1
|
Willford JA, Kaufman JM. Through a teratological lens: A narrative review of exposure to stress and drugs of abuse during pregnancy on neurodevelopment. Neurotoxicol Teratol 2024; 105:107384. [PMID: 39187031 DOI: 10.1016/j.ntt.2024.107384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Teratological research shows that both prenatal stress and prenatal substance exposure have a significant impact on neurodevelopmental outcomes in children. Using human research, the purpose of this narrative review is to explore the degree to which these exposures may represent complex prenatal and postnatal risks for the development of cognition and behavior in children. An understanding of the HPA axis and its function during pregnancy as well as the types and operationalization of prenatal stress provide a context for understanding the direct and indirect mechanisms by which prenatal stress affects brain and behavior development. In turn, prenatal substance exposure studies are evaluated for their importance in understanding variables that indicate a potential interaction with prenatal stress including reactivity to novelty, arousal, and stress reactivity during early childhood. The similarities and differences between prenatal stress exposure and prenatal substance exposure on neurodevelopmental outcomes including arousal and emotion regulation, cognition, behavior, stress reactivity, and risk for psychopathology are summarized. Further considerations for teratological studies of prenatal stress and/or substance exposure include identifying and addressing methodological challenges, embracing the complexity of pre-and postnatal environments in the research, and the importance of incorporating parenting and resilience into future studies.
Collapse
Affiliation(s)
- Jennifer A Willford
- Slippery Rock University, Department of Psychology, 1 Morrow Way, Slippery Rock, PA 16057, United States of America.
| | - Jesse M Kaufman
- Slippery Rock University, Department of Psychology, 1 Morrow Way, Slippery Rock, PA 16057, United States of America
| |
Collapse
|
2
|
Entringer S, Scholaske L, Kurt M, Duman EA, Adam EK, Razum O, Spallek J. Diurnal cortisol variation during pregnancy in Turkish origin and non-migrant women in a German birth cohort study. J Psychosom Res 2022; 162:111020. [PMID: 36081181 DOI: 10.1016/j.jpsychores.2022.111020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Immigrants from Turkey experience health disadvantages relative to non-immigrant populations in Germany that are manifest from the earliest stages of the lifespan onwards and are perpetuated across generations. Chronic stress and perturbations of stress-responsive physiological systems, including the hypothalamus-pituitary-adrenal (HPA)-axis, are believed to in part mediate this relationship. Cortisol plays an important role in the association between maternal stress during pregnancy and many pregnancy-, birth- and offspring-related outcomes. We therefore examined whether maternal migrant background is associated with diurnal cortisol variation during pregnancy. METHODS 109 pregnant women (incl. n = 32 Turkish origin women) that participated in a multi-site prospective cohort study in Germany collected saliva samples across the day on two consecutive days around 24 and 32 weeks gestation. Hierarchical linear models were applied to quantify associations between migrant background and diurnal cortisol variation across pregnancy. RESULTS Women of Turkish origin exhibited a significantly lower cortisol awakening response (CAR) and a flatter diurnal cortisol slope (DCS) compared to non-migrant women after adjusting for household income. These relationships between migrant status and diurnal cortisol variation were mainly driven by 2nd generation migrants. DISCUSSION A potential HPA axis dysregulation of Turkish-origin pregnant women may contribute to the intergenerational transmission of health disadvantages in this group.
Collapse
Affiliation(s)
- Sonja Entringer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, 10117 Berlin, Germany; Department of Pediatrics and Development, Health and Disease Research Program, University of California, Irvine, USA.
| | - Laura Scholaske
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, 10117 Berlin, Germany; German Center for Integration and Migration Research (DeZIM), Berlin, Germany.
| | - Medlin Kurt
- Department of Public Health, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Elif Aysimi Duman
- Department of Psychology, Bogazici University, Istanbul, Turkey; Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey.
| | - Emma K Adam
- School of Education and Social Policy and Institute for Policy Research, Northwestern University, USA.
| | - Oliver Razum
- Department of Epidemiology & International Public Health, School of Public Health, Bielefeld University, Bielefeld, Germany; Research Institute Social Cohesion (RISC), Bielefeld University, Bielefeld, Germany.
| | - Jacob Spallek
- Department of Public Health, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany.
