1
|
Çalışkan G, Demiray YE, Stork O. Comparison of three common inbred mouse strains reveals substantial differences in hippocampal GABAergic interneuron populations and in vitro network oscillations. Eur J Neurosci 2023; 58:3383-3401. [PMID: 37550182 DOI: 10.1111/ejn.16112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
A major challenge in neuroscience is to pinpoint neurobiological correlates of specific cognitive and neuropsychiatric traits. At the mesoscopic level, promising candidates for establishing such connections are brain oscillations that can be robustly recorded as local field potentials with varying frequencies in the hippocampus in vivo and in vitro. Inbred mouse strains show natural variation in hippocampal synaptic plasticity (e.g. long-term potentiation), a cellular correlate of learning and memory. However, their diversity in expression of different types of hippocampal network oscillations has not been fully explored. Here, we investigated hippocampal network oscillations in three widely used inbred mouse strains: C57BL/6J (B6J), C57BL/6NCrl (B6N) and 129S2/SvPasCrl (129) with the aim to identify common oscillatory characteristics in inbred mouse strains that show aberrant emotional/cognitive behaviour (B6N and 129) and compare them to "control" B6J strain. First, we detected higher gamma oscillation power in the hippocampal CA3 of both B6N and 129 strains. Second, higher incidence of hippocampal sharp wave-ripple (SPW-R) transients was evident in these strains. Third, we observed prominent differences in the densities of distinct interneuron types and CA3 associative network activity, which are indispensable for sustainment of mesoscopic network oscillations. Together, these results add further evidence to profound physiological differences among inbred mouse strains commonly used in neuroscience research.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Research Group "Synapto-Oscillopathies", Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Yunus E Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying MentalHealth (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Jena-Magdeburg-Halle, Germany
| |
Collapse
|
2
|
Blanchard DC. Sex, defense, and risk assessment: Who could ask for anything more? Neurosci Biobehav Rev 2023; 144:104931. [PMID: 36471523 DOI: 10.1016/j.neubiorev.2022.104931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Over the 30 years since IBNS was founded, a central theme of "Translation" has emerged. This reflects increasing realization that mental disorders such as anxiety and depression are extremely widespread, expensive and painful to societies and individuals across the world. The Blanchard lab has been particularly involved in attempts to understand the evolutionary and functional mechanisms underlying defensive behaviors as a focal component of these disorders. This involved analysis of the relationships between threatening situations/stimuli, and the behaviors (flight, freezing, fight, and risk assessment) that respond to them, for rodents; and also attempts to link these relationships to human responsivity to similar threatening events: Linkages that are complicated by factors such as domestication and sex. In particular it is important to describe and characterize the organization of defensive patterns in people as well as nonhuman animals, and to understand how these patterns can become nonfunctional and pathological.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Biosciences Research Center, University of Hawaii, Manoa, Honolulu, HI, USA; Institute of Biomedical Sciences at the University of São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Blanchard DC. Are cognitive aspects of defense a core feature of anxiety and depression? Neurosci Biobehav Rev 2023; 144:104947. [PMID: 36343691 DOI: 10.1016/j.neubiorev.2022.104947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Anxiety and depression are highly prevalent behavior disorders, particularly in women. Recent preclinical work using animal models has been suboptimal in predicting the efficacy of drugs targeted at these conditions, suggesting a potential discrepancy between such models and the human disorders. Notably female animals tend to be equal to, or less responsive than, males in these tasks. A number of analyses suggest that mammalian defense patterns are complex: In addition to relatively discrete and immediate fight, flight, and freezing responses, a risk assessment pattern may occur in response to threat stimuli or situations with ambiguous elements. This pattern combines defensiveness with a number of cognition-linked behaviors such as sensory attention and orientation, approach, contact, and investigation of the potential threat. Studies measuring elements of this pattern suggest that female rats, and perhaps female mice, show higher levels than equivalent males. Higher female involvement may also occur in tasks involving learning/generalization/extinction of defensiveness to conditioned stimuli. Such findings are consonant with recent analyses of "female survival strategies" based on differential adaptiveness of cognitive components of defensiveness in females, due to the necessity of female care of offspring until they are independent. These data suggest the value of additional behavioral and functional analyses of cognitive aspects of defensive behavior; contributing to both an understanding of their underlying mechanisms, and providing more sensitive measures of drug responsivity for use with animal models.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Biosciences Research Center, University of Hawaii, Manoa, Honolulu, HI, USA; Institute of Biomedical Sciences at the University of São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Familiarization effects on the behavioral disinhibition of the cerebellar Lurcher mutant mice: use of the innovative Dual Maze. Behav Brain Res 2020; 398:112972. [PMID: 33091448 DOI: 10.1016/j.bbr.2020.112972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 11/23/2022]
Abstract
Anxiety-related behaviors in mice are often assessed over short periods starting immediately after introducing the animals in a dedicated apparatus. In these usual conditions (5-10 min periods), the cerebellar Lurcher mutants showed disinhibited behaviors characterized by abnormally high exploration of the aversive areas in the elevated plus-maze test. We nevertheless observed that this disinhibition sharply weakened after 10 min. We therefore decided to further investigate the influence of the disinhibition on the intrinsic and anxiety-related exploratory behaviors in Lurcher mice, with a special focus on familiarization effects. To this end, we used an innovative apparatus, the Dual Maze, permitting to tune the familiarization level of animals to the experimental context before they are faced with more (open configuration of the device) or less (closed configuration of the device) aversive areas. Chlordiazepoxide administration in BALB/c mice in a preliminary experiment confirmed both the face and the predictive validity of our device as anxiety test and its ability to measure exploratory motivation. The results obtained with the Lurcher mice in the open configuration revealed that 20 min of familiarization to the experimental context abolished the behavioral abnormalities they exhibited when not familiarized with it. In addition, their exploratory motivation, as measured in the closed configuration, was comparable to that of their non-mutant littermates, whatever the level of familiarization applied. Exemplifying the interest of this innovative device, the results we obtained in the Lurcher mutants permitted to differentiate between the roles played by the cerebellum in exploratory motivation and stress-related behaviors.
Collapse
|
5
|
Hebda-Bauer EK, Dokas LA, Watson SJ, Akil H. Adaptation to single housing is dynamic: Changes in hormone levels, gene expression, signaling in the brain, and anxiety-like behavior in adult male C57Bl/6J mice. Horm Behav 2019; 114:104541. [PMID: 31220462 PMCID: PMC7466935 DOI: 10.1016/j.yhbeh.2019.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/23/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
For basic research, rodents are often housed in individual cages prior to behavioral testing. However, aspects of the experimental design, such as duration of isolation and timing of animal manipulation, may unintentionally introduce variance into collected data. Thus, we examined temporal correlates of acclimation of C57Bl/6J mice to single housing in a novel environment following two commonly used experimental time periods (7 or 14 days, SH7 or SH14). We measured circulating stress hormones (adrenocorticotropic hormone and corticosterone), basally or after injection stress, hippocampal gene expression of transcripts implicated in stress and affect regulation: the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR), including the MR/GR ratio, and fibroblast growth factor 2 (FGF2). We also measured signaling in the mammalian target of rapamycin (mTOR) pathway. The basal elevation of stress hormones in the SH14 group is accompanied by a blunting in the circadian rhythms of GR and FGF2 hippocampal gene expression, and the MR/GR ratio, that is observed in SH7 mice. Following mild stress, the endocrine response and hippocampal mTOR pathway signaling are decreased in the SH14 mice. These neural and endocrine changes at 14 days of single housing likely underlie increased anxiety-like behavior measured in an elevated plus maze test. We conclude that multiple measures of stress responsiveness change dynamically between one and two weeks of single housing. The ramifications of these alterations should be considered when designing animal experiments since such hidden sources of variance might cause lack of replicability and misinterpretation of data.
Collapse
Affiliation(s)
- Elaine K Hebda-Bauer
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States of America.
| | - Linda A Dokas
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Stanley J Watson
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Huda Akil
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
6
|
Sakae DY, Ramet L, Henrion A, Poirel O, Jamain S, El Mestikawy S, Daumas S. Differential expression of VGLUT3 in laboratory mouse strains: Impact on drug-induced hyperlocomotion and anxiety-related behaviors. GENES BRAIN AND BEHAVIOR 2018; 18:e12528. [PMID: 30324647 DOI: 10.1111/gbb.12528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 11/28/2022]
Abstract
The atypical vesicular glutamate transporter VGLUT3 is present in subpopulations of GABAergic interneurons in the cortex and the hippocampus, in subgroups of serotoninergic neurons in raphe nuclei, and in cholinergic interneurons in the striatum. C56BL/6N mice that no longer express VGLUT3 (VGLUT3-/- ) display anxiety-associated phenotype, increased spontaneous and cocaine-induced locomotor activity and decreased haloperidol-induced catalepsy. Inbred mouse strains differ markedly in their sensitivity to anxiety and behavioral responses elicited by drugs. The purpose of this study was to investigate strain differences in VGLUT3 expression levels and its potential correlates with anxiety and reward-guided behaviors. Five inbred mouse lines were chosen according to their contrasted anxiety and drugs sensitivity: C57BL/6N, C3H/HeN, DBA/2J, 129/Sv, and BALB/c. VGLUT3 protein expression was measured in different brain areas involved in reward or mood regulation (such as the striatum, the hippocampus, and raphe nuclei) and genetic variations in Slc17a8, the gene encoding for VGLUT3, have been explored. These five inbred mouse strains express very different levels of VGLUT3, which cannot be attributed to the genetic variation of the Slc17a8 locus. Furthermore, mice behavior in the open field, elevated plus maze, spontaneous- and cocaine-induced locomotor was highly heterogeneous and only partially correlated to VGLUT3 levels. These data highlight the fact that one single gene polymorphism could not account for VGLUT3 expression variations, and that region specific VGLUT3 expression level variations might play a key role in the modulation of discrete behaviors.
