu
- Department of Neurobiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Sun
- Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Department of Rheumatology and Immunology, Peking-Tsinghua Center for Life Sciences, Peking University People's Hospital, Beijing, China
| | - Tongtong Zhang
- Department of Neurobiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liling Xu
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, China
| | - Hengyi Xie
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhanguo Li
- Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Department of Rheumatology and Immunology, Peking-Tsinghua Center for Life Sciences, Peking University People's Hospital, Beijing, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, China
| | - Jizhong Lou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- Department of Neurobiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, State Key Laboratory for Modern Optical Instrumentation, College of Biomedical Engineering and Instrument Science, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Espéli M, Bashford-Rogers R, Sowerby JM, Alouche N, Wong L, Denton AE, Linterman MA, Smith KGC. FcγRIIb differentially regulates pre-immune and germinal center B cell tolerance in mouse and human. Nat Commun 2019; 10:1970. [PMID: 31036800 PMCID: PMC6488660 DOI: 10.1038/s41467-019-09434-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/21/2019] [Indexed: 11/18/2022] Open
Abstract
Several tolerance checkpoints exist throughout B cell development to control autoreactive B cells and prevent the generation of pathogenic autoantibodies. FcγRIIb is an Fc receptor that inhibits B cell activation and, if defective, is associated with autoimmune disease, yet its impact on specific B cell tolerance checkpoints is unknown. Here we show that reduced expression of FcγRIIb enhances the deletion and anergy of autoreactive immature B cells, but in contrast promotes autoreactive B cell expansion in the germinal center and serum autoantibody production, even in response to exogenous, non-self antigens. Our data thus show that FcγRIIb has opposing effects on pre-immune and post-immune tolerance checkpoints, and suggest that B cell tolerance requires the control of bystander germinal center B cells with low or no affinity for the immunizing antigen. The inhibitory receptor, FcγRIIb, is reported to limit autoimmune B cell response. Here the authors show that FcγRIIb has a dual role in both human and mouse, with reduced FcγRIIb expression or function associated with enhanced pre-immune B cell tolerance, yet defective control of mature autoreactive B cells in the germinal center.
Collapse
Affiliation(s)
- Marion Espéli
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK. .,UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, F-92140, France.
| | - Rachael Bashford-Rogers
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - John M Sowerby
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, University of Cambridge, CB2 0AW, Cambridge, UK
| | - Nagham Alouche
- UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, F-92140, France
| | - Limy Wong
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK
| | - Alice E Denton
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Lymphocyte Signalling and Development, Babraham Institute, CB22 3AT, Cambridge, UK
| | - Michelle A Linterman
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Lymphocyte Signalling and Development, Babraham Institute, CB22 3AT, Cambridge, UK
| | - Kenneth G C Smith
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK. .,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, University of Cambridge, CB2 0AW, Cambridge, UK.
| |
Collapse
|
21
|
Surawut S, Panpetch W, Makjaroen J, Tangtanatakul P, Thim-Uam A, Wongphoom J, Tumwasorn S, Leelahavanichkul A. Helicobacter pylori Infection Increased Anti-dsDNA and Enhanced Lupus Severity in Symptomatic FcγRIIb-Deficient Lupus Mice. Front Microbiol 2018; 9:1488. [PMID: 30034379 PMCID: PMC6043646 DOI: 10.3389/fmicb.2018.01488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022] Open
Abstract
The defect on Fc gamma receptor IIb (FcγRIIb), the only inhibitory FcγR, has been identified as one of the genetic factors increasing susceptibility to lupus. The prevalence of Helicobacter pylori (HP) and FcγRIIb dysfunction-polymorphisms are high among Asians, and their co-existence is possible. Unfortunately, the influence of HP against lupus progression in patients with lupus is still controversial. In this study, the interactions between these conditions were tested with HP infection in 24-week-old FcγRIIb-/- mice (symptomatic lupus). HP induced failure to thrive, increased stomach bacterial burdens and stomach injury (histology and cytokines) in both wild-type and FcγRIIb-/- mice. While the severity of HP infection, as determined by these parameters, was not different between both strains, antibodies production (anti-HP, anti-dsDNA and serum gammaglobulin) were higher in FcγRIIb-/- mice compared to wild-type. Accordingly, HP infection also accelerated the severity of lupus as determined by proteinuria, serum creatinine, serum cytokines, renal histology, and renal immune complex deposition. Although HP increased serum cytokines in both wild-type and FcγRIIb-/- mice, the levels were higher in FcγRIIb-/- mice. As such, HP also increased spleen weight and induced several splenic immune cells responsible for antibody productions (activated B cell, plasma cell and follicular helper T cell) in FcγRIIb-/- mice, but not in wild-type. These data describe the different systemic responses against localized HP infection from diverse host genetic background. In conclusion, the mutual interactions between HP and lupus manifestations of FcγRIIb-/-mice were demonstrated in this study. With the prominent immune responses from the loss of inhibitory signaling in FcγRIIb-/- mice, HP infection in these mice induced intense chronic inflammation, increased antibody production, and enhanced lupus severity. Thus, the increased systemic inflammatory responses due to localized HP inducing gastritis in some patients with lupus may enhance lupus progression. More studies are needed.
