1
|
Hu P, Xie S, Shi B, Tansky CS, Circello B, Sagel PA, Schneiderman E, Biesbrock AR. The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq. Microorganisms 2024; 12:2668. [PMID: 39770870 PMCID: PMC11728304 DOI: 10.3390/microorganisms12122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
Various ingredients are utilized to inhibit the growth of harmful bacteria associated with cavities, gum disease, and bad breath. However, the precise mechanisms by which these ingredients affect the oral microbiome have not been fully understood at the molecular level. To elucidate the molecular mechanisms, a high-throughput bacterial transcriptomics study was conducted, and the gene expression profiles of six common oral bacteria, including two Gram-positive bacteria (Actinomyces viscosus, Streptococcus mutans) and four Gram-negative bacteria (Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, and Prevotella pallens), were analyzed. The bacteria were exposed to nine common ingredients in toothpaste and mouthwash at different concentrations (stannous fluoride, stannous chloride, arginine bicarbonate, cetylpyridinium chloride, sodium monofluorophosphate, sodium fluoride, potassium nitrate, zinc phosphate, and hydrogen peroxide). Across 78 ingredient-microorganism pairs with 360 treatment-control combinations, significant and reproducible ingredient-based transcriptional response profiles were observed, providing valuable insights into the effects of these ingredients on the oral microbiome at the molecular level. This research shows that oral care product ingredients applied at biologically relevant concentrations manifest differential effects on the transcriptomics of bacterial genes in a variety of oral periodontal pathogenic bacteria. Stannous fluoride, stannous chloride, and cetylpyridinium chloride showed the most robust efficacy in inhibiting the growth or gene expression of various bacteria and pathogenic pathways. Combining multiple ingredients targeting different mechanisms might be more efficient than single ingredients in complex oral microbiomes.
Collapse
Affiliation(s)
- Ping Hu
- Discovery & Innovation Platforms, The Procter & Gamble Company, Cincinnati, OH 45202, USA; (P.H.); (S.X.); (B.S.); (B.C.)
| | - Sancai Xie
- Discovery & Innovation Platforms, The Procter & Gamble Company, Cincinnati, OH 45202, USA; (P.H.); (S.X.); (B.S.); (B.C.)
| | - Baochen Shi
- Discovery & Innovation Platforms, The Procter & Gamble Company, Cincinnati, OH 45202, USA; (P.H.); (S.X.); (B.S.); (B.C.)
| | - Cheryl S. Tansky
- Baby Care Clinical Group, The Procter & Gamble Company, Cincinnati, OH 45202, USA;
| | - Benjamin Circello
- Discovery & Innovation Platforms, The Procter & Gamble Company, Cincinnati, OH 45202, USA; (P.H.); (S.X.); (B.S.); (B.C.)
| | - Paul A. Sagel
- Oral Care Product Development, The Procter & Gamble Company, Cincinnati, OH 45202, USA; (P.A.S.); (E.S.)
| | - Eva Schneiderman
- Oral Care Product Development, The Procter & Gamble Company, Cincinnati, OH 45202, USA; (P.A.S.); (E.S.)
| | - Aaron R. Biesbrock
- Oral Care Product Development, The Procter & Gamble Company, Cincinnati, OH 45202, USA; (P.A.S.); (E.S.)
| |
Collapse
|
2
|
R M, V K, K G, Pl R, Vinayachandran D, Siluvai S, S R, Esther V. Comparison of Antimicrobial Efficacy of Ocimum sanctum (Tulsi) Extract and Chlorhexidine Against Tannerella forsythia: An In Vitro Study. Cureus 2024; 16:e72167. [PMID: 39583496 PMCID: PMC11584205 DOI: 10.7759/cureus.72167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
CONTEXT Periodontitis, a chronic inflammatory disease affecting the periodontium, is primarily caused by gram-negative anaerobic bacteria. Conventional periodontal therapy aims to eradicate pathogenic microflora through mechanical debridement, often supplemented with chemical agents. However, the use of these chemical adjuvants is frequently associated with adverse drug reactions and the development of antimicrobial resistance. Consequently, researchers are increasingly exploring herbal antibacterial agents, such as Ocimum sanctum (Tulsi), as viable alternatives due to their broad-spectrum antimicrobial properties and reduced side effect profile. AIM This study aims to analyze the antibacterial efficacy of the ethanolic extract of O. sanctum (Tulsi) against Tannerella forsythia, a key bacterium of the red complex, using chlorhexidine as a reference standard. Traditionally, chlorhexidine has been utilized as an adjunct to nonsurgical therapy in the treatment of patients with periodontal disease. MATERIALS AND METHODS The cold extraction method was used to prepare the ethanolic extract of O. sanctum leaves. The resultant substance was mixed into five different concentrations (3.13%, 6.25%, 12.5%, 25%, and 50%) using dimethylformamide as the solvent. The antimicrobial activity of these varying concentrations was assessed against T. forsythia in culture plates employing the agar well diffusion method, with 0.2% chlorhexidine serving as the positive reference. The zone of inhibition of bacterial growth has been determined and compared with that of 0.2% chlorhexidine. RESULTS The ethanolic extract of O. sanctum exhibited highly statistically significant antibacterial activity against T. forsythia (p < 0.001). At a dosage of 25 mg/mL, the extract created a zone of inhibition measuring 17 mm, while at 50 mg/mL, the zone of inhibition increased to 25 mm. However, when compared to 0.2% chlorhexidine, which had a zone of inhibition of 32 mm, O. sanctum showed a slightly smaller inhibitory effect. CONCLUSION The extract of Tulsi showed notable antibacterial activity against T. forsythia, with the antibacterial impact observed at the 50 mg/mL dilution.
Collapse
Affiliation(s)
- Mithra R
- Periodontology, Sri Ramaswamy Memorial (SRM) Kattankulathur Dental College and Hospital, Sri Ramaswamy Memorial Institute of Science and Technology (SRMIST), Chennai, IND
| | - Kalaivani V
- Periodontology, Sri Ramaswamy Memorial (SRM) Kattankulathur Dental College and Hospital, Sri Ramaswamy Memorial Institute of Science and Technology (SRMIST), Chennai, IND
| | - Gayathri K
- Periodontology, Sri Ramaswamy Memorial (SRM) Kattankulathur Dental College and Hospital, Sri Ramaswamy Memorial Institute of Science and Technology (SRMIST), Chennai, IND
| | - Ravishankar Pl
- Periodontology, Sri Ramaswamy Memorial (SRM) Kattankulathur Dental College and Hospital, Sri Ramaswamy Memorial Institute of Science and Technology (SRMIST), Chennai, IND
| | - Divya Vinayachandran
- Oral Medicine and Radiology, Sri Ramaswamy Memorial (SRM) Kattankulathur Dental College and Hospital, Sri Ramaswamy Memorial Institute of Science and Technology (SRMIST), Chennai, IND
| | - Sibyl Siluvai
- Public Health Dentistry, Sri Ramaswamy Memorial (SRM) Kattankulathur Dental College and Hospital, Sri Ramaswamy Memorial Institute of Science and Technology (SRMIST), Chennai, IND
| | - Rajakumar S
- Pediatric and Preventive Dentistry, Sri Ramaswamy Memorial (SRM) Kattankulathur Dental College and Hospital, Sri Ramaswamy Memorial Institute of Science and Technology (SRMIST), Chennai, IND
| | - Viola Esther
- Periodontology, Sri Ramaswamy Memorial (SRM) Kattankulathur Dental College and Hospital, Sri Ramaswamy Memorial Institute of Science and Technology (SRMIST), Chennai, IND
| |
Collapse
|
3
|
Isolani R, Pilatti F, de Paula MN, Valone L, da Silva EL, de Oliveira Caleare A, Seixas FAV, Hensel A, Mello JCPD. Limonium brasiliense rhizomes extract against virulence factors of Porphyromonas gingivalis: Inhibition of gingipains, bacterial adhesion, and biofilm formation. Fitoterapia 2024; 177:106120. [PMID: 38992475 DOI: 10.1016/j.fitote.2024.106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Periodontitis is clinically characterized by destruction of the tooth support system and tooth loss. Porphyromonas gingivalis (Pg) plays a dominant role in periodontitis. Fractions and isolated compounds from an acetone-water extract of the roots of Limonium brasiliense (Lb) were tested in vitro for their anti-adhesive capacity against Pg on human KB buccal cells, influence on gingipains, the main virulence factors of Pg, and biofilm formation. Fractions EAF and FLB7 (50 μg/mL) reduced the bacterial adhesion of Pg to KB cells significantly (63 resp. 70%). The proanthocyanidin samarangenin A inhibited the adhesion (72%, 30 μM), samarangenin B (71%, 20 μM), and the flavan-3-ol epigallocatechin-3-O-gallate (79%, 30 μM). Fraction AQF, representing hydrophilic compounds, reduced the proteolytic activity of Arginin-specific gingipain (IC50 12.78 μg/mL). Fractions EAF and FLB7, characterized by lipohilic constituents, inhibited Arg-gingipain (IC50 3 μg/mL). On Lysine-specific gingipain, AQF has an IC50 15.89, EAF 14.15, and FLB7 6 μg/mL. The reduced bacterial adhesion is due to a strong interaction of proanthocyanidins with gingipains. AQF, EAF, and FLB7 significantly inhibited biofilm formation: IC50 11.34 (AQF), 11.66 (EAF), and 12.09 μg/mL (FLB7). In silico analysis indicated, that the polyphenols act against specific targets of Pg, not affecting mammalian cells. Therefore, Lb might be effective for prevention of periodontal disease by influencing virulence factors of Pg.
Collapse
Affiliation(s)
- Raquel Isolani
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Fernanda Pilatti
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Mariana Nascimento de Paula
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Larissa Valone
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Eloisa Lorenzi da Silva
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Angelo de Oliveira Caleare
- Laboratory of Technological Innovation in the Development of Drugs and Cosmetics; Postgraduate Program in Biological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, NRW, Germany
| | - João Carlos Palazzo de Mello
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
4
|
Tanwar H, Gnanasekaran JM, Allison D, Chuang LS, He X, Aimetti M, Baima G, Costalonga M, Cross RK, Sears C, Mehandru S, Cho J, Colombel JF, Raufman JP, Thumbigere-Math V. Unravelling the Oral-Gut Axis: Interconnection Between Periodontitis and Inflammatory Bowel Disease, Current Challenges, and Future Perspective. J Crohns Colitis 2024; 18:1319-1341. [PMID: 38417137 PMCID: PMC11324343 DOI: 10.1093/ecco-jcc/jjae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 03/01/2024]
Abstract
As the opposite ends of the orodigestive tract, the oral cavity and the intestine share anatomical, microbial, and immunological ties that have bidirectional health implications. A growing body of evidence suggests an interconnection between oral pathologies and inflammatory bowel disease [IBD], implying a shift from the traditional concept of independent diseases to a complex, reciprocal cycle. This review outlines the evidence supporting an 'oral-gut' axis, marked by a higher prevalence of periodontitis and other oral conditions in IBD patients and vice versa. We present an in-depth examination of the interconnection between oral pathologies and IBD, highlighting the shared microbiological and immunological pathways, and proposing a 'multi-hit' hypothesis in the pathogenesis of periodontitis-mediated intestinal inflammation. Furthermore, the review underscores the critical need for a collaborative approach between dentists and gastroenterologists to provide holistic oral-systemic healthcare.
