1
|
Eisenlohr LC, Luckashenak N, Apcher S, Miller MA, Sinnathamby G. Beyond the classical: influenza virus and the elucidation of alternative MHC class II-restricted antigen processing pathways. Immunol Res 2012; 51:237-48. [PMID: 22101673 DOI: 10.1007/s12026-011-8257-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CD4+ T cells (T(CD4+)) are activated by peptides, generally 13-17 amino acids in length, presented at the cell surface in combination with highly polymorphic MHC class II molecules. According to the classical model, these peptides are generated by endosomal digestion of internalized antigen and loaded onto MHC class II molecules in the late endosome. Historically, this "exogenous" pathway has been defined through the extensive use of purified proteins. However, the relatively recent use of clinically relevant antigens, those of influenza virus in our case, has revealed several additional pathways of peptide production, including some that are truly "endogenous", entailing synthesis of the protein within the infected cell. Indeed, some peptides appear to be created only via endogenous processing. The cell biology that underlies these alternative pathways remains poorly understood as do their relative contributions to defence against infectious agents and cancer, and the triggering of autoimmune diseases.
Collapse
Affiliation(s)
- Laurence C Eisenlohr
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | |
Collapse
|
2
|
van Luijn MM, Chamuleau MED, Ressing ME, Wiertz EJ, Ostrand-Rosenberg S, Souwer Y, Zevenbergen A, Ossenkoppele GJ, van de Loosdrecht AA, van Ham SM. Alternative Ii-independent antigen-processing pathway in leukemic blasts involves TAP-dependent peptide loading of HLA class II complexes. Cancer Immunol Immunother 2010; 59:1825-38. [PMID: 20820776 PMCID: PMC2945475 DOI: 10.1007/s00262-010-0908-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 08/14/2010] [Indexed: 01/08/2023]
Abstract
During HLA class II synthesis in antigen-presenting cells, the invariant chain (Ii) not only stabilizes HLA class II complexes in the endoplasmic reticulum, but also mediates their transport to specialized lysosomal antigen-loading compartments termed MIICs. This study explores an alternative HLA class II presentation pathway in leukemic blasts that involves proteasome and transporter associated with antigen processing (TAP)-dependent peptide loading. Although HLA-DR did associate with Ii, Ii silencing in the human class II-associated invariant chain peptide (CLIP)-negative KG-1 myeloid leukemic cell line did not affect total and plasma membrane expression levels of HLA-DR, as determined by western blotting and flow cytometry. Since HLA-DR expression does require peptide binding, we examined the role of endogenous antigen-processing machinery in HLA-DR presentation by CLIP(-) leukemic blasts. The suppression of proteasome and TAP function using various inhibitors resulted in decreased HLA-DR levels in both CLIP(-) KG-1 and ME-1 blasts. Simultaneous inhibition of TAP and Ii completely down-modulated the expression of HLA-DR, demonstrating that together these molecules form the key mediators of HLA class II antigen presentation in leukemic blasts. By the use of a proteasome- and TAP-dependent pathway for HLA class II antigen presentation, CLIP(-) leukemic blasts might be able to present a broad range of endogenous leukemia-associated peptides via HLA class II to activate leukemia-specific CD4(+) T cells.