Collapse
Affiliation(s)
- Saowapha Surawut
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Wimonrat Panpetch
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiradej Makjaroen
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Pattarin Tangtanatakul
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Arthid Thim-Uam
- Inter-Department Program of Biomedical Sciences, Faculty of Graduate, Chulalongkorn University, Bangkok, Thailand
| | - Jutamas Wongphoom
- Division of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
22
|
Jhou JP, Yu IS, Hwai H, Chen CS, Chen PL, Tzeng SJ. The Lupus-Associated Fcγ Receptor IIb-I232T Polymorphism Results in Impairment in the Negative Selection of Low-Affinity Germinal Center B Cells Via c-Abl in Mice. Arthritis Rheumatol 2018; 70:1866-1878. [PMID: 29774664 PMCID: PMC6221021 DOI: 10.1002/art.40555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 05/08/2018] [Indexed: 11/17/2022]
Abstract
Objective Fcγ receptor IIb (FcγRIIb) is an essential negative regulator of B cells that blocks B cell receptor (BCR) signaling and triggers c‐Abl–dependent apoptosis of B cells. FcγRIIb‐deficient mice display splenomegaly with expansion of B cells, leading to lupus. FcγRIIb‐I232T is a hypofunctional polymorphism associated with lupus susceptibility in humans, an autoimmune disease linked to diminished deletion of autoreactive B cells. In the context of the FcγRIIb‐I232T polymorphism, we investigated the role of FcγRIIb in the deletion of low‐affinity germinal center (GC) B cells, an important mechanism for preventing autoimmunity. Methods We generated FcγRIIb232T/T mice to mimic human FcγRIIb‐I232T carriers and immunized mice with chicken gamma globulin (CGG)–conjugated NP, a T cell–dependent antigen, to examine the response of GC B cells. Results Compared to wild‐type (WT) mice, FcγRIIb232T/T mice showed increased numbers of low‐affinity NP‐specific IgG and NP‐specific B cells and plasma cells; additionally, the expression of a somatic mutation (W33L) in their VH186.2 genes encoding high‐affinity BCR was reduced. Notably, FcγRIIb232T/T mice had a higher number of GC light zone B cells and showed less apoptosis than WT mice, despite having equivalent follicular helper T cell numbers and function. Moreover, phosphorylation of c‐Abl was reduced in FcγRIIb232T/T mice, and treatment of WT mice with the c‐Abl inhibitor nilotinib during the peak of GC response resulted in reduced affinity maturation reminiscent of FcγRIIb232T/T mice. Conclusion Our findings provide evidence of a critical role of FcγRIIb/c‐Abl in the negative selection of GC B cells in FcγRIIb232T/T mice. Importantly, our findings indicate potential benefits of up‐regulating FcγRIIb expression in B cells for treatment of systemic lupus erythematosus.
Collapse
Affiliation(s)
| | - I-Shing Yu
- National Taiwan University, Taipei, Taiwan
| | - Haw Hwai
- National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
23
|
Wang J, Li Z, Xu L, Yang H, Liu W. Transmembrane domain dependent inhibitory function of FcγRIIB. Protein Cell 2018; 9:1004-1012. [PMID: 29497990 PMCID: PMC6251803 DOI: 10.1007/s13238-018-0509-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/22/2017] [Indexed: 01/26/2023] Open
Abstract
FcγRIIB, the only inhibitory IgG Fc receptor, functions to suppress the hyper-activation of immune cells. Numerous studies have illustrated its inhibitory function through the ITIM motif in the cytoplasmic tail of FcγRIIB. However, later studies revealed that in addition to the ITIM, the transmembrane (TM) domain of FcγRIIB is also indispensable for its inhibitory function. Indeed, recent epidemiological studies revealed that a non-synonymous single nucleotide polymorphism (rs1050501) within the TM domain of FcγRIIB, responsible for the I232T substitution, is associated with the susceptibility to systemic lupus erythematosus (SLE). In this review, we will summarize these epidemiological and functional studies of FcγRIIB-I232T in the past few years, and will further discuss the mechanisms accounting for the functional loss of FcγRIIB-I232T. Our review will help the reader gain a deeper understanding of the importance of the TM domain in mediating the inhibitory function of FcγRIIB and may provide insights to a new therapeutic target for the associated diseases.
Collapse
Affiliation(s)
- Junyi Wang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zongyu Li
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Liling Xu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA.
| | - Hengwen Yang
- The First Affiliate Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632, China.
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
24
|
FcγRIIa defunctioning polymorphism in paediatric patients with renal allograft. Cent Eur J Immunol 2017; 42:363-369. [PMID: 29472814 PMCID: PMC5820981 DOI: 10.5114/ceji.2017.72817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022] Open
Abstract
Introduction Fc gamma receptor (FcγR) IIa is considered the most widely distributed of the three classes of Fc receptors, and it expresses an allelic polymorphism. This type of polymorphism may modify the immune response and may be an important factor for some diseases. The aim of the study reported herein was to evaluate the association between the FcγRIIa polymorphism and susceptibility to both end-stage renal disease (ESRD) and acute kidney graft rejection (AR) in children who have undergone renal transplantation. Material and methods The study evaluated 70 children who had undergone transplantation and 60 healthy subjects. AR was observed in 25 children. Results FcγRIIa genotypes and alleles were significantly different between transplantation patients and the control group. The assessment for FcγR of the groups in which AR was present showed that there was only a risk of having an acute rejection in homozygous genotype RR. Conclusions FcγRIIa RR genotype and allele frequency was increased in paediatric renal transplant recipients. The present findings showed that FcγRIIa genotype may be related to ESRD disease susceptibility, and FcγRIIa polymorphisms seemed to affect AR.
Collapse
|
25
|
Abstract
Germinal centers (GCs) are dynamic microenvironments that form in the secondary lymphoid organs and generate somatically mutated high-affinity antibodies necessary to establish an effective humoral immune response. Tight regulation of GC responses is critical for maintaining self-tolerance. GCs can arise in the absence of purposeful immunization or overt infection (called spontaneous GCs, Spt-GCs). In autoimmune-prone mice and patients with autoimmune disease, aberrant regulation of Spt-GCs is thought to promote the development of somatically mutated pathogenic autoantibodies and the subsequent development of autoimmunity. The mechanisms that control the formation of Spt-GCs and promote systemic autoimmune diseases remain an open question and the focus of ongoing studies. Here, we discuss the most current studies on the role of Spt-GCs in autoimmunity.
Collapse
Affiliation(s)
- Phillip P Domeier
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Stephanie L Schell
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Ziaur S M Rahman
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| |
Collapse
|
26
|
Horvei KD, Pedersen HL, Fismen S, Thiyagarajan D, Schneider A, Rekvig OP, Winkler TH, Seredkina N. Lupus nephritis progression in FcγRIIB-/-yaa mice is associated with early development of glomerular electron dense deposits and loss of renal DNase I in severe disease. PLoS One 2017; 12:e0188863. [PMID: 29190833 PMCID: PMC5708736 DOI: 10.1371/journal.pone.0188863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022] Open
Abstract
FcγRIIB-/-yaa mice develop severe lupus glomerulonephritis due to lack of an inhibitory immune cell receptor combined with a Y-chromosome linked autoimmune accelerator mutation. In the present study, we have investigated nephritis development and progression in FcγRIIB-/-yaa mice to find shared features with NZB/NZW F1 lupus prone mice and human disease. We sacrificed 25 male FcγRIIB-/-yaa mice at various disease stages, and grouped them according to activity and chronicity indices for lupus nephritis. Glomerular morphology and localization of electron dense deposits containing IgG were further determined by immune electron microscopy. Renal DNase I and pro-inflammatory cytokine mRNA levels were measured by real-time quantitative PCR. DNase I protein levels was assessed by immunohistochemistry and zymography. Our results demonstrate early development of electron dense deposits containing IgG in FcγRIIB-/-yaa mice, before detectable levels of serum anti-dsDNA antibodies. Similar to NZB/NZW F1, electron dense deposits in FcγRIIB-/-yaa progressed from being confined to the mesangium in the early stage of lupus nephritis to be present also in capillary glomerular basement membranes. In the advanced stage of lupus nephritis, renal DNase I was lost on both transcriptional and protein levels, which has previously been shown in NZB/NZW F1 mice and in human disease. Although lupus nephritis appears on different genetic backgrounds, our findings suggest similar processes when comparing different murine models and human lupus nephritis.