Collapse
Affiliation(s)
- Himanshi Tanwar
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | | - Devon Allison
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Ling-shiang Chuang
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Massimo Costalonga
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Raymond K Cross
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cynthia Sears
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy Cho
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vivek Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| |
Collapse
|
5
|
Ozdemir B, Ersahan S, Ozcelik F, Hepsenoglu YE, Sirin DA, Topbas C. Relationship of MMP-9 with the clinical course of apical periodontitis and the main bacterial species in the oral microbiota. Odontology 2024; 112:976-987. [PMID: 38252232 DOI: 10.1007/s10266-023-00895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Bacterial products, host immune cells and cytokines have been reported to play an important role in the pathogenesis of apical periodontitis (AP). This study aimed to determine the main bacterial species in the microbiota as gram positive and negative and to compare the relationship between matrix metalloproteinase (MMP)-9 and tumor necrosis factor (TNF)-α with controlled patient groups. 60 patients with AP and extraction indication were included in the study. 30 systemically healthy volunteers without AP were selected as the control group. After access cavity preparation, an initial microbiologic sample (S1) was taken from the root canal. After atraumatic extraction of the tooth, a second microbial sample (S2) was taken from the extraradicular region. After bacterial DNA extraction, 16S rRNA gene primer was designed for sequence analysis. Bacterial community profiling was made by Sanger sequencing of the PCR products. In addition, serum MMP-9 and TNF-α levels were measured from all patients. TNF-α levels of the AP group were higher than the control group, while MMP-9 levels were found to be lower (p = 0.0264 and p = 0.0146, respectively). There was no difference in the main bacterial species isolated from the samples taken from the intracanal and extraradicular region of the tooth with AP (p = 0.714). The main bacterial species in the intracanal region of the tooth with AP are similar to the main bacterial species in the extraradicular region. The pathophysiology of the tooth with AP is associated with low MMP-9 and high TNF-α, independent of the bacterial species in the intracanal and extraradicular regions.
Collapse
Affiliation(s)
- Burcu Ozdemir
- Faculty of Dentistry, Department of Endodontics, Istanbul Medipol University, Birlik Mah. Bahçeler Cad. No: 5 Esenler, Istanbul, Turkey
| | - Seyda Ersahan
- Faculty of Dentistry, Department of Endodontics, Istanbul Medipol University, Birlik Mah. Bahçeler Cad. No: 5 Esenler, Istanbul, Turkey.
| | - Fatih Ozcelik
- Department of Medical Biochemistry Department, Health Sciences University Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Yelda Erdem Hepsenoglu
- Faculty of Dentistry, Department of Endodontics, Istanbul Medipol University, Birlik Mah. Bahçeler Cad. No: 5 Esenler, Istanbul, Turkey
| | - Dursun Ali Sirin
- Faculty of Dentistry, Department of Endodontics, University of Health Sciences, Istanbul, Turkey
| | - Celalettin Topbas
- Faculty of Dentistry, Department of Endodontics, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
6
|
Arias-Moliz MT, Ordinola-Zapata R, Staley C, Pérez-Carrasco V, García-Salcedo JA, Uroz-Torres D, Soriano M. Exploring the root canal microbiome in previously treated teeth: A comparative study of diversity and metabolic pathways across two geographical locations. Int Endod J 2024; 57:885-894. [PMID: 37209012 DOI: 10.1111/iej.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
AIM To analyse and compare the root canal microbiome present in root-filled teeth of two different geographical populations, and to study their functional potential using a next-generation sequencing approach. METHODOLOGY Sequencing data obtained from surgical specimens from previously treated teeth with periapical bone loss from Spain and USA were included in the study. Taxa were classified using SILVA v.138 database. Differences in genera abundances among the 10 most abundant genera were evaluated using a Kruskal-Wallis test. Alpha diversity indices were calculated in mothur. The Shannon and Chao1 indices were used. Analyses of similarity (ANOSIM) to determine differences in community composition were done in mothur, with Bonferroni correction for multiple comparisons. p-Values < .05 were considered statistically significant. Identification of enriched bacteria function prediction in the study groups (KEGG pathways) was carried out by linear discriminant analysis effect size (LEfSe) via Python 3.7.6. RESULTS A greater alpha-diversity (Shannon and Chao1 indices) was observed from samples obtained in Spain (p = .002). Geography showed no significant effects on community composition via an ANOSIM using Bray-Curtis dissimilarities (R = 0.03, p = .21). Bacterial functional analysis prediction obtained by PICRUSt showed that 5.7% KEGG pathways differed between the Spain and US samples. CONCLUSIONS The taxonomic assessment alone does not fully capture the microbiome's differences from two different geographical locations. Carbohydrate and amino acid metabolism were enriched in samples from Spain, while samples from USA had a higher representation of pathways related to nitrogen, propanoate metabolism, and secretion systems.
Collapse
Affiliation(s)
- M T Arias-Moliz
- Department of Microbiology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - R Ordinola-Zapata
- Division of Endodontics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - C Staley
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - V Pérez-Carrasco
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
- Microbiology Unit, University Hospital Virgen de las Nieves, Granada, Spain
| | - J A García-Salcedo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
- Microbiology Unit, University Hospital Virgen de las Nieves, Granada, Spain
| | | | - M Soriano
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
- Center for Research in Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Almería, Spain
| |
Collapse
|
7
|
Singh S, Yadav PK, Singh AK. Structure based High-Throughput Virtual Screening, Molecular Docking and Molecular Dynamics Study of anticancer natural compounds against fimbriae (FimA) protein of Porphyromonas gingivalis in oral squamous cell carcinoma. Mol Divers 2024; 28:1141-1152. [PMID: 37043160 DOI: 10.1007/s11030-023-10643-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/25/2023] [Indexed: 04/13/2023]
Abstract
Oral cancer is among the most common cancer in the world. Tobacco, alcohol, and viruses have been regarded as a well- known risk factors of OCC however, 15% of OSCC cases occurred each year without these known risk factors. Recently a myriad of studies has shown that bacterial infections lead to cancer. Accumulated shreds of evidence have demonstrated the role of Porphyromonas gingivalis (P. gingivalis) in OSCC. The virulence factor FimA of P. gingivalis activates the oncogenic pathways in OSCC by upregulating various cytokines. It also led to the inactivation of a tumor suppressor protein p53. The present Insilico study uses High-Throughput Virtual Screening, molecular docking, and molecular dynamics techniques to find the potential compounds against the target protein FimA. The goal of this study is to identify the anti-cancer lead compounds retrieved from natural sources that can be used to develop potent drug molecules to treat P.gingivalis-related OSCC. The anticancer natural compounds library was screened to identify the potential lead compounds. Furthermore, these lead compounds were subjected to precise docking, and based on the docking score potential lead compounds were identified. The top docked receptor-ligand complex was subjected to molecular dynamics simulation. A study of this insilico finding provides potent lead molecules which help in the development of therapeutic drugs against the target protein FimA in OSCC.
Collapse
Affiliation(s)
- Suchitra Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Piyush Kumar Yadav
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Ajay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India.
| |
Collapse
|
8
|
Shimazu K, Ookoshi K, Fukumitsu S, Kagami H, Mitsuhata C, Nomura R, Aida K. Effects of Oleanolic Acid Derived from Wine Pomace on Periodontopathic Bacterial Growth in Healthy Individuals: A Randomized Placebo-Controlled Study. Dent J (Basel) 2024; 12:133. [PMID: 38786531 PMCID: PMC11119493 DOI: 10.3390/dj12050133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Periodontal disease is caused by oral pathogenic bacteria and is associated with systemic disease and frailty. Therefore, its prevention is crucial in extending healthy life expectancy. This study aimed to evaluate the effect of orally administered oleanolic acid, extracted from wine pomace, on periodontopathic bacterial growth in healthy individuals. In this randomized, placebo-controlled, double-blind, parallel-group comparison study, 84 healthy adults were assigned to a placebo (n = 29), low-dose (n = 29, 9 mg oleanolic acid), or high-dose (n = 26, 27 mg oleanolic acid) groups. The number of oral bacteria in their saliva, collected before and 5 h after administration, was determined using the polymerase chain reaction-invader technique. The proportion of periodontopathic bacteria among the total oral bacteria in the saliva was calculated. Oleanolic acid significantly decreased the proportion of Porphyromonas gingivalis among the total oral bacteria in a dose-dependent manner (p = 0.005 (low-dose) and p = 0.003 (high-dose) vs. placebo, Williams' test). Moreover, high-dose oleanolic acid decreased the proportion of Tannerella forsythia (p = 0.064 vs. placebo, Williams' test). Periodontopathic bacteria are closely associated with the development and progression of periodontal disease; thus, the continuous daily intake of oleanolic acid derived from pomace may be helpful in maintaining a healthy oral microbiome by controlling the proportion of periodontopathic bacteria.
Collapse
Affiliation(s)
- Kyoko Shimazu
- Innovation Center, Central Research Laboratory, Nippn Corporation, Yokohama 243-0041, Japan; (K.O.); (S.F.); (K.A.)
| | - Kouta Ookoshi
- Innovation Center, Central Research Laboratory, Nippn Corporation, Yokohama 243-0041, Japan; (K.O.); (S.F.); (K.A.)
| | - Satoshi Fukumitsu
- Innovation Center, Central Research Laboratory, Nippn Corporation, Yokohama 243-0041, Japan; (K.O.); (S.F.); (K.A.)
| | | | - Chieko Mitsuhata
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (C.M.); (R.N.)
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (C.M.); (R.N.)
| | - Kazuhiko Aida
- Innovation Center, Central Research Laboratory, Nippn Corporation, Yokohama 243-0041, Japan; (K.O.); (S.F.); (K.A.)
| |
Collapse
|
9
|
Pham C, Guo S, Han X, Coleman L, Sze CW, Wang H, Liu J, Li C. A pleiotropic role of sialidase in the pathogenicity of Porphyromonas gingivalis. Infect Immun 2024; 92:e0034423. [PMID: 38376159 PMCID: PMC10929438 DOI: 10.1128/iai.00344-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
As one of the keystone pathogens of periodontitis, the oral bacterium Porphyromonas gingivalis produces an array of virulence factors, including a recently identified sialidase (PG0352). Our previous report involving loss-of-function studies indicated that PG0352 plays an important role in the pathophysiology of P. gingivalis. However, this report had not been corroborated by gain-of-function studies or substantiated in different P. gingivalis strains. To fill these gaps, herein we first confirm the role of PG0352 in cell surface structures (e.g., capsule) and serum resistance using P. gingivalis W83 strain through genetic complementation and then recapitulate these studies using P. gingivalis ATCC33277 strain. We further investigate the role of PG0352 and its counterpart (PGN1608) in ATCC33277 in cell growth, biofilm formation, neutrophil killing, cell invasion, and P. gingivalis-induced inflammation. Our results indicate that PG0352 and PGN1608 are implicated in P. gingivalis cell surface structures, hydrophobicity, biofilm formation, resistance to complement and neutrophil killing, and host immune responses. Possible molecular mechanisms involved are also discussed. In summary, this report underscores the importance of sialidases in the pathophysiology of P. gingivalis and opens an avenue to elucidate their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Christopher Pham
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shuaiqi Guo
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| | - Xiao Han
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Laurynn Coleman
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ching Wooen Sze
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Huizhi Wang
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
10
|
Di Pietro L, Boroumand M, Lattanzi W, Manconi B, Salvati M, Cabras T, Olianas A, Flore L, Serrao S, Calò CM, Francalacci P, Parolini O, Castagnola M. A Catalog of Coding Sequence Variations in Salivary Proteins' Genes Occurring during Recent Human Evolution. Int J Mol Sci 2023; 24:15010. [PMID: 37834461 PMCID: PMC10573131 DOI: 10.3390/ijms241915010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Saliva houses over 2000 proteins and peptides with poorly clarified functions, including proline-rich proteins, statherin, P-B peptides, histatins, cystatins, and amylases. Their genes are poorly conserved across related species, reflecting an evolutionary adaptation. We searched the nucleotide substitutions fixed in these salivary proteins' gene loci in modern humans compared with ancient hominins. We mapped 3472 sequence variants/nucleotide substitutions in coding, noncoding, and 5'-3' untranslated regions. Despite most of the detected variations being within noncoding regions, the frequency of coding variations was far higher than the general rate found throughout the genome. Among the various missense substitutions, specific substitutions detected in PRB1 and PRB2 genes were responsible for the introduction/abrogation of consensus sequences recognized by convertase enzymes that cleave the protein precursors. Overall, these changes that occurred during the recent human evolution might have generated novel functional features and/or different expression ratios among the various components of the salivary proteome. This may have influenced the homeostasis of the oral cavity environment, possibly conditioning the eating habits of modern humans. However, fixed nucleotide changes in modern humans represented only 7.3% of all the substitutions reported in this study, and no signs of evolutionary pressure or adaptative introgression from archaic hominins were found on the tested genes.
