1
|
Athanassi A, Breton M, Chalençon L, Brunelin J, Didier A, Bath K, Mandairon N. Chronic unpredictable mild stress alters odor hedonics and adult olfactory neurogenesis in mice. Front Neurosci 2023; 17:1224941. [PMID: 37600017 PMCID: PMC10435088 DOI: 10.3389/fnins.2023.1224941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Experiencing chronic stress significantly increases the risk for depression. Depression is a complex disorder with varied symptoms across patients. However, feeling of sadness and decreased motivation, and diminished feeling of pleasure (anhedonia) appear to be core to most depressive pathology. Odorants are potent signals that serve a critical role in social interactions, avoiding danger, and consummatory behaviors. Diminished quality of olfactory function is associated with negative effects on quality of life leading to and aggravating the symptoms of depression. Odor hedonic value (I like or I dislike this smell) is a dominant feature of olfaction and guides approach or avoidance behavior of the odor source. The neural representation of the hedonic value of odorants is carried by the granule cells in the olfactory bulb, which functions to modulate the cortical relay of olfactory information. The granule cells of the olfactory bulb and those of the dentate gyrus are the two major populations of cells in the adult brain with continued neurogenesis into adulthood. In hippocampus, decreased neurogenesis has been linked to development or maintenance of depression symptoms. Here, we hypothesize that chronic mild stress can alter olfactory hedonics through effects on the olfactory bulb neurogenesis, contributing to the broader anhedonia phenotype in stress-associated depression. To test this, mice were subjected to chronic unpredictable mild stress and then tested on measures of depressive-like behaviors, odor hedonics, and measures of olfactory neurogenesis. Chronic unpredictable mild stress led to a selective effect on odor hedonics, diminishing attraction to pleasant but not unpleasant odorants, an effect that was accompanied by a specific decrease in adult neurogenesis and of the percentage of adult-born cells responding to pleasant odorants in the olfactory bulb.
Collapse
Affiliation(s)
- Anna Athanassi
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Marine Breton
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Laura Chalençon
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Jérome Brunelin
- Centre Hospitalier Le Vinatier, Bron, France
- INSERM, U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Anne Didier
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Kevin Bath
- Division of Developmental Neuroscience, New York State Psychiatric Institute, Research Foundation for Mental Hygiene, New York, NY, United States
- Department of Psychiatry, Columbia University Medical College, New York, NY, United States
| | - Nathalie Mandairon
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| |
Collapse
|
2
|
Ahnaou A, Chave L, Manyakov NV, Drinkenburg WHIM. Odour Retrieval Processing in Mice: Cholinergic Modulation of Oscillatory Coupling in Olfactory Bulb-Piriform Networks. Neuropsychobiology 2022; 80:374-392. [PMID: 33588406 DOI: 10.1159/000513511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/26/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Olfactory dysfunction can provide valuable insight into early pathophysiological processes of brain disorders. Olfactory processing of chemosensory and odour sensitivity relies on segregating salient odours from background odours cues. Odour-evoked fast oscillations in the olfactory bulb (OB) are hypothesized to be an important index of odour quality coding. The present preclinical work aimed at better understanding connectivity associated with odour coding and behavioural odour discrimination. METHODS Network oscillations and functional connectivity (FC) were measured in C57BL/6 mice performing the olfactory associative odour learning (OL) test, using multichannel local field potential recordings in key olfactory networks. Cholinergic modulation of odour processing was investigated using the muscarinic antagonist scopolamine. RESULTS At the behavioural level, olfactory memory, which refers to the acquisition and recollection of a reference odour by reduced exploration time, was observed in animals that correctly learned the task. Significant decrease in mean investigation and retrieval time of the associated odour-food reward was observed between trials. At the network level, the associated odour during sniffing behaviour was associated with enhanced coherence in the β and γ frequency oscillations across the olfactory pathway, with marked changes observed between the OB and anterior piriform cortex (PC). The enhanced phase-amplitude cross-frequency coupling in the OB and the weak coupling index in the hippocampal CA1 suggests a role of the OB network in olfaction encoding and processing. Scopolamine impaired behavioural and FC underlying recall and retrieval of the associated odour. CONCLUSION The results suggest that the acquisition and formation of odour reference memory rely primarily on FC at the OB-PC network and confirm the role of muscarinic receptors in olfactory retrieval processing.