Collapse
Affiliation(s)
- Diana Y Sakae
- INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, Paris, France
| | - Lauriane Ramet
- INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, Paris, France
| | - Annabelle Henrion
- Inserm U955, Psychiatrie Translationnelle, Créteil, France.,Faculté de Médecine, Université Paris Est, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Odile Poirel
- INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, Paris, France
| | - Stéphane Jamain
- Inserm U955, Psychiatrie Translationnelle, Créteil, France.,Faculté de Médecine, Université Paris Est, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Salah El Mestikawy
- INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, Paris, France.,Douglas Hospital Research Center, Department of Psychiatry, McGill University, Verdun, Québec, Canada
| | - Stéphanie Daumas
- INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, Paris, France
| |
Collapse
|
7
|
Garcia-Garcia AL, Canetta S, Stujenske JM, Burghardt NS, Ansorge MS, Dranovsky A, Leonardo ED. Serotonin inputs to the dorsal BNST modulate anxiety in a 5-HT 1A receptor-dependent manner. Mol Psychiatry 2018; 23:1990-1997. [PMID: 28761080 PMCID: PMC5794659 DOI: 10.1038/mp.2017.165] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/31/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022]
Abstract
Serotonin (5-HT) neurons project from the raphe nuclei throughout the brain where they act to maintain homeostasis. Here, we study 5-HT inputs into the bed nucleus of the stria terminalis (BNST), a major subdivision of the extended amygdala that has been proposed to regulate responses to anxiogenic environments in humans and rodents. While the dorsal part of the BNST (dBNST) receives dense 5-HT innervation, whether and how 5-HT in the dBNST normally modulates anxiety remains unclear. Using optogenetics, we demonstrate that activation of 5-HT terminals in the dBNST reduces anxiety in a highly anxiogenic environment. Further analysis revealed that optogenetic inhibition of 5-HT inputs into the dBNST increases anxiety in a less anxiogenic environment. We found that 5-HT predominantly hyperpolarizes dBNST neurons, reducing their activity in a manner that can be blocked by a 5-HT1A antagonist. Finally, we demonstrate that activation of 5-HT1A receptors in the dBNST is necessary for the anxiolytic effect observed following optogenetic stimulation of 5-HT inputs into the dBNST. These data reveal that 5-HT release in the dBNST modulates anxiety-like behavior via 5-HT1A receptors under naturalistic conditions.
Collapse
Affiliation(s)
- Alvaro L. Garcia-Garcia
- Dranovsky-Leonardo (ADL) lab, Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032,Address correspondence to AGG at , to AD at and to EDL at . Telephone: (001) (646) 774-7105. Fax: (001) (646) 774-7117
| | - Sarah Canetta
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Joseph M. Stujenske
- Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032
| | - Nesha S. Burghardt
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065
| | - Mark S. Ansorge
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Alex Dranovsky
- Dranovsky-Leonardo (ADL) lab, Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032,Address correspondence to AGG at , to AD at and to EDL at . Telephone: (001) (646) 774-7105. Fax: (001) (646) 774-7117
| | - E. David Leonardo
- Dranovsky-Leonardo (ADL) lab, Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032,Address correspondence to AGG at , to AD at and to EDL at . Telephone: (001) (646) 774-7105. Fax: (001) (646) 774-7117
| |
Collapse
|
8
|
Tucker LB, McCabe JT. Behavior of Male and Female C57BL/6J Mice Is More Consistent with Repeated Trials in the Elevated Zero Maze than in the Elevated Plus Maze. Front Behav Neurosci 2017; 11:13. [PMID: 28184191 PMCID: PMC5266707 DOI: 10.3389/fnbeh.2017.00013] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/13/2017] [Indexed: 12/15/2022] Open
Abstract
The elevated plus maze (EPM) and elevated zero maze (EZM) are behavioral tests that are widely employed to assess anxiety-like behaviors in rats and mice following experimental manipulations, or to test the effects of pharmacological agents. Both tests are based on approach/avoidance conflict, with rodents perceived as “less anxious” being more willing to explore the brighter, open and elevated regions of the apparatus as opposed to remaining in the darkened and enclosed regions. The goal of this research was to compare, under identical laboratory conditions, the behavior of male and female C57BL/6J mice in EZM and EPM during repeated trials. Mice were tested either daily or weekly, exclusively in the EPM or EZM, for a total of five exposures. During the first trial, the mazes were explored equally as measured by the total distance traveled during the test session. However, mice tested in the EZM spent nearly twice the amount of time in the anxiogenic regions (open quadrants) as the mice tested in the EPM spent in the open arms of that apparatus. After the first trial in the EPM, amounts of ambulation and percent time in the open arms decreased significantly (independent of inter-trial interval) which has been well-described in previous research as the one-trial tolerance phenomenon. In contrast, behavior in the EZM remained comparatively stable for several trials when the animals were tested weekly or daily. Sex differences were limited to activity levels, with females being more active than males. In conclusion, the design of the EZM encourages greater exploration of the anxiogenic regions of the apparatus, and may also be a more suitable test than the EPM for experimental designs in which assessment of anxiety-related behaviors is needed at more than one time point following experimental manipulations.
Collapse
Affiliation(s)
- Laura B Tucker
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative MedicineBethesda, MD, USA; Department of Anatomy, Physiology and Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - Joseph T McCabe
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative MedicineBethesda, MD, USA; Department of Anatomy, Physiology and Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health SciencesBethesda, MD, USA
| |
Collapse
|
9
|
Ennaceur A, Chazot PL. Preclinical animal anxiety research - flaws and prejudices. Pharmacol Res Perspect 2016; 4:e00223. [PMID: 27069634 PMCID: PMC4804324 DOI: 10.1002/prp2.223] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022] Open
Abstract
The current tests of anxiety in mice and rats used in preclinical research include the elevated plus-maze (EPM) or zero-maze (EZM), the light/dark box (LDB), and the open-field (OF). They are currently very popular, and despite their poor achievements, they continue to exert considerable constraints on the development of novel approaches. Hence, a novel anxiety test needs to be compared with these traditional tests, and assessed against various factors that were identified as a source of their inconsistent and contradictory results. These constraints are very costly, and they are in most cases useless as they originate from flawed methodologies. In the present report, we argue that the EPM or EZM, LDB, and OF do not provide unequivocal measures of anxiety; that there is no evidence of motivation conflict involved in these tests. They can be considered at best, tests of natural preference for unlit and/or enclosed spaces. We also argued that pharmacological validation of a behavioral test is an inappropriate approach; it stems from the confusion of animal models of human behavior with animal models of pathophysiology. A behavioral test is developed to detect not to produce symptoms, and a drug is used to validate an identified physiological target. In order to overcome the major methodological flaws in animal anxiety studies, we proposed an open space anxiety test, a 3D maze, which is described here with highlights of its various advantages over to the traditional tests.
Collapse
Affiliation(s)
| | - Paul L. Chazot
- School of Biological and Biomedical SciencesDurham UniversityDurhamUK
| |
Collapse
|
10
|
Kaja S, Payne AJ, Nielsen EØ, Thompson CL, van den Maagdenberg AMJM, Koulen P, Snutch TP. Differential cerebellar GABAA receptor expression in mice with mutations in CaV2.1 (P/Q-type) calcium channels. Neuroscience 2015; 304:198-208. [PMID: 26208839 PMCID: PMC4547859 DOI: 10.1016/j.neuroscience.2015.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
Abstract
Ataxia is the predominant clinical manifestation of cerebellar dysfunction. Mutations in the human CACNA1A gene, encoding the pore-forming α1 subunit of CaV2.1 (P/Q-type) calcium channels, underlie several neurological disorders, including Episodic Ataxia type 2 and Familial Hemiplegic Migraine type 1 (FHM1). Several mouse mutants exist that harbor mutations in the orthologous Cacna1a gene. The spontaneous Cacna1a mutants Rolling Nagoya (tg(rol)), Tottering (tg) and Leaner (tg(ln)) mice exhibit behavioral motor phenotypes, including ataxia. Transgenic knock-in (KI) mouse strains with the human FHM1 R192Q and S218L missense mutations have been generated. R192Q KI mice are non-ataxic, whereas S218L KI mice display a complex behavioral phenotype that includes cerebellar ataxia. Given the dependence of γ-aminobutyric acid type A (GABAA) receptor subunit functioning on localized calcium currents, and the functional link between GABAergic inhibition and ataxia, we hypothesized that cerebellar GABAA receptor expression is differentially affected in Cacna1a mutants and contributes to the ataxic phenotype. Herein we quantified functional GABAA receptors and pharmacologically dissociated cerebellar GABAA receptors in several Cacna1a mutants. We did not identify differences in the expression of GABAA receptor subunits or in the number of functional GABAA receptors in the non-ataxic R192Q KI strain. In contrast, tg(rol) mice had a ∼15% decrease in the number of functional GABAA receptors, whereas S218L KI mice showed a ∼29% increase. Our data suggest that differential changes in cerebellar GABAA receptor expression profile may contribute to the neurological phenotype of cerebellar ataxia and that targeting GABAA receptors might represent a feasible complementary strategy to treat cerebellar ataxia.
Collapse
Affiliation(s)
- S Kaja
- Michael Smith Laboratories and the Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 301-2185 East Mall, Vancouver, BC V6T 1Z4, Canada; NeuroSearch A/S, Pederstrupvej 93, 2750 Ballerup, Denmark; Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, MO 64108, USA; K&P Scientific LLC, 8570 N Hickory Street Suite 412, Kansas City, MO 64155, USA.
| | - A J Payne
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, MO 64108, USA; K&P Scientific LLC, 8570 N Hickory Street Suite 412, Kansas City, MO 64155, USA
| | - E Ø Nielsen
- NeuroSearch A/S, Pederstrupvej 93, 2750 Ballerup, Denmark
| | - C L Thompson
- School of Biological Sciences, Durham University, South Road, Science Laboratories, Durham DH1 3LE, United Kingdom
| | - A M J M van den Maagdenberg
- Departments of Human Genetics & Neurology, Leiden University Medical Centre, Einthovenweg 20, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - P Koulen
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, MO 64108, USA; Department of Basic Medical Science, University of Missouri - Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - T P Snutch
- Michael Smith Laboratories and the Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 301-2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
11
|
Thompson T, Grabowski-Boase L, Tarantino LM. Prototypical anxiolytics do not reduce anxiety-like behavior in the open field in C57BL/6J mice. Pharmacol Biochem Behav 2015; 133:7-17. [PMID: 25812472 DOI: 10.1016/j.pbb.2015.03.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 11/25/2022]
Abstract
Understanding and effectively treating anxiety disorders are a challenge for both scientists and clinicians. Despite a variety of available therapies, the efficacy of current treatments is still not optimal and adverse side effects can result in non-compliance. Animal models have been useful for studying the underlying biology of anxiety and assessing the anxiolytic properties of potential therapeutics. The open field (OF) is a commonly used assay of anxiety-like behavior. The OF was developed and validated in rats and then transferred to use in the mouse with only limited validation. The present study tests the efficacy of prototypical benzodiazepine anxiolytics, chlordiazepoxide (CDP) and diazepam (DZ), for increasing center time in the OF in C57BL/6J (B6) mice. Multiple doses of CDP and DZ did not change time spent in the center of the OF. Increasing illumination in the OF did not alter these results. The non-benzodiazepine anxiolytic, buspirone (BUSP) also failed to increase center time in the OF while the anxiogenic meta-chlorophenylpiperazine (mCPP) increased center time. Additional inbred mouse strains, BALB/cJ (BALB) and DBA/2J (D2) did not show any change in center time in response to CDP. Moreover, evaluation of CDP in B6 mice in the elevated plus maze (EPM), elevated zero maze (EZM) and light dark assay (LD) did not reveal changes in anxiety-like behavior while stress-induced hyperthermia (SIH) was decreased by DZ. Pharmacokinetic (PK) studies suggest that adequate CDP is present to induce anxiolysis. We conclude that the measure of center time in the OF does not show predictive validity for anxiolysis in these inbred mouse strains.