Collapse
Affiliation(s)
- Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Mozhgan Boroumand
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Wanda Lattanzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Martina Salvati
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Laura Flore
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Simone Serrao
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Carla M. Calò
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Paolo Francalacci
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Ornella Parolini
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
11
|
Roldan L, Montoya C, Solanki V, Cai KQ, Yang M, Correa S, Orrego S. A Novel Injectable Piezoelectric Hydrogel for Periodontal Disease Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43441-43454. [PMID: 37672788 DOI: 10.1021/acsami.3c08336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Periodontal disease is a multifactorial, bacterially induced inflammatory condition characterized by the progressive destruction of periodontal tissues. The successful nonsurgical treatment of periodontitis requires multifunctional technologies offering antibacterial therapies and promotion of bone regeneration simultaneously. For the first time, in this study, an injectable piezoelectric hydrogel (PiezoGEL) was developed after combining gelatin methacryloyl (GelMA) with biocompatible piezoelectric fillers of barium titanate (BTO) that produce electrical charges when stimulated by biomechanical vibrations (e.g., mastication, movements). We harnessed the benefits of hydrogels (injectable, light curable, conforms to pocket spaces, biocompatible) with the bioactive effects of piezoelectric charges. A thorough biomaterial characterization confirmed piezoelectric fillers' successful integration with the hydrogel, photopolymerizability, injectability for clinical use, and electrical charge generation to enable bioactive effects (antibacterial and bone tissue regeneration). PiezoGEL showed significant reductions in pathogenic biofilm biomass (∼41%), metabolic activity (∼75%), and the number of viable cells (∼2-3 log) compared to hydrogels without BTO fillers in vitro. Molecular analysis related the antibacterial effects to be associated with reduced cell adhesion (downregulation of porP and fimA) and increased oxidative stress (upregulation of oxyR) genes. Moreover, PiezoGEL significantly enhanced bone marrow stem cell (BMSC) viability and osteogenic differentiation by upregulating RUNX2, COL1A1, and ALP. In vivo, PiezoGEL effectively reduced periodontal inflammation and increased bone tissue regeneration compared to control groups in a mice model. Findings from this study suggest PiezoGEL to be a promising and novel therapeutic candidate for the treatment of periodontal disease nonsurgically.
Collapse
Affiliation(s)
- Lina Roldan
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín 050037, Colombia
| | - Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Varun Solanki
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Santiago Correa
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín 050037, Colombia
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Department, College of Engineering, Temple University. Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
12
|
Gu BL, She Y, Pei GK, Du Y, Yang R, Ma LX, Zhao Q, Gao SG. Systematic analysis of prophages carried by Porphyromonas gingivalis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105489. [PMID: 37572952 DOI: 10.1016/j.meegid.2023.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
To systematically investigate the prophages carrying in Porphyromonas gingivalis (P. gingivalis) strains, analyze potential antibiotic resistance genes (ARGs) and virulence genes in these prophages. We collected 90 whole genome sequences of P. gingivalis from NCBI and utilized the Prophage Hunter online software to predict prophages; Comprehensive antibiotic research database (CARD) and virulence factors database (VFDB) were adopted to analyze the ARGs and virulence factors (VFs) carried by the prophages. Sixty-nine prophages were identified among 24/90 P. gingivalis strains, including 17 active prophages (18.9%) and 52 ambiguous prophages (57.8%). The proportion of prophages carried by each P. gingivalis genome ranged from 0.5% to 6.7%. A total of 188 antibiotic resistance genes belonging to 25 phenotypes and 46 different families with six mechanisms of antibiotic resistance were identified in the 17 active prophages. Three active prophages encoded 4 virulence genes belonging to type III and type VI secretion systems. The potential hosts of these virulence genes included Escherichia coli, Shigella sonnei, Salmonella typhi, and Klebsiella pneumoniae. In conclusion, 26.7% P. gingivalis strains carry prophages, while the proportion of prophage genes in the P. gingivalis genome is relatively low. In addition, approximately 39.7% of the P. gingivalis prophage genes have ARGs identified, mainly against streptogramin, peptides, and aminoglycosides. Only a few prophages carry virulence genes. Prophages may play an important role in the acquisition, dissemination of antibiotic resistance genes, and pathogenicity evolution in P. gingivalis.
Collapse
Affiliation(s)
- B L Gu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - Y She
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - G K Pei
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - Y Du
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - R Yang
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - L X Ma
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - Q Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - S G Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China.
| |
Collapse
|
13
|
Shi T, Wang J, Dong J, Hu P, Guo Q. Periodontopathogens Porphyromonas gingivalis and Fusobacterium nucleatum and Their Roles in the Progression of Respiratory Diseases. Pathogens 2023; 12:1110. [PMID: 37764918 PMCID: PMC10535846 DOI: 10.3390/pathogens12091110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The intricate interplay between oral microbiota and the human host extends beyond the confines of the oral cavity, profoundly impacting the general health status. Both periodontal diseases and respiratory diseases show high prevalence worldwide and have a marked influence on the quality of life for the patients. Accumulating studies are establishing a compelling association between periodontal diseases and respiratory diseases. Here, in this review, we specifically focus on the key periodontal pathogenic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum and dissect their roles in the onset and course of respiratory diseases, mainly pneumonia, chronic obstructive pulmonary disease, lung cancer, and asthma. The mechanistic underpinnings and molecular processes on how P. gingivalis and F. nucleatum contribute to the progression of related respiratory diseases are further summarized and analyzed, including: induction of mucus hypersecretion and chronic airway inflammation; cytotoxic effects to disrupt the morphology and function of respiratory epithelial cells; synergistic pathogenic effects with respiratory pathogens like Streptococcus pneumoniae and Pseudomonas aeruginosa. By delving into the complex relationship to periodontal diseases and periodontopathogens, this review helps unearth novel insights into the etiopathogenesis of respiratory diseases and inspires the development of potential therapeutic avenues and preventive strategies.
Collapse
Affiliation(s)
- Tao Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiajia Dong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pingyue Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Wang BY, Burgardt G, Parthasarathy K, Ho DK, Weltman RL, Tribble GD, Hong J, Cron S, Xie H. Influences of race/ethnicity in periodontal treatment response and bacterial distribution, a cohort pilot study. FRONTIERS IN ORAL HEALTH 2023; 4:1212728. [PMID: 37377523 PMCID: PMC10291508 DOI: 10.3389/froh.2023.1212728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Objectives Periodontitis disproportionately affects different racial and ethnic populations. We have previously reported the higher levels of Porphyromonas gingivalis and lower ratios of Streptococcus cristatus to P. gingivalis may contribute to periodontal health disparities. This prospective cohort study was designed to investigate if ethnic/racial groups responded differently to non-surgical periodontal treatment and if the treatment outcomes correlated to the bacterial distribution in patients with periodontitis before treatment. Methods This prospective cohort pilot study was carried out in an academic setting, at the School of Dentistry, University of Texas Health Science Center at Houston. Dental plaque was collected from a total of 75 African Americans, Caucasians and Hispanics periodontitis patients in a 3-year period. Quantitation of P. gingivalis and S. cristatus was carried out using qPCR. Clinical parameters including probing depths and clinical attachment levels were determined before and after nonsurgical treatment. Data were analyzed using one-way ANOVA, the Kruskal-Wallis test, the paired samples t-test and the chi-square test. Results The gains in clinical attachment levels after treatment significantly differed amongst the 3 groups-Caucasians responded most favorably, followed by African-Americans, lastly Hispanics, while numbers of P. gingivalis were highest in Hispanics, followed by African-Americans, and lowest in Caucasians (p = 0.015). However, no statistical differences were found in the numbers of S. cristatus amongst the 3 groups. Conclusion Differential response to nonsurgical periodontal treatment and distribution of P. gingivalis are present in different ethnic/racial groups with periodontitis.
Collapse
Affiliation(s)
- Bing-Yan Wang
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Grayson Burgardt
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kavitha Parthasarathy
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, United States
| | - Daniel K. Ho
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Robin L. Weltman
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Clinical Sciences, University of Nevada, Las Vegas, NV, United States
| | - Gena D. Tribble
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jianming Hong
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Stanley Cron
- School of Nursing, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, TN, United States
| |
Collapse
|
15
|
Pérez-Carrasco V, Uroz-Torres D, Soriano M, Solana C, Ruiz-Linares M, Garcia-Salcedo JA, Arias-Moliz MT. Microbiome in paired root apices and periapical lesions and its association with clinical signs in persistent apical periodontitis using next-generation sequencing. Int Endod J 2023; 56:622-636. [PMID: 36689323 DOI: 10.1111/iej.13893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
AIM To assess and compare the microbiome of paired root apices and periapical lesions from cases with failed endodontic treatment and to associate the microbiome and bacterial metabolic pathways in both sites with asymptomatic apical periodontitis (AAP) and symptomatic apical periodontitis (SAP), using next-generation sequencing (NGS). METHODOLOGY Matched root apices and periapical lesions of patients with failed root canal treatments were surgically extracted. Specimens were cryopulverized, bacterial DNA was extracted and the V3-V4 hypervariable regions of the 16 S rRNA gene were amplified and sequenced using the Illumina Miseq platform. Diversity and community composition were studied in the paired samples, as well as in AAP and SAP cases. Diversity indices were compared in each case by means of the Wilcoxon matched-pairs signed rank and Mann-Whitney U tests. Differences in the community composition were explored with multivariate statistical analysis and Linear discriminant analysis Effect Size (LEfSe). Bacterial functional study was performed through the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis. RESULTS Twenty-one paired apices and lesions were successfully sequenced and analysed, identifying a total of 21 phyla and 600 genera. A higher alpha-diversity was observed in the periapical lesions, although no global differences in the community composition between the two sites were found (p = .87), the most prevalent genera being Fusobacterium, Porphyromonas and Streptococcus. Prevotella, Clostridiales_vadinBB60_group, Bosea, Phreatobacter, Afipia and Xanthobacteriaceae_unclassified were enriched in SAP samples, while Pseudopropionibacterium, Campylobacter and Peptoniphilus were significantly more abundant in AAP cases (p < .05). Metabolic pathways involved in the amino acid metabolism or degradation and flagellum assembly were more abundant in SAP samples, whereas glucose metabolism-related pathways were associated with AAP. CONCLUSIONS The bacterial community composition was similar in the apices and periapical lesions. The microbiome was different in AAP and SAP samples, gram-negative bacteria showing higher relative abundances in SAP cases. An association was observed between amino acid degradation and flagellum assembly pathways, and the development of tenderness to percussion or palpation.
Collapse
Affiliation(s)
- Virginia Pérez-Carrasco
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.,Microbiology Unit, University Hospital Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Uroz-Torres
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Private Practice, Granada, Spain
| | - Miguel Soriano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.,Center for Research in Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Almería, Spain
| | - Carmen Solana
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Private Practice, Granada, Spain
| | - Matilde Ruiz-Linares
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Department of Stomatology, University of Granada, Granada, Spain
| | - Jose Antonio Garcia-Salcedo
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.,Microbiology Unit, University Hospital Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Maria Teresa Arias-Moliz
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
16
|
Zhou T, Xu W, Wang Q, Jiang C, Li H, Chao Y, Sun Y, A L. The effect of the "Oral-Gut" axis on periodontitis in inflammatory bowel disease: A review of microbe and immune mechanism associations. Front Cell Infect Microbiol 2023; 13:1132420. [PMID: 36923589 PMCID: PMC10008960 DOI: 10.3389/fcimb.2023.1132420] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis and inflammatory bowel diseases (IBD) are inflammatory diseases of the gastrointestinal tract that share common features of microbial-induced ecological dysregulation and host immune inflammatory response. The close relationship between periodontitis and IBD is characterized by a higher prevalence of IBD in patients with periodontitis and a higher prevalence and severity of periodontitis in patients with IBD, indicating that periodontitis and IBD are different from the traditional independent diseases and form an "Oral-Gut" axis between the two, which affect each other and thus form a vicious circle. However, the specific mechanisms leading to the association between the two are not fully understood. In this article, we describe the interconnection between periodontitis and IBD in terms of microbial pathogenesis and immune dysregulation, including the ectopic colonization of the gut by pathogenic bacteria associated with periodontitis that promotes inflammation in the gut by activating the host immune response, and the alteration of the oral microbiota due to IBD that affects the periodontal inflammatory response. Among the microbial factors, pathogenic bacteria such as Klebsiella, Porphyromonas gingivalis and Fusobacterium nucleatum may act as the microbial bridge between periodontitis and IBD, while among the immune mechanisms, Th17 cell responses and the secreted pro-inflammatory factors IL-1β, IL-6 and TNF-α play a key role in the development of both diseases. This suggests that in future studies, we can look for targets in the "Oral-Gut" axis to control and intervene in periodontal inflammation by regulating periodontal or intestinal flora through immunological methods.