Collapse
Affiliation(s)
- Marvin M van Luijn
- Department of Hematology, Cancer Center Amsterdam, VU Institute for Cancer and Immunology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
van Luijn MM, Chamuleau MED, Thompson JA, Ostrand-Rosenberg S, Westers TM, Souwer Y, Ossenkoppele GJ, van Ham SM, van de Loosdrecht AA. Class II-associated invariant chain peptide down-modulation enhances the immunogenicity of myeloid leukemic blasts resulting in increased CD4+ T-cell responses. Haematologica 2009; 95:485-93. [PMID: 19903675 DOI: 10.3324/haematol.2009.010595] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Disease recurrence in patients with acute myeloid leukemia may be partially explained by the escape of leukemic blasts from CD4(+) T-cell recognition. The current study investigates the role of aberrant HLA class II antigen presentation on leukemic blasts by determining both the clinical and functional impact of the class II-associated invariant chain peptide (CLIP). DESIGN AND METHODS The levels of expression of CLIP and HLA-DR on blood and bone marrow samples from 207 patients with acute myeloid leukemia were correlated with clinical outcome. Irradiated CLIP(-) and CLIP(+) leukemic blasts were compared for their ability to induce CD4(+) T cells during mixed leukocyte reactions. To discriminate between these blasts, we down-modulated CLIP expression on myeloid leukemic cell lines by RNA interference of the invariant chain, a chaperone protein critically involved in HLA-DR processing, and performed flow cytometric sorting for their isolation from primary acute myeloid leukemia samples. RESULTS We found that patients with leukemic blasts characterized by a high amount of HLA-DR occupied by CLIP (relative amount of CLIP) had a significantly shortened disease-free survival. The clear reductions in amount of HLA-DR occupied by CLIP on blasts of the THP-1 and Kasumi-1 myeloid leukemic cell lines after treatment with invariant chain short interfering RNA resulted in enhanced rates of allogeneic CD4(+) T-cell proliferation. Similar findings were obtained in an autologous setting, in which there were strong increases in proliferation of remission CD4(+) T cells stimulated with CLIP(-)-sorted leukemic blasts from HLA-DR(+) acute myeloid leukemia patients, in contrast to CLIP(+)-sorted leukemic blasts from the same patients. CONCLUSIONS These data highlight the relevance of CLIP expression on leukemic blasts and the potential of CLIP as a target for immunomodulatory strategies to enhance HLA class II antigen presentation and CD4(+) T-cell reactivity in acute myeloid leukemia.
Collapse
Affiliation(s)
- Marvin M van Luijn
- Department of Hematology, VU Institute for Cancer and Immunology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ostrand-Rosenberg S. CD4+T Lymphocytes: A Critical Component of Antitumor Immunity. Cancer Invest 2009. [DOI: 10.1081/cnv-67428] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Thompson JA, Srivastava MK, Bosch JJ, Clements VK, Ksander BR, Ostrand-Rosenberg S. The absence of invariant chain in MHC II cancer vaccines enhances the activation of tumor-reactive type 1 CD4+ T lymphocytes. Cancer Immunol Immunother 2008; 57:389-98. [PMID: 17724589 PMCID: PMC2810506 DOI: 10.1007/s00262-007-0381-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 07/23/2007] [Indexed: 11/30/2022]
Abstract
Activation of tumor-reactive T lymphocytes is a promising approach for the prevention and treatment of patients with metastatic cancers. Strategies that activate CD8(+) T cells are particularly promising because of the cytotoxicity and specificity of CD8(+) T cells for tumor cells. Optimal CD8(+) T cell activity requires the co-activation of CD4(+) T cells, which are critical for immune memory and protection against latent metastatic disease. Therefore, we are developing "MHC II" vaccines that activate tumor-reactive CD4(+) T cells. MHC II vaccines are MHC class I(+) tumor cells that are transduced with costimulatory molecules and MHC II alleles syngeneic to the prospective recipient. Because the vaccine cells do not express the MHC II-associated invariant chain (Ii), we hypothesized that they will present endogenously synthesized tumor peptides that are not presented by professional Ii(+) antigen presenting cells (APC) and will therefore overcome tolerance to activate CD4(+) T cells. We now report that MHC II vaccines prepared from human MCF10 mammary carcinoma cells are more efficient than Ii(+) APC for priming and boosting Type 1 CD4(+) T cells. MHC II vaccines consistently induce greater expansion of CD4(+) T cells which secrete more IFNgamma and they activate an overlapping, but distinct repertoire of CD4(+) T cells as measured by T cell receptor Vbeta usage, compared to Ii(+) APC. Therefore, the absence of Ii facilitates a robust CD4(+) T cell response that includes the presentation of peptides that are presented by traditional APC, as well as peptides that are uniquely presented by the Ii(-) vaccine cells.