Collapse
Affiliation(s)
- Trey Thompson
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Laura Grabowski-Boase
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Lisa M Tarantino
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States; Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
12
|
Kim D, Anderson B. Repeated threat (without harm) in a living environment potentiates defensive behavior. Behav Brain Res 2015; 279:31-40. [DOI: 10.1016/j.bbr.2014.10.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/24/2014] [Accepted: 10/31/2014] [Indexed: 11/17/2022]
|
13
|
Abuhamdah RM, Hussain MD, Chazot PL, Ennaceur A. Effects of chronic fluoxetine treatment on anxious behaviour of BALB/c mice in a 3-dimensional maze. Stress 2015; 18:677-85. [PMID: 26365460 DOI: 10.3109/10253890.2015.1083550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Here we used a 3-dimensional (3D) maze, a modification of the radial maze, to assess the effects of treatment for two weeks with a single daily dose of fluoxetine (20 mg/kg, i.p.) on anxiety in male BALB/c mice. We examined whether anxiolytic effects of fluoxetine can be detected over three daily test sessions. We examined also whether repeated handling associated with chronic treatment interferes with effects of fluoxetine on anxiety responses. The 3D maze comprises nine arms, each connected to an upward inclined bridge radiating from a central platform. In this maze, BALB/c mice cross frequently into the bridges but avoid the arms. This avoidance is used as an index of anxiety. Two separate groups received once a day either saline (SALCH, n = 8) or fluoxetine (FLUCH, n = 8) for 14 days, and up to 30 min before the test during the subsequent 3 days. A third group received saline (SALAC, n = 8) 30 min before the test, once a day for 3 days. SALAC mice did not cross into the arms, and continued this avoidance over 3 sessions. SALCH mice avoided the arms in session 1 whereas FLUCH mice did cross into the arms, and like SALCH mice, increased number of crossings into and time on the arms in subsequent sessions. Fluoxetine evidently had an anxiolytic effect but only in the first session. These results indicate that handling experience decreased fear and anxiety in the mice, which may have masked the anxiolytic effect of fluoxetine in the second and third test sessions.
Collapse
Affiliation(s)
- R M Abuhamdah
- a Sunderland Pharmacy School, University of Sunderland , Sunderland , UK and
- b School of Biological and Biomedical Sciences, Durham University , Durham , UK
| | - M D Hussain
- a Sunderland Pharmacy School, University of Sunderland , Sunderland , UK and
- b School of Biological and Biomedical Sciences, Durham University , Durham , UK
| | - P L Chazot
- b School of Biological and Biomedical Sciences, Durham University , Durham , UK
| | - A Ennaceur
- a Sunderland Pharmacy School, University of Sunderland , Sunderland , UK and
| |
Collapse
|
14
|
Ennaceur A. Tests of unconditioned anxiety - pitfalls and disappointments. Physiol Behav 2014; 135:55-71. [PMID: 24910138 DOI: 10.1016/j.physbeh.2014.05.032] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/21/2014] [Accepted: 05/28/2014] [Indexed: 02/05/2023]
Abstract
The plus-maze, the light-dark box and the open-field are the main current tests of unconditioned anxiety for mice and rats. Despite their disappointing achievements, they remain as popular as ever and seem to play an important role in an ever-growing demand for behavioral phenotyping and drug screening. Numerous reviews have repeatedly reported their lack of consistency and reliability but they failed to address the core question of whether these tests do provide unequivocal measures of fear-induced anxiety, that these measurements are not confused with measures of fear-induced avoidance or natural preference responses - i.e. discriminant validity. In the present report, I examined numerous issues that undermine the validity of the current tests, and I highlighted various flaws in the aspects of these tests and the methodologies pursued. This report concludes that the evidence in support of the validity of the plus-maze, the light/dark box and the open-field as anxiety tests is poor and methodologically questionable.
Collapse
Affiliation(s)
- A Ennaceur
- University of Sunderland, Department of Pharmacy, Wharncliffe Street, Sunderland SR1 3SD, UK.
| |
Collapse
|
15
|
Kalueff AV, Nguyen M. Testing anxiolytic drugs in the C57BL/6J mouse strain. J Pharmacol Toxicol Methods 2014; 69:205-7. [DOI: 10.1016/j.vascn.2014.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Affiliation(s)
- Luis Heredia
- CRAMC (Research Center for Behavior Assessment), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain.
| | - Margarita Torrente
- CRAMC (Research Center for Behavior Assessment), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain.
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain.
| |
Collapse
|
17
|
Abstract
AbstractEnvironmental enrichment aims to improve the well-being of laboratory animals and provides an opportunity to improve experimental reliability and validity. Animals raised in more stimulating environments have improved learning and memory as well as more complex brain architecture. However, the effects of environmental enrichment on motor performance, anxiety and emotional development have been poorly studied. Moreover, most investigators studying the effects of enrichment provide extremely large and complex housing conditions to maximize the likelihood of finding effects. These situations are difficult to replicate across animal facilities and are not operationally practical. In this experiment, we investigated how simple, inexpensive disposable shelterstyle enrichment items alter behavior in C57Bl/6 and 129S6 mice. Breeding pairs were established in the presence of a Ketchum “Refuge”, Shepherd Shack “Dome”, or no enrichment. Offspring were assessed neurobehaviorally, either just after weaning (pre-adolescent, P22–P25), or as young adults (P60–P90). Major strain differences were observed in open field activity, elevated maze exploration, and Y-maze activity levels. The presence of the Refuge and/or Dome enrichment shelters significantly altered motor activity, coordination and some measures of anxiety. Mice housed in the presence of shelters were also less dominant than control mice in a tube test assay. Our experiments provide a detailed analysis of the effects of inexpensive and practical methods of housing enrichment on biobehavioral phenotypes in these two commonly used strains of laboratory mice, and suggest that the effects of these shelters on mouse neurobiology and behavior need to be rigorously analyzed before being adopted within vivariums.
Collapse
|
18
|
Heredia L, Torrente M, Colomina MT, Domingo JL. Assessing anxiety in C57BL/6J mice: a pharmacological characterization of the open-field and light/dark tests. J Pharmacol Toxicol Methods 2013; 69:108-14. [PMID: 24374104 DOI: 10.1016/j.vascn.2013.12.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 01/02/2023]
Abstract
INTRODUCTION In order to assess anxiety in mammals various tests and species are currently available. These current assays measure changes in anxiety-like behaviors. The open-field and the light/dark are anxiety tests based on the spontaneous behavior of the animals, with C57BL/6J mice being a frequently used strain in behavioral studies. However, the suitability of this strain as a choice in anxiety studies has been questioned. In this study, we performed two pharmacological characterizations of this strain in both the open-field and the light/dark tests. METHODS We examined the changes in the anxiety-like behaviors of C57BL/6J mice exposed to chlordiazepoxide (CDP), an anxiolytic drug, at doses of 5 and 10 mg/kg, picrotoxine (PTX), an anxiogenic drug, at doses of 0.5 and 1 mg/kg, and methylphenidate (MPH), a psychomotor stimulant drug, at doses of 5 and 10 mg/kg, in a first experiment. In a second experiment, we tested CDP at 2.5 mg/kg, PTX at 2 mg/kg and MPH at 2.5 mg/kg. RESULTS Results showed an absence of anxiolytic-like effects of CDP in open-field and light/dark tests. Light/dark test was more sensitive to the anxiogenic effects of PTX than the open-field test. Finally, a clear anxiogenic effect of MPH was observed in the two tests. DISCUSSION Although C57BL/6J mice could not be a sensitive model to study anxiolytic effects in pharmacological or behavioral interventions, it might be a suitable model to test anxiogenic effects. Further studies are necessary to corroborate these results.
Collapse
Affiliation(s)
- Luis Heredia
- CRAMC (Research Center for Behavior Assessment), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain.
| | - Margarita Torrente
- CRAMC (Research Center for Behavior Assessment), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain.
| | - María T Colomina
- CRAMC (Research Center for Behavior Assessment), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain.
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain.
| |
Collapse
|
19
|
Wu R, Song Z, Tai F, Wang L, Kong L, Wang J. Post-weaning living with parents during juvenile period alters locomotor activity, social and parental behaviors in mandarin voles. Behav Processes 2013; 98:78-84. [DOI: 10.1016/j.beproc.2013.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 04/01/2013] [Accepted: 05/10/2013] [Indexed: 11/28/2022]
|
20
|
Assessing anxiety in C57BL/6J mice: a pharmacological characterization of the zero maze test. J Pharmacol Toxicol Methods 2013; 68:275-283. [PMID: 23499652 DOI: 10.1016/j.vascn.2013.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/09/2013] [Accepted: 02/19/2013] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Anxiety disorders affect the quality of life and good health of millions of people over the world. Because clinical trials are expensive and frequently show high rates of placebo responses, animal models have become an important tool for drug discovery and brain research. Zero maze is a commonly used test to assess anxiety-like levels in mice, being the C57BL/6J strain one of the most widely used. However, only few studies have focused on the pharmacological characterization of this strain in the various anxiety tests. METHODS In this study, we analyzed the changes in the anxiety-like behaviors of mice exposed to chlordiazepoxide (CLZ), as an anxiolytic drug, at doses of 2.5, 5 and 10mg/kg, picrotoxine (PTX), as an anxiogenic drug, at doses of 0.5, 1 and 2mg/kg, and methylphenidate (MPH), as a psychomotor stimulant, at doses of 2.5, 5 and 10mg/kg. Data were hand recorded in situ by an observer and through a camcorder by computer software. RESULTS Results showed that CLZ and MPH had an anxiogenic effect at the two highest doses. Only CLZ at 2.5mg/kg reduced the anxiety-like levels of mice. Moreover, PTX exerted an anxiogenic effect in mice only at 2mg/kg. The drugs affecting the anxiety-like levels also affected the activity levels. Thus, the differences might have been mediated by changes in activity levels. DISCUSSION Globally, these data demonstrate that the results obtained from the zero maze test are difficult to interpret when the C57BL/6J strain is used. On the other hand, high doses of substances that interact with the GABAergic system, as CLZ, can produce sedation in these mice. In contrast, high doses of GABAA antagonists, as PTX, are necessary if anxiogenic effects should be observed. Further investigations with this strain are necessary in order to corroborate the results of the present study.