| |
Collapse
|
3
|
Benedetti F, Amanzio M, Giovannelli F, Craigs-Brackhahn K, Arduino C, Shaibani A. Are Nocebo Effects in Adulthood Linked to Prenatal Maternal Cortisol Levels? CLINICAL NEUROPSYCHIATRY 2022; 19:298-306. [PMID: 36340278 PMCID: PMC9597651 DOI: 10.36131/cnfioritieditore20220505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objective Placebo-induced adverse events, or nocebo effects, occur when doctor-patient communication anticipates the onset of negative symptoms. They have been found to correlate with the anxiety-related activity of the hypothalamic-pituitary-adrenal system. Here we try to determine if prenatal hyperactivity of this system, as assessed through plasma cortisol, may influence nocebo effects in adulthood. Method We investigated the rate and magnitude of nocebo effects in 378 adults whose prenatal maternal plasma cortisol was measured during the first, second and third trimester of pregnancy. The healthy subjects underwent a nocebo oxygen challenge. This consisted of the inhalation of fake (placebo) oxygen and assessment of the following adverse events: headache, chest pain, abdominal pain, and cough. Plasma cortisol responses during the nocebo adverse events were also measured. Results 41 out of 46 (89.1%) subjects who reported 3 adverse events, and 37 out of 37 (100%) subjects who reported 4 adverse events had prenatal maternal cortisol above normal levels. By contrast, only 10 out of 143 (7%) subjects who reported 0 adverse events showed prenatal maternal cortisol above the normal range. Moreover, whereas subjects who reported 3 and 4 adverse events showed a significant increase in plasma cortisol following the nocebo challenge, subjects who reported 0 adverse events showed no changes. Conclusions These findings emphasize the importance of the doctor-patient communication in perceiving symptoms like pain, and suggest that those subjects with high prenatal maternal cortisol may be more sensitive to the effects of a negative communication in adulthood.
Collapse
Affiliation(s)
- Fabrizio Benedetti
- University of Turin Medical School, Neuroscience Dept, Corso Raffaello 30, Turin 10125, Italy, Medicine & Physiology of Hypoxia, Cableway Plaza, Plateau Rosà CH-3920, Switzerland,Corresponding Author Fabrizio Benedetti, Department of Neuroscience, University of Turin Medical School, Corso Raffaello 30, 10125 Turin, Italy. Phone +39 011 6708492 Fax +39 011 6708174 E-mail:
| | - Martina Amanzio
- Department of Psychology, University of Turin, Via Verdi 10, Turin 10124, Italy
| | - Fabio Giovannelli
- Department of Neuroscience, Psychology, Drug Research and Child’s Health, University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | | | - Claudia Arduino
- Medicine & Physiology of Hypoxia, Cableway Plaza, Plateau Rosà CH-3920, Switzerland
| | - Aziz Shaibani
- Nerve & Muscle Center of Texas, 6624 Fannin St # 1670, Houston, TX 77030, USA, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
4
|
Ayano G, Lin A, Dachew BA, Tait R, Betts K, Alati R. The impact of parental mental health problems on the educational outcomes of their offspring: Findings from the Raine Study. Aust N Z J Psychiatry 2022; 56:510-524. [PMID: 34227415 DOI: 10.1177/00048674211025633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES There is limited evidence on the impact of parental mental health problems on offspring's educational outcomes. We investigated the impact of maternal anxiety and depressive symptoms, as well as paternal emotional problems on the educational outcomes of their adolescent and young adult offspring. METHODS We used data from a longitudinal birth cohort recruited between 1989 and 1991 in Australia (the Raine Study). The Depression, Anxiety and Stress Scale was used to assess maternal depressive and anxiety symptoms, and a self-reported question was used to measure paternal mental health problems. Both were assessed when the offspring was aged 10 years. Outcomes included offspring's self-reported education attainment-not completing year 10 at age 17, not attending tertiary education at ages 17 and 22 and primary caregiver's reports of offspring's academic performance at age 17. RESULTS A total of 1033, 1307 and 1364 parent-offspring pairs were included in the final analysis exploring the association between parental mental health problems and offspring's academic performance at school, completing year 10 and attending tertiary education, respectively. After adjusting for potential confounders, the offspring of mothers with anxiety symptoms were 3.42 times more likely than the offspring of mothers without anxiety symptoms to have poor or below-average academic performance (odds ratio = 3.42; 95% confidence interval = [1.31, 8.92]) and more than 2 times more likely to not attend tertiary education (odds ratio = 2.55; 95% confidence interval = [1.10, 5.5.88]) and not to have completed year 10 (odds ratio = 2.13; 95% confidence interval = [1.04, 4.33]). We found no significant associations between maternal depressive symptoms or paternal emotional problems and offspring educational attainment. CONCLUSION Maternal anxiety symptoms, but not depression and paternal emotional problems, are associated with poor educational attainment and achievement in adolescent offspring. The findings highlight that efforts to improve the outcomes of offspring of mothers with anxiety could focus on educational attainment.