Collapse
Affiliation(s)
- Tianyu Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Wenzhou Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
| | - Qiqi Wang
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Cong Jiang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Hongyan Li
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Chao
- Department of Gastroendoscopy, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
- *Correspondence: Yue Sun, ; Lan A,
| | - Lan A
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
- *Correspondence: Yue Sun, ; Lan A,
| |
Collapse
|
17
|
Aleksijević LH, Aleksijević M, Škrlec I, Šram M, Šram M, Talapko J. Porphyromonas gingivalis Virulence Factors and Clinical Significance in Periodontal Disease and Coronary Artery Diseases. Pathogens 2022; 11:1173. [PMID: 36297228 PMCID: PMC9609396 DOI: 10.3390/pathogens11101173] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Porphyromonas gingivalis is a gram-negative, anaerobic bacterium that lives in the oral cavity. It is an integral part of the oral microbiome, which includes more than 500 types of bacteria. Under certain circumstances, as a consequence of virulence factors, it can become very destructive and proliferate to many cells in periodontal lesions. It is one of the causative agents present extremely often in dental plaque and is the main etiological factor in the development of periodontal disease. During various therapeutic procedures, P. gingivalis can enter the blood and disseminate through it to distant organs. This primarily refers to the influence of periodontal agents on the development of subacute endocarditis and can facilitate the development of coronary heart disease, atherosclerosis, and ischemic infarction. The action of P. gingivalis is facilitated by numerous factors of virulence and pathogenicity such as fimbriae, hemolysin, hemagglutinin, capsules, outer membrane vesicles, lipopolysaccharides, and gingipains. A special problem is the possibility of biofilm formation. P. gingivalis in a biofilm is 500 to 1000 times less sensitive to antimicrobial drugs than planktonic cells, which represents a significant problem in the treatment of infections caused by this pathogen.
Collapse
Affiliation(s)
- Lorena Horvat Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marko Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marko Šram
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Miroslav Šram
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Cardiology, Clinical Hospital Center Osijek, 31000 Osijek, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
18
|
Hong Q, Sun H, Chen M, Zhang S, Yu Q. Plasma treatment effects on destruction and recovery of Porphyromonas gingivalis biofilms. PLoS One 2022; 17:e0274523. [PMID: 36103549 PMCID: PMC9473617 DOI: 10.1371/journal.pone.0274523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/28/2022] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to investigate the treatment effects of non-thermal atmospheric gas plasmas (NTAP) on destruction and the recovery (or re-colonization) of Porphyromonas gingivalis (P. gingivalis) in biofilms. P. gingivalis is a well-known keystone periodontal pathogen strongly associated with periodontal diseases, especially periodontitis. P. gingivalis biofilms were formed on stainless steel coupons and treated for 1, 2, and 5 minutes by NTAP of pure argon gas and argon+oxygen gas mixture. MTT assay, colony forming unit (CFU) counting assay and confocal laser scanning microscopy (CLSM) were used to assess the destruction efficiency. In addition, the plasma treated biofilms were re-cultured in the medium supplemented with antibiotics and oxidative stress sources to determine the synergy of the NTAP with other antimicrobial agents. The results showed the plasma treatment could result in 2.7 log unit reduction in bacterial load. The recovered biofilm CFU with NTAP treatment combined with sub minimal inhibition concentration of amoxicillin was 0.33 log units less than the biofilm treated with amoxicillin alone. The recovered biofilm CFU in NTAP groups was about 2.0 log units less than that in the untreated controls under H2O2 treatment. There was approximately 1.0 log unit reduction of biofilm CFU in plasma treated biofilm compared with untreated control under paraquat treatment. The plasma treated biofilms exhibited less resistance to amoxicillin and greater susceptibility to hydrogen peroxide (H2O2) and paraquat, suggesting that NTAP may enhance biofilm susceptibility to host defense. These in vitro findings suggested that NTAP could be a novel and effective treatment method of oral biofilms that cause periodontal diseases.
Collapse
Affiliation(s)
- Qing Hong
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, United States of America
| | - Hongmin Sun
- Department of Internal Medicine, University of Missouri, Columbia, MO, United States of America
| | - Meng Chen
- Nanova, Inc., Columbia, MO, United States of America
| | - Shaoping Zhang
- Department of Periodontics, College of Dentistry, Iowa University, Iowa City, IA, United States of America
| | - Qingsong Yu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
19
|
Porphyromonas gingivalis resistance and virulence: An integrated functional network analysis. Gene 2022; 839:146734. [PMID: 35835406 DOI: 10.1016/j.gene.2022.146734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The gram-negative bacteria Porphyromonas gingivalis (PG) is the most prevalent cause of periodontal diseases and multidrug-resistant (MDR) infections. Periodontitis and MDR infections are severe due to PG's ability to efflux antimicrobial and virulence factors. This gives rise to colonisation, biofilm development, evasion, and modulation of the host defence system. Despite extensive studies on the MDR efflux pump in other pathogens, little is known about the efflux pump and its association with the virulence factor in PG. Prolonged infection of PG leads to complete loss of teeth and other systemic diseases. This necessitates the development of new therapeutic interventions to prevent and control MDR. OBJECTIVE The study aims to identify the most indispensable proteins that regulate both resistance and virulence in PG, which could therefore be used as a target to fight against the MDR threat to antibiotics. METHODS We have adopted a hierarchical network-based approach to construct a protein interaction network. Firstly, individual networks of four major efflux pump proteins and two virulence regulatory proteins were constructed, followed by integrating them into one. The relationship between proteins was investigated using a combination of centrality scores, k-core network decomposition, and functional annotation, to computationally identify the indispensable proteins. RESULTS Our study identified four topologically significant genes, PG_0538, PG_0539, PG_0285, and PG_1797, as potential pharmacological targets. PG_0539 and PG_1797 were identified to have significant associations between the efflux pump and virulence genes. This type of underpinning research may help in narrowing the drug spectrum used for treating periodontal diseases, and may also be exploited to look into antibiotic resistance and pathogenicity in bacteria other than PG.
Collapse
|
20
|
Vaillancourt K, Ben Lagha A, Grenier D. Effects of a Berry Polyphenolic Fraction on the Pathogenic Properties of Porphyromonas gingivalis. FRONTIERS IN ORAL HEALTH 2022; 3:923663. [PMID: 35784661 PMCID: PMC9245044 DOI: 10.3389/froh.2022.923663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Porphyromonas gingivalis expresses a broad array of virulence factors that enable it to play a central role in the etiopathogenesis of periodontitis. The objective of the present study was to assess the effects of a berry polyphenolic fraction (Orophenol®) composed of extracts from cranberry, wild blueberry, and strawberry on the main pathogenic determinants of P. gingivalis. Orophenol® attenuated the growth of P. gingivalis and decreased its hemolytic activity, its adherence to a basement membrane matrix model, and its proteinase activities. The berry polyphenolic fraction also impaired the production of reactive oxygen species (ROS) by oral keratinocytes stimulated with P. gingivalis. Lastly, using an in vitro model of oral keratinocyte barrier, the fraction exerted a protective effect against the damages mediated by P. gingivalis. In conclusion, the berry polyphenolic fraction investigated in the present study attenuated several pathogenic properties of P. gingivalis. Although future clinical investigations are required, our study provided evidence that the polyphenols contained in this fraction may represent bioactive molecules of high interest for the prevention and/or treatment of periodontal disease.
Collapse
|
21
|
Vaillancourt K, Ben Lagha A, Grenier D. A Phenolic-rich Extract of Cocoa (Theobroma cacao L.) Beans Impairs the Pathogenic Properties of Porphyromonas gingivalis and Attenuates the Activation of Nuclear Factor Kappa B in a Monocyte Model. FRONTIERS IN ORAL HEALTH 2022; 3:867793. [PMID: 35392377 PMCID: PMC8980215 DOI: 10.3389/froh.2022.867793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Periodontitis, an inflammatory disease that affects tooth-supporting tissues, is the result of a polymicrobial infection involving mainly Gram negative anaerobic bacteria. The aim of the present study was to investigate the effects of a phenolic-rich extract of cocoa (Theobroma cacao L.) beans on the pathogenic properties of Porphyromonas gingivalis, which is well-known as a keystone pathogen in the development of periodontitis. The effect of the cocoa extract on P. gingivalis-induced activation of the nuclear factor kappa B (NF-κB) transcription factor in a monocyte model was also assessed. The cocoa extract, whose major phenolic compound was epicatechin, inhibited the growth, hemolytic activity, proteolytic activities, and adherence properties (basement membrane matrix, erythrocytes) of P. gingivalis in a dose-dependent manner. It also protected the barrier function of a keratinocyte model against the deleterious effects mediated by P. gingivalis, and attenuated reactive oxygen species (ROS) production by oral keratinocytes treated with P. gingivalis. Lastly, the cocoa extract showed an anti-inflammatory property by preventing P. gingivalis-induced NF-κB activation in monocytes. In conclusion, this in vitro study highlighted the potential value of an epicatechin-rich extract of cocoa beans for preventing and/or treating periodontal diseases.
Collapse
|
22
|
Groeger S, Hudel M, Zechel S, Chakraborty T, Lochnit G, Meyle J, Domann E. Generation and functional characterization of recombinant Porphyromonas gingivalis W83 FimA. J Biotechnol 2021; 340:22-29. [PMID: 34478774 DOI: 10.1016/j.jbiotec.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/07/2021] [Accepted: 08/17/2021] [Indexed: 01/04/2023]
Abstract
Porphyromonas gingivalis (P. gingivalis) is regarded as a keystone pathogen in destructive periodontal diseases. It expresses a variety of virulence factors, amongst them fimbriae that are involved in colonization, invasion, establishment and persistence of the bacteria inside the host cells. The fimbriae also were demonstrated to affect the host immune-response mechanisms. The major fimbriae are able to bind specifically to different host cells, amongst them peripheral blood monocytes. The interaction of these cells with fimbriae induces release of cytokines such as interleukin-1 (IL-1), IL-6, and tumor necrosis factor-α (TNF-α). The aim of this study was to generate recombinant major FimA protein from P. gingivalis W83 fimbriae and to prove its biological activity. FimA of P. gingivalis W83 was amplified from chromosomal DNA, cloned in a vector and transferred into Listeria innocua. (L. innocua).The expressed protein was harvested and purified using FPLC via a His trap HP column. The identity and purity was demonstrated by gel-electrophoresis and mass-spectrometry. The biological activity was assessed by stimulation of human oral epithelial cells and peripheral blood monocytes with the protein and afterwards cytokines in the supernatants were quantified by enzyme linked immunosorbent assay (ELISA) and cytometric bead array. Recombinant FimA could successfully be generated and purified. Gel-electrophoresis and mass-spectrometry confirmed that the detected sequences are identical with FimA. Stimulation of human monocytes induced the release of high concentrations of IL-1β, IL-6, IL-10 and TNF-α by these cells. In conclusion, a recombinant FimA protein was established and its biological activity was proven. This protein may serve as a promising agent for further investigation of its role in periodontitis and possible new therapeutic approaches.