Collapse
|
21
|
Bahi A. Individual differences in elevated plus-maze exploration predicted higher ethanol consumption and preference in outbred mice. Pharmacol Biochem Behav 2013; 105:83-8. [PMID: 23402940 DOI: 10.1016/j.pbb.2013.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/08/2013] [Accepted: 01/31/2013] [Indexed: 11/30/2022]
Abstract
Psychiatric illnesses, such as anxiety, are highly comorbid with drug use disorders in general and alcohol abuse in particular. Unfortunately, the causal role of anxiety in ethanol addiction is still unclear. We asked the question whether high anxiety predicts predilection of mice to voluntarily consume more alcohol than water. In the current study, we used the voluntary alcohol intake in two bottle choice drinking paradigm to explore whether high anxiety predicts higher alcohol preference and intake in outbred Tuck-Ordinary "TO" mice. To this end, mice were tested for their anxiety-like behavior using the elevated plus maze, open field and the marble burying test prior to voluntary continuous access to increasing concentrations of alcohol solutions. To assess their taste discrimination, mice had access to saccharin and quinine solutions. Results showed that compared to low-anxious mice (LAM), high-anxious mice (HAM) showed greater consumption and preference for ethanol but not for saccharin and quinine suggesting alterations in the rewarding effects of alcohol. Taken together, these findings suggest a correlative link between trait anxiety and the behavioral responses to ethanol.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Anatomy, Tawam Medical Campus, CMHS, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
22
|
Hussin AT, Fraser LM, Ramos A, Brown RE. The effect of chlordiazepoxide on measures of activity and anxiety in Swiss-Webster mice in the triple test. Neuropharmacology 2012; 63:883-9. [DOI: 10.1016/j.neuropharm.2012.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/14/2012] [Accepted: 06/16/2012] [Indexed: 11/25/2022]
|
23
|
Salomons AR, Pinzon NE, Boleij H, Kirchhoff S, Arndt SS, Nordquist RE, Lindemann L, Jaeschke G, Spooren W, Ohl F. Differential effects of diazepam and MPEP on habituation and neuro-behavioural processes in inbred mice. Behav Brain Funct 2012; 8:30. [PMID: 22686184 PMCID: PMC3464737 DOI: 10.1186/1744-9081-8-30] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 06/11/2012] [Indexed: 12/04/2022] Open
Abstract
Background Previous studies have demonstrated a profound lack of habituation in 129P3 mice compared to the habituating, but initially more anxious, BALB/c mice. The present study investigated whether this non-adaptive phenotype of 129P3 mice is primarily based on anxiety-related characteristics. Methods To test this hypothesis and extend our knowledge on the behavioural profile of 129P3 mice, the effects of the anxiolyticdiazepam (1, 3 and 5 mg/kg) and the putative anxiolytic metabotropic glutamate receptor 5 (mGlu5R) antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP, 3, 10 and 30 mg/kg) treatment on within-trial (intrasession) habituation, object recognition (diazepam: 1 mg/kg; MPEP 10 mg/kg) and on the central-nervous expression of the immediate early gene c-Fos (diazepam: 1 mg/kg; MPEP 10 mg/kg) were investigated. Results Behavioural findings validated the initially high, but habituating phenotype of BALB/c mice, while 129P3 mice were characterized by impaired intrasession habituation. Diazepam had an anxiolytic effect in BALB/c mice, while in higher doses caused behavioural inactivity in 129P3 mice. MPEP revealed almost no anxiolytic effects on behaviour in both strains, but reduced stress-induced corticosterone responses only in 129P3 mice. These results were complemented by reduced expression of c-Fos after MPEP treatment in brain areas related to emotional processes, and increased c-Fos expression in higher integrating brain areas such as the prelimbic cortex compared to vehicle-treated 129P3 mice. Conclusions These results suggest that the strain differences observed in (non)adaptive anxiety behaviour are at least in part mediated by differences in gamma-aminobutyric acid- A and mGluR5 mediated transmission.
Collapse
Affiliation(s)
- Amber R Salomons
- Department of Animals in Science and Society, Division of Animal Welfare and Laboratory Animal Science, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 Utrecht, CM, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lalonde R, Fukuchi K, Strazielle C. APP transgenic mice for modelling behavioural and psychological symptoms of dementia (BPSD). Neurosci Biobehav Rev 2012; 36:1357-75. [PMID: 22373961 PMCID: PMC3340431 DOI: 10.1016/j.neubiorev.2012.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 12/17/2022]
Abstract
The discovery of gene mutations responsible for autosomal dominant Alzheimer's disease has enabled researchers to reproduce in transgenic mice several hallmarks of this disorder, notably Aβ accumulation, though in most cases without neurofibrillary tangles. Mice expressing mutated and wild-type APP as well as C-terminal fragments of APP exhibit variations in exploratory activity reminiscent of behavioural and psychological symptoms of Alzheimer dementia (BPSD). In particular, open-field, spontaneous alternation, and elevated plus-maze tasks as well as aggression are modified in several APP transgenic mice relative to non-transgenic controls. However, depending on the precise murine models, changes in open-field and elevated plus-maze exploration occur in either direction, either increased or decreased relative to controls. It remains to be determined which neurotransmitter changes are responsible for this variability, in particular with respect to GABA, 5HT, and dopamine.
Collapse
Affiliation(s)
- R Lalonde
- Département de Psychologie, Faculté des Sciences, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France.
| | | | | |
Collapse
|
25
|
De Jesús-Burgos M, Torres-Llenza V, Pérez-Acevedo NL. Activation of amygdalar metabotropic glutamate receptors modulates anxiety, and risk assessment behaviors in ovariectomized estradiol-treated female rats. Pharmacol Biochem Behav 2012; 101:369-78. [PMID: 22326382 DOI: 10.1016/j.pbb.2012.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/13/2012] [Accepted: 01/18/2012] [Indexed: 12/23/2022]
Abstract
Anxiety disorders are more prevalent in females than males. The underlying reasons for this gender difference are unknown. Metabotropic glutamate receptors (mGluRs) have been linked to anxiety and it has been shown that interaction between estrogen receptors and mGluRs modulate sexual receptivity in rats. We investigated the role of mGluRs in anxiety-related behaviors in ovariectomized female rats with (OVX+EB) or without (OVX) estradiol implants. We centrally infused (s)-3,5-dihydroxyphenylglycine (DHPG), a group I mGluR agonist, into the basolateral amygdala (BLA) of OVX+EB and OVX rats at 0.1 and 1.0 μM. Male rats that normally have low estradiol levels were used to compare with OVX rats. Generalized anxiety, explorative activity and detection and analysis of threat were analyzed in the elevated plus maze (EPM) and risk assessment behaviors (RABs). DHPG (1.0 μM) increased the percentage of time spent in- and entries into- the open arms in OVX+EB, but not in OVX or male rats. Flat-back approaches and stretch-attend postures, two RABs, were significantly reduced by DHPG (0.1 and 1.0 μM) in OVX+EB rats only. DHPG did not modulate rearing and freezing, behaviors related to exploration and fear-like behavior, respectively. However, DHPG (1.0 μM) increased head dipping and decreased grooming behaviors in OVX rats, suggesting a weak explorative modulation. The effects of DHPG observed in OVX+EB, were blocked by 50 μM of (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), a mGluR1 antagonist. AIDA and/or estradiol did not modulate anxiety and or RABs. Our results show that intra-BLA infusion of DHPG exerts an anxiolytic-like effect in OVX+EB, but not in OVX or male rats. This effect seems to depend upon mGluR1 subtype activation. Our findings led us to suggest that the effects observed in OVX+EB rats might be due to an interaction at the membrane level of estrogen receptors with mGlu1 within the BLA.
Collapse
Affiliation(s)
- María De Jesús-Burgos
- Department of Anatomy and Neurobiology, School of Medicine, UPR-MSC, PO Box 365067, San Juan, PR 00936-5067, USA
| | | | | |
Collapse
|
26
|
Fuso A, Nicolia V, Ricceri L, Cavallaro RA, Isopi E, Mangia F, Fiorenza MT, Scarpa S. S-adenosylmethionine reduces the progress of the Alzheimer-like features induced by B-vitamin deficiency in mice. Neurobiol Aging 2012; 33:1482.e1-16. [PMID: 22221883 DOI: 10.1016/j.neurobiolaging.2011.12.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
Abstract
Methylation reactions linked to homocysteine in the one-carbon metabolism are increasingly elicited in Alzheimer's disease, although the association of hyperhomocysteinemia and of low B vitamin levels with the disease is still debated. We previously demonstrated that hyperhomocysteinemia and DNA hypomethylation induced by B vitamin deficiency are associated with PSEN1 and BACE1 overexpression and amyloid production. The present study is aimed at assessing S-adenosylmethionine effects in mice kept under a condition of B vitamin deficiency. To this end, TgCRND8 mice and wild-type littermates were assigned to control or B vitamin deficient diet, with or without S-adenosylmethionine supplementation. We found that S-adenosylmethionine reduced amyloid production, increased spatial memory in TgCRND8 mice and inhibited the upregulation of B vitamin deficiency-induced PSEN1 and BACE1 expression and Tau phosphorylation in TgCRND8 and wild-type mice. Furthermore, S-adenosylmethionine treatment reduced plaque spreading independently on B vitamin deficiency. These results strengthen our previous observations on the possible role of one-carbon metabolism in Alzheimer's disease, highlighting hyperhomocysteinemia-related mechanisms in dementia onset/progression and encourage further studies aimed at evaluating the use of S-adenosylmethionine as a potential candidate drug for the treatment of the disease.