Collapse
Affiliation(s)
- James A. Thompson
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
| | - Minu K. Srivastava
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
| | - Jacobus J. Bosch
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
| | - Virginia K. Clements
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
| | - Bruce R. Ksander
- The Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, MA USA
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
| |
Collapse
|
6
|
Dolan BP, Gibbs KD, Ostrand-Rosenberg S. Dendritic cells cross-dressed with peptide MHC class I complexes prime CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:6018-24. [PMID: 17056526 DOI: 10.4049/jimmunol.177.9.6018] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activation of naive CD8+ T cells has been attributed to two mechanisms: cross-priming and direct priming. Cross-priming and direct priming differ in the source of Ag and in the cell that presents the Ag to the responding CD8+ T cells. In cross-priming, exogenous Ag is acquired by professional APCs, such as dendritic cells (DC), which process the Ag into peptides that are subsequently presented. In direct priming, the APCs, which may or may not be DC, synthesize and process the Ag and present it themselves to CD8+ T cells. In this study, we demonstrate that naive CD8+ T cells are activated by a third mechanism, called cross-dressing. In cross-dressing, DC directly acquire MHC class I-peptide complexes from dead, but not live, donor cells by a cell contact-mediated mechanism, and present the intact complexes to naive CD8+ T cells. Such DC are cross-dressed because they are wearing peptide-MHC complexes generated by other cells. CD8+ T cells activated by cross-dressing are restricted to the MHC class I genotype of the donor cells and are specific for peptides generated by the donor cells. In vivo studies demonstrate that optimal priming of CD8+ T cells requires both cross-priming and cross-dressing. Thus, cross-dressing may be an important mechanism by which DC prime naive CD8+ T cells and may explain how CD8+ T cells are primed to Ags that are inefficiently cross-presented.
Collapse
Affiliation(s)
- Brian P Dolan
- Department of Biological Sciences, University of Maryland-Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
7
|
Kawase A, Isaji K, Yamaoka A, Kobayashi N, Nishikawa M, Takakura Y. Enhanced antigen-specific antibody production following polyplex-based DNA vaccination via the intradermal route in mice. Vaccine 2006; 24:5535-45. [PMID: 16716462 DOI: 10.1016/j.vaccine.2006.04.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 04/24/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
DNA vaccination is an attractive approach with various advantages over conventional vaccination. The present study was undertaken to examine whether polyplex-based DNA vaccination could be used to modulate immune responses by plasmid DNA (pDNA). Methylated bovine serum albumin (mBSA) was used as a model of a cationic macromolecular carrier of pDNA encoding obalbumin (OVA) and the effects of polyplex formation of pDNA with mBSA on the antigen-specific immune responses were examined. Anti-OVA IgG antibody production was significantly increased following intradermal immunization with the polyplex compared with naked pDNA, although the induction of cytotoxic T lymphocyte activity was lowered by polyplex formation. We also demonstrated that the disposition and gene expression of pDNA following intradermal injection could be manipulated by polyplex formation. Intriguingly, we also found that the migration of dendritic cells to the injected site could be induced by polyplex formation probably due to a high level of tumor necrosis factor alpha production from the keratinocytes treated with mBSA/pDNA complexeses. Thus, the present study has demonstrated that the immune responses could be biased towards a Th2-type response by polyplex-based DNA vaccination through manipulation of not only pDNA disposition but also dendritic cell migration.
Collapse
Affiliation(s)
- Atsushi Kawase
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Dolan BP, Gibbs KD, Ostrand-Rosenberg S. Tumor-specific CD4+ T cells are activated by "cross-dressed" dendritic cells presenting peptide-MHC class II complexes acquired from cell-based cancer vaccines. THE JOURNAL OF IMMUNOLOGY 2006; 176:1447-55. [PMID: 16424172 DOI: 10.4049/jimmunol.176.3.1447] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tumor cells that constitutively express MHC class I molecules and are genetically modified to express MHC class II (MHC II) and costimulatory molecules are immunogenic and have therapeutic efficacy against established primary and metastatic cancers in syngeneic mice and activate tumor-specific human CD4+ T lymphocytes. Previous studies have indicated that these MHC II vaccines enhance immunity by directly activating tumor-specific CD4+ T cells during the immunization process. Because dendritic cells (DCs) are considered to be the most efficient APCs, we have now examined the role of DCs in CD4+ T cell activation by the MHC II vaccines. Surprisingly, we find that DCs are essential for MHC II vaccine immunogenicity; however, they mediate their effect through "cross-dressing." Cross-dressing, or peptide-MHC (pMHC) transfer, involves the generation of pMHC complexes within the vaccine cells, and their subsequent transfer to DCs, which then present the intact, unprocessed complexes to CD4+ T lymphocytes. The net result is that DCs are the functional APCs; however, the immunogenic pMHC complexes are generated by the tumor cells. Because MHC II vaccine cells do not express the MHC II accessory molecules invariant chain and DM, they are likely to load additional tumor Ag epitopes onto MHC II molecules and therefore activate a different repertoire of T cells than DCs. These data further the concept that transfer of cellular material to DCs is important in Ag presentation, and they have direct implications for the design of cancer vaccines.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cell Communication/immunology