Collapse
Affiliation(s)
- S Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany.
| | - M Hudel
- Institute of Medical Microbiology, Justus-Liebig-University of Giessen, Germany
| | - S Zechel
- Institute of Medical Microbiology, Justus-Liebig-University of Giessen, Germany
| | - T Chakraborty
- Institute of Medical Microbiology, Justus-Liebig-University of Giessen, Germany
| | - G Lochnit
- Department of Biochemistry, Justus-Liebig-University of Giessen, Germany
| | - J Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - E Domann
- Institute of Medical Microbiology, Justus-Liebig-University of Giessen, Germany
| |
Collapse
|
23
|
Charoensaensuk V, Chen YC, Lin YH, Ou KL, Yang LY, Lu DY. Porphyromonas gingivalis Induces Proinflammatory Cytokine Expression Leading to Apoptotic Death through the Oxidative Stress/NF-κB Pathway in Brain Endothelial Cells. Cells 2021; 10:3033. [PMID: 34831265 PMCID: PMC8616253 DOI: 10.3390/cells10113033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Porphyromonas gingivalis, a periodontal pathogen, has been proposed to cause blood vessel injury leading to cerebrovascular diseases such as stroke. Brain endothelial cells compose the blood-brain barrier that protects homeostasis of the central nervous system. However, whether P. gingivalis causes the death of endothelial cells and the underlying mechanisms remain unclear. This study aimed to investigate the impact and regulatory mechanisms of P. gingivalis infection in brain endothelial cells. We used bEnd.3 cells and primary mouse endothelial cells to assess the effects of P. gingivalis on endothelial cells. Our results showed that infection with live P. gingivalis, unlike heat-killed P. gingivalis, triggers brain endothelial cell death by inducing cell apoptosis. Moreover, P. gingivalis infection increased intracellular reactive oxygen species (ROS) production, activated NF-κB, and up-regulated the expression of IL-1β and TNF-α. Furthermore, N-acetyl-L-cysteine (NAC), a most frequently used antioxidant, treatment significantly reduced P. gingivalis-induced cell apoptosis and brain endothelial cell death. The enhancement of ROS production, NF-κB p65 activation, and proinflammatory cytokine expression was also attenuated by NAC treatment. The impact of P. gingivalis on brain endothelial cells was also confirmed using adult primary mouse brain endothelial cells (MBECs). In summary, our results showed that P. gingivalis up-regulates IL-1β and TNF-α protein expression, which consequently causes cell death of brain endothelial cells through the ROS/NF-κB pathway. Our results, together with the results of previous case-control studies and epidemiologic reports, strongly support the hypothesis that periodontal infection increases the risk of developing cerebrovascular disease.
Collapse
Affiliation(s)
- Vichuda Charoensaensuk
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (V.C.); (Y.-H.L.)
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yun-Ho Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (V.C.); (Y.-H.L.)
| | - Keng-Liang Ou
- 3D Global Biotech Inc., New Taipei City 22175, Taiwan;
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung 40447, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
24
|
Moradali MF, Davey ME. Metabolic plasticity enables lifestyle transitions of Porphyromonas gingivalis. NPJ Biofilms Microbiomes 2021; 7:46. [PMID: 34031416 PMCID: PMC8144566 DOI: 10.1038/s41522-021-00217-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/28/2021] [Indexed: 02/04/2023] Open
Abstract
Our understanding of how the oral anaerobe Porphyromonas gingivalis can persist below the gum line, induce ecological changes, and promote polymicrobial infections remains limited. P. gingivalis has long been described as a highly proteolytic and asaccharolytic pathogen that utilizes protein substrates as the main source for energy production and proliferation. Here, we report that P. gingivalis displays a metabolic plasticity that enables the exploitation of non-proteinaceous substrates, specifically the monocarboxylates pyruvate and lactate, as well as human serum components, for colonization and biofilm formation. We show that anabolism of carbohydrates from pyruvate is powered by catabolism of amino acids. Concomitantly, the expression of fimbrial adhesion is upregulated, leading to the enhancement of biofilm formation, stimulation of multispecies biofilm development, and increase of colonization and invasion of the primary gingival epithelial cells by P. gingivalis. These studies provide the first glimpse into the metabolic plasticity of P. gingivalis and its adaptation to the nutritional condition of the host niche. Our findings support the model that in response to specific nutritional parameters, P. gingivalis has the potential to promote host colonization and development of a pathogenic community.
Collapse
Affiliation(s)
- M Fata Moradali
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Room 355 B, Louisville, KY, USA.
| | - Mary E Davey
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Miya C, Cueno ME, Suzuki R, Maruoka S, Gon Y, Kaneko T, Yonehara Y, Imai K. Porphyromonas gingivalis gingipains potentially affect MUC5AC gene expression and protein levels in respiratory epithelial cells. FEBS Open Bio 2020; 11:446-455. [PMID: 33332733 PMCID: PMC7876492 DOI: 10.1002/2211-5463.13066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Accepted: 12/15/2020] [Indexed: 01/08/2023] Open
Abstract
Porphyromonas gingivalis (Pg) is a periodontopathic pathogen that may affect MUC5AC‐related mucus hypersecretion along airway epithelial cells. Here, we attempted to establish whether Pg virulence factors (lipopolysaccharide, FimA fimbriae, gingipains) affect MUC5AC in immortalized and primary bronchial cells. We report that MUC5AC gene expression and protein levels are affected by Pg culture supernatant, but not by lipopolysaccharide or FimA fimbriae. Cells treated with either Pg single (Kgp or Rgp) or double (Kgp/Rgp) mutants had altered levels of MUC5AC gene expression and protein levels, and MUC5AC staining of double mutant‐treated mouse lung cells showed that MUC5AC protein levels were unaffected. Taken together, we propose that Pg gingipains may be the primary virulence factor that influences both MUC5AC gene expression and protein levels.
Collapse
Affiliation(s)
- Chihiro Miya
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan.,Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Ryuta Suzuki
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan.,Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Shuichiro Maruoka
- Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuhiro Gon
- Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tadayoshi Kaneko
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiyuki Yonehara
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
26
|
Porphyromonas gingivalis Mfa1 Induces Chemokine and Cell Adhesion Molecules in Mouse Gingival Fibroblasts via Toll-Like Receptors. J Clin Med 2020; 9:jcm9124004. [PMID: 33322059 PMCID: PMC7764148 DOI: 10.3390/jcm9124004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022] Open
Abstract
Porphyromonas gingivalis Mfa1 fimbriae are thought to act as adhesion factors and to direct periodontal tissue destruction but their immunomodulatory actions are poorly understood. Here, we investigated the effect of Mfa1 stimulation on the immune and metabolic mechanisms of gingival fibroblasts from periodontal connective tissue. We also determined the role of Toll-like receptor (TLR) 2 and TLR4 in Mfa1 recognition. Mfa1 increased the expression of genes encoding chemokine (C-X-C motif) ligand (CXCL) 1, CXCL3, intercellular adhesion molecule (ICAM) 1 and Selectin endothelium (E) in gingival fibroblasts, but did not have a significant effect on genes that regulate metabolism. Mfa1-stimulated up-regulation of genes was significantly suppressed in Tlr4 siRNA-transfected cells compared with that in control siRNA-transfected cells, which indicates that recognition by TLR4 is essential for immunomodulation by Mfa1. Additionally, suppression of Tlr2 expression partially attenuated the stimulatory effect of Mfa1. Overall, these results help explain the involvement of P. gingivalis Mfa1 fimbriae in the progression of periodontal disease.
Collapse
|
27
|
Fragkioudakis I, Riggio MP, Apatzidou DA. Understanding the microbial components of periodontal diseases and periodontal treatment-induced microbiological shifts. J Med Microbiol 2020; 70. [PMID: 33295858 DOI: 10.1099/jmm.0.001247] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the mid-1960s the microbial aetiology of periodontal diseases was introduced based on classical experimental gingivitis studies . Since then, numerous studies have addressed the fundamental role that oral microbiota plays in the initiation and progression of periodontal diseases. Recent advances in laboratory identification techniques have contributed to a better understanding of the complexity of the oral microbiome in both health and disease. Modern culture-independent methods such as human oral microbial identification microarray and next-generation sequencing have been used to identify a wide variety of microbial taxa residing in the gingival sulcus and the periodontal pocket. The first theory of the 'non-specific plaque' hypothesis gave rise to the 'ecological plaque' hypothesis and more recently to the 'polymicrobial synergy and dysbiosis hypothesis'. Periodontitis is now considered to be a multimicrobial inflammatory disease in which the various bacterial species within the dental biofilm are in a dysbiotic state and this imbalance favours the establishment of chronic inflammatory conditions and ultimately the destruction of tooth-supporting tissues. Apart from the known putative periodontal pathogens, the whole biofilm community is now considered to play a role in the establishment of inflammation and the initiation and progression of periodontitis in a susceptible host. Treatment is unlikely to eliminate putative pathogens but, when it is thoroughly performed it has the potential to establish a healthy ecosystem by altering the microbial community in numbers and composition and also contribute to the maturation of the host immune response.
Collapse
Affiliation(s)
- Ioannis Fragkioudakis
- Department of Preventive Dentistry, Periodontology and Implant Biology, Faculty of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Marcello P Riggio
- Oral Sciences Research Group, Dental School, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Danae Anastasia Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, Faculty of Dentistry, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
28
|
Arjunan P. Eye on the Enigmatic Link: Dysbiotic Oral Pathogens in Ocular Diseases; The Flip Side. Int Rev Immunol 2020; 40:409-432. [PMID: 33179994 DOI: 10.1080/08830185.2020.1845330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouth and associated structures were regarded as separate entities from the rest of the body. However, there is a paradigm shift in this conception and oral health is now considered as a fundamental part of overall well-being. In recent years, the subject of oral-foci of infection has attained a resurgence in terms of systemic morbidities while limited observations denote the implication of chronic oral inflammation in the pathogenesis of eye diseases. Hitherto, there is a paucity for mechanistic insights underlying the reported link between periodontal disease (PD) and ocular comorbidities. In light of prevailing scientific evidence, this review article will focus on the understudied theme, that is, the impact of oral dysbiosis in the induction and/or progression of inflammatory eye diseases like diabetic retinopathy, scleritis, uveitis, glaucoma, age-related macular degeneration (AMD). Furthermore, the plausible mechanisms by which periodontal microbiota may trigger immune dysfunction in the Oro-optic-network and promote the development of PD-associated AMD have been discussed.
Collapse
Affiliation(s)
- Pachiappan Arjunan
- Department of Periodontics, Dental College of Georgia, Augusta, GA, USA.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The human body plays host to bacterial biofilms across diverse anatomical sites. The treatment of pathogenic biofilm infection is confounded by their high rate of antibiotic resistance. Therefore, it is critical to understand the interplay between these biofilms and the host immune system to develop new tactics to combat these infections. RECENT FINDINGS Bacterial biofilms and the components they produce affect and are affected by the host immune system. Host anatomical sites represent distinct niches in which defined bacterial biofilms are able to form and interact with the host immune system. For persistent colonization to occur, the bacteria must either avoid or suppress the host immune system, or induce an immune response that facilitates their perpetuation. SUMMARY Commensal bacterial biofilms form a protective barrier against colonization by pathogens. Using similar mechanisms, bacteria modulate the immune system to orchestrate persistence and sometimes disease. Clinicians must balance the need to avoid disturbing beneficial commensal biofilms with the difficulty in preventing or treating pathogenic bacterial biofilms such as those that develop on medical implants and open wounds.