Collapse
Affiliation(s)
- Andrea Fuso
- Department of Surgery P. Valdoni, Via Antonio Scarpa, 14-00161, Sapienza University of Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ihne JL, Fitzgerald PJ, Hefner KR, Holmes A. Pharmacological modulation of stress-induced behavioral changes in the light/dark exploration test in male C57BL/6J mice. Neuropharmacology 2011; 62:464-73. [PMID: 21906605 DOI: 10.1016/j.neuropharm.2011.08.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 11/19/2022]
Abstract
Psychological stress is a major risk factor for mood and anxiety disorders. However, the phenotypic manifestation of stress effects varies across individuals, likely due, in part, to genetic variation. Modeling the behavioral and neural consequences of stress across genetically diverse inbred mouse strains is a valuable approach to studying gene × stress interactions. Recent work has shown that C57BL/6J mice exposed to ten daily sessions of restraint stress exhibited increased exploration of the aversive light compartment in the light/dark exploration (LDE) test. Here we sought to clarify the nature of this stress-induced phenotype by testing the ability of treatment with various clinically efficacious drugs of different therapeutic classes to rescue it. Ten days of restraint increased light compartment exploration, reduced body weight and sensitized the corticosterone response to swim stress. Subchronic administration (during stress and LDE testing) of fluoxetine, and to a lesser extent, lithium chloride, rescued stress-induced LDE behavior. Chronic fluoxetine treatment prior to (plus during stress and testing) failed to block the LDE stress effect. Acute administration of antipsychotic haloperidol, anti-ADHD medication methylphenidate or anxiolytic drug chlordiazepoxide, prior to LDE testing, was also unable to normalize the LDE stress effect. Collectively, these data demonstrate a treatment-selective prophylactic rescue of a restraint stress-induced behavioral abnormality in the C57BL/6J inbred strain. Further work with this novel model could help elucidate genetic and neural mechanisms mediating stress-induced changes in mouse 'emotion-relevant' behaviors and, ultimately, further understanding of the pathophysiology of stress-related neuropsychiatric disorders. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Jessica L Ihne
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852-9411, USA
| | | | | | | |
Collapse
|
28
|
Dadomo H, Sanghez V, Di Cristo L, Lori A, Ceresini G, Malinge I, Parmigiani S, Palanza P, Sheardown M, Bartolomucci A. Vulnerability to chronic subordination stress-induced depression-like disorders in adult 129SvEv male mice. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1461-71. [PMID: 21093519 DOI: 10.1016/j.pnpbp.2010.11.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 12/19/2022]
Abstract
Exposure to stressful life events is intimately linked with vulnerability to neuropsychiatric disorders such as major depression. Pre-clinical animal models offer an effective tool to disentangle the underlying molecular mechanisms. In particular, the 129SvEv strain is often used to develop transgenic mouse models but poorly characterized as far as behavior and neuroendocrine functions are concerned. Here we present a comprehensive characterization of 129SvEv male mice's vulnerability to social stress-induced depression-like disorders and physiological comorbidities. We employed a well characterized mouse model of chronic social stress based on social defeat and subordination. Subordinate 129SvEv mice showed body weight gain, hyperphagia, increased adipose fat pads weight and basal plasma corticosterone. Home cage phenotyping revealed a suppression of spontaneous locomotor activity and transient hyperthermia. Subordinate 129SvEv mice also showed marked fearfulness, anhedonic-like response toward a novel but palatable food, increased anxiety in the elevated plus maze and social avoidance of an unfamiliar male mouse. A direct measured effect of the stressfulness of the living environment, i.e. the amount of daily aggression received, predicted the degree of corticosterone level and locomotor activity but not of the other parameters. This is the first study validating a chronic subordination stress paradigm in 129SvEv male mice. Results demonstrated remarkable stress vulnerability and establish the validity to use this mouse strain as a model for depression-like disorders.
Collapse
Affiliation(s)
- Harold Dadomo
- Department of Evolutionary and Functional Biology, University of Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lotarski SM, Donevan S, El-Kattan A, Osgood S, Poe J, Taylor CP, Offord J. Anxiolytic-like activity of pregabalin in the Vogel conflict test in α2δ-1 (R217A) and α2δ-2 (R279A) mouse mutants. J Pharmacol Exp Ther 2011; 338:615-21. [PMID: 21558437 DOI: 10.1124/jpet.111.180976] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
The α(2)δ auxiliary subunits (α(2)δ-1 and α(2)δ-2) of voltage-sensitive calcium channels are thought to be the site of action of pregabalin (Lyrica), a drug that has been shown to be anxiolytic in clinical trials for generalized anxiety disorder. Pregabalin and the chemically related drug gabapentin have similar binding and pharmacology profiles, demonstrating high-affinity, in vitro binding to both α(2)δ-1 and α(2)δ-2 subunits. Two independent point mutant mouse strains were generated in which either the α(2)δ-1 subunit (arginine-to-alanine mutation at amino acid 217; R217A) or the α(2)δ-2 subunit (arginine-to-alanine mutation at amino acid 279; R279A) were rendered insensitive to gabapentin or pregabalin binding. These strains were used to characterize the activity of pregabalin in the Vogel conflict test, a measure of anxiolytic-like activity. Pregabalin showed robust anticonflict activity in wild-type littermates from each strain at a dose of 10 mg/kg but was inactive in the α(2)δ-1 (R217A) mutants up to a dose of 320 mg/kg. In contrast, pregabalin was active in the α(2)δ-2 (R279A) point mutants at 10 and 32 mg/kg. The positive control phenobarbital was active in mice carrying either mutation. These data suggest that the anxiolytic-like effects of pregabalin are mediated by binding of the drug to the α(2)δ-1 subunit.
Collapse
Affiliation(s)
- Susan M Lotarski
- Departments of Neuroscience, Pfizer Global Research and Development, Eastern Point Road MS 8220-4176, Groton, CT 06340, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Sartori SB, Landgraf R, Singewald N. The clinical implications of mouse models of enhanced anxiety. FUTURE NEUROLOGY 2011; 6:531-571. [PMID: 21901080 PMCID: PMC3166843 DOI: 10.2217/fnl.11.34] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mice are increasingly overtaking the rat model organism in important aspects of anxiety research, including drug development. However, translating the results obtained in mouse studies into information that can be applied in clinics remains challenging. One reason may be that most of the studies so far have used animals displaying 'normal' anxiety rather than 'psychopathological' animal models with abnormal (elevated) anxiety, which more closely reflect core features and sensitivities to therapeutic interventions of human anxiety disorders, and which would, thus, narrow the translational gap. Here, we discuss manipulations aimed at persistently enhancing anxiety-related behavior in the laboratory mouse using phenotypic selection, genetic techniques and/or environmental manipulations. It is hoped that such models with enhanced construct validity will provide improved ways of studying the neurobiology and treatment of pathological anxiety. Examples of findings from mouse models of enhanced anxiety-related behavior will be discussed, as well as their relation to findings in anxiety disorder patients regarding neuroanatomy, neurobiology, genetic involvement and epigenetic modifications. Finally, we highlight novel targets for potential anxiolytic pharmacotherapeutics that have been established with the help of research involving mice. Since the use of psychopathological mouse models is only just beginning to increase, it is still unclear as to the extent to which such approaches will enhance the success rate of drug development in translating identified therapeutic targets into clinical trials and, thus, helping to introduce the next anxiolytic class of drugs.
Collapse
Affiliation(s)
- Simone B Sartori
- Department of Pharmacology & Toxicology, Institute of Pharmacy & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Street 1, A-6020, Innsbruck, Austria
| | - Rainer Landgraf
- Max Planck Institute of Psychiatry, Department of Behavioral Neuroendocrinology, Munich, Germany
| | - Nicolas Singewald
- Department of Pharmacology & Toxicology, Institute of Pharmacy & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Street 1, A-6020, Innsbruck, Austria
| |
Collapse
|
31
|
Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 2011; 23:255-64, e119. [PMID: 21054680 DOI: 10.1111/j.1365-2982.2010.01620.x] [Citation(s) in RCA: 917] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND There is increasing interest in the gut-brain axis and the role intestinal microbiota may play in communication between these two systems. Acquisition of intestinal microbiota in the immediate postnatal period has a defining impact on the development and function of the gastrointestinal, immune, neuroendocrine and metabolic systems. For example, the presence of gut microbiota regulates the set point for hypothalamic-pituitary-adrenal (HPA) axis activity. METHODS We investigated basal behavior of adult germ-free (GF), Swiss Webster female mice in the elevated plus maze (EPM) and compared this to conventionally reared specific pathogen free (SPF) mice. Additionally, we measured brain mRNA expression of genes implicated in anxiety and stress-reactivity. KEY RESULTS Germ-free mice, compared to SPF mice, exhibited basal behavior in the EPM that can be interpreted as anxiolytic. Altered GF behavior was accompanied by a decrease in the N-methyl-D-aspartate receptor subunit NR2B mRNA expression in the central amygdala, increased brain-derived neurotrophic factor expression and decreased serotonin receptor 1A (5HT1A) expression in the dentate granule layer of the hippocampus. CONCLUSIONS & INFERENCES We conclude that the presence or absence of conventional intestinal microbiota influences the development of behavior, and is accompanied by neurochemical changes in the brain.
Collapse
Affiliation(s)
- K M Neufeld
- Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
32
|
Fraser LM, Brown RE, Hussin A, Fontana M, Whittaker A, O'Leary TP, Lederle L, Holmes A, Ramos A. Measuring anxiety- and locomotion-related behaviours in mice: a new way of using old tests. Psychopharmacology (Berl) 2010; 211:99-112. [PMID: 20454890 DOI: 10.1007/s00213-010-1873-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 04/19/2010] [Indexed: 12/14/2022]
Abstract
RATIONALE Batteries of tests that are thought to measure different aspects of anxiety-related behaviour are used to characterise mice after genetic or pharmacological manipulation. However, because of the potentially confounding effects of repeated testing and natural intra-individual variations in behaviour over time, subjecting mice to a succession of tests is not ideal. OBJECTIVES The aim of this study was to investigate, in mice, the utility of an integrated apparatus that combines three classical tests of anxiety, the open field, elevated plus maze (EPM) and light/dark box. METHODS Mice from four different strains (CD-1, BALB/cJ, DBA/2J, C57BL/6J) were used in a series of five experiments where their behaviour was observed for 15 min in the integrated apparatus. Responses to anxiety-modulating drugs and 2-day repeated testing were evaluated. RESULTS CD-1 mice explored the apparatus thoroughly, providing measures from all areas throughout the entire testing session. Factor analysis showed that measures of locomotion and anxiety-related behaviour were dissociable. BALB/cJ, DBA/2J and C57BL/6J showed markedly different behavioural profiles, largely consistent with previous studies examining individual tests. Avoidance of aversive environments did not increase with repeated testing. In CD-1 mice, the anxiolytics diazepam and alprazolam (4 and 2 mg/kg, respectively) increased the approach towards the EPM open arms. Alprazolam also had sedative effects, whereas the anxiogenic pentylenetetrazole had no effects. CONCLUSIONS These findings suggest that the triple test is sensitive to genetic/pharmacological influences on anxiety and locomotion and that, by providing quasi-simultaneous measures from three different apparatuses, it may represent an alternative to the use of test batteries.