Collapse
Affiliation(s)
- Getinet Ayano
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Ashleigh Lin
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Berihun Assefa Dachew
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Robert Tait
- National Drug Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Kim Betts
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Rosa Alati
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,Institute of Social Science Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Prenatal earthquake stress exposure in different gestational trimesters is associated with methylation changes in the glucocorticoid receptor gene (NR3C1) and long-term working memory in adulthood. Transl Psychiatry 2022; 12:176. [PMID: 35487912 PMCID: PMC9054818 DOI: 10.1038/s41398-022-01945-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/21/2022] [Indexed: 11/08/2022] Open
Abstract
Prenatal stress exposure is thought to affect the long-term development of the foetal brain via the HPA axis and to change health outcomes in adulthood, including working memory (WM). The potential mechanism is that there is a critical period of brain development of the foetus, which is a result of selective adaptation to the external environment. The human glucocorticoid gene (NR3C1) is associated with memory and cognition. This study investigates the association between earthquake stress during pregnancy and CpG methylation of the NR3C1 exon 1F promoter and its influence on working memory in adulthood. DNA methylation analysis using bisulfite sequencing PCR was quantified in 176 subjects who were exposed or not exposed to intrauterine earthquake and were divided into three groups based on the pregnancy trimester. The Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) were used to assess working memory performance. The methylated NR3C1 exon 1F promoter of the prenatal earthquake exposure (PEE) group was significantly higher than that of the control group (CN). Analysis of subgroups indicated that the subjects in the second trimester of PEE group showed significantly higher methylation than those in the third trimester. Significantly low BVMT-R scores were detected in those who experienced prenatal earthquake in the second trimester of PEE group. Methylated CpG site 1 may play a critical role in contributing to lower BVMT-R scores in the second trimester in the PEE group, and may offer a potential epigenetic mechanism that links prenatal stress and long-term effects on working memory.
Collapse
|
6
|
Rowlands A, Juergensen EC, Prescivalli AP, Salvante KG, Nepomnaschy PA. Social and Biological Transgenerational Underpinnings of Adolescent Pregnancy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212152. [PMID: 34831907 PMCID: PMC8620033 DOI: 10.3390/ijerph182212152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
Adolescent pregnancy (occurring < age 20) is considered a public health problem that creates and perpetuates inequities, affecting not only women, but societies as a whole globally. The efficacy of current approaches to reduce its prevalence is limited. Most existing interventions focus on outcomes without identifying or addressing upstream social and biological causes. Current rhetoric revolves around the need to change girls' individual behaviours during adolescence and puberty. Yet, emerging evidence suggests risk for adolescent pregnancy may be influenced by exposures taking place much earlier during development, starting as early as gametogenesis. Furthermore, pregnancy risks are determined by complex interactions between socio-structural and ecological factors including housing and food security, family structure, and gender-based power dynamics. To explore these interactions, we merge three complimentary theoretical frameworks: "Eco-Social", "Life History" and "Developmental Origins of Health and Disease". We use our new lens to discuss social and biological determinants of two key developmental milestones associated with age at first birth: age at girls' first menstrual bleed (menarche) and age at first sexual intercourse (coitarche). Our review of the literature suggests that promoting stable and safe environments starting at conception (including improving economic and social equity, in addition to gender-based power dynamics) is paramount to effectively curbing adolescent pregnancy rates. Adolescent pregnancy exacerbates and perpetuates social inequities within and across generations. As such, reducing it should be considered a key priority for public health and social change agenda.