Collapse
Affiliation(s)
- Abdallah Ahnaou
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium,
| | - Lucile Chave
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nikolay V Manyakov
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wilhelmus H I M Drinkenburg
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| |
Collapse
|
3
|
Abstract
There are currently a number of theories of rodent hippocampal function. They fall into two major groups that differ in the role they impute to space in hippocampal information processing. On one hand, the cognitive map theory sees space as crucial and central, with other types of nonspatial information embedded in a primary spatial framework. On the other hand, most other theories see the function of the hippocampal formation as broader, treating all types of information as equivalent and concentrating on the processes carried out irrespective of the specific material being represented, stored, and manipulated. One crucial difference, therefore, is the extent to which theories see hippocampal pyramidal cells as representing nonspatial information independently of a spatial framework. Studies have reported the existence of single hippocampal unit responses to nonspatial stimuli, both to simple sensory inputs as well as to more complex stimuli such as objects, conspecifics, rewards, and time, and these findings been interpreted as evidence in favor of a broader hippocampal function. Alternatively, these nonspatial responses might actually be feature-in-place signals where the spatial nature of the response has been masked by the fact that the objects or features were only presented in one location or one spatial context. In this article, we argue that when tested in multiple locations, the hippocampal response to nonspatial stimuli is almost invariably dependent on the animal's location. Looked at collectively, the data provide strong support for the cognitive map theory.
Collapse
Affiliation(s)
- John O'Keefe
- Sainsbury Wellcome Centre and Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Julija Krupic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Todorov OS, Weisbecker V, Gilissen E, Zilles K, de Sousa AA. Primate hippocampus size and organization are predicted by sociality but not diet. Proc Biol Sci 2019; 286:20191712. [PMID: 31662078 DOI: 10.1098/rspb.2019.1712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hippocampus is well known for its roles in spatial navigation and memory, but it is organized into regions that have different connections and functional specializations. Notably, the region CA2 has a role in social and not spatial cognition, as is the case for the regions CA1 and CA3 that surround it. Here, we investigated the evolution of the hippocampus in terms of its size and organization in relation to the evolution of social and ecological variables in primates, namely home range, diet and different measures of group size. We found that the volumes within the whole cornu ammonis coevolve with group size, while only the volume of CA1 and subiculum can also be predicted by home range. On the other hand, diet, expressed as a shift from folivory towards frugivory, was shown to not be related to hippocampal volume. Interestingly, CA2 was shown to exhibit phylogenetic signal only against certain measures of group size, but not with ecological factors. We also found that sex differences in the hippocampus are related to body size sex dimorphism. This is in line with reports of sex differences in hippocampal volume in non-primates that are related to social structure and sex differences in behaviour. Our findings support the notion that in primates, the hippocampus is a mosaic structure evolving in line with social pressures, where certain subsections evolve in line with spatial ability too.
Collapse
Affiliation(s)
- Orlin S Todorov
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Vera Weisbecker
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg, 3080 Tervuren, Belgium.,Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium
| | - Karl Zilles
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), Jülich, Germany
| | | |
Collapse
|
5
|
Bullmann T, Feneberg E, Kretzschmann TP, Ogunlade V, Holzer M, Arendt T. Hibernation Impairs Odor Discrimination - Implications for Alzheimer's Disease. Front Neuroanat 2019; 13:69. [PMID: 31379517 PMCID: PMC6646461 DOI: 10.3389/fnana.2019.00069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
Abstract
Reversible formation of PHF-like phosphorylated tau, an early feature of Alzheimer's disease (AD) was previously shown to occur in torpor during hibernation in the Golden hamster (Syrian hamster, Mesocricetus auratus). Here, we tackled the question to what extent hibernating Golden hamsters can serve as a model for the early stage of AD. During early AD, anosmia, the loss of olfactory function, is a common and typical feature. We, thus, investigated tau phosphorylation, synaptic plasticity and behavioral physiology of the olfactory system during hibernation. Tau was phosphorylated on several AD-relevant epitopes, and distribution of PHF-like phosphorylated tau in the olfactory bulb was quite similar to what is seen in AD. Tau phosphorylation was not associated with a destabilization of microtubules and did not lead to fibril formation. Previously, we observed a transient spine reduction in pyramidal cells in the hippocampus, which is correlated with the distribution of phosphorylated tau. Here we show that granule cells in the olfactory bulb are devoid of phosphorylated tau and maintain their spines number during torpor. No reduction of synaptic proteins was observed. However, hibernation did impair the recall performance in a two-odor discrimination task. We conclude that hibernation is associated with a specific olfactory memory deficit, which might not be attributed to the formation of PHF-like phosphorylated tau within the olfactory bulb. We discuss a possible involvement of modulatory input provided by cholinergic neurons in the basal forebrain, which are affected by hibernation.