Collapse
Affiliation(s)
- Kjersti Daae Horvei
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Hege Lynum Pedersen
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Silje Fismen
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Dhivya Thiyagarajan
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Andrea Schneider
- Department of Biology, Nikolaus-Fiebiger-Zentrum für Molekulare Medizin, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ole Petter Rekvig
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Thomas H Winkler
- Department of Biology, Nikolaus-Fiebiger-Zentrum für Molekulare Medizin, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Natalya Seredkina
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
27
|
Nonclassical FCGR2C haplotype is associated with protection from red blood cell alloimmunization in sickle cell disease. Blood 2017; 130:2121-2130. [PMID: 28899854 DOI: 10.1182/blood-2017-05-784876] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/06/2017] [Indexed: 01/21/2023] Open
Abstract
Red blood cell (RBC) transfusions are of vital importance in patients with sickle cell disease (SCD). However, a major complication of transfusion therapy is alloimmunization. The low-affinity Fcγ receptors, expressed on immune cells, are important regulators of antibody responses. Genetic variation in FCGR genes has been associated with various auto- and alloimmune diseases. The aim of this study was to evaluate the association between genetic variation of FCGR and RBC alloimmunization in SCD. In this case-control study, DNA samples from 2 cohorts of transfused SCD patients were combined (France and The Netherlands). Cases had a positive history of alloimmunization, having received ≥1 RBC unit. Controls had a negative history of alloimmunization, having received ≥20 RBC units. Single nucleotide polymorphisms and copy number variation of the FCGR2/3 gene cluster were studied in a FCGR-specific multiplex ligation-dependent probe amplification assay. Frequencies were compared using logistic regression. Two hundred seventy-two patients were included (130 controls, 142 cases). The nonclassical open reading frame in the FCGR2C gene (FCGR2C.nc-ORF) was strongly associated with a decreased alloimmunization risk (odds ratio [OR] 0.26, 95% confidence [CI] 0.11-0.64). This association persisted when only including controls with exposure to ≥100 units (OR 0.30, CI 0.11-0.85) and appeared even stronger when excluding cases with Rh or K antibodies only (OR 0.19, CI 0.06-0.59). In conclusion, SCD patients with the FCGR2Cnc-ORF polymorphism have over a 3-fold lower risk for RBC alloimmunization in comparison with patients without this mutation. This protective effect was strongest for exposure to antigens other than the immunogenic Rh or K antigens.
Collapse
|
28
|
Surawut S, Ondee T, Taratummarat S, Palaga T, Pisitkun P, Chindamporn A, Leelahavanichkul A. The role of macrophages in the susceptibility of Fc gamma receptor IIb deficient mice to Cryptococcus neoformans. Sci Rep 2017; 7:40006. [PMID: 28074867 PMCID: PMC5225418 DOI: 10.1038/srep40006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/30/2016] [Indexed: 02/04/2023] Open
Abstract
Dysfunctional polymorphisms of FcγRIIb, an inhibitory receptor, are associated with Systemic Lupus Erythaematosus (SLE). Cryptococcosis is an invasive fungal infection in SLE, perhaps due to the de novo immune defect. We investigated cryptococcosis in the FcγRIIb-/- mouse-lupus-model. Mortality, after intravenous C. neoformans-induced cryptococcosis, in young (8-week-old) and older (24-week-old) FcγRIIb-/- mice, was higher than in age-matched wild-types. Severe cryptococcosis in the FcγRIIb-/- mice was demonstrated by high fungal burdens in the internal organs with histological cryptococcoma-like lesions and high levels of TNF-α and IL-6, but not IL-10. Interestingly, FcγRIIb-/- macrophages demonstrated more prominent phagocytosis but did not differ in killing activity in vitro and the striking TNF-α, IL-6 and IL-10 levels, compared to wild-type cells. Indeed, in vivo macrophage depletion with liposomal clodronate attenuated the fungal burdens in FcγRIIb-/- mice, but not wild-type mice. When administered to wild-type mice, FcγRIIb-/- macrophages with phagocytosed Cryptococcus resulted in higher fungal burdens than FcγRIIb+/+ macrophages with phagocytosed Cryptococcus. These results support, at least in part, a model whereby, in FcγRIIb-/- mice, enhanced C. neoformans transmigration occurs through infected macrophages. In summary, prominent phagocytosis, with limited effective killing activity, and high pro-inflammatory cytokine production by FcγRIIb-/- macrophages were correlated with more severe cryptococcosis in FcγRIIb-/- mice.
Collapse
Affiliation(s)
- Saowapha Surawut
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Thunnicha Ondee
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sujittra Taratummarat
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Bangkok, Thailand
| |
Collapse
|
29
|
Grecco M, Santos VCD, Pereira KMC, Andrade LEC, Silva NPD. Fc gamma receptor IIIa polymorphism is not associated with susceptibility to systemic lupus erythematosus in Brazilian patients. REVISTA BRASILEIRA DE REUMATOLOGIA 2016; 56:515-520. [PMID: 27914599 DOI: 10.1016/j.rbre.2016.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 06/15/2016] [Indexed: 10/20/2022] Open
Abstract
We evaluated the possible association between FCGR3A V/F (158) polymorphism and SLE susceptibility and clinical phenotype in 305 sequentially retrieved SLE patients and 300 healthy controls from the southeastern part of Brazil by allele-specific polymerase chain reaction. Our results showed no association between FCGR3A 158V/F alleles and susceptibility to SLE in this series of patients albeit the heterozygous genotype was strongly associated with the disease.