Collapse
Affiliation(s)
- Leanne M Fraser
- Psychology Department and Neuroscience Institute, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4J1
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Early life influences on emotional reactivity: Evidence that social enrichment has greater effects than handling on anxiety-like behaviors, neuroendocrine responses to stress and central BDNF levels. Neurosci Biobehav Rev 2010; 34:808-20. [DOI: 10.1016/j.neubiorev.2010.02.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
|
34
|
Duclot F, Jacquet C, Gongora C, Maurice T. Alteration of working memory but not in anxiety or stress response in p300/CBP associated factor (PCAF) histone acetylase knockout mice bred on a C57BL/6 background. Neurosci Lett 2010; 475:179-83. [PMID: 20371377 DOI: 10.1016/j.neulet.2010.03.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 03/01/2010] [Accepted: 03/30/2010] [Indexed: 10/19/2022]
Abstract
P300/CBP associated factor (PCAF) acts as an acetyltransferase that acetylates specific lysine residues in histones, thereby remodelling chromatin structure. The possible involvement of PCAF in learning and memory processes or mood disorders was recently assessed by characterizing the behavioural phenotype of PCAF KO mice bred on a CD1 background and revealed short-term memory deficits that evolved with age towards long-term memory alteration and an exaggerated response to stress [10]. PCAF KO mice have been backcrossed on a C57BL/6j strain for 15 generations and we report here the first data regarding their behavioural phenotype. PCAF KO mice bred on a C57 background showed short-term memory deficits in terms of decreased spontaneous alternation and absence of acquisition of a daily changing platform position in the water-maze. Acquisition of a fixed platform location or passive avoidance response was preserved. PCAF KO mice showed no difference with WT C57BL/6j controls in their performances in the forced swimming and light/dark exploration box, suggesting no particular phenotype on anxiety and stress responses. We therefore evidenced marked phenotypic differences in PCAF KO mice depending on the genetic background strain confirming that PCAF histone acetyltransferase is involved lifelong in the chromatin remodelling necessary for memory formation but differentially involved in anxiety and response to stress.
Collapse
|
35
|
Moy SS, Nonneman RJ, Young NB, Demyanenko GP, Maness PF. Impaired sociability and cognitive function in Nrcam-null mice. Behav Brain Res 2009; 205:123-31. [PMID: 19540269 PMCID: PMC2753746 DOI: 10.1016/j.bbr.2009.06.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 05/12/2009] [Accepted: 06/10/2009] [Indexed: 11/24/2022]
Abstract
NRCAM (Neuronal Cell Adhesion Molecule) has an important role in axonal guidance and the organization of neural circuitry during brain development. Association analyses in human populations have identified NRCAM as a candidate gene for autism susceptibility. In the present study, we evaluated Nrcam-null mice for sociability, social novelty preference, and reversal learning as a model for the social deficits, repetitive behavior, and cognitive rigidity characteristic of autism. Prepulse inhibition of acoustic startle responses was also measured, to reflect sensorimotor-gating deficits in autism spectrum disorders. Assays for anxiety-like behavior in an elevated plus maze and open field, motor coordination, and olfactory ability in a buried food test were conducted to provide control measures for the interpretation of results. Overall, the loss of Nrcam led to behavioral alterations in sociability, acquisition of a spatial task, and reversal learning, dependent on sex. In comparison to male wild type mice, male Nrcam-null mutants had significantly decreased sociability in a three-chambered choice task. Low sociability in the male null mutants was not associated with changes in anxiety-like behavior, activity, or motor coordination. Male, but not female, Nrcam-null mice had small decreases in prepulse inhibition. Nrcam deficiency in female mice led to impaired acquisition of spatial learning in the Morris water maze task. Reversal learning deficits were observed in both male and female Nrcam-null mice. These results provide evidence that NRCAM mediates domains of function relevant to symptoms observed in autism.
Collapse
Affiliation(s)
- Sheryl S Moy
- Neurodevelopmental Disorders Research Center, CB#7146, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
36
|
Clément Y, Le Guisquet AM, Venault P, Chapouthier G, Belzung C. Pharmacological alterations of anxious behaviour in mice depending on both strain and the behavioural situation. PLoS One 2009; 4:e7745. [PMID: 19907641 PMCID: PMC2770638 DOI: 10.1371/journal.pone.0007745] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 08/06/2009] [Indexed: 11/18/2022] Open
Abstract
A previous study comparing non-emotive mice from the strain C57BL/6/ByJ with ABP/Le mice showed ABP/Le to be more anxious in an open-field situation. In the present study, several compounds affecting anxiety were assayed on ABP/Le and C57BL/6/ByJ mice using three behavioural models of anxiety: the elevated plus-maze, the light-dark discrimination test and the free exploratory paradigm. The compounds used were the full benzodiazepine receptor agonist, chlordiazepoxide, and the antagonist, flumazenil, the GABA(A) antagonist, bicuculline, the full 5-HT(1A) agonist 8-OH-DPAT, and the mixed 5-HT(1A)/5-HT(1B) agonist, RU 24969. Results showed the effect of the compounds to be dependent on both the strain and the behavioural task. Several compounds found to be anxiolytic in ABP/Le mice had an anxiogenic effect on C57BL/6/ByJ mice. More behavioural changes were observed for ABP/Le in the elevated plus-maze, but the clearest findings for C57BL/6/ByJ mice were observed in the light-dark discrimination apparatus. These data demonstrate that anxious behaviour is a complex phenomenon which cannot be described by a single behavioural task nor by the action of a single compound.
Collapse
Affiliation(s)
- Yan Clément
- Université Reims Champagne-Ardenne, Reims, France.
| | | | | | | | | |
Collapse
|
37
|
Bodarky CL, Halene TB, Ehrlichman RS, Banerjee A, Ray R, Hahn CG, Jonak G, Siegel SJ. Novel environment and GABA agonists alter event-related potentials in N-methyl-D-aspartate NR1 hypomorphic and wild-type mice. J Pharmacol Exp Ther 2009; 331:308-18. [PMID: 19602553 PMCID: PMC2766227 DOI: 10.1124/jpet.109.150938] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 07/10/2009] [Indexed: 11/22/2022] Open
Abstract
Clinical and experimental data suggest dysregulation of N-methyl-d-aspartate receptor (NMDAR)-mediated glutamatergic pathways in schizophrenia. The interaction between NMDAR-mediated abnormalities and the response to novel environment has not been studied. Mice expressing 5 to 10% of normal N-methyl-d-aspartate receptor subunit 1 (NR1) subunits [NR1(neo)(-/-)] were compared with wild-type littermates for positive deflection at 20 ms (P20) and negative deflection at 40 ms (N40) auditory event-related potentials (ERPs). Groups were tested for habituation within and across five testing sessions, with novel environment tested during a sixth session. Subsequently, we examined the effects of a GABA(A) positive allosteric modulator (chlordiazepoxide) and a GABA(B) receptor agonist (baclofen) as potential interventions to normalize aberrant responses. There was a reduction in P20, but not N40 amplitude within each habituation day. Although there was no amplitude or gating change across habituation days, there was a reduction in P20 and N40 amplitude and gating in the novel environment. There was no difference between genotypes for N40. Only NR1(neo)(-/-) mice had reduced P20 in the novel environment. Chlordiazepoxide increased N40 amplitude in wild-type mice, whereas baclofen increased P20 amplitude in NR1(neo)(-/-) mice. As noted in previous publications, the pattern of ERPs in NR1(neo)(-/-) mice does not recapitulate abnormalities in schizophrenia. In addition, reduced NR1 expression does not influence N40 habituation but does affect P20 in a novel environment. Thus, the pattern of P50 (positive deflection at 50 ms) but not N100 (negative deflection at 100 ms) in human studies may relate to subjects' reactions to unfamiliar environments. In addition, NR1 reduction decreased GABA(A) receptor-mediated effects on ERPs while causing increased GABA(B) receptor-mediated effects. Future studies will examine changes in GABA receptor subunits after reductions in NR1 expression.
Collapse
MESH Headings
- Acoustic Stimulation/methods
- Animals
- Evoked Potentials, Auditory/drug effects
- Evoked Potentials, Auditory/physiology
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Female
- GABA Agonists/pharmacology
- GABA-A Receptor Agonists
- Habituation, Psychophysiologic/drug effects
- Habituation, Psychophysiologic/genetics
- Habituation, Psychophysiologic/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, GABA-A/physiology
- Receptors, N-Methyl-D-Aspartate/deficiency
- Receptors, N-Methyl-D-Aspartate/genetics
Collapse
|
38
|
Lalonde R, Strazielle C. Relations between open-field, elevated plus-maze, and emergence tests in C57BL/6J and BALB/c mice injected with GABA- and 5HT-anxiolytic agents. Fundam Clin Pharmacol 2009; 24:365-76. [PMID: 19735300 DOI: 10.1111/j.1472-8206.2009.00772.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two 5HT(1A) receptor agonists and chlordiazepoxide were examined in open-field, elevated plus maze, and emergence tests. At doses with no effect in the open-field, chlordiazepoxide increased open and open/total arm visits as well as open arm duration in the elevated plus maze, whereas 5HT(1A) receptor agonists showed an anxiolytic response on a single measure. The anxiolytic action of chlordiazepoxide was limited to the less active BALB/c strain. Unlike the 5HT(1A) receptor agonists, chlordiazepoxide was also anxiolytic in the emergence test, once again only in BALB/c and not C57BL/6J mice. Significant correlations were found between emergence latencies and specific indicators of anxiety in the elevated plus-maze in chlordiazepoxide-treated but not in mice treated with buspirone and 8-OH-DPAT. These results indicate that elevated plus-maze and emergence tests depend on benzodiazepine receptors. In contrast, 5HT(1A) receptor agonists were ineffective in the emergence test and no correlation was found between emergence latencies and specific indicators of anxiety in the elevated plus-maze. Though superficially similar, the emergence test seems to tap into a partially separate facet of anxiety.
Collapse
Affiliation(s)
- Robert Lalonde
- Centre Hospitalier de l'Université de Montréal/St-Luc, Unité de Recherche en Sciences Neurologiques, Montréal, Québec, Canada H2X 3J4.
| | | |
Collapse
|
39
|
Pitfalls in the interpretation of genetic and pharmacological effects on anxiety-like behaviour in rodents. Behav Pharmacol 2008; 19:385-402. [PMID: 18690100 DOI: 10.1097/fbp.0b013e32830c3658] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over the last 15 years, genetically modified mice have added important data to our knowledge on psychiatric diseases including anxiety. This has produced many behavioural publications, partially by non-behaviourists, in which differences between mutants and normal wild-type animals were described. The popularity of these novel tools allowing the study of new mechanisms also, however, led to observations that could not be confirmed. This review attempts to summarize various factors that can lead to difficult and partially incorrect interpretation of data collected in anxiety-related paradigms. These pitfalls are explained by using virtual data. Our analysis illustrates that determining anxiety in rodents is more complicated than measuring a single parameter in a particular paradigm. It is important to use proper controls such as additional measures in the same or other procedures, as well as a conservative estimation of the chance of finding an actual effect. In this way, it is possible to enhance confidence in the findings. Alternative explanations for findings, like side effects or main effects in a different domain, such as cognition, should always be taken into account. Finally, several examples from the literature are presented as illustrations of the theoretical issues discussed. We believe that considering the pitfalls presented here will help researchers to design optimized experiments that can be more readily interpreted and replicated across laboratories.