Collapse
Affiliation(s)
- Torsten Bullmann
- Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Emily Feneberg
- Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Tanja Petra Kretzschmann
- Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Vera Ogunlade
- Department of Neuropathology, University of Leipzig, Leipzig, Germany
| | - Max Holzer
- Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Thomas Arendt
- Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Proulx MJ, Todorov OS, Taylor Aiken A, de Sousa AA. Where am I? Who am I? The Relation Between Spatial Cognition, Social Cognition and Individual Differences in the Built Environment. Front Psychol 2016; 7:64. [PMID: 26903893 PMCID: PMC4749931 DOI: 10.3389/fpsyg.2016.00064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/12/2016] [Indexed: 11/13/2022] Open
Abstract
Knowing who we are, and where we are, are two fundamental aspects of our physical and mental experience. Although the domains of spatial and social cognition are often studied independently, a few recent areas of scholarship have explored the interactions of place and self. This fits in with increasing evidence for embodied theories of cognition, where mental processes are grounded in action and perception. Who we are might be integrated with where we are, and impact how we move through space. Individuals vary in personality, navigational strategies, and numerous cognitive and social competencies. Here we review the relation between social and spatial spheres of existence in the realms of philosophical considerations, neural and psychological representations, and evolutionary context, and how we might use the built environment to suit who we are, or how it creates who we are. In particular we investigate how two spatial reference frames, egocentric and allocentric, might transcend into the social realm. We then speculate on how environments may interact with spatial cognition. Finally, we suggest how a framework encompassing spatial and social cognition might be taken in consideration by architects and urban planners.
Collapse
Affiliation(s)
- Michael J Proulx
- Crossmodal Cognition Laboratory, Department of Psychology, University of Bath Bath, UK
| | - Orlin S Todorov
- European Network for Brain Evolution Research The Hague, Netherlands
| | | | | |
Collapse
|
7
|
Sanchez-Arias JC, Wicki-Stordeur LE, Swayne LA. Perspectives on the role of Pannexin 1 in neural precursor cell biology. Neural Regen Res 2016; 11:1540-1544. [PMID: 27904473 PMCID: PMC5116821 DOI: 10.4103/1673-5374.193221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We recently reported that targeted deletion of Pannexin 1 in neural precursor cells of the ventricular zone impairs the maintenance of these cells in healthy and stroke-injured brain. Here we frame this exciting new finding in the context of our previous studies on Pannexin 1 in neural precursors as well as the close relationship between Pannexin 1 and purinergic receptors established by other groups. Moreover, we identify important gaps in our understanding of Pannexin 1 in neural precursor cell biology in terms of the underlying molecular mechanisms and functional/behavioural outcomes.
Collapse
Affiliation(s)
- Juan C Sanchez-Arias
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leigh E Wicki-Stordeur
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function. J Neurosci 2015; 35:7833-49. [PMID: 25995470 DOI: 10.1523/jneurosci.3745-14.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury.
Collapse
|
9
|
Yanovsky Y, Ciatipis M, Draguhn A, Tort AB, Brankačk J. Slow oscillations in the mouse hippocampus entrained by nasal respiration. J Neurosci 2014; 34:5949-64. [PMID: 24760854 PMCID: PMC6608283 DOI: 10.1523/jneurosci.5287-13.2014] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 11/21/2022] Open
Abstract
Different types of network oscillations occur in different behavioral, cognitive, or vigilance states. The rodent hippocampus expresses prominent θ oscillations at frequencies between 4 and 12 Hz, which are superimposed by phase-coupled γ oscillations (30-100 Hz). These patterns entrain multineuronal activity over large distances and have been implicated in sensory information processing and memory formation. Here we report a new type of oscillation at near-θ frequencies (2-4 Hz) in the hippocampus of urethane-anesthetized mice. The rhythm is highly coherent with nasal respiration and with rhythmic field potentials in the olfactory bulb: hence, we called it hippocampal respiration-induced oscillations. Despite the similarity in frequency range, several features distinguish this pattern from locally generated θ oscillations: hippocampal respiration-induced oscillations have a unique laminar amplitude profile, are resistant to atropine, couple differently to γ oscillations, and are abolished when nasal airflow is bypassed by tracheotomy. Hippocampal neurons are entrained by both the respiration-induced rhythm and concurrent θ oscillations, suggesting a direct interaction between endogenous activity in the hippocampus and nasal respiratory inputs. Our results demonstrate that nasal respiration strongly modulates hippocampal network activity in mice, providing a long-range synchronizing signal between olfactory and hippocampal networks.