Collapse
Affiliation(s)
- Marcelle Grecco
- Universidade Federal de São Paulo (UNIFESP), Departamento de Medicina, Disciplina de Reumatologia, São Paulo, SP, Brazil
| | - Viviane Cardoso Dos Santos
- Universidade Federal de São Paulo (UNIFESP), Departamento de Medicina, Disciplina de Reumatologia, São Paulo, SP, Brazil
| | - Kaline Medeiros Costa Pereira
- Universidade Federal de São Paulo (UNIFESP), Departamento de Medicina, Disciplina de Reumatologia, São Paulo, SP, Brazil
| | - Luís Eduardo Coelho Andrade
- Universidade Federal de São Paulo (UNIFESP), Departamento de Medicina, Disciplina de Reumatologia, São Paulo, SP, Brazil
| | - Neusa Pereira da Silva
- Universidade Federal de São Paulo (UNIFESP), Departamento de Medicina, Disciplina de Reumatologia, São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Grecco M, Santos VCD, Pereira KMC, Andrade LEC, Silva NPD. Polimorfismo do receptor Fc gama IIIa não está associado à susceptibilidade ao lúpus eritematoso sistêmico em pacientes brasileiros. REVISTA BRASILEIRA DE REUMATOLOGIA 2016. [DOI: 10.1016/j.rbr.2016.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
31
|
Xu L, Xia M, Guo J, Sun X, Li H, Xu C, Gu X, Zhang H, Yi J, Fang Y, Xie H, Wang J, Shen Z, Xue B, Sun Y, Meckel T, Chen YH, Hu Z, Li Z, Xu C, Gong H, Liu W. Impairment on the lateral mobility induced by structural changes underlies the functional deficiency of the lupus-associated polymorphism FcγRIIB-T232. J Exp Med 2016; 213:2707-2727. [PMID: 27799621 PMCID: PMC5110019 DOI: 10.1084/jem.20160528] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/08/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022] Open
Abstract
Xu et al. show that the lupus-associated polymorphism FcγRIIB-T232 has structural changes of the TM domain that reduces lateral mobility and inhibitory functions. FcγRIIB functions to suppress the activation of immune cells. A single-nucleotide polymorphism in the transmembrane (TM) domain of FcγRIIB, FcγRIIB-T232, is associated with lupus. In this study, we investigated the pathogenic mechanism of FcγRIIB-T232 at both functional and structural levels. Our results showed that FcγRIIB-T232 exhibited significantly reduced lateral mobility compared with FcγRIIB-I232 and was significantly less enriched into the microclusters of immune complexes (ICs) after stimulation. However, if sufficient responding time is given for FcγRIIB-T232 to diffuse and interact with the ICs, FcγRIIB-T232 can restore its inhibitory function. Moreover, substituting the FcγRIIB-T232 TM domain with that of a fast floating CD86 molecule restored both the rapid mobility and the inhibitory function, which further corroborated the importance of fast mobility for FcγRIIB to function. Mechanistically, the crippled lateral mobility of FcγRIIB-T232 can be explained by the structural changes of the TM domain. Both atomistic simulations and nuclear magnetic resonance measurement indicated that the TM helix of FcγRIIB-T232 exhibited a more inclined orientation than that of FcγRIIB-I232, thus resulting in a longer region embedded in the membrane. Therefore, we conclude that the single-residue polymorphism T232 enforces the inclination of the TM domain and thereby reduces the lateral mobility and inhibitory functions of FcγRIIB.
Collapse
Affiliation(s)
- Liling Xu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengdie Xia
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Guo
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing 100044, China
| | - Hua Li
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenguang Xu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaomei Gu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haowen Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junyang Yi
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Fang
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hengyi Xie
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Wang
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhixun Shen
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Boxin Xue
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yujie Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing 100871, China
| | - Tobias Meckel
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Ying-Hua Chen
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing 100044, China
| | - Chenqi Xu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China .,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Haipeng Gong
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Abstract
Autoimmune diseases are characterized by adaptive immune responses against self-antigens, including humoral responses resulting in the production of autoantibodies. Autoantibodies generate inflammation by activating complement and engaging Fcγ receptors (FcγRs). The inhibitory receptor FcγRIIB plays a central role in regulating the generation of autoantibodies and their effector functions, which include activation of innate immune cells and the cellular arm of the adaptive immune system, via effects on antigen presentation to CD4 T cells. Polymorphisms in FcγRIIB have been associated with susceptibility to autoimmunity but protection against infections in humans and mice. In the last few years, new mechanisms by which FcγRIIB controls the adaptive immune response have been described. Notably, FcγRIIB has been shown to regulate germinal center B cells and dendritic cell migration, with potential impact on the development of autoimmune diseases. Recent work has also highlighted the implication of FcγRIIB on the regulation of the innate immune system, via inhibition of Toll-like receptor- and complement receptor-mediated activation. This review will provide an update on the role of FcγRIIB in adaptive immune responses in autoimmunity, and then focus on their emerging function in innate immunity.
Collapse
Affiliation(s)
- Marion Espéli
- Inserm UMR_S996, LabEx LERMIT, Université Paris-Sud, Paris, France
| | - Kenneth G C Smith
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Menna R Clatworthy
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
33
|
Comprehensive Assessment of the Association between FCGRs polymorphisms and the risk of systemic lupus erythematosus: Evidence from a Meta-Analysis. Sci Rep 2016; 6:31617. [PMID: 27538381 PMCID: PMC4990922 DOI: 10.1038/srep31617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/21/2016] [Indexed: 12/26/2022] Open
Abstract
We performed a meta analysis to assess the relationship of FCGRs polymorphisms with the risk of SLE. Thirty-five articles (including up to 5741 cases and 6530 controls) were recruited for meta-analysis. The strongest association was observed between FCGR2B rs1050501 and SLE under the recessive genotypic model of C allele in the overall population (CC vs CT/TT, OR = 1.754, 95%CI: 1.422–2.165, P = 1.61 × 10−7) and in Asian population (CC vs CT/TT, OR = 1.784, 95%CI; 1.408–2.261, P = 1.67 × 10−6). We also found that FCGR3A rs396991 were significant association with the susceptibility to SLE in overall population in recessive model of T allele (TT vs TG/GG, OR = 1.263, 95%CI: 1.123–1.421, P = 9.62 × 10−5). The results also showed that significant association between FCGR2A rs1801274 and SLE under the allelic model in the overall population (OR = 0.879 per A allele, 95%CI: 0.819–0.943, P = 3.31 × 10−4). The meta-analysis indicated that FCGR3B copy number polymorphism NA1·NA2 was modestly associated with SLE in overall population (OR = 0.851 per NA1, 95%CI: 0.772–0.938, P = 1.2 × 10−3). We concluded that FCGR2B rs1050501 C allele and FCGR3A rs396991 T allele might contribute to susceptibility and development of SLE, and were under recessive association model. While, FCGR2A rs1801274 A allele and FCGR3B NA1 were associated with SLE and reduced the risk of SLE.