Collapse
|
40
|
Animal models of anxiety: do I need multiple tests? Trends Pharmacol Sci 2008; 29:493-8. [PMID: 18755516 DOI: 10.1016/j.tips.2008.07.005] [Citation(s) in RCA: 310] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 11/23/2022]
Abstract
The combination of cutting-edge molecular technology and high-throughput phenotyping tools will not bring the expected contribution to the pre-clinical study of anxiety if not paralleled by an increase in our capacity to interpret behavioral data. Here, previous views about the multidimensional nature of emotional behaviors will be expanded and the psychological meaning and behavioral overlaps of widely used anxiety tests such as the open field, elevated plus maze and light-dark box will be discussed. It is proposed here that short-term, intra-individual variations in emotionality, although normally overlooked, constitute an important factor in the study of anxiety and can lead to unreliable estimates of the similarities between tests. The physical integration of different current tests in one single apparatus, in such a way that the emotional status of an animal becomes assessable through a series of distinct tasks, could contribute to increase reliability, rapidity and comprehensiveness in behavioral testing.
Collapse
|
41
|
Vinkers CH, van Bogaert MJV, Klanker M, Korte SM, Oosting R, Hanania T, Hopkins SC, Olivier B, Groenink L. Translational aspects of pharmacological research into anxiety disorders: the stress-induced hyperthermia (SIH) paradigm. Eur J Pharmacol 2008; 585:407-25. [PMID: 18420191 DOI: 10.1016/j.ejphar.2008.02.097] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/01/2008] [Accepted: 02/13/2008] [Indexed: 11/29/2022]
Abstract
In anxiety research, the search for models with sufficient clinical predictive validity to support the translation of animal studies on anxiolytic drugs to clinical research is often challenging. This review describes the stress-induced hyperthermia (SIH) paradigm, a model that studies the activation of the autonomic nervous system in response to stress by measuring body temperature. The reproducible and robust SIH response, combined with ease of testing, make the SIH paradigm very suitable for drug screening. We will review the current knowledge on the neurobiology of the SIH response, discuss the role of GABA(A) and serotonin (5-HT) pharmacology, as well as how the SIH response relates to infectious fever. Furthermore, we will present novel data on the SIH response variance across different mice and their sensitivity to anxiolytic drugs. The SIH response is an autonomic stress response that can be successfully studied at the level of its physiology, pharmacology, neurobiology and genetics and possesses excellent animal-to-human translational properties.
Collapse
Affiliation(s)
- Christiaan H Vinkers
- Department of Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS) and Rudolf Magnus Institute of Neuroscience, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mathiasen LS, Mirza NR, Rodgers RJ. Strain- and model-dependent effects of chlordiazepoxide, L-838,417 and zolpidem on anxiety-like behaviours in laboratory mice. Pharmacol Biochem Behav 2008; 90:19-36. [PMID: 18321566 DOI: 10.1016/j.pbb.2008.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 01/10/2008] [Accepted: 01/22/2008] [Indexed: 01/23/2023]
Abstract
The promise of subtype-selective GABA(A) receptor drugs with anxiolytic properties but with a much reduced side-effect burden (compared to benzodiazepines) is an attainable goal. However, its achievement necessitates the availability of in vivo preclinical assays capable of demonstrating differences as well as similarities between subtype-selective agents and non-selective benzodiazepines. In this study, we have compared three mouse strains (NMRI, C57BL/6J and DBA/2) in four models of anxiety-like behaviour (plus-maze, zero-maze, light-dark, and Vogel conflict). Furthermore, in each model, we have contrasted in detail the behavioural responses of each strain to the non-selective benzodiazepine chlordiazepoxide (CDP; 5-20 mg/kg), and the subtype-selective agents L-838,417 (GABA(A)-alpha(2/3/5); 3-30 mg/kg) and zolpidem (GABA(A)-alpha1; 0.3-3.0 mg/kg). The data show a complex mouse strainxmodelxpharmacological agent interaction. Most importantly, not all mouse strainxmodel test systems showed a positive response to CDP or predicted the response to L-838,417. This dissociation between CDP and L-838,417 opens up opportunities for preclinical test systems that differentiate subtype-selective and non-selective GABA(A) receptor agents, an attribute that might well be important in providing the necessary confidence for further drug development. Present findings suggest the need for a much greater focus on defining test systems appropriate for screening novel chemical entities, rather than self-selection of models or genotypes based on responses to known pharmacological agents. For example, if current data with L-838,417 are confirmed with compounds showing similar selectivity profiles, such agents may in future be best identified and characterised using test systems comprising NMRI mice in the zero-maze and/or C57 mice in the Vogel conflict and/or light-dark tests.
Collapse
Affiliation(s)
- L S Mathiasen
- Behavioural Neuroscience Laboratory, Institute of Psychological Sciences, Leeds University, Leeds LS2 9JT, Leeds, UK
| | | | | |
Collapse
|
43
|
Are benzodiazepines really anxiolytic? Evidence from a 3D maze spatial navigation task. Behav Brain Res 2007; 188:136-53. [PMID: 18055029 DOI: 10.1016/j.bbr.2007.10.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 10/22/2007] [Accepted: 10/25/2007] [Indexed: 01/01/2023]
Abstract
The effects of diazepam and chlordiazepoxide were assessed in a 3D maze which is a modification of an 8-arm radial maze. Each arm of the maze is attached to a bridge radiating from a central platform. Animals exposed for the first time to the maze do not venture beyond the line that separate a bridge from an arm. The prime criteria set for an anxiolytic effect is whether mice would increase the frequency of entries onto arms and increase arm/bridge entries ratio. C57 mice readily cross the line on first exposure and make more than 8 arm visits onto arms on second exposure, while other strains (CD-1 and Balb/c) hold back and rarely cross the line on first exposure and require more sessions to make more than 8 arm entries. An anxiolytic drug is expected to encourage intermediate (CD-1) and high (Balb/c) anxiety mice to adventure onto the arms of the maze and make more visits to the arms to comparable levels seen with low anxiety c57 mice. In the present report, administration of different doses of diazepam (0.625, 1.25, 2.5 and 5 mg kg(-1) i.p.) and chlordiazepoxide (5, 10 and 15 mg kg(-1) i.p.) did not reduce anxiety in animals, with the lowest dose of diazepam increasing motor activity in Balb/c and increasing anxiety in c57 mice while the highest doses of both diazepam (2.5 and 5 mg kg(-1) i.p.) and chlordiazepoxide (15 mg kg(-1) i.p.) induced mild sedation. Our results raise some concerns about the methodological foundations in the current assessment of anxiety and anxiolytic compounds both in animal and human studies.
Collapse
|
44
|
Kaja S, Hann V, Payne HL, Thompson CL. Aberrant cerebellar granule cell-specific GABAA receptor expression in the epileptic and ataxic mouse mutant, Tottering. Neuroscience 2007; 148:115-25. [PMID: 17614209 DOI: 10.1016/j.neuroscience.2007.03.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/04/2007] [Accepted: 03/06/2007] [Indexed: 11/22/2022]
Abstract
The Tottering (cacna1a(tg)) mouse arose as a consequence of a spontaneous mutation in cacna1a, the gene encoding the pore-forming subunit of the pre-synaptic P/Q-type voltage-gated calcium channel (VGCC, Ca(V)2.1). The mouse phenotype includes ataxia and intermittent myoclonic seizures which have been attributed to impaired excitatory neurotransmission at cerebellar granule cell (CGC) parallel fiber-Purkinje cell (PF-PC) synapses [Zhou YD, Turner TJ, Dunlap K (2003) Enhanced G-protein-dependent modulation of excitatory synaptic transmission in the cerebellum of the Ca(2+)-channel mutant mouse, tottering. J Physiol 547:497-507]. We hypothesized that the expression of cerebellar GABA(A) receptors may be affected by the mutation. Indeed, abnormal GABA(A) receptor function and expression in the cacna1a(tg) forebrain has been reported previously [Tehrani MH, Barnes EM Jr (1995) Reduced function of gamma-aminobutyric acid A receptors in tottering mouse brain: role of cAMP-dependent protein kinase. Epilepsy Res 22:13-21; Tehrani MH, Baumgartner BJ, Liu SC, Barnes EM Jr (1997) Aberrant expression of GABA(A) receptor subunits in the tottering mouse: an animal model for absence seizures. Epilepsy Res 28:213-223]. Here we show a deficit of 40.2+/-3.6% in the total number of cerebellar GABA(A) receptors expressed (gamma2+delta subtypes) in adult cacna1a(tg) relative to controls. [(3)H]Muscimol autoradiography identified that this was partly due to a significant loss of CGC-specific alpha6 subunit-containing GABA(A) receptor subtypes. A large proportion of this loss of alpha6 receptors was attributable to a significantly reduced expression of the CGC-specific benzodiazepine-insensitive Ro15-4513 (BZ-IS) binding subtype, alpha6betagamma2 subunit-containing receptors. BZ-IS binding was reduced by 36.6+/-2.6% relative to controls in cerebellar membrane homogenates and by 37.2+/-3.7% in cerebellar sections. Quantitative immunoblotting revealed that the steady-state expression level of alpha6 and gamma2 subunits was selectively reduced relative to controls by 30.2+/-8.2% and 38.8+/-13.1%, respectively, alpha1, beta3 and delta were unaffected. Immunohistochemically probed control and cacna1a(tg) cerebellar sections verified that alpha6 and gamma2 subunit expression was reduced and that this deficit was restricted to the CGC layer. Thus, we have shown that abnormal cerebellar P/Q-type VGCC activity results in a deficit of CGC-specific subtype(s) of GABA(A) receptors which may contribute to, or may be a consequence of the impaired cerebellar network signaling that occurs in cacna1a(tg) mice.