Collapse
Affiliation(s)
- Yevgenij Yanovsky
- Institute for Physiology and Pathophysiology, University Heidelberg, 69120 Heidelberg, Germany
| | - Mareva Ciatipis
- Spinal Cord Injury Center, Heidelberg University Hospital, 69118 Heidelberg, Germany, and
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, University Heidelberg, 69120 Heidelberg, Germany
| | - Adriano B.L. Tort
- Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Rio Grande do Norte, Brazil
| | - Jurij Brankačk
- Institute for Physiology and Pathophysiology, University Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Pan YW, Kuo CT, Storm DR, Xia Z. Inducible and targeted deletion of the ERK5 MAP kinase in adult neurogenic regions impairs adult neurogenesis in the olfactory bulb and several forms of olfactory behavior. PLoS One 2012; 7:e49622. [PMID: 23185386 PMCID: PMC3504159 DOI: 10.1371/journal.pone.0049622] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/11/2012] [Indexed: 01/02/2023] Open
Abstract
Although adult-born neurons in the subventricular zone (SVZ) and olfactory bulb (OB) have been extensively characterized at the cellular level, their functional impact on olfactory behavior is still highly controversial with many conflicting results reported in the literature. Furthermore, signaling mechanisms regulating adult SVZ/OB neurogenesis are not well defined. Here we report that inducible and targeted deletion of erk5, a MAP kinase selectively expressed in the adult neurogenic regions of the adult brain, impairs adult neurogenesis in the SVZ and OB of transgenic mice. Although erk5 deletion had no effect on olfactory discrimination among discrete odorants in the habituation/dishabituation assay, it reduced short-term olfactory memory as well as detection sensitivity to odorants and pheromones including those evoking aggression and fear. Furthermore, these mice show impaired acquisition of odor-cued associative olfactory learning, a novel phenotype that had not been previously linked to adult neurogenesis. These data suggest that ERK5 MAP kinase is a critical kinase signaling pathway regulating adult neurogenesis in the SVZ/OB, and provide strong evidence supporting a functional role for adult neurogenesis in several distinct forms of olfactory behavior.
Collapse
Affiliation(s)
- Yung-Wei Pan
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
| | - Chay T. Kuo
- Departments of Cell Biology and Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Daniel R. Storm
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Zhengui Xia
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
11
|
Rey NL, Jardanhazi-Kurutz D, Terwel D, Kummer MP, Jourdan F, Didier A, Heneka MT. Locus coeruleus degeneration exacerbates olfactory deficits in APP/PS1 transgenic mice. Neurobiol Aging 2012; 33:426.e1-11. [DOI: 10.1016/j.neurobiolaging.2010.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/27/2010] [Accepted: 10/09/2010] [Indexed: 12/31/2022]
|
12
|
Behavioral and cellular markers of olfactory aging and their response to enrichment. Neurobiol Aging 2011; 33:626.e9-626.e23. [PMID: 21601953 DOI: 10.1016/j.neurobiolaging.2011.03.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 03/30/2011] [Indexed: 11/21/2022]
Abstract
Aging of olfactory function (discrimination and short-term memory) was studied in 2, 10, and 23-month-old mice. We also addressed the issue of the responsiveness of the aging system to olfactory experience-dependent plasticity by submitting mice of different ages to an enrichment paradigm, and assessed neurogenesis in the olfactory bulb and the status of the noradrenergic system, 2 effectors of enrichment. Discrimination ability and its response to enrichment were essentially preserved with aging. In contrast, memory and its improvement by enrichment were altered at 10 and 23 months. Regarding neurogenesis, we found less proliferation of progenitors at 10 months and then lower neuronal differentiation and survival at 23 months. Furthermore, enrichment did not improve neurogenesis beyond the age of 2 months. Noradrenergic markers and their response to enrichment were altered at 23 months in line with memory performance. Aging thus differentially affected olfactory discrimination and memory abilities and their responsiveness to enrichment. Bulbar neurogenesis was an early target of aging whose decline could contribute to age-dependent memory impairments.
Collapse
|
13
|
Kealy J, Commins S. The rat perirhinal cortex: A review of anatomy, physiology, plasticity, and function. Prog Neurobiol 2011; 93:522-48. [DOI: 10.1016/j.pneurobio.2011.03.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 01/28/2011] [Accepted: 03/10/2011] [Indexed: 11/26/2022]
|
14
|
Goonawardena AV, Robinson L, Riedel G, Hampson RE. Recruitment of hippocampal neurons to encode behavioral events in the rat: alterations in cognitive demand and cannabinoid exposure. Hippocampus 2010; 20:1083-94. [PMID: 19771586 PMCID: PMC2891278 DOI: 10.1002/hipo.20706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Successful performance by rats of a delayed-nonmatch-to-sample (DNMS) task is hippocampal dependent. We have shown that neurons in hippocampus differentially encode task-relevant events. These responses are critical for correct DNMS performance and are diminished by exogenous cannabinoids. We therefore reasoned that hippocampal neural correlates of behavior are likely shaped during learning; however, to date, no work has examined these correlates during DNMS acquisition training. Consequently, the present study assessed the emergence of hippocampal neural encoding when (i) cognitive task demands were increased through prolongation of delay intervals between sample and nonmatch phase and (ii) when animals are under cannabinoid treatment and performance is compromised. Adult, male Long-Evans rats were trained to perform the DNMS task without delay and then implanted with multielectrode recording arrays directed to CA3 and CA1 subfields of the hippocampus. Following recovery, single units were isolated and animals divided into two treatment groups: vehicle or WIN 55,212-2 (WIN-2, 0.35 mg/kg). Ensemble firing was monitored during retraining in DNMS task at 0 s, and subsequently delay intervals were progressively increased to 1-10 s, 11-20 s, and 21-30 s when animals met criterion (80% correct) at each respective interval. Hippocampal CA3 and CA1 principal cells were isolated and recorded throughout treatment. Extension of the delay led to an increase in the number of task-correlated neurons in controls. This recruitment of novel cells was reduced/prevented in the presence of WIN-2 and was paralleled by impairment in acquisition learning at longer delay intervals. Moreover, WIN-2 suppressed hippocampal ensemble firing during the sample (encoding) but not nonmatch phase of the DNMS task across all delays. These cannabinoid-induced alterations in hippocampal neuronal activity may explain the observed deficits in DNMS performance.