Collapse
|
34
|
Jeon JY, Kim KY, Kim BS, Jung JY, Kim HA, Suh CH. FcγRIIB Gene Polymorphisms Are Associated with Disease Risk and Clinical Manifestations of Systemic Lupus Erythematosus in Koreans. TOHOKU J EXP MED 2016; 236:185-91. [PMID: 26084639 DOI: 10.1620/tjem.236.185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is chronic autoimmune disease with various autoantibodies, which are involved in tissue damage. Fc gamma receptors (FcγRs) bind the constant region of the immunoglobulin G and transmit stimulatory or inhibitory signal to immune cells. The FcγR genes map to 1q23, a susceptible locus for SLE. We have screened single nucleotide polymorphisms (SNPs) in one of FcγR gene, FcγRIIB, which is the only inhibitory receptor, after considering gene map and reported SNPs. There were 3 SNPs in FcγRIIB: 10849 T>C (rs1050501) in exon 5 and 10950 T>G (rs6666965) and 11045 G>T (rs12117530) in intron 5 in Koreans. The frequency of the minor allele (T) of rs12117530 was significantly higher in SLE patients (50 patients, 20.4%) than healthy controls (17 patients, 12%, p = 0.041). Leukopenia occurred more frequently in SLE patients carrying the minor allele (T) of rs12117530 (p = 0.032). Among 5 haplotypes, the frequency of decreased complement was significantly lower in SLE patients with haplotype 1 [TTG] (p = 0.045). Nephritis, lymphopenia and anti-dsDNA antibody were significantly less frequent in SLE patients with haplotype 2 [TGG] (p = 0.046, p = 0.018, p = 0.002, respectively). The frequency of thrombocytopenia and anti-dsDNA antibody was significantly higher in SLE patients with haplotype 3 [CTG] (p < 0.001, p = 0.04, respectively). These data reveal that genetic polymorphisms within FcγRIIB are associated with disease susceptibility and phenotypes of SLE in Koreans. Furthermore, FcγRIIB rs12117530 polymorphism (T allele) may be an important risk factor in SLE.
Collapse
Affiliation(s)
- Ja-Young Jeon
- Department of Rheumatology and BK21 Division of Cell Transformation and Restoration, Ajou University School of Medicine
| | | | | | | | | | | |
Collapse
|
35
|
Santos VC, Grecco M, Pereira KMC, Terzian CCN, Andrade LEC, Silva NP. Fc gamma receptor IIIb polymorphism and systemic lupus erythematosus: association with disease susceptibility and identification of a novel FCGR3B*01 variant. Lupus 2016; 25:1237-43. [PMID: 26946294 DOI: 10.1177/0961203316636952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/11/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the association between Fc gamma receptor IIIb polymorphism and susceptibility to systemic lupus erythematosus and clinical traits of the disease. METHODS Genomic DNA was obtained from 303 consecutive systemic lupus erythematosus patients and 300 healthy blood donors from the southeastern region of Brazil. The polymorphic region of the FCGR3B gene was sequenced and the alleles FCGR3B*01, FCGR3B*02 and FCGR3B*03 were analyzed. RESULTS The FCGR3B*01 allele was more frequent in systemic lupus erythematosus patients (43.1%) while the FCGR3B*02 allele prevailed among controls (63.7%) (P = 0.001). The FCGR3B*03 allele was found equally in both groups. The FCGR3B*01/*01 (20.7%) and FCGR3B*01/*02 (41.1%) genotypes were more frequent among systemic lupus erythematosus patients (P = 0.028 and P = 0.012, respectively) while the FCGR3B*02/*02 genotype was more frequent in controls (45.5%) (P < 0.001). One variant of the FCGR3B*01 allele previously described in Germany was found in only one control. A new variant of the FCGR3B*01 allele with two substitutions (A227G/G277A) was found in one control. Three variants of the FCGR3B*02 allele previously described in African-Americans, Brazilians, Chinese and Japanese were found in ten 10 patients and two controls. In addition, several single nucleotide polymorphisms at non-polymorphic positions were identified in both patients and controls. CONCLUSION Susceptibility to systemic lupus erythematosus was associated with the FCGR3B*01 allele, as well as with the FCGR3B*01/*01 and FCGR3B*01/*02 genotypes. No association was found between FCGR3B genotypes and clinical manifestations, disease severity or the presence of autoantibodies.
Collapse
Affiliation(s)
- V C Santos
- Disciplina de Reumatologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M Grecco
- Disciplina de Reumatologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - K M C Pereira
- Disciplina de Reumatologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - C C N Terzian
- Disciplina de Hematologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - L E C Andrade
- Disciplina de Reumatologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - N P Silva
- Disciplina de Reumatologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Variability at the FCGR locus: characterization in Black South Africans and evidence for ethnic variation in and out of Africa. Genes Immun 2015; 17:93-104. [PMID: 26673965 DOI: 10.1038/gene.2015.60] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 01/07/2023]
Abstract
This study set out to comprehensively investigate all known functional FcγR variants in South African Black and Caucasian individuals. Population diversity was further assessed using data from the 1000 Genomes Project. In our cohort, Black South Africans neither possessed the haplotypes previously associated with increased surface densities of FcγRIIb and FcγRIIIa nor the FCGR2C haplotype recently associated with increased vaccine efficacy in the RV144 HIV-1 vaccine trial (despite 48.7% bearing the c.134-96T tag allele). Moreover, Africans (South Africans, Luhya Kenyans and Yoruba Nigerians) lack the FCGR2C c.798+1G splice-site allele required for the expression of functional FcγRIIc. Although the presence or absence of surface FcγRIIc did not affect natural killer cell-mediated antibody-dependent cellular cytotoxicity capability, this may be significant for other FcγRIIc-mediated functions. Overall, allele distribution and linkage disequilibrium in Africans and Caucasians differed in a manner that would suggest a differentially maintained balance of FcγR-mediated cell activation in these populations. Finally, significant variation observed among different African populations precludes the use of any one African population as a proxy for FcγR diversity in Africans. In conclusion, the findings of this study highlight further ethnic variation at the FCGR gene locus, in particular for FCGR2C, a gene with increasingly recognized clinical significance.