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epitopes, T-Lymphocyte/immunology
- Female
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Histocompatibility Antigens Class II/administration & dosage
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Lymphocyte Activation/immunology
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/therapy
- Male
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred A
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Transgenic
- Necrosis
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Brian P Dolan
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21228, USA
| | | | | |
Collapse
|
9
|
Thompson JA, Dissanayake SK, Ksander BR, Knutson KL, Disis ML, Ostrand-Rosenberg S. Tumor cells transduced with the MHC class II Transactivator and CD80 activate tumor-specific CD4+ T cells whether or not they are silenced for invariant chain. Cancer Res 2006; 66:1147-54. [PMID: 16424052 DOI: 10.1158/0008-5472.can-05-2289] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The specificity and potency of the immune system make immunotherapy a potential strategy for the treatment of cancer. To exploit this potential, we have developed cell-based cancer vaccines consisting of tumor cells expressing syngeneic MHC class II and costimulatory molecules. The vaccines mediate tumor regression in mice and activate human CD4+ T cells in vitro. Previous vaccines were generated by transducing MHC II negative tumor cells with a single HLA-DR allele. Because expression of multiple MHC II alleles would facilitate presentation of a broader repertoire of tumor antigens, we have now transduced tumor cells with the MHC class II transactivator (CIITA), a regulatory gene that coordinately increases expression of all MHC II alleles. Previous studies in mice indicated that coexpression of the MHC II accessory molecule invariant chain (Ii) inhibited presentation of endogenously synthesized tumor antigens and reduced vaccine efficacy. To determine if Ii expression affects presentation of MHC class II-restricted endogenously synthesized tumor antigens in human tumor cells, HLA-DR-MCF10 breast cancer cells were transduced with the CIITA, CD80 costimulatory molecule gene, and with or without small interfering RNAs (siRNA) specific for Ii. Ii expression is silenced >95% in CIITA/CD80/siRNA transductants; down-regulation of Ii does not affect HLA-DR expression or stability; and Ii(+) and Ii(-) transductants activate human CD4+ T cells to DRB1*0701-restricted HER-2/neu epitopes. Therefore, tumor cells transduced with the CIITA, CD80, and with or without Ii siRNA present endogenously synthesized tumor antigens and are potential vaccines for activating tumor-specific CD4+ T cells.
Collapse
Affiliation(s)
- James A Thompson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | | | | | | | |
Collapse
|
10
|
Yang M, Zhu F, Sønderstrup G, Eckels DD. Recognition of endogenously synthesized HLA-DR4 restricted HCV epitopes presented by autologous EBV transformed B-lymphoblastoid cell line. Vaccine 2005; 23:951-62. [PMID: 15603898 DOI: 10.1016/j.vaccine.2004.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 06/03/2004] [Accepted: 06/03/2004] [Indexed: 01/12/2023]
Abstract
Hepatitis C virus (HCV) causes non-A, non-B hepatitis and infects an estimated 170 million people worldwide. The treatment for HCV infection is often unsuccessful with high costs and many side-effects. There is a great need for alternative therapies including preventive and therapeutic vaccination for HCV infection. The experiments in this study were carried out to elucidate whether endogenously expressed antigen can be presented to helper T-cells restricted by class II molecules and to determine whether responses to plasmid-derived antigen resemble those that we have reported for recombinant antigens or synthetic peptides. To address these issues, a multi-epitope minigene was expressed in 293T-cells and Epstein-Barr virus (EBV)-transformed B-lymphoblastoid cells (BLCL). The transfected BLCLs were employed as APCs to stimulate epitope-specific T-cell hybridomas (THC). The results demonstrated that the endogenously expressed minigene antigens could be processed and presented to T-cell hybridomas by HLA matched BLCL. Five out of seven incorporated epitopes were recognized. Blockade of HLA DR could abolish the release of IL-2, which demonstrated that the endogenously expressed minigene antigens were presented by MHC class II molecules. The presentation of endogenously expressed antigens was much more efficient than that of exogenous antigens, at least in the present study. The findings obtained here have important significance for the development of an HCV DNA vaccine.