Collapse
Affiliation(s)
- Anushka V Goonawardena
- Department of Physiology and Pharmacology, Wake Forest University Baptist Medical Center, Winston-Salem North Carolina, United States
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lianne Robinson
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gernot Riedel
- Department of Physiology and Pharmacology, Wake Forest University Baptist Medical Center, Winston-Salem North Carolina, United States
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Robert E Hampson
- Department of Physiology and Pharmacology, Wake Forest University Baptist Medical Center, Winston-Salem North Carolina, United States
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
15
|
Sultan S, Mandairon N, Kermen F, Garcia S, Sacquet J, Didier A. Learning-dependent neurogenesis in the olfactory bulb determines long-term olfactory memory. FASEB J 2010; 24:2355-63. [PMID: 20215526 DOI: 10.1096/fj.09-151456] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inhibitory interneurons of the olfactory bulb are subjected to permanent adult neurogenesis. Their number is modulated by learning, suggesting that they could play a role in plastic changes of the bulbar network associated with olfactory memory. Adult male C57BL/6 mice were trained in an associative olfactory task, and we analyzed long-term retention of the task 5, 30, and 90 d post-training. In parallel, we assessed the fate of these newborn cells, mapped their distribution in the olfactory bulb and measured their functional implication using the immediate early gene Zif268. In a second set of experiments, we pharmacologically modulated glutamatergic transmission and using the same behavioral task assessed the consequences on memory retention and neurogenesis. Finally, by local infusion of an antimitotic drug, we selectively blocked neurogenesis during acquisition of the task and looked at the effects on memory retention. First we demonstrated that retrieval of an associative olfactory task recruits the newborn neurons in odor-specific areas of the olfactory bulb selected to survive during acquisition of the task and that it does this in a manner that depends on the strength of learning. We then demonstrated that acquisition is not dependent on neurogenesis if long-term retention of the task is abolished by blocking neurogenesis. Adult-born neurons are thus involved in changes in the neural representation of an odor; this underlies long-term olfactory memory as the strength of learning is linked to the duration of this memory. Neurogenesis thus plays a crucial role in long-term olfactory memory.
Collapse
Affiliation(s)
- S Sultan
- Université Lyon1, Université de Lyon, F-69007 Lyon, France
| | | | | | | | | | | |
Collapse
|
16
|
Levita L, Muzzio IA. Role of the hippocampus in goal-oriented tasks requiring retrieval of spatial versus non-spatial information. Neurobiol Learn Mem 2010; 93:581-8. [PMID: 20206279 DOI: 10.1016/j.nlm.2010.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 02/25/2010] [Accepted: 02/28/2010] [Indexed: 11/28/2022]
Abstract
The role of the hippocampus in non-spatial memory has been issue of some controversy. To investigate the nature of dorsal hippocampus engagement in spatial and non-spatial memory we performed discrete excitotoxic lesions of this region before mice (C57/BL6) were trained in one of two tasks that required the animals to retrieve a hidden food reward. In the visuospatial task animals had to remember a particular spatial location, independent of odor cues. In contrast, in a non-spatial olfactory task animals had to remember a particular odor, independent of spatial location. The mice were trained in one of these tasks over a period of three days. We found that lesions restricted to the dorsal hippocampus affected performance only in the spatial task. In contrast, lesions that also encompassed a larger portion of the ventral hippocampus caused a moderate deficit in the olfactory task. These results are consistent with the role of the dorsal hippocampus in long-term spatial episodic memory, and support the involvement of larger portions of the hippocampus on the encoding of non-spatial olfactory representations.