Collapse
|
37
|
Hargreaves CE, Rose-Zerilli MJJ, Machado LR, Iriyama C, Hollox EJ, Cragg MS, Strefford JC. Fcγ receptors: genetic variation, function, and disease. Immunol Rev 2015; 268:6-24. [DOI: 10.1111/imr.12341] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Chantal E. Hargreaves
- Cancer Genomics Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
- Antibody and Vaccine Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | | | - Lee R. Machado
- Department of Genetics; University of Leicester; Leicester UK
- School of Health; University of Northampton; Northampton UK
| | - Chisako Iriyama
- Department of Hematology and Oncology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | | | - Mark S. Cragg
- Antibody and Vaccine Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | - Jonathan C. Strefford
- Cancer Genomics Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
38
|
Crampton SP, Morawski PA, Bolland S. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus. Dis Model Mech 2015; 7:1033-46. [PMID: 25147296 PMCID: PMC4142724 DOI: 10.1242/dmm.016451] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease.
Collapse
Affiliation(s)
- Steve P Crampton
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Peter A Morawski
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Silvia Bolland
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
39
|
Chen JY, Wang CM, Chang SW, Cheng CH, Wu YJJ, Lin JC, Yang B, Ho HH, Wu J. Association of FCGR3A and FCGR3B copy number variations with systemic lupus erythematosus and rheumatoid arthritis in Taiwanese patients. Arthritis Rheumatol 2015; 66:3113-21. [PMID: 25154742 PMCID: PMC4232894 DOI: 10.1002/art.38813] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022]
Abstract
Objective To determine whether copy number variations (CNVs) in FCGR3A and FCGR3B are associated with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) in Taiwanese individuals. Methods FCGR3A and FCGR3B CNV genotypes were determined in 846 patients with SLE, 948 patients with RA, and 1,420 healthy control subjects, using custom TaqMan CNV assays. The FCGR3A and FCGR3B CNV genotypes were compared between healthy control subjects and patients and among patients stratified according to clinical characteristics. Results A low (<2) FCGR3A copy number was significantly associated with SLE (for <2 copies versus 2 copies, P = 5.06 × 10−4, false discovery rate–corrected P [PFDR] = 0.001, odds ratio [OR] 3.26, 95% confidence interval [95% CI] 1.68−6.35) and RA (for <2 copies versus 2 copies, P = 5.83 × 10−4, PFDR = 0.0012, OR 2.82, 95% CI 1.56−5.1). A low FCGR3B copy number was also significantly associated with SLE (for <2 copies versus 2 copies, P = 0.0032, PFDR = 0.0032, OR 1.59, 95% CI 1.17−2.18). Notably, a high (>2) FCGR3A copy number was also associated with SLE (for >2 copies versus 2 copies, P = 0.003, PFDR = 0.0061, OR 1.6, 95% CI 1.17−2.18). Additionally, the FCGR3A low copy number genotype was significantly enriched in subsets of patients with SLE (those with ulcer, arthritis, rash, discoid rash, photosensitivity, nephritis, leukopenia, thrombocytopenia, depressed complement levels, and autoantibody positivity) and patients with RA (those positive for rheumatoid factor) compared with healthy control subjects. The FCGR3B low copy number genotype was also significantly enriched in SLE patients with ulcer, rash, discoid rash, photosensitivity, ascites, nephritis, complement level depression, and anti–double-stranded DNA antibody positivity compared with control subjects. However, FCGR3B CNVs were not associated with RA susceptibility (for <2 copy numbers versus 2 copy numbers, P = 0.3584, OR 1.15, 95% CI 0.85–1.55) and clinical characteristics. Conclusion In Taiwanese individuals, a low FCGR3A copy number is a common risk factor for SLE and RA, while a low FCGR3B copy number confers a risk of SLE but not RA.
Collapse
Affiliation(s)
- Ji-Yih Chen
- Chang Gung University College of Medicine, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nagelkerke SQ, Kuijpers TW. Immunomodulation by IVIg and the Role of Fc-Gamma Receptors: Classic Mechanisms of Action after all? Front Immunol 2015; 5:674. [PMID: 25653650 PMCID: PMC4301001 DOI: 10.3389/fimmu.2014.00674] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/15/2014] [Indexed: 11/13/2022] Open
Abstract
Intravenous IgG (IVIg) contains polyclonal immunoglobulin G (IgG) from thousands of donors. It is administered at a low dose at regular intervals as antibody replacement therapy and at a higher dose as immunomodulatory treatment in various auto-immune or auto-inflammatory diseases. The working mechanism of immunomodulation is not well understood. Many different explanations have been given. During the last decade, we have focused on classical antibody binding via the Fc-domain of the IgG molecules to the common IgG receptors, i.e. the Fcγ receptors (FcγRs). Variation in the genes encoding human FcγRs determines function as well as expression among immune cells. As described here, NK cells and myeloid cells, including macrophages, can express different FcγR variants, depending on the individual's genotype, copy number variation (CNV), and promoter polymorphisms. B-cells seem to only express the single inhibitory receptor. Although these inhibitory FcγRIIb receptors are also expressed by monocytes, macrophages, and only rarely by NK cells or neutrophils, their presence is unlikely to explain the immunomodulatory capacity of IVIg, nor does the sialylation of IgG. Direct IVIg effects at the level of the activating FcγRs, including the more recently described FcγRIIc, deserve renewed attention to describe IVIg-related immunomodulation.
Collapse
Affiliation(s)
- Sietse Q Nagelkerke
- Department of Blood Cell Research, Sanquin, University of Amsterdam , Amsterdam , Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin, University of Amsterdam , Amsterdam , Netherlands ; Department of Pediatric Hematology, Immunology and Infectious Disease, Emma Children's Hospital at the Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
41
|
Polymorphism of FCGR2A, FCGR2C, and FCGR3B Genes in the Pathogenesis of Sarcoidosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 905:57-68. [PMID: 26801149 DOI: 10.1007/5584_2015_193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have previously presented evidence that the polymorphism of the FCGR3A gene, encoding the receptor for Fc fragment of immunoglobulin G IIIa (FcγRIIIa) plays a role in the enhancement of circulating immune complexes (CIs) with the occurrence of Mycobacterium tuberculosis heat shock proteins in patients with sarcoidosis (SA). The immunocomplexemia might be caused by decreased affinity of CIs to Fcγ receptors, with the subsequently decreased receptor clearance by immune cells. In the present study we examined whether the polymorphisms of other related genes (FCGR2A, FCGR2C, FCGR3B) encoding other activatory Fcγ receptors, could have a similar effect. To this end, we genotyped 124 patients with sarcoidosis and 148 healthy volunteers using polymerase chain reaction with sequence-specific primers. We revealed a significant decrease in the percentage of the FCGR2A and FCGR2C variants that ensure effective CIs clearance, with a concomitant increase of less functional variants of these genes in Stages I/II, compared with Stages III/IV of SA. There was no aberration in FCGR3B allele/genotype frequencies. We conclude that the FCGR2A and FCGR2C polymorphisms may also contribute to immunocomplexemia present in SA. The assessment of FCGR genes could become a tool in presaging a clinical course of sarcoidosis and in its personalized therapy.