Collapse
MESH Headings
- Animals
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Calcium Channels, N-Type/genetics
- Calcium Channels, N-Type/metabolism
- Cerebellar Ataxia/genetics
- Cerebellar Ataxia/metabolism
- Cerebellar Ataxia/physiopathology
- Cerebellar Cortex/metabolism
- Cerebellar Cortex/physiopathology
- Disease Models, Animal
- Epilepsy/genetics
- Epilepsy/metabolism
- Epilepsy/physiopathology
- Genetic Predisposition to Disease/genetics
- Mice
- Mice, Neurologic Mutants
- Neurons/metabolism
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Receptors, GABA/genetics
- Receptors, GABA/metabolism
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- S Kaja
- School of Biological and Biomedical Sciences, Science Research Laboratories, Durham University, South Road, Durham DH1 3LE, UK.
| | | | | | | |
Collapse
|
45
|
Uhl GR, Drgon T, Johnson C, Fatusin OO, Liu QR, Contoreggi C, Li CY, Buck K, Crabbe J. "Higher order" addiction molecular genetics: convergent data from genome-wide association in humans and mice. Biochem Pharmacol 2007; 75:98-111. [PMID: 17764662 PMCID: PMC3282179 DOI: 10.1016/j.bcp.2007.06.042] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/26/2007] [Accepted: 06/28/2007] [Indexed: 02/05/2023]
Abstract
Family, adoption and twin data each support substantial heritability for addictions. Most of this heritable influence is not substance-specific. The overlapping genetic vulnerability for developing dependence on a variety of addictive substances suggests large roles for "higher order" pharamacogenomics in addiction molecular genetics. We and others have now completed genome-wide association (GWA) studies of DNAs from individuals with dependence on a variety of addictive substances versus appropriate controls. Recently reported replicated GWA observations identify a number of genes based on comparisons between controls and European-American and African-American polysubstance abusers. Here we review the convergence between these results and data that compares control samples and (a) alcohol-dependent European-Americans, (b) methamphetamine-dependent Asians and (c) nicotine dependent samples from European backgrounds. We also compare these human data to quantitative trait locus (QTL) results from studies of addiction-related phenotypes in mice that focus on alcohol, methamphetamine and barbiturates. These comparisons support a genetic architecture built from largely polygenic contributions of common allelic variants to dependence on a variety of legal and illegal substances. Many of the gene variants identified in this way are likely to alter specification and maintenance of neuronal connections.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Branch, NIH-IRP (NIDA), Suite 3510, 333 Cassell Drive Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Arakawa H, Blanchard DC, Blanchard RJ. Colony formation of C57BL/6J mice in visible burrow system: identification of eusocial behaviors in a background strain for genetic animal models of autism. Behav Brain Res 2007; 176:27-39. [PMID: 16971001 PMCID: PMC3264663 DOI: 10.1016/j.bbr.2006.07.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/26/2006] [Accepted: 07/31/2006] [Indexed: 11/27/2022]
Abstract
Deficits in social interaction are primary characteristics of autism, which has strong genetic components. Genetically manipulated mouse models may provide a useful research tool to advance the investigation of genes associated with autism. To identify these genes using mouse models, behavioral assays for social relationships in the background strains must be developed. The present study examined colony formation in groups of one male and three female mice (Experiment 1) and, groups of three male mice (Experiment 2) of the C57BL/6J strain in a semi-natural visible burrow system. For adult mixed-sex colonies, 4-h observations during both the dark and light cycles for 15 days demonstrated day-dependent increases in huddling together in the chamber accompanied by decreased frequencies of active social behaviors. Sequential analyses of social interactions indicated that approaches to the back of the approached animal typically elicited flight, while approaches to the front of the approached animal failed to do so. This was seen for female to female, and for female to male approaches, as well as male to female approaches, strongly counterindicating a view that rear approach/flight specifically reflects female responsivirity to unwanted male sexual approach. For adult male colonies, similar protocols found that these social behaviors were similar to those of adult mixed-sex colonies. These findings suggest two potentially useful measures of eusocial behavior in mice, of possible value for genetic mouse models of autism; that is, huddling together and approaches to the front but not the back, of conspecifics.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Pacific Bioscience Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
47
|
Van Bogaert M, Oosting R, Toth M, Groenink L, van Oorschot R, Olivier B. Effects of genetic background and null mutation of 5-HT1A receptors on basal and stress-induced body temperature: modulation by serotonergic and GABAA-ergic drugs. Eur J Pharmacol 2006; 550:84-90. [PMID: 17022970 DOI: 10.1016/j.ejphar.2006.08.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 08/20/2006] [Accepted: 08/23/2006] [Indexed: 11/20/2022]
Abstract
The stress-induced hyperthermia procedure, in which effects of drugs on basal (T(1)) and stress-induced body temperature (T(2)) are measured, predicts anxiolytic drug effect. Serotonergic drugs alter these responses and here, we studied the role of 5-HT(1A) receptors in stress-induced hyperthermia by using 5-HT(1A) receptor knockout mice. Three strains (129/Sv, Swiss Webster and C57Bl6) were used because genetic background can significantly modulate the null phenotype. We found that GABA-ergic drugs with an anxiolytic profile and stimulate alpha(2) subunit containing GABA(A) receptors, including diazepam and L838,417, result in reduced DeltaT (DeltaT=T(2)-T(1)). The alpha(1) subunit containing GABA(A) receptor was found to be primarily involved in regulation of basal body temperature T(1) and its stimulation can induce hypothermia. In addition, stimulation of 5-HT(1A) receptors by buspirone results in a reduced DeltaT, while stimulation of 5-HT(7) receptors primarily results in hypothermia. The null mutation of 5-HT(1A) receptors resulted in differences in drug-sensitivity that was further modulated by the genetic background. In particular, the null mutation on the SW and C57Bl6 backgrounds resulted in differential diazepam/L838,417 and 5-CT responses respectively. This indicates an interaction between the 5-HT(1A) receptor and genetic background and demonstrates the importance of selecting the background strain in a receptor knockout model.
Collapse
MESH Headings
- Animals
- Body Temperature/drug effects
- Body Temperature/genetics
- Body Temperature/physiology
- Body Temperature Regulation/drug effects
- Buspirone/pharmacology
- Diazepam/pharmacology
- Fever/physiopathology
- Flumazenil/pharmacology
- Fluorobenzenes/pharmacology
- GABA Agonists/pharmacology
- GABA Modulators/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Pyridines/pharmacology
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/physiology
- Receptors, GABA-A/drug effects
- Serotonin/analogs & derivatives
- Serotonin/pharmacology
- Serotonin Agents/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Stress, Psychological/physiopathology
- Triazoles/pharmacology
- Zolpidem
Collapse
Affiliation(s)
- Meg Van Bogaert
- Section of Psychopharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, The Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Rodgers RJ, Augar R, Berryman N, Hansom CJ, O'Mahony ML, Palmer RM, Stevens A, Tallett AJ. Atypical anxiolytic-like response to naloxone in benzodiazepine-resistant 129S2/SvHsd mice: role of opioid receptor subtypes. Psychopharmacology (Berl) 2006; 187:345-55. [PMID: 16802164 DOI: 10.1007/s00213-006-0435-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 04/26/2006] [Indexed: 11/28/2022]
Abstract
RATIONALE Mice of many 129 substrains respond to environmental novelty with behavioural suppression and high levels of anxiety-like behaviour. Although resistant to conventional anxiolytics, this behavioural phenotype may involve stress-induced release of endogenous opioids. OBJECTIVES To assess the effects of opioid receptor blockade on behavioural reactions to novelty stress in a chlordiazepoxide-resistant 129 substrain. MATERIALS AND METHODS Experiment 1 contrasted the effects of the broad-spectrum opioid receptor antagonist naloxone (1.0-10.0 mg/kg) in C57BL/6JOlaHsd and 129S2/SvHsd mice exposed to the elevated plus-maze. Experiments 2-4 examined the responses of 129S2/SvHsd mice to the mu-selective opioid receptor antagonist beta-funaltrexamine (2.5-10.0 mg/kg), the delta-selective antagonist naltrindole (2.5-10.0 mg/kg) and the kappa-selective antagonist nor-binaltorphimine (2.5-5.0 mg/kg). RESULTS 129 mice displayed higher levels of anxiety-like behaviour and lower levels of general exploration relative to their C57 counterparts. Although naloxone failed to alter the behaviour of C57 mice, both doses of this antagonist produced behaviourally selective reductions in open-arm avoidance in 129 mice. Surprisingly, none of the more selective opioid receptor antagonists replicated this effect of naloxone: beta-funaltrexamine was devoid of behavioural activity, naltrindole suppressed rearing (all doses) and increased immobility (10 mg/kg), while nor-binaltorphimine (5 mg/kg) nonspecifically increased percent open arm entries. CONCLUSIONS Recent evidence suggests differential involvement of opioid receptor subtypes in the anxiolytic efficacy of diverse compounds including conventional benzodiazepines. The insensitivity of 129 mice to the anxiolytic action of chlordiazepoxide, coupled with their atypical anxiolytic response to naloxone (but not more selective opioid receptor antagonists), suggests an abnormality in anxiety-related neurocircuitry involving opioid-GABA interactions.
Collapse
Affiliation(s)
- R J Rodgers
- Behavioural Neuroscience Laboratory, Institute of Psychological Sciences, University of Leeds, Leeds, LS2 9JT, UK,
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kalueff AV, Avgustinovich DF, Kudryavtseva NN, Murphy DL. BDNF in Anxiety and Depression. Science 2006; 312:1598-9; author reply 1598-9. [PMID: 16778038 DOI: 10.1126/science.312.5780.1598] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
50
|
van Bogaert MJV, Groenink L, Oosting RS, Westphal KGC, van der Gugten J, Olivier B. Mouse strain differences in autonomic responses to stress. GENES BRAIN AND BEHAVIOR 2006; 5:139-49. [PMID: 16507005 DOI: 10.1111/j.1601-183x.2005.00143.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In humans, anxiety disorders are often accompanied by an overactive autonomic nervous system, reflected in increased body temperature (BT) and heart rate (HR). In rodents, comparable effects are found after exposure to stress. These autonomic parameters can give important information on stress and anxiety responses in mice. In the present experiments, stress reactivity of three frequently used mouse strains [129 Sv/Ev, Swiss Webster (SW) and C57 BL/6] was assessed using their autonomic stress responses. BT, HR and activity were telemetrically measured. Undisturbed circadian rhythms already showed clear differences between the mouse strains. Hereafter, autonomic responses to stressors with increasing intensity were measured. Strain differences were found in magnitude and duration of the stress responses, especially after high-intensity stressors. Generally, C57BL/6 mice showed the largest autonomic response, SW the lowest and the 129Sv/Ev the intermediate response. Interestingly, the observed ranking in autonomic stress response does not match the behavioral stress responsivity of these strains. Finally, sensitivity to the anxiolytic diazepam (0, 1, 2, 4 and 8 mg/kg) was tested using the stress-induced hyperthermia paradigm. Pharmacological sensitivity to diazepam differed between the strains with the 129Sv/Ev being most sensitive. These studies show that simultaneous measurement of behavioral and autonomic parameters under stressful conditions contributes considerably to a better interpretation of anxiety and stress levels in mice.
Collapse
Affiliation(s)
- M J V van Bogaert
- Department of Psychopharmacology, Utrecht Institute of Pharmaceutical Sciences, Behavioural Genomics Section, Rudolf Magnus Institute of Neuroscience, the Netherlands.
| | | | | | | | | | | |
Collapse
|