Collapse
Affiliation(s)
- Liat Levita
- Department of Neuroscience, Columbia University, College of Physicians and Surgeons, Howard Hughes Medical Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | | |
Collapse
|
17
|
Shapiro LA, Ng K, Zhou QY, Ribak CE. Subventricular zone-derived, newly generated neurons populate several olfactory and limbic forebrain regions. Epilepsy Behav 2009; 14 Suppl 1:74-80. [PMID: 18849007 PMCID: PMC2677571 DOI: 10.1016/j.yebeh.2008.09.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/06/2008] [Accepted: 09/14/2008] [Indexed: 01/19/2023]
Abstract
Neurogenesis persists in several regions of the adult mammalian brain. Although the hippocampus and olfactory bulb are most commonly studied in the context of adult neurogenesis, there is an increasing body of evidence in support of neurogenesis occurring outside of these two regions. The current study expands on previous data by showing newborn neurons with a mature phenotype are located in several olfactory and limbic structures outside of the hippocampus and olfactory bulb, where we previously described doublecortin/bromodeoxyuridine immature neurons. Notably, newborn neurons with a mature neuronal phenotype are found in the olfactory tubercles, anterior olfactory nuclei, tenia tecta, islands of Calleja, amygdala, and lateral entorhinal cortex. The appearance of newborn neurons with a mature phenotype in these regions suggests that these structures are destinations, and that newborn neurons are not simply passing through these structures. In light of the increasing body of evidence for neurogenesis in these and other olfactory, limbic, and striatal structures, we hypothesize that brain regions displaying adult neurogenesis are functionally linked.
Collapse
Affiliation(s)
- Lee A. Shapiro
- Dept. of Surgery, Texas A&M University College of Medicine, Dept. of Neurosurgery, Scott and White Hospital, and the Olin E. Teague Veterans’ Center
| | - Kwan Ng
- Dept. of Pharmacology, University of California, School of Medicine, Irvine, CA
| | - Qun-Yong Zhou
- Dept. of Pharmacology, University of California, School of Medicine, Irvine, CA
| | - Charles E. Ribak
- Dept. of Anatomy and Neurobiology, University of California, School of Medicine, Irvine, CA
| |
Collapse
|
18
|
Allen PA, Kaut KP, Lord RR. Chapter 1.8 Emotion and episodic memory. HANDBOOK OF EPISODIC MEMORY 2008. [DOI: 10.1016/s1569-7339(08)00208-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
19
|
Dardou D, Datiche F, Cattarelli M. Does taste or odor activate the same brain networks after retrieval of taste potentiated odor aversion? Neurobiol Learn Mem 2007; 88:186-97. [PMID: 17531515 DOI: 10.1016/j.nlm.2007.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 04/04/2007] [Accepted: 04/04/2007] [Indexed: 11/20/2022]
Abstract
When simultaneous presentation of odor and taste cues precedes illness, rats acquire robust aversion to both conditioned stimuli. Such a phenomenon referred to as taste-potentiated odor aversion (TPOA) requires information processing from two sensory modalities. Whether similar or different brain networks are activated when TPOA memory is retrieved by either the odor or the taste presentation remains an unsolved question. By means of Fos mapping, we investigated the neuronal substrate underlying TPOA retrieval elicited by either the odor or the taste conditioned stimulus. Whatever the sensory modality used to reactivate TPOA memory, a significant change in Fos expression was observed in the hippocampus, the basolateral nucleus of amygdala and the medial and the orbito-frontal cortices. Moreover, only the odor presentation elicited a significantly higher Fos immunoreactivity in the piriform cortex, the entorhinal cortex and the insular cortex. Lastly, according to the stimulus tested to induce TPOA retrieval, the BLA was differentially activated and a higher Fos expression was induced by the odor than by the taste in this nucleus. The present study indicates that even if they share some brain regions, the cerebral patterns induced by either the odor or the taste are different. Data are discussed in view of the relevance of each conditioned stimulus to reactivate TPOA memory and of the involvement of the different labeled brain areas in information processing and TPOA retrieval.
Collapse
Affiliation(s)
- David Dardou
- CESG-CNRS UMR 5170, 15 rue H. Picardet, 21000 Dijon, France.