Collapse
Affiliation(s)
- Meiying Yang
- Department of Pediatrics (Endocrinology), Medical College of Wisconsin, 8710 Watertown Plank Road, P. O. Box 26509, Milwaukee, WI 53226-0509, USA
| | | | | | | |
Collapse
|
11
|
Dissanayake SK, Tuera N, Ostrand-Rosenberg S. Presentation of Endogenously Synthesized MHC Class II-Restricted Epitopes by MHC Class II Cancer Vaccines Is Independent of Transporter Associated with Ag Processing and the Proteasome. THE JOURNAL OF IMMUNOLOGY 2005; 174:1811-9. [PMID: 15699107 DOI: 10.4049/jimmunol.174.4.1811] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cell-based vaccines consisting of invariant chain-negative tumor cells transfected with syngeneic MHC class II (MHC II) and costimulatory molecule genes are prophylactic and therapeutic agents for the treatment of murine primary and metastatic cancers. Vaccine efficacy is due to direct presentation of endogenously synthesized, MHC II-restricted tumor peptides to CD4+ T cells. Because the vaccine cells lack invariant chain, we have hypothesized that, unlike professional APC, the peptide-binding groove of newly synthesized MHC II molecules may be accessible to peptides, allowing newly synthesized MHC II molecules to bind peptides that have been generated in the proteasome and transported into the endoplasmic reticulum via the TAP complex. To test this hypothesis, we have compared the Ag presentation activity of multiple clones of TAP-negative and TAP-positive tumor cells transfected with I-Ak genes and the model Ag hen egg white lysozyme targeted to the endoplasmic reticulum or cytoplasm. Absence of TAP does not diminish Ag presentation of three hen egg white lysozyme epitopes. Likewise, cells treated with proteasomal and autophagy inhibitors are as effective APC as untreated cells. In contrast, drugs that block endosome function significantly inhibit Ag presentation. Coculture experiments demonstrate that the vaccine cells do not release endogenously synthesized molecules that are subsequently endocytosed and processed in endosomal compartments. Collectively, these data indicate that vaccine cell presentation of MHC II-restricted endogenously synthesized epitopes occurs via a mechanism independent of the proteasome and TAP complex, and uses a pathway that overlaps with the classical endosomal pathway for presentation of exogenously synthesized molecules.
Collapse
Affiliation(s)
- Samudra K Dissanayake
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
12
|
|
13
|
Muntasell A, Carrascal M, Alvarez I, Serradell L, van Veelen P, Verreck FAW, Koning F, Abian J, Jaraquemada D. Dissection of the HLA-DR4 peptide repertoire in endocrine epithelial cells: strong influence of invariant chain and HLA-DM expression on the nature of ligands. THE JOURNAL OF IMMUNOLOGY 2004; 173:1085-93. [PMID: 15240697 DOI: 10.4049/jimmunol.173.2.1085] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Class II MHC (MHC II) expression is restricted to professional APCs and thymic epithelium but it also occurs in the epithelial cells of autoimmune organs which are the unique targets of the CD4 autoreactive T cells in endocrine autoimmune diseases. This specificity is presumably conditioned by an epithelium-specific peptide repertoire associated to MHC II at the cell surface. MHC II expression and function is dependent on the action of two main chaperones, invariant chain (Ii) and DM, whose expression is coregulated with MHC II. However, there is limited information about the in vivo expression levels of these molecules and uncoordinated expression has been demonstrated in class II-positive epithelial cells that may influence the MHC-associated peptide repertoires and the outcome of the autoimmune response. We have examined the pool of peptides associated to DR4 molecules expressed by a neuroendocrine epithelial cell and the consequences of Ii and DM coexpression. The RINm5F rat insulinoma cell line was transfected with HLA-DRB1*0401, Ii, and DM molecules in four different combinations: RIN-DR4, -DR4Ii, -DR4DM, and -DR4IiDM. The analysis of the peptide repertoire and the identification of the DR4 naturally processed ligands in each transfected cell were achieved by mass spectrometry. The results demonstrate that 1) the expression of Ii and DM affected the DR4 peptide repertoires by producing important variations in their content and in the origin of peptides; 2) these restrictions affected the stability and sequence of the peptides of each repertoire; and 3) Ii and DM had both independent and coordinate effects on these repertoires.