Collapse
|
42
|
FcγRIIb inhibits immune complex-induced VEGF-A production and intranodal lymphangiogenesis. Proc Natl Acad Sci U S A 2014; 111:17971-6. [PMID: 25475856 DOI: 10.1073/pnas.1413915111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IgG immune complexes (ICs) are generated during immune responses to infection and self-antigen and have been implicated in the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE). Their role, and that of the fragment crystallizable (Fc) receptors that bind them, in driving local inflammation is not fully understood. Low affinity-activating Fcγ receptors (FcγRs) that bind immune complexes are controlled by a single inhibitory receptor, FcγRIIb (CD32b). We investigated whether FcγR cross-linking by IC might induce VEGF-A and lymph node lymphangiogenesis. Murine macrophages and dendritic cells (DCs) stimulated with ICs produced VEGF-A, and this was inhibited by coligation of FcγRIIb. Similarly, IC-induced VEGF-A production by B cells was inhibited by FcγRIIb. In vivo, IC generation resulted in VEGF-A-dependent intranodal lymphangiogenesis and increased DC number. We sought to determine the relevance of these findings to autoimmunity because elevated serum VEGF-A has been observed in patients with SLE; we found that lymphangiogenesis and VEGF-A were increased in the lymph nodes of mice with collagen-induced arthritis and SLE. In humans, a SLE-associated polymorphism (rs1050501) results in a dysfunctional FcγRIIB(T232) receptor. Monocyte-derived macrophages from subjects with the FcγRIIB(T/T232) genotype showed increased FcγR-mediated VEGF-A production, demonstrating a similar process is likely to occur in humans. Thus, ICs contribute to inflammation through VEGF-A-driven lymph node lymphangiogenesis, which is controlled by FcγRIIb. These findings have implications for the pathogenesis, and perhaps future treatment, of autoimmune diseases.
Collapse
|
43
|
Abstract
Despite the fact that rheumatic diseases constitute a common health care problem in Thailand, improvements in rheumatology education, research and health care are still required. Low numbers of rheumatologists, their uneven distribution, lack of time to perform both clinical and basic research, lack of patient compliance and restricted access to effective medication comprise some of the barriers that need to be overcome to establish rheumatology education, research and care with a Western-country benchmark. The annual academic activities provided by the Thai Rheumatism Association for rheumatologists, general practitioners, allied health professionals and patients can advance only some forms of education and health care. Better cooperation between the Thai Rheumatism Association, the Royal College of Physicians of Thailand, the Ministry of Public Health and the Thai government is needed to improve rheumatology training, care and research in the country.
Collapse
|
44
|
Li R, Peng H, Chen GM, Feng CC, Zhang YJ, Wen PF, Qiu LJ, Leng RX, Pan HF, Ye DQ. Association of FCGR2A-R/H131 polymorphism with susceptibility to systemic lupus erythematosus among Asian population: a meta-analysis of 20 studies. Arch Dermatol Res 2014; 306:781-91. [DOI: 10.1007/s00403-014-1483-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 06/05/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|
45
|
Mangano VD, Modiano D. An evolutionary perspective of how infection drives human genome diversity: the case of malaria. Curr Opin Immunol 2014; 30:39-47. [PMID: 24996199 DOI: 10.1016/j.coi.2014.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/31/2014] [Accepted: 06/04/2014] [Indexed: 11/26/2022]
Abstract
Infection with malaria parasites has imposed a strong selective pressure on the human genome, promoting the convergent evolution of a diverse range of genetic adaptations, many of which are harboured by the red blood cell, which hosts the pathogenic stage of the Plasmodium life cycle. Recent genome-wide and multi-centre association studies of severe malaria have consistently identified ATP2B4, encoding the major Ca(2+) pump of erythrocytes, as a novel resistance locus. Evidence is also accumulating that interaction occurs among resistance loci, the most recent example being negative epistasis among alpha-thalassemia and haptoglobin type 2. Finally, studies on the effect of haemoglobin S and C on parasite transmission to mosquitoes have suggested that protective variants could increase in frequency enhancing parasite fitness.
Collapse
Affiliation(s)
- Valentina D Mangano
- Department of Public Health and Infectious Diseases, University of Rome 'La Sapienza', Rome, Italy; Istituto Pasteur, Fondazione Cenci Bolognetti, University of Rome 'La Sapienza', Rome, Italy.
| | - David Modiano
- Department of Public Health and Infectious Diseases, University of Rome 'La Sapienza', Rome, Italy; Istituto Pasteur, Fondazione Cenci Bolognetti, University of Rome 'La Sapienza', Rome, Italy.
| |
Collapse
|
46
|
Urbaczek AC, Toller-Kawahisa JE, Fonseca LM, Costa PI, Faria CMQG, Azzolini AECS, Lucisano-Valim YM, Marzocchi-Machado CM. Influence of FcγRIIIb polymorphism on its ability to cooperate with FcγRIIa and CR3 in mediating the oxidative burst of human neutrophils. Hum Immunol 2014; 75:785-90. [PMID: 24945596 DOI: 10.1016/j.humimm.2014.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 05/18/2014] [Accepted: 05/23/2014] [Indexed: 11/16/2022]
Abstract
Considering that human neutrophil FcγRIIa and FcγRIIIb receptors interact synergistically with CR3 in triggering neutrophil functional responses, allelic polymorphisms in these receptors might influence such interactions. We assessed whether FcγRIIIb polymorphisms affect FcγR/CR cooperation in mediating the neutrophil oxidative burst (OB), in particular the FcγRIIIb/CR3 cooperation that occurs via lectin-saccharide-like interactions. The OB of human neutrophil antigen (HNA)-1a-, HNA-1b-, and HNA-1a/-1b-neutrophils stimulated with immune complexes, opsonized or not with serum complement, was measured by the luminol-enhanced chemiluminescence assay. Compared with HNA-1a-neutrophils, HNA-1b-neutrophils exhibited reduced FcγR-stimulated OB, but increased FcγR/CR-stimulated OB. It suggests that (i) FcγR and CR cooperate more effectively in HNA-1b-neutrophils, and (ii) the HNA-1b allotype influences the FcγRIIIb cooperation with FcγRIIa, but not with CR3. HNA-1a- and HNA-1b-neutrophils exhibited similar OB responses elicited via CR3 alone or via FcγR/CR-independent pathways. In addition, the level of FcγRIIIb, FcγRIIa, and CR3 expression did not differ significantly among the neutrophil groups studied. Together, these results demonstrate that the HNA-1b allotype influences the functional cooperation between FcγRIIIb and FcγRIIa, and suggest that the difference in the glycosylation pattern between HNA-1a and HNA-1b does not affect the FcγRIIIb cooperation with CR3.