| | | | | |
Collapse
|
20
|
Etkin A, Alarcón JM, Weisberg SP, Touzani K, Huang YY, Nordheim A, Kandel ER. A Role in Learning for SRF: Deletion in the Adult Forebrain Disrupts LTD and the Formation of an Immediate Memory of a Novel Context. Neuron 2006; 50:127-43. [PMID: 16600861 DOI: 10.1016/j.neuron.2006.03.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 12/13/2005] [Accepted: 02/16/2006] [Indexed: 11/17/2022]
Abstract
Whereas significant insight exists as to how LTP-related changes can contribute to the formation of long-term memory, little is known about the role of hippocampal LTD-like changes in learning and memory storage. We describe a mouse lacking the transcription factor SRF in the adult forebrain. This mouse could not acquire a hippocampus-based immediate memory for a novel context even across a few minute timespan, which led to a profound but selective deficit in explicit spatial memory. These animals were also impaired in the induction of LTD, including LTD triggered by a cholinergic agonist. Moreover, genes regulating two processes essential for LTD-calcium release from intracellular stores and phosphatase activation-were abnormally expressed in knockouts. These findings suggest that for the hippocampus to form associative spatial memories through LTP-like processes, it must first undergo learning of the context per se through exploration and the learning of familiarity, which requires LTD-like processes.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Behavior, Animal
- Blotting, Northern/methods
- Carbachol/pharmacology
- Cholinergic Agonists/pharmacology
- Clathrin Heavy Chains/metabolism
- Discrimination, Psychological/physiology
- Dose-Response Relationship, Radiation
- Early Growth Response Protein 1/metabolism
- Electric Stimulation/methods
- Enzyme Inhibitors/pharmacology
- Exploratory Behavior/physiology
- Gene Expression/genetics
- Gene Expression Regulation, Developmental/physiology
- Habituation, Psychophysiologic/physiology
- Hippocampus/metabolism
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Indoles/pharmacology
- Learning/physiology
- Long-Term Synaptic Depression/genetics
- Long-Term Synaptic Depression/physiology
- Maze Learning/physiology
- Memory, Short-Term/physiology
- Mice
- Mice, Knockout
- Models, Neurological
- Olfactory Bulb/physiology
- Prosencephalon/physiology
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Serum Response Factor/deficiency
- Serum Response Factor/physiology
- Time Factors
Collapse
Affiliation(s)
- Amit Etkin
- Center for Neurobiology and Behavior, Columbia University Medical Center, 1051 Riverside Drive, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Dardou D, Datiche F, Cattarelli M. Fos and Egr1 expression in the rat brain in response to olfactory cue after taste-potentiated odor aversion retrieval. Learn Mem 2006; 13:150-60. [PMID: 16547160 PMCID: PMC1409841 DOI: 10.1101/lm.148706] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 12/08/2005] [Indexed: 11/25/2022]
Abstract
When an odor is paired with a delayed illness, rats acquire a relatively weak odor aversion. In contrast, rats develop a strong aversion to an olfactory cue paired with delayed illness if it is presented simultaneously with a gustatory cue. Such a conditioning effect has been referred to as taste-potentiated odor aversion learning (TPOA). TPOA is an interesting model for studying neural mechanisms of plasticity because of its robustness and rapid acquisition. However, the neural substrate involved in TPOA retrieval has not been well characterized. To address this question, we used immunocytochemical detection of inducible transcription factors encoded by the immediate-early genes Fos and Egr1. Thirsty male rats were conditioned to TPOA learning, and they were submitted to retrieval in the presence of the learned odor 3 d later. Significant increases in both Fos and Egr1 expressions were observed in basolateral amygdala, insular cortex, and hippocampus in aversive rats in comparison with the all the control groups. The pattern of neuronal activity seemed unlikely to be related to the sole LiCl injection. Lastly, opposite patterns of Fos and Egr1 were noted in the entorhinal cortex and the central nucleus of amygdala, suggesting a differential involvement of these markers in retrieval of TPOA.
Collapse
Affiliation(s)
- David Dardou
- Centre Européen des Sciences du Goût, Centre National de la Recherche Scientifique (CESG-CNRS), UMR 5170, 21000 Dijon, France.
| | | | | |
Collapse
|
22
|
Sánchez-Andrade G, James BM, Kendrick KM. Neural encoding of olfactory recognition memory. J Reprod Dev 2006; 51:547-58. [PMID: 16284449 DOI: 10.1262/jrd.17031] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our work with both sheep and mouse models has revealed many of the neural substrates and signalling pathways involved in olfactory recognition memory in the main olfactory system. A distributed neural system is required for initial memory formation and its short-term retention-the olfactory bulb, piriform and entorhinal cortices and hippocampus. Following memory consolidation, after 8 h or so, only the olfactory bulb and piriform cortex appear to be important for effective recall. Similarly, whereas the glutamate-NMDA/AMPA receptor-nitric oxide (NO)-cyclic GMP signalling pathway is important for memory formation it is not involved in recall post-consolidation. Here, within the olfactory bulb, up-regulation of class 1 metabotropic glutamate receptors appears to maintain the enhanced sensitivity at the mitral to granule cell synapses required for effective memory recall. Recently we have investigated whether fluctuating sex hormone levels during the oestrous cycle modulate olfactory recognition memory and the different neural substrates and signalling pathways involved. These studies have used two robust models of social olfactory memory in the mouse which either involve social or non social odours (habituation-dishabituation and social transmission of food preference tasks). In both cases significant improvement of learning retention occurs when original learning takes place during the proestrus phase of the ovarian cycle. This is probably the result of oestrogen changes at this time since transgenic mice lacking functional expression of oestrogen receptors (ERalpha and ERbeta, the two main oestrogen receptor sub-types) have shown problems in social recognition. Therefore, oestrogen appears to act at the level of the olfactory bulb by modulating both noradrenaline and the glutamate/NO signalling pathway.