Collapse
Affiliation(s)
- Christina N Morra
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
30
|
Heads or tails for type V pilus assembly. Nat Microbiol 2020; 5:782-784. [PMID: 32467624 DOI: 10.1038/s41564-020-0732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
|
32
|
Abstract
The etiopathogenesis of severe periodontitis includes herpesvirus-bacteria coinfection. This article evaluates the pathogenicity of herpesviruses (cytomegalovirus and Epstein-Barr virus) and periodontopathic bacteria (Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) and coinfection of these infectious agents in the initiation and progression of periodontitis. Cytomegalovirus and A. actinomycetemcomitans/P. gingivalis exercise synergistic pathogenicity in the development of localized ("aggressive") juvenile periodontitis. Cytomegalovirus and Epstein-Barr virus are associated with P. gingivalis in adult types of periodontitis. Periodontal herpesviruses that enter the general circulation may also contribute to disease development in various organ systems. A 2-way interaction is likely to occur between periodontal herpesviruses and periodontopathic bacteria, with herpesviruses promoting bacterial upgrowth, and bacterial factors reactivating latent herpesviruses. Bacterial-induced gingivitis may facilitate herpesvirus colonization of the periodontium, and herpesvirus infections may impede the antibacterial host defense and alter periodontal cells to predispose for bacterial adherence and invasion. Herpesvirus-bacteria synergistic interactions, are likely to comprise an important pathogenic determinant of aggressive periodontitis. However, mechanistic investigations into the molecular and cellular interaction between periodontal herpesviruses and bacteria are still scarce. Herpesvirus-bacteria coinfection studies may yield significant new discoveries of pathogenic determinants, and drug and vaccine targets to minimize or prevent periodontitis and periodontitis-related systemic diseases.
Collapse
Affiliation(s)
- Casey Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
33
|
Hajishengallis G, Diaz PI. Porphyromonas gingivalis: Immune subversion activities and role in periodontal dysbiosis. ACTA ACUST UNITED AC 2020; 7:12-21. [PMID: 33344104 DOI: 10.1007/s40496-020-00249-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose of review This review summarizes mechanisms by which Porphyromonas gingivalis interacts with community members and the host so that it can persist in the periodontium under inflammatory conditions that drive periodontal disease. Recent findings Recent advances indicate that, in great part, the pathogenicity of P. gingivalis is dependent upon its ability to establish residence in the subgingival environment and to subvert innate immunity in a manner that uncouples the nutritionally favorable (for the bacteria) inflammatory response from antimicrobial pathways. While the initial establishment of P. gingivalis is dependent upon interactions with early colonizing bacteria, the immune subversion strategies of P. gingivalis in turn benefit co-habiting species. Summary Specific interspecies interactions and subversion of the host response contribute to the emergence and persistence of dysbiotic communities and are thus targets of therapeutic approaches for the treatment of periodontitis.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40 Street, Philadelphia, PA 19104, USA
| | - Patricia I Diaz
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
34
|
Xu W, Zhou W, Wang H, Liang S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:45-84. [PMID: 32085888 DOI: 10.1016/bs.apcsb.2019.12.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Periodontitis is an infection-driven inflammatory disease, which is characterized by gingival inflammation and bone loss. Periodontitis is associated with various systemic diseases, including cardiovascular, respiratory, musculoskeletal, and reproductive system related abnormalities. Recent theory attributes the pathogenesis of periodontitis to oral microbial dysbiosis, in which Porphyromonas gingivalis acts as a critical agent by disrupting host immune homeostasis. Lipopolysaccharide, proteases, fimbriae, and some other virulence factors are among the strategies exploited by P. gingivalis to promote the bacterial colonization and facilitate the outgrowth of the surrounding microbial community. Virulence factors promote the coaggregation of P. gingivalis with other bacteria and the formation of dental biofilm. These virulence factors also modulate a variety of host immune components and subvert the immune response to evade bacterial clearance or induce an inflammatory environment. In this chapter, our focus is to discuss the virulence factors of periodontal pathogens, especially P. gingivalis, and their roles in regulating immune responses during periodontitis progression.
Collapse
Affiliation(s)
- Weizhe Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Wei Zhou
- Department of Endodontics, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, Pudong, China
| | - Huizhi Wang
- VCU Philips Institute for Oral Health Research, Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University School of Dentistry, Richmond, VA, United States
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| |
Collapse
|
35
|
Kim TG, Lan TT, Lee JY. Immunogenicity of Fusion Protein of Cholera Toxin B Subunit-Porphyromonas gingivalis 53-kDa Minor Fimbrial Protein Produced in Nicotiana benthamiana. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Zuo Y, Whitbeck JC, Haila GJ, Hakim AA, Rothlauf PW, Eisenberg RJ, Cohen GH, Krummenacher C. Saliva enhances infection of gingival fibroblasts by herpes simplex virus 1. PLoS One 2019; 14:e0223299. [PMID: 31581238 PMCID: PMC6776388 DOI: 10.1371/journal.pone.0223299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 09/19/2019] [Indexed: 02/01/2023] Open
Abstract
Oral herpes is a highly prevalent infection caused by herpes simplex virus 1 (HSV-1). After an initial infection of the oral cavity, HSV-1 remains latent in sensory neurons of the trigeminal ganglia. Episodic reactivation of the virus leads to the formation of mucocutaneous lesions (cold sores), but asymptomatic reactivation accompanied by viral shedding is more frequent and allows virus spread to new hosts. HSV-1 DNA has been detected in many oral tissues. In particular, HSV-1 can be found in periodontal lesions and several studies associated its presence with more severe periodontitis pathologies. Since gingival fibroblasts may become exposed to salivary components in periodontitis lesions, we analyzed the effect of saliva on HSV-1 and -2 infection of these cells. We observed that human gingival fibroblasts can be infected by HSV-1. However, pre-treatment of these cells with saliva extracts from some but not all individuals led to an increased susceptibility to infection. Furthermore, the active saliva could expand HSV-1 tropism to cells that are normally resistant to infection due to the absence of HSV entry receptors. The active factor in saliva was partially purified and comprised high molecular weight complexes of glycoproteins that included secretory Immunoglobulin A. Interestingly, we observed a broad variation in the activity of saliva between donors suggesting that this activity is selectively present in the population. The active saliva factor, has not been isolated, but may lead to the identification of a relevant biomarker for susceptibility to oral herpes. The presence of a salivary factor that enhances HSV-1 infection may influence the risk of oral herpes and/or the severity of associated oral pathologies.
Collapse
Affiliation(s)
- Yi Zuo
- Department of Microbiology, School of Dental Medicine University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - J. Charles Whitbeck
- Department of Microbiology, School of Dental Medicine University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gabriel J. Haila
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey, United States of America
| | - Abraham A. Hakim
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Paul W. Rothlauf
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Roselyn J. Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Claude Krummenacher
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey, United States of America
| |
Collapse
|
37
|
Lee HA, Song YR, Park MH, Chung HY, Na HS, Chung J. Catechin ameliorates Porphyromonas gingivalis-induced inflammation via the regulation of TLR2/4 and inflammasome signaling. J Periodontol 2019; 91:661-670. [PMID: 31473995 DOI: 10.1002/jper.18-0004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Porphyromonas gingivalis is a major periodontopathogen found in patients with chronic periodontitis that can lead to alveolar bone or tooth loss. Interleukin-1β (IL-1β), a proinflammatory cytokine, is most relevant to the pathogenesis of periodontitis. Catechin is one of the main polyphenol compounds found in green tea and possesses a range of health benefits. This study examined the anti-inflammatory effects of catechin in THP-1-derived macrophages infected with P. gingivalis as well as its effects on P. gingivalis-induced periodontitis in a mouse model. METHODS The cytokine levels and relevant protein expression in THP-1 cells were measured using an enzyme-linked immunosorbent assay and Western blot analysis, respectively. An apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) pyroptosome formation was measured by confocal laser scanning microscopy. Micro-computed tomography was used to determine the level of bone loss induced by a P. gingivalis oral infection. RESULTS Catechin attenuated the production of IL-1β by inhibiting pro-IL-1β expression via the downregulation of nuclear factor-κB, p38 mitogen-activated protein kinase, and Toll-like receptor signaling. In addition, catechin inhibited the activation of inflammasomes induced by P. gingivalis, but did not affect the growth of P. gingivalis. Catechin reduced the level of alveolar bone loss in a P. gingivalis-induced periodontitis mouse model. CONCLUSION Catechin possesses anti-inflammatory properties by reducing the level of IL-1β production, suggesting that it can potentially be used for the prevention and treatment of periodontal inflammation caused by P. gingivalis.
Collapse
Affiliation(s)
- Hyun Ah Lee
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Yu Ri Song
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea.,Oral Genomics Research Center, Pusan National University, Yangsan, Korea
| | - Mi Hee Park
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea.,Oral Genomics Research Center, Pusan National University, Yangsan, Korea
| | - Hae-Young Chung
- Department of Biochemistry, School of Pharmacy, Pusan National University, Busan, Korea
| | - Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea.,Oral Genomics Research Center, Pusan National University, Yangsan, Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea.,Oral Genomics Research Center, Pusan National University, Yangsan, Korea
| |
Collapse
|
38
|
Kobuchi K, Kataoka K, Taguchi Y, Miyake T, Umeda M. Nasal double DNA adjuvant induces salivary FimA-specific secretory IgA antibodies in young and aging mice and blocks Porphyromonas gingivalis binding to a salivary protein. BMC Oral Health 2019; 19:188. [PMID: 31426773 PMCID: PMC6700810 DOI: 10.1186/s12903-019-0886-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously showed that nasal administration of a combination of dendritic cell (DC) targeted DNA plasmid expressing Flt3 ligand and CpG oligodeoxynucleotides 1826 as a mucosal adjuvant (double adjuvant, DA) provoked protective immunity in the upper respiratory tract of young adult and aging mice. Here, we investigated whether the nasal DA system induces secretory (S)IgA antibodies (Abs) toward recombinant fimbrillin (rFimA) of Porphyromonas gingivalis (P. gingivalis) in the saliva of young adult and aging mice. Further, we examined the functional applicability of rFimA-specific salivary SIgA Abs. METHODS BALB/c mice (8- or 48-week-old) were nasally immunized with rFimA plus DA three times at weekly intervals. Control mice were nasally administered rFimA alone. Saliva samples were collected 1 week after the final immunization, and were subjected to rFimA-specific ELISA. To examine the functional applicability of rFimA-specific SIgA Abs, IgA-enriched saliva samples were subjected to an inhibition assay in order to assess the numbers of P. gingivalis cells bound to the salivary protein statherin. RESULTS The 8- and 48-week-old mice administered nasal rFimA plus DA showed significantly increased levels of rFimA-specific SIgA Abs in saliva and elevated numbers of CD11c+ DCs in sublingual glands (SLGs), periglandular lymph nodes (PGLNs) and submandibular glands (SMGs) as well as nasopharyngeal-associated lymphoid tissues (NALT) compared to mice administered rFimA alone. Further, rFimA-specific SIgA Abs-containing saliva, in which IgG Abs of 8- and 48-week-old mice administered nasal rFimA plus DA were removed, significantly inhibited binding of P. gingivalis to the salivary protein. CONCLUSIONS These findings show that this DA system could be an effective nasal vaccine strategy for the enhancement of P. gingivalis-specific protective immunity in the oral cavity of adolescents and older individuals.