Collapse
Affiliation(s)
- Ana Carolina Urbaczek
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rua Expedicionários do Brasil, 1621, Centro, Araraquara, SP CEP 14801-360, Brazil
| | - Juliana Escher Toller-Kawahisa
- Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP 14049-900, Brazil
| | - Luiz Marcos Fonseca
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rua Expedicionários do Brasil, 1621, Centro, Araraquara, SP CEP 14801-360, Brazil
| | - Paulo Inácio Costa
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rua Expedicionários do Brasil, 1621, Centro, Araraquara, SP CEP 14801-360, Brazil
| | - Carolina Maria Quinello Gomes Faria
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rua Expedicionários do Brasil, 1621, Centro, Araraquara, SP CEP 14801-360, Brazil
| | - Ana Elisa Caleiro Seixas Azzolini
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Monte Alegre, Ribeirão Preto, SP CEP 14040-903, Brazil
| | - Yara Maria Lucisano-Valim
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Monte Alegre, Ribeirão Preto, SP CEP 14040-903, Brazil
| | - Cleni Mara Marzocchi-Machado
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Monte Alegre, Ribeirão Preto, SP CEP 14040-903, Brazil.
| |
Collapse
|
47
|
Gillis C, Gouel-Chéron A, Jönsson F, Bruhns P. Contribution of Human FcγRs to Disease with Evidence from Human Polymorphisms and Transgenic Animal Studies. Front Immunol 2014; 5:254. [PMID: 24910634 PMCID: PMC4038777 DOI: 10.3389/fimmu.2014.00254] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/14/2014] [Indexed: 11/13/2022] Open
Abstract
The biological activities of human IgG antibodies predominantly rely on a family of receptors for the Fc portion of IgG, FcγRs: FcγRI, FcγRIIA, FcγRIIB, FcγRIIC, FcγRIIIA, FcγRIIIB, FcRL5, FcRn, and TRIM21. All FcγRs bind IgG at the cell surface, except FcRn and TRIM21 that bind IgG once internalized. The affinity of FcγRs for IgG is determined by polymorphisms of human FcγRs and ranges from 2 × 104 to 8 × 107 M−1. The biological functions of FcγRs extend from cellular activation or inhibition, IgG-internalization/endocytosis/phagocytosis to IgG transport and recycling. This review focuses on human FcγRs and intends to present an overview of the current understanding of how these receptors may contribute to various pathologies. It will define FcγRs and their polymorphic variants, their affinity for human IgG subclasses, and review the associations found between FcγR polymorphisms and human pathologies. It will also describe the human FcγR-transgenic mice that have been used to study the role of these receptors in autoimmune, inflammatory, and allergic disease models.
Collapse
Affiliation(s)
- Caitlin Gillis
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France
| | - Aurélie Gouel-Chéron
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France ; Department of Anesthesia and Intensive Care, Hospital of Bichat-Claude Bernard, Public Assistance-Hospitals of Paris , Paris , France
| | - Friederike Jönsson
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France
| | - Pierre Bruhns
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France
| |
Collapse
|
48
|
Abstract
Fc receptors play a central role in maintaining the homeostatic balance in the immune system. Our knowledge of the structure and function of these receptors and their naturally occurring polymorphisms, including single nucleotide polymorphisms and/or copy number variations, continues to expand. Through studies of their impact on human biology and clinical phenotype, the contributions of these variants to the pathogenesis, progression, and/or treatment outcome of many diseases that involve immunoglobulin have become evident. They affect susceptibility to bacterial and viral pathogens, constitute as risk factors for IgG or IgE mediated inflammatory diseases, and impact the development of many autoimmune conditions. In this chapter, we will provide an overview of these genetic variations in classical FcγRs, FcRLs, and other Fc receptors, as well as challenges in achieving an accurate and comprehensive understanding of the FcR polymorphisms and genomic architecture.
Collapse
Affiliation(s)
- Marc Daeron
- grid.428999.70000000123536535Institut Pasteur, Paris, France
| | - Falk Nimmerjahn
- grid.5330.50000000121073311Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
49
|
Xu L, Li G, Wang J, Fan Y, Wan Z, Zhang S, Shaheen S, Li J, Wang L, Yue C, Zhao Y, Wang F, Brzostowski J, Chen YH, Zheng W, Liu W. Through an ITIM-Independent Mechanism the FcγRIIB Blocks B Cell Activation by Disrupting the Colocalized Microclustering of the B Cell Receptor and CD19. THE JOURNAL OF IMMUNOLOGY 2014; 192:5179-91. [DOI: 10.4049/jimmunol.1400101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Cañas CA, Tobón GJ, Bonilla-Abadía F. The importance of evolution in the development and course of rheumatoid arthritis. Med Hypotheses 2014; 82:784-91. [PMID: 24746382 DOI: 10.1016/j.mehy.2014.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/24/2014] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune disease of recent evolutionary origin. Genetic drift determines diverse polymorphisms implicated in the susceptibility to RA including the major histocompatibility complex (MHC) class II genes in the so-called shared epitope. These genes originated after the divergence between Homo and Pan from their common ancestry Ardipithecus ramidus about 5 million years ago. Natural selection determined the particular changes in the legs (bipedal position), hands, neck, brain and eusociality in humans which influence the clinical presentation of RA. In this article, we hypothesized that the origin and course of RA may be explainable in the light of evolution.
Collapse
Affiliation(s)
- C A Cañas
- Rheumatology Unit, Fundación Valle del Lili, Universidad ICESI, Cali, Colombia
| | - G J Tobón
- Rheumatology Unit, Fundación Valle del Lili, Universidad ICESI, Cali, Colombia.
| | - F Bonilla-Abadía
- Rheumatology Unit, Fundación Valle del Lili, Universidad ICESI, Cali, Colombia; Human Molecular Genetics Laboratory, Universidad del Valle, Cali, Colombia
| |
Collapse
|