Collapse
|
23
|
Abstract
This study investigated the ability of animals to learn both reference memory and delayed matching-to-place variants of the watermaze after large lesions of the hippocampus that deliberately spared only small remnants of the structure. Groups were created that had differing blocks of residual tissue in the septal pole of the hippocampus (15% or 30% of total volume), located either unilaterally (30 or 50% on one side, 0% on the other) or bilaterally (30 + 30%). These groups were capable of learning the reference memory task, as indexed by normal spatially focused searching in a probe trial, but their rate of learning was slower than that of sham-lesioned rats. An impairment in the rate of learning was also seen in the delayed match-to-place task, where one-trial memory was observed only at the shortest (5 s) intertrial interval in the lesioned groups with the largest sparing. In both tasks performance was proportional to the volume of hippocampus spared and independent of whether this was unilaterally or bilaterally located. The findings are compatible with distributed processing accounts of hippocampal memory storage.
Collapse
Affiliation(s)
- Livia de Hoz
- Division of Neuroscience, The University of Edinburgh, Edinburgh, Scotland, UK.
| | | | | |
Collapse
|
24
|
Shimshek DR, Bus T, Kim J, Mihaljevic A, Mack V, Seeburg PH, Sprengel R, Schaefer AT. Enhanced odor discrimination and impaired olfactory memory by spatially controlled switch of AMPA receptors. PLoS Biol 2005; 3:e354. [PMID: 16216087 PMCID: PMC1255741 DOI: 10.1371/journal.pbio.0030354] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 08/16/2005] [Indexed: 11/18/2022] Open
Abstract
Genetic perturbations of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are widely used to dissect molecular mechanisms of sensory coding, learning, and memory. In this study, we investigated the role of Ca2+-permeable AMPARs in olfactory behavior. AMPAR modification was obtained by depletion of the GluR-B subunit or expression of unedited GluR-B(Q), both leading to increased Ca2+ permeability of AMPARs. Mice with this functional AMPAR switch, specifically in forebrain, showed enhanced olfactory discrimination and more rapid learning in a go/no-go operant conditioning task. Olfactory memory, however, was dramatically impaired. GluR-B depletion in forebrain was ectopically variable ("mosaic") among individuals and strongly correlated with decreased olfactory memory in hippocampus and cortex. Accordingly, memory was rescued by transgenic GluR-B expression restricted to piriform cortex and hippocampus, while enhanced odor discrimination was independent of both GluR-B variability and transgenic GluR-B expression. Thus, correlated differences in behavior and levels of GluR-B expression allowed a mechanistic and spatial dissection of olfactory learning, discrimination, and memory capabilities.
Collapse
Affiliation(s)
- Derya R Shimshek
- 1Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | - Thorsten Bus
- 1Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | - Jinhyun Kim
- 1Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | - Andre Mihaljevic
- 1Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | - Volker Mack
- 1Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | - Peter H Seeburg
- 1Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | - Rolf Sprengel
- 1Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | | |
Collapse
|
25
|
Mayeaux DJ, Johnston RE. Discrimination of social odors and their locations: role of lateral entorhinal area. Physiol Behav 2004; 82:653-62. [PMID: 15327913 DOI: 10.1016/j.physbeh.2004.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Revised: 05/21/2004] [Accepted: 06/01/2004] [Indexed: 10/26/2022]
Abstract
Discrimination of individual conspecifics by their odors has been reported for many mammalian species, but little information is available on the brain mechanisms underlying such discrimination. A previous study reported that large parahippocampal lesions, centered on entorhinal cortex but extending into adjacent areas of the brain, eliminated female hamsters' ability to discriminate the flank gland odors of different individuals, as tested with habituation-dishabituation methods. The current study examined the effects of lesions restricted to the lateral entorhinal area on such discriminations. Female hamsters were tested in several types of habituation procedure that differed across a sequence of trials in the locations of familiar and novel social odors. Discrimination of two individuals' odors depended on the sequences of locations of the odors, indicating that odor identity and location were simultaneously salient to female hamsters. Lesions of lateral entorhinal area interfered with this spatial-olfactory discrimination. When confounding spatial cues were eliminated, hamsters did discriminate between novel and familiar odors, and lesions in the entorhinal area did not eliminate this ability. Thus, although the lateral entorhinal area is not necessary for individual odor discrimination, it is involved in processing odor-place combinations.
Collapse
Affiliation(s)
- Darryl J Mayeaux
- Department of Psychology, Cornell University, Uris Hall, Ithaca, NY 14853, USA.
| | | |
Collapse
|