Collapse
Affiliation(s)
- Kenjiro Kobuchi
- Graduate School of Dentistry, Osaka Dental University, Hirakata, Osaka, 573-1121 Japan
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka, 573-1121 Japan
| | - Kosuke Kataoka
- Department of Preventive and Community Dentistry, Osaka Dental University, Hirakata, Osaka, 573-1121 Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka, 573-1121 Japan
| | - Tatsuro Miyake
- Department of Preventive and Community Dentistry, Osaka Dental University, Hirakata, Osaka, 573-1121 Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka, 573-1121 Japan
| |
Collapse
|
39
|
Mendez KN, Hoare A, Soto C, Bugueño I, Olivera M, Meneses C, Pérez-Donoso JM, Castro-Nallar E, Bravo D. Variability in Genomic and Virulent Properties of Porphyromonas gingivalis Strains Isolated From Healthy and Severe Chronic Periodontitis Individuals. Front Cell Infect Microbiol 2019; 9:246. [PMID: 31355151 PMCID: PMC6635597 DOI: 10.3389/fcimb.2019.00246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Porphyromonas gingivalis has been extensively associated with both the onset and progression of periodontitis. We previously isolated and characterized two P. gingivalis strains, one from a patient exhibiting severe chronic periodontitis (CP3) and another from a periodontally healthy individual (H3). We previously showed that CP3 and H3 exhibit differences in virulence since H3 showed a lower resistance to cationic peptides compared with CP3, and a lower ability to induce proliferation in gingival epithelial cells. Here, we aimed to determine whether differences in virulence between these two strains are associated with the presence or absence of specific genes encoding virulence factors. We sequenced the whole genomes of both P. gingivalis CP3 and H3 and conducted a comparative analysis regarding P. gingivalis virulence genetic determinants. To do so, we performed a homology search of predicted protein sequences in CP3 and H3 genomes against the most characterized virulence genes for P. gingivalis available in the literature. In addition, we performed a genomic comparison of CP3 and H3 with all the 62 genomes of P. gingivalis found in NCBI's RefSeq database. This approach allowed us to determine the evolutionary relationships of CP3 and H3 with other virulent and avirulent strains; and additionally, to detect variability in presence/absence of virulence genes among P. gingivalis genomes. Our results show genetic variability in the hemagglutinin genes. While CP3 possesses one copy of hagA and two of hagC, H3 has no hagA and only one copy of hagC. Experimentally, this finding is related to lower in vitro hemmaglutination ability of H3 compared to CP3. Moreover, while CP3 encodes a gene for a major fimbrium subunit FimA type 4 (CP3_00160), H3 possess a FimA type 1 (H3_01400). Such genetic differences are in agreement with both lower biofilm formation ability and less intracellular invasion to oral epithelial cells exhibited by H3, compared with the virulent strain CP3. Therefore, here we provide new results on the genome sequences, comparative genomics analyses, and phenotypic analyses of two P. gingivalis strains. The genomics comparison of these two strains with the other 62 genomes included in the analysis provided relevant results regarding genetic determinants and their association with P. gingivalis virulence.
Collapse
Affiliation(s)
- Katterinne N Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Anilei Hoare
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Cristopher Soto
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Isaac Bugueño
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Marcela Olivera
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Jose Manuel Pérez-Donoso
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Denisse Bravo
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| |
Collapse
|
40
|
Koyata Y, Watanabe K, Toyama T, Sasaki H, Hamada N. Purification and characterization of a fimbrial protein from Porphyromonas salivosa ATCC 49407. J Vet Med Sci 2019; 81:916-923. [PMID: 31019151 PMCID: PMC6612485 DOI: 10.1292/jvms.19-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Periodontal disease is a significant problem in companion animals such as dogs and cats.
However, there is little information available about fimbriae association of periodontal
disease in companion animals. In this study, we have purified and characterized a fimbriae
from Porphyromonas salivosa ATCC 49407. The molecular mass of this
protein was approximately 60-kDa, as estimated by SDS-PAGE. Immunogold electron microscopy
revealed that anti-60-kDa fimbrial serum bound to fimbria on the cell surface of
P. salivosa ATCC 49407. However, fimbriae of P.
gingivalis and P. gulae were not labeled with the same
antibody. Immunoelectron-microscopic studies and immunoblot analysis revealed that
antigenicity and molecular weight were distinct from previously reported
Porphyromonas fimbrial proteins. The amino acid sequence of the
N-terminal 15 residues of the 60-kDa fimbrillin protein revealed only 3 of 15 residues
identical to other Porphyromonas species fimbrillin proteins. Thus, the
N-terminal amino acid sequence of the 60-kDa fimbrillin protein of P.
salivosa clearly differed from previously reported fimbrillin proteins. The
level of adherence of the P. salivosa was 1.81%. It was confirmed that
P. salivosa can adheres to human cells. These results suggest that the
60-kDa fimbriae of P. salivosa ATCC 49407 is a new type of fimbria and
may have an important factor in the adherence host cells. We suggest that the surface
structure of P. salivosa may have a role in the colonization of this
organism in periodontal pockets in companion animals.
Collapse
Affiliation(s)
- Yasunori Koyata
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Kanagawa 238-8580, Japan
| | - Kiyoko Watanabe
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Kanagawa 238-8580, Japan
| | - Toshizo Toyama
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Kanagawa 238-8580, Japan
| | - Haruka Sasaki
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Kanagawa 238-8580, Japan
| | - Nobushiro Hamada
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
41
|
Zhou Y, Luo GH. Porphyromonas gingivalis and digestive system cancers. World J Clin Cases 2019; 7:819-829. [PMID: 31024953 PMCID: PMC6473131 DOI: 10.12998/wjcc.v7.i7.819] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 02/05/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is an anaerobic gram-negative bacterium that colonizes in the epithelium and has been strongly associated with periodontal disease. Recently, various degrees of associations between P. gingivalis and digestive system cancers, including oral squamous cell carcinoma in the oral cavity, oesophageal squamous carcinoma in the digestive tract, and pancreatic cancer in pancreatic tissues, have been displayed in multiple clinical and experimental studies. Since P. gingivalis has a strong association with periodontal diseases, not only the relationships between P. gingivalis and digestive system tumours but also the effects induced by periodontal diseases on cancers are well-illustrated in this review. In addition, the prevention and possible treatments for these digestive system tumours induced by P. gingivalis infection are also included in this review. At the end, we also highlighted the possible mechanisms of cancers caused by P. gingivalis. One important carcinogenic effect of P. gingivalis is inhibiting the apoptosis of epithelial cells, which also plays an intrinsic role in protecting cancerous cells. Some signalling pathways activated by P. gingivalis are involved in cell apoptosis, tumourigenesis, immune evasion and cell invasion of tumour cells. In addition, metabolism of potentially carcinogenic substances caused by P. gingivalis is also one of the connections between this bacterium and cancers.
Collapse
Affiliation(s)
- Ying Zhou
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Guang-Hua Luo
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| |
Collapse
|
42
|
Kan P, Sasaki H, Inaba K, Watanabe K, Hamada N, Minabe M. Inhibitory effects of azithromycin on the adherence ability of Porphyromonas gingivalis. J Periodontol 2019; 90:903-910. [PMID: 30690740 DOI: 10.1002/jper.18-0559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/07/2018] [Accepted: 12/24/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND Porphyromonas gingivalis is a major pathogen and has a high detection rate in periodontal disease. Fimbriae and hemagglutinin are expressed by P. gingivalis, and these play an important role in the adherence of the bacteria to periodontal tissue and biofilm formation. The aim of this study was to investigate the effects of sub-minimal inhibitory concentrations (sub-MICs) of azithromycin on the adherence of P. gingivalis, focusing on the inhibition of fimbriae expression and hemagglutinin activity. METHODS P. gingivalis ATCC 33277 were incubated anaerobically with sub-MICs of azithromycin at 37°C by gentle shaking for 18 hours. The bacterial cells were harvested, washed twice with phosphate-buffered saline (PBS), and the proteins analyzed by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. Adherence assay and hemagglutinin activity tests were done with the same culture. RESULTS The results of SDS-PAGE indicated that the sub-MICs of azithromycin inhibited 41-kDa fimbrial protein expression and hemagglutinin activities. The disappearance of 41-kDa fimbrial protein expression and long fimbriae in 0.4 µg/mL, 0.2 µg/mL, and 0.1 µg/mL of azithromycin was confirmed by western blotting and transmission electron microscopy. The adherence of P. gingivalis to human gingival epithelial cells was reduced by sub-MICs of azithromycin compared with the adherence levels without antibiotic. CONCLUSIONS These results suggest that sub-MICs of azithromycin may reduce the adherence of P. gingivalis to host cells, by inhibiting production of fimbriae and hemagglutinin activities. Therefore, azithromycin can be used as a biofilm treatment of periodontal disease caused by P. gingivalis.
Collapse
Affiliation(s)
- Powen Kan
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Kanagawa Dental University, Yokosuka, Japan
| | - Haruka Sasaki
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Japan
| | - Keitaro Inaba
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Japan
| | - Kiyoko Watanabe
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Japan
| | - Nobushiro Hamada
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Japan
| | - Masato Minabe
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Kanagawa Dental University, Yokosuka, Japan
| |
Collapse
|
43
|
OmpA-Like Proteins of Porphyromonas gingivalis Mediate Resistance to the Antimicrobial Peptide LL-37. J Pathog 2018; 2018:2068435. [PMID: 30687554 PMCID: PMC6327258 DOI: 10.1155/2018/2068435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/30/2018] [Accepted: 12/09/2018] [Indexed: 11/29/2022] Open
Abstract
Subgingival bacteria are continually exposed to gingival crevicular fluids that are derived from serum, which contain various bactericidal agents. The periodontopathic bacterium Porphyromonas gingivalis has been demonstrated to possess a variety of abilities to resist bactericidal agents, due to which it is able to propagate in the subgingival environment. We previously demonstrated that the major surface glycoproteins of P. gingivalis—Pgm6 and Pgm7, also called outer membrane protein A-like proteins (OmpALPs)—mediate resistance to the bactericidal activity of human serum, but their precise role remains unknown. In this study, we investigated the sensitivity of the wild-type and Pgm6/Pgm7-deficient P. gingivalis strains toward major antimicrobial peptides in the oral cavity, human β-defensins (hBDs) 1-3, and human cathelicidin LL-37. hBDs showed a considerably weak bactericidal activity against both bacterial strains. LL-37 also showed a weak activity against the wild-type strain; however, it showed a significant activity against the Pgm6/Pgm7-deficient strain. In the Pgm6/Pgm7-deficient strain, LL-37 remarkably accumulated on the bacterial cell surface, which may result in the destruction of the outer membrane. Additionally, the bactericidal activity of hBDs against the Pgm6/Pgm7-deficient strain was found to be synergistically promoted in the presence of LL-37. Our results suggest that OmpALPs specifically protect P. gingivalis from the bactericidal activity of LL-37; thus, P. gingivalis may adeptly survive in LL-37-producing subgingival environments.
Collapse
|
44
|
Ho M, Lamont RJ, Chazin WJ, Chen H, Young DF, Kumar P, Xie H. Characterization and development of SAPP as a specific peptidic inhibitor that targets Porphyromonas gingivalis. Mol Oral Microbiol 2018; 33:430-439. [PMID: 30298683 PMCID: PMC6246824 DOI: 10.1111/omi.12246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/10/2018] [Accepted: 08/31/2018] [Indexed: 01/30/2023]
Abstract
Porphyromonas gingivalis is a keystone bacterium in the oral microbial communities that elicits a dysbiosis between the microbiota and the host. Therefore, inhibition of this organism in dental plaques has been one of the strategies for preventing and treating chronic periodontitis. We previously identified a Streptococcal ArcA derived Anti-P gingivalils Peptide (SAPP) that in vitro, is capable of repressing the expression of several virulence genes in the organism. This leads to a significant reduction in P gingivalis virulence potential, including its ability to colonize on the surface of Streptococcus gordonii, to invade human oral epithelial cells, and to produce gingipains. In this study, we showed that SAPP had minimal cytotoxicity to human oral keratinocytes and gingival fibroblasts. We observed that SAPP directly bound to the cell surface of P gingivalis, and that alterations in the sequence at the N-terminus of SAPP diminished its abilities to interact with P gingivalis cells and repressed the expression of virulence genes. Most strikingly, we demonstrated using an ex-vivo assay that besides its inhibitory activity against P gingivalis colonization, SAPP could also reduce the levels of several other oral Gram-negative bacteria strongly associated with periodontitis in multispecies biofilms. Our results provide a platform for the development of SAPP-targeted therapeutics against chronic periodontitis.