Collapse
Affiliation(s)
- Aura Muntasell
- Immunology Unit and Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Campus de Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hillman GG, Kallinteris NL, Lu X, Wang Y, Wright JL, Li Y, Wu S, Forman JD, Gulfo JV, Humphreys RE, Xu M. Turning tumor cells in situ into T-helper cell-stimulating, MHC class II tumor epitope-presenters: immuno-curing and immuno-consolidation. Cancer Treat Rev 2004; 30:281-90. [PMID: 15059651 DOI: 10.1016/j.ctrv.2003.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunological control or cure of tumors depends on initiating a robust T helper cell response to MHC class II epitopes of tumor-associated antigens. T helper cells regulate the potency of cytotoxic T lymphocyte and antibody responses. We have developed a novel approach to stimulate T helper cells by converting tumor cells into MHC class II molecule-positive, antigen presenting cells. Furthermore, using antisense methods, we suppress expression of the Ii protein, that normally blocks the antigenic peptide binding site of MHC class II molecules during synthesis in the endoplasmic reticulum. In such gene-engineered tumor cells, the MHC class II molecules pick up antigenic peptides, which have been transported into the endoplasmic reticulum for binding to MHC class I molecules. All nucleated cells create such "surveys of self" to detect viral or malignant transformation. Our method extends that survey of self to MHC class II endogenous tumor-associated antigens. Simultaneous presentation of tumor antigens by both MHC class I and II generates a robust and long-lasting antitumor immune response. Injecting murine tumors with genes, which induce MHC class II molecules and suppress Ii protein, cures a significant number of animals with renal and prostate tumors. We have developed analogous human gene vectors that are suitable for most patients and cancers, because they are monomorphic and active in all HLA-DR alleles. We review our findings, and analyze remaining issues for preclinical study and the design of clinical trials.
Collapse
Affiliation(s)
- Gilda G Hillman
- Department of Radiation Oncology, Barbara Ann Karmanos Cancer Institute at Wayne State University School of Medicine, 4100 John R., Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dolan BP, Phelan TP, Ilkovitch D, Qi L, Wade WF, Laufer TM, Ostrand-Rosenberg S. Invariant Chain and the MHC Class II Cytoplasmic Domains Regulate Localization of MHC Class II Molecules to Lipid Rafts in Tumor Cell-Based Vaccines. THE JOURNAL OF IMMUNOLOGY 2004; 172:907-14. [PMID: 14707062 DOI: 10.4049/jimmunol.172.2.907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cell-based tumor vaccines, consisting of MHC class I+ tumor cells engineered to express MHC class II molecules, stimulate tumor-specific CD4+ T cells to mediate rejection of established, poorly immunogenic tumors. Previous experiments have demonstrated that these vaccines induce immunity by functioning as APCs for endogenously synthesized, tumor-encoded Ags. However, coexpression of the MHC class II accessory molecule invariant chain (Ii), or deletion of the MHC class II cytoplasmic domain abrogates vaccine immunogenicity. Recent reports have highlighted the role of lipid microdomains in Ag presentation. To determine whether Ii expression and/or truncation of MHC class II molecules impact vaccine efficacy by altering MHC class II localization to lipid microdomains, we examined the lipid raft affinity of MHC class II molecules in mouse M12.C3 B cell lymphomas and SaI/A(k) sarcoma vaccine cells. Functional MHC class II heterodimers were detected in lipid rafts of both cell types. Interestingly, expression of Ii in M12.C3 cells or SaI/A(k) cells blocked the MHC class II interactions with cell surface lipid rafts. In both cell types, truncation of either the alpha- or beta-chain decreased the affinity of class II molecules for lipid rafts. Simultaneous deletion of both cytoplasmic domains further reduced localization of class II molecules to lipid rafts. Collectively, these data suggest that coexpression of Ii or deletion of the cytoplasmic domains of MHC class II molecules may reduce vaccine efficacy by blocking the constitutive association of MHC class II molecules with plasma membrane lipid rafts.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Animals
- Antigen Presentation/genetics
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/physiology
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/metabolism
- Cell Line, Tumor
- Cytoplasm/genetics
- Cytoplasm/immunology
- Cytoplasm/physiology
- Down-Regulation/genetics
- Down-Regulation/immunology
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/physiology
- Lymphoma, B-Cell/immunology
- Membrane Microdomains/genetics