Collapse
Affiliation(s)
- Amanda Rowlands
- Maternal and Child Health Laboratory and Crawford Laboratory of Evolutionary Studies, Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Emma C Juergensen
- Maternal and Child Health Laboratory and Crawford Laboratory of Evolutionary Studies, Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Ana Paula Prescivalli
- Maternal and Child Health Laboratory and Crawford Laboratory of Evolutionary Studies, Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Katrina G Salvante
- Maternal and Child Health Laboratory and Crawford Laboratory of Evolutionary Studies, Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Pablo A Nepomnaschy
- Maternal and Child Health Laboratory and Crawford Laboratory of Evolutionary Studies, Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
7
|
Mattonet K, Nowack-Weyers N, Vogel V, Moser D, Tierling S, Kasper-Sonnenberg M, Wilhelm M, Scherer M, Walter J, Hengstler JG, Schölmerich A, Kumsta R. Prenatal exposure to endocrine disrupting chemicals is associated with altered DNA methylation in cord blood. Epigenetics 2021; 17:935-952. [PMID: 34529553 DOI: 10.1080/15592294.2021.1975917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prenatal exposure to endocrine disrupting chemicals can interfere with development, and has been associated with social-cognitive functioning and adverse health outcomes later in life. Exposure-associated changes of DNA methylation (DNAm) patterns have been suggested as a possible mediator of this relationship. This study investigated whether prenatal low-dose exposure to polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) is associated with altered DNAm patterns across the genome in a Western urban-industrial population. In 142 mother-infant pairs from the Duisburg Birth Cohort Study, PCBs and PCDD/Fs levels were quantified from maternal blood during late pregnancy and associated with DNAm levels in cord blood using the Illumina EPIC beadchip. The epigenome-wide association studies (EWAS) identified 32 significantly differentially methylated positions (DMPs) and eight differentially methylated regions (DMRs) associated with six congeners of PCB and PCDD in females or males (FDRs < 0.05). DMPs and DMRs mapped to genes involved in neurodevelopment, gene regulation, and immune functioning. Weighted gene correlation network analysis (WGCNA) showed 31 co-methylated modules (FDRs < 0.05) associated with one congener of PCDF levels in females. Results of both analytical strategies indicate that prenatal exposure to PCBs and PCDD/Fs is associated with altered DNAm of genes involved in neurodevelopment, gene expression and immune functioning. DNAm and gene expression levels of several of these genes were previously associated with EDC exposure in rodent models. Follow-up studies will clarify whether these epigenetic changes might contribute to the origin for adverse mental and health outcomes.
Collapse
Affiliation(s)
- Katharina Mattonet
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Germany
| | - Nikola Nowack-Weyers
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Germany.,Department of Developmental Psychology, Faculty of Psychology, Ruhr-University Bochum, Germany
| | - Vanessa Vogel
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Germany
| | - Dirk Moser
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Germany
| | - Sascha Tierling
- Department of Genetics/ Epigenetics, Saarland University, Saarbrücken, Germany
| | - Monika Kasper-Sonnenberg
- Department of Hygiene Social and Environmental Medicine, Faculty of Medicine, Ruhr-University Bochum, Germany
| | - Michael Wilhelm
- Department of Hygiene Social and Environmental Medicine, Faculty of Medicine, Ruhr-University Bochum, Germany
| | - Michael Scherer
- Department of Genetics/ Epigenetics, Saarland University, Saarbrücken, Germany.,Research Group Computational Biology, Max-Planck-Institute for Informatics, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics/ Epigenetics, Saarland University, Saarbrücken, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), Dortmund, Germany
| | - Axel Schölmerich
- Department of Developmental Psychology, Faculty of Psychology, Ruhr-University Bochum, Germany
| | - Robert Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Germany
| |
Collapse
|
8
|
Thompson SF, Klein MR, Ruberry EJ, Kiff CJ, Moran L, Zalewski M, Lengua LJ. Clarifying the unique effects of pre‐ and postnatal depression on pre‐schoolers' adjustment. INFANT AND CHILD DEVELOPMENT 2020. [DOI: 10.1002/icd.2202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Melanie R. Klein
- Department of Psychology University of Washington Seattle Washington USA
| | - Erika J. Ruberry
- Department of Psychology University of Washington Seattle Washington USA
| | - Cara J. Kiff
- Department of Psychiatry, UCLA Semel Institute for Neuroscience and Human Behavior Los Angeles, CA USA
| | - Lyndsey Moran
- Department of Psychiatry, McLean Hospital Belmont, MA USA
| | | | - Liliana J. Lengua
- Department of Psychology University of Washington Seattle Washington USA
| |
Collapse
|
9
|