Collapse
Affiliation(s)
- M. Ho
- Department of Oral Biology, Meharry Medical College, Nashville, TN, USA
| | - R. J. Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - W. J. Chazin
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN USA
| | - H. Chen
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN USA
| | - D. F. Young
- General Practice Residency Program, Meharry Medical College, Nashville, TN. USA
| | - P. Kumar
- Department of Oral Biology, Meharry Medical College, Nashville, TN, USA
| | - H. Xie
- Department of Oral Biology, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
45
|
Qiao W, Wang F, Xu X, Wang S, Regenstein JM, Bao B, Ma M. Egg yolk immunoglobulin interactions with Porphyromonas gingivalis to impact periodontal inflammation and halitosis. AMB Express 2018; 8:176. [PMID: 30374625 PMCID: PMC6206315 DOI: 10.1186/s13568-018-0706-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/23/2018] [Indexed: 01/22/2023] Open
Abstract
Porphyromonas gingivalis is a pathogenic Gram-negative anaerobic bacterium that colonizes the subgingival region of gums. These bacteria can invade periodontal tissues, form plaques, and produce volatile sulfur compounds (VSC) and volatile organic compounds (VOC). Egg yolk immunoglobulin (IgY) that was specifically produced in egg yolks after chickens were challenged with P. gingivalis could control and prevent oral diseases caused by P. gingivalis. The releases of P. gingivalis offensive metabolic odors in vitro and in vivo were determined using a Halimeter and GCMS. With IgY bacterial growth was inhibited, and the relative amounts of VOC and VSC were decreased. The scores for the oral health index and the levels of IL-6 and TNF-α are also decreased. All treatment groups showed significant anti-inflammatory effects, which strongly suggests that specifically IgY against P. gingivalis may be an effective treatment for the prevention and protection of periodontal inflammation and halitosis.
Collapse
|
46
|
Aliko A, Kamińska M, Bergum B, Gawron K, Benedyk M, Lamont RJ, Malicki S, Delaleu N, Potempa J, Mydel P. Impact of Porphyromonas gingivalis Peptidylarginine Deiminase on Bacterial Biofilm Formation, Epithelial Cell Invasion, and Epithelial Cell Transcriptional Landscape. Sci Rep 2018; 8:14144. [PMID: 30237466 PMCID: PMC6147916 DOI: 10.1038/s41598-018-32603-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022] Open
Abstract
Peptidylarginine deiminase (PPAD) is a virulence factor unique to pathogenic Porphyromonas species, especially P. gingivalis. Mechanistically, PPAD activity, in conjunction with Arg-specific gingipains, generates protein fragments with citrullinated C-termini. Such polypeptides are potential de novo epitopes that are key drivers of rheumatoid arthritis. This process could underlie the observed clinical association between rheumatoid arthritis and periodontitis. However, the role of PPAD in host colonization by P. gingivalis and, subsequently, in triggering periodontitis is not known. Therefore, the aim of the current study was to delineate the role of PPAD in bacterial biofilm formation, and to define whether adherence to, invasion of, and host responses to bacteria of gingival keratinocytes depend on PPAD activity. We studied these aspects using PPAD-competent and PPAD-incompetent strains of P. gingivalis, and demonstrated that neither biofilm formation nor its composition was affected by PPAD activity. Similarly, flow cytometry revealed that PPAD did not impact the ability of P. gingivalis to adhere to and, subsequently, invade keratinocytes. Network analyses of gene expression patterns, however, revealed a group of host genes that were sensitive to PPAD activity (CXCL8, IL36G, CCL20, and IL1B). These genes can be categorized as potent immune modulators belonging to the interleukin 1 system, or chemoattractants of lymphocytes and neutrophils. Thus, we conclude that PPAD, although it is a potent modulator of the immune response, does not affect bacterial biofilm formation or the ability of P. gingivalis to adhere to and invade gingival epithelial cells.
Collapse
Affiliation(s)
- Ardita Aliko
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, N-5021, Bergen, Norway
| | - Marta Kamińska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Brith Bergum
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, N-5021, Bergen, Norway
| | - Katarzyna Gawron
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Małgorzata Benedyk
- Małopolska Center of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Richard J Lamont
- University of Louisville School of Dentistry, Department of Oral Immunology and Infectious Diseases, Louisville, KY, 40202, USA
| | - Stanisław Malicki
- Małopolska Center of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | | | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland.
- University of Louisville School of Dentistry, Department of Oral Immunology and Infectious Diseases, Louisville, KY, 40202, USA.
| | - Piotr Mydel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, N-5021, Bergen, Norway.
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland.
| |
Collapse
|
47
|
OmpA-like proteins of Porphyromonas gingivalis contribute to serum resistance and prevent Toll-like receptor 4-mediated host cell activation. PLoS One 2018; 13:e0202791. [PMID: 30153274 PMCID: PMC6112661 DOI: 10.1371/journal.pone.0202791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/09/2018] [Indexed: 12/03/2022] Open
Abstract
Porphyromonas gingivalis possesses various abilities to evade and disrupt host immune responses, by which it acts as an important periodontal pathogen. P. gingivalis produces outer membrane protein A (OmpA)-like proteins (OmpALPs), Pgm6 and Pgm7, as major O-linked glycoproteins, but their pathological roles in P. gingivalis infection are largely unknown. Here, we report that OmpALP-deficient strains of P. gingivalis show an enhanced stimulatory activity in coculture with host cells. Such an altered ability of the OmpALP-deficient strains was found to be due to their impaired survival in coculture and the release of LPS from dead bacterial cells to stimulate Toll-like receptor 4 (TLR4). Further analyses revealed that the OmpALP-deficient strains were inviable in serum-containing media although they grew normally in the bacterial medium. The wild-type strain was able to grow in 90% normal human serum, while the OmpALP-deficient strains did not survive even at 5%. The OmpALP-deficient strains did not survive in heat-inactivated serum, but they gained the ability to survive and grow in proteinase K-treated serum. Of note, the sensitivity of the OmpALP-deficient strains to the bactericidal activity of human β-defensin 3 was increased as compared with the WT. Thus, this study suggests that OmpALPs Pgm6 and Pgm7 are important for serum resistance of P. gingivalis. These proteins prevent bacterial cell destruction by serum and innate immune recognition by TLR4; this way, P. gingivalis may adeptly colonize serum-containing gingival crevicular fluids and subgingival environments.
Collapse
|
48
|
Nagano K, Hasegawa Y, Iijima Y, Kikuchi T, Mitani A. Distribution of Porphyromonas gingivalis fimA and mfa1 fimbrial genotypes in subgingival plaques. PeerJ 2018; 6:e5581. [PMID: 30186705 PMCID: PMC6118206 DOI: 10.7717/peerj.5581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022] Open
Abstract
Background Strains of periodontal disease-associated bacterium Porphyromonas gingivalis have different pathogenicity, which can be attributed to clonal genetic diversity. P. gingivalis typically expresses two types of fimbriae, FimA and Mfa1, which comprise six (I, Ib, II, III, IV, and V) and two (mfa53 and mfa70) genotypes, respectively. This study was conducted to investigate the distribution of the two fimbrial genotypes of P. gingivalis in clinical specimens. Methods Subgingival plaques were collected from 100 participants during periodontal maintenance therapy and examined for P. gingivalis fimbrial genotypes by direct polymerase chain reaction and/or DNA sequencing. We also analyzed the relationship between fimbrial genotypes and clinical parameters of periodontitis recorded at the first medical examination. Results Both fimbrial types could be detected in 63 out of 100 samples; among them, fimA genotype II was found in 33 samples (52.4%), in which the mfa70 genotype was 1.75 times more prevalent than mfa53. The total detection rate of fimA genotypes I and Ib was 38.1%; in these samples, the two mfa1 genotypes were observed at a comparable frequency. In two samples positive for fimA III (3.2%), only mfa53 was detected, whereas in four samples positive for fimA IV (6.3%), the two mfa1 genotypes were equally represented, and none of fimA V-positive samples defined the mfa1 genotype. No associations were found between clinical parameters and fimbrial subtype combinations. Discussion Both P. gingivalis fimbrial types were detected at various ratios in subgingival plaques, and a tendency for fimA and mfa1 genotype combinations was observed. However, there was no association between P. gingivalis fimbrial genotypes and periodontitis severity.
Collapse
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yura Iijima
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Takeshi Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
49
|
Miller DP, Wang Q, Weinberg A, Lamont RJ. Transcriptome analysis of Porphyromonas gingivalis and Acinetobacter baumannii in polymicrobial communities. Mol Oral Microbiol 2018; 33:364-377. [PMID: 29939498 DOI: 10.1111/omi.12238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii is a nosocomial, opportunistic pathogen that causes several serious conditions including meningitis, septicemia, endocarditis, and pneumonia. It can be found in the oral biofilm, which may be a reservoir for pneumonia and chronic obstructive pulmonary disease. Subgingival colonization by A. baumannii is associated with chronic and aggressive periodontitis as well as refractory periodontal disease. Porphyromonas gingivalis, a keystone periodontal pathogen localized to subgingival plaque, is also implicated in several chronic conditions including aspiration pneumonia. Although both bacteria are found together in subgingival plaque and can cause multiple polymicrobial infections, nothing is known about the interactions between these two important human pathogens. In this study, we used RNA sequencing to understand the transcriptional response of both species as they adapt to heterotypic communities. Among the differentially regulated genes were those encoding a number of important virulence factors for both species including adhesion, biofilm formation, and protein secretion. Additionally, the presence of A. baumannii increased the abundance of P. gingivalis in model dual-species communities. Collectively these results suggest that both P. gingivalis and A. baumannii adapt to each other and have synergistic potential for increased pathogenicity. In identifying the mechanisms that promote pathogenicity and refractory disease, novel approaches to mitigate polymicrobial synergistic interactions may be developed to treat or prevent associated diseases.
Collapse
Affiliation(s)
- D P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Q Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| | - A Weinberg
- Department of Biological Sciences, Case Western Reserve University, Cleveland, Ohio
| | - R J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| |
Collapse
|
50
|
Ulu M, Kılıç E, Soylu E, Kürkçü M, Alkan A. Reusing dental implants?: an experimental study for detecting the success rates of re-osseointegration. Int J Implant Dent 2018; 4:22. [PMID: 29916181 PMCID: PMC6006006 DOI: 10.1186/s40729-018-0130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The aim of this study was to histomorphometrically compare the implant-host integration between retrieved implants and new implants. METHODS Jaws in 10 male beagle dogs were divided into four groups, and 36 dental implants were inserted into the jaws. In groups 1 and 2, experimental peri-implantitis was induced within 2 months after implant insertion. In group 1, surface decontamination of implants was achieved using air-flow and citric acid. In group 2, implants were sterilized with autoclave after air-flow and citric acid surface decontamination. Subsequently, these implants were inserted in contralateral jaws of the same dogs and a 3-month period was allowed for osseointegration. In group 3, the implants were removed from human jaws due to peri-implantitis and were inserted into dog jaws following surface cleaning protocol and sterilization with autoclave and a 3-month period was allowed for osseointegration. Group 4 was set as the control group. After the osseointegration period, all the animals were sacrificed. The degree of osseointegration in all groups was evaluated by evaluating the ISQ values and by using histomorphometric measurements. RESULTS Histological findings showed that bone-implant contact (BIC) percentage (mean ± SD) was 83.39% ± 6.37 in group 1, 79.93% ± 11.83 in group 2, 75.45% ± 9.09 in group 3, and 80.53 ± 5.22 in group 4. Moreover, the resonance frequency analysis (RFA) and ISQ values were similar in all four groups both before and after the implantation. CONCLUSIONS The results of this experimental study indicated that there is no significant difference between new dental implants and re-used dental implants with regards to osseointegration around the implant.
Collapse
Affiliation(s)
- Murat Ulu
- Faculty of Dentistry, Oral and Maxillofacial Department, İzmir Katip Celebi University, İzmir, Turkey.
| | - Erdem Kılıç
- Faculty of Dentistry, Oral and Maxillofacial Department, Bezmialem University, İstanbul, Turkey
| | - Emrah Soylu
- Faculty of Dentistry, Oral and Maxillofacial Department, Erciyes University, Kayseri, Turkey.
| | - Mehmet Kürkçü
- Faculty of Dentistry, Oral and Maxillofacial Department, Cukurova University, Adana, Turkey
| | - Alper Alkan
- Faculty of Dentistry, Oral and Maxillofacial Department, Bezmialem University, İstanbul, Turkey
| |
Collapse
|