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Mice
- Mice, Inbred A
- Mice, Inbred BALB C
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Sarcoma/immunology
- Sequence Deletion
- Transfection
Collapse
Affiliation(s)
- Brian P Dolan
- Department of Biological Sciences, University of Maryland-Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Qi L, Ostrand-Rosenberg S. H2-O inhibits presentation of bacterial superantigens, but not endogenous self antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1371-8. [PMID: 11466355 DOI: 10.4049/jimmunol.167.3.1371] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
H2-O/HLA-DO are MHC class II accessory molecules that modulate exogenous Ag presentation. Most class II accessory molecules are expressed in all professional APC; however, H2-O is only expressed in B cells and medullary thymic epithelial cells. Because B cells present exogenous Ags and superantigens (SAgs), and medullary thymic epithelial cells are specialized APC for self Ags during negative selection in the thymus, we have hypothesized that H2-O might play a role in MHC class II-restricted SAg and self Ag presentation. In this study, we demonstrate that H2-O expression inhibits presentation of the bacterial SAgs staphylococcal enterotoxins A and B to four SAg-reactive T hybridoma cells. In contrast, H2-O has no effect on presentation of endogenous self Ags, as measured by tumorigenicity in vivo and Ag presentation to three self Ag-specific T hybridoma cells. Additional experiments suggest that H2-O inhibits presentation of exogenous Ags by both newly synthesized and recycling MHC class II molecules. These data suggest H2-O may have a physiological role in tolerance induction and SAg-mediated toxic shock.
Collapse
Affiliation(s)
- L Qi
- Department of Biological Sciences, University of Maryland, Baltimore, MD 21250
| | | |
Collapse
|
17
|
|
18
|
Qi L, Rojas JM, Ostrand-Rosenberg S. Tumor cells present MHC class II-restricted nuclear and mitochondrial antigens and are the predominant antigen presenting cells in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5451-61. [PMID: 11067897 DOI: 10.4049/jimmunol.165.10.5451] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class II-restricted tumor Ags presented by class II(+) tumor cells identified to date are derived from proteins expressed in the cytoplasm or plasma membrane of tumor cells. It is unclear whether MHC class II(+) tumor cells present class II-restricted epitopes derived from other intracellular compartments, such as nuclei and/or mitochondria, and whether class II(+) tumor cells directly present Ag in vivo. To address these questions, a model Ag, hen egg lysozyme, was targeted to various subcellular compartments of mouse sarcoma cells, and the resulting cells were tested for presentation of three lysozyme epitopes in vitro and for presentation of nuclear Ag in vivo. In in vitro studies, Ags localized to all tested compartments (nuclei, cytoplasm, mitochondria, and endoplasmic reticulum) are presented in the absence invariant chain and H-2M. Coexpression of invariant chain and H-2M inhibit presentation of some, but not all, of the epitopes. In vivo studies demonstrate that class II(+) tumor cells, and not host-derived cells, are the predominant APC for class II-restricted nuclear Ags. Because class II(+) tumor cells are effective APC in vivo and probably present novel tumor Ag epitopes not presented by host-derived APC, their inclusion in cancer vaccines may enhance activation of tumor-reactive CD4(+) T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigen-Presenting Cells/transplantation
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/genetics
- Cell Compartmentation/genetics
- Cell Compartmentation/immunology
- Cell Nucleus/genetics
- Cell Nucleus/immunology
- Cell Nucleus/metabolism
- Cytosol/immunology
- Cytosol/metabolism
- HLA-D Antigens/biosynthesis
- HLA-D Antigens/genetics
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Humans
- Hybridomas
- Immunodominant Epitopes/administration & dosage
- Immunodominant Epitopes/metabolism
- Mice
- Mice, Inbred A
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Mitochondria/genetics
- Mitochondria/immunology
- Mitochondria/metabolism
- Molecular Sequence Data
- Muramidase/biosynthesis
- Muramidase/genetics
- Muramidase/immunology
- Neoplasm Transplantation
- Peptide Fragments/biosynthesis
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Sarcoma, Experimental/genetics
- Sarcoma, Experimental/immunology
- Sarcoma, Experimental/metabolism
- Spleen/cytology
- Spleen/immunology
- Spleen/transplantation
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- L Qi
- Department of Biological Sciences, University of Maryland, Baltimore, MD 21250, USA
| | | | | |
Collapse
|