Braun K, Bock J, Wainstock T, Matas E, Gaisler-Salomon I, Fegert J, Ziegenhain U, Segal M. Experience-induced transgenerational (re-)programming of neuronal structure and functions: Impact of stress prior and during pregnancy. Neurosci Biobehav Rev 2020; 117:281-296. [DOI: 10.1016/j.neubiorev.2017.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
|
10
|
Characterization of Gut Microbiota in Prenatal Cold Stress Offspring Rats by 16S rRNA Sequencing. Animals (Basel) 2020; 10:ani10091619. [PMID: 32927774 PMCID: PMC7552136 DOI: 10.3390/ani10091619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Prenatal stress, including prenatal cold stress has long-term effects on offspring’s physical and mental health. Our previous study showed a reduction of anxiety-like behavior in offspring rats suffered from prenatal cold stress. It is well-known that gut microbiota was involved in a variety of physiological activities, such as emotion, cognition, and behavior. However, information on the comparison between prenatal cold stress and gut microbiota in offspring is limited. The current study compared the gut microbiota composition of the prenatal cold stress and non-stress offspring rats. Cold stressed during gestation period showed to change the offspring gut microbiota composition, and Bacteroides and Lactobacillus were significantly increased in prenatal cold stress offspring rat guts. With the hope, cold stress-induced negative effects of animals can be prevented by microbiological interventions. Abstract Our previous study showed a reduction of anxiety-like behavior in offspring rats suffered from prenatal cold stress; whether this was related to changes in the offspring gut microbiota is unclear. To obtain the evidence for the role of the gut microbiota in prenatal cold stress offspring, 16S rRNA sequencing technology was used. Male and female offspring rat feces were collected from a room temperature group and a prenatal cold stress group (n ≥ 8) for microbial DNA extraction, followed by 16S rRNA sequencing. The results indicated that prenatal cold stress could change the offspring’s gut microbiota composition. Prenatal cold stress significantly upregulates Lactobacillus, Lactobacillus_gasseri, Bacteroides, and Bacteroides-acidifaciens in female offspring, whereas prenatal cold stress significantly reduced Lachnospiraceae and Prevotellaceae in male offspring. These data showed the characterization of gut microbiota in prenatal cold stress offspring rats, and these data suggest that microbiological intervention in the future can potentially prevent the negative effects caused by cold stress to animals.
Collapse
|
11
|
Reyes G, Vivanco-Carlevari A, Medina F, Manosalva C, de Gardelle V, Sackur J, Silva JR. Hydrocortisone decreases metacognitive efficiency independent of perceived stress. Sci Rep 2020; 10:14100. [PMID: 32839468 PMCID: PMC7445749 DOI: 10.1038/s41598-020-71061-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/04/2020] [Indexed: 11/09/2022] Open
Abstract
It is well established that acute stress produces negative effects on high level cognitive functions. However, these effects could be due to the physiological components of the stress response (among which cortisol secretion is prominent), to its psychological concomitants (the thoughts generated by the stressor) or to any combination of those. Our study shows for the first time that the typical cortisol response to stress is sufficient to impair metacognition, that is the ability to monitor one's own performance in a task. In a pharmacological protocol, we administered either 20 mg hydrocortisone or placebo to 46 male participants, and measured their subjective perception of stress, their performance in a perceptual task, and their metacognitive ability. We found that hydrocortisone selectively impaired metacognitive ability, without affecting task performance or creating a subjective state of stress. In other words, the single physiological response of stress produces a net effect on metacognition. These results inform our basic understanding of the physiological bases of metacognition. They are also relevant for applied or clinical research about situations involving stress, anxiety, depression, or simply cortisol use.
Collapse
Affiliation(s)
- Gabriel Reyes
- Facultad de Psicología, Universidad del Desarrollo (UDD), Av. La Plaza 700, Las Condes, Santiago, Chile
| | | | - Franco Medina
- Facultad de Psicología, Universidad del Desarrollo (UDD), Av. La Plaza 700, Las Condes, Santiago, Chile
| | - Carolina Manosalva
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile (UACh), Valdivia, Chile
| | | | - Jérôme Sackur
- Laboratoire de Sciences Cognitives Et Psycholinguistique (EHESS/CNRS/ENS), PSL Research University, École Normale Supérieure, 29 rue d'Ulm, 75005, Paris, France.
- École Polytechnique, Palaiseau, France.
| | - Jaime R Silva
- Facultad de Psicología, Universidad del Desarrollo (UDD), Av. La Plaza 700, Las Condes, Santiago, Chile.
- Clínica Alemana de Santiago, Santiago, Chile.
- Instituto Milenio para la Investigación en Depresión y Personalidad (MIDAP), Santiago, Chile.
| |
Collapse
|
12
|
Garcia-Flores V, Romero R, Furcron AE, Levenson D, Galaz J, Zou C, Hassan SS, Hsu CD, Olson D, Metz GAS, Gomez-Lopez N. Prenatal Maternal Stress Causes Preterm Birth and Affects Neonatal Adaptive Immunity in Mice. Front Immunol 2020; 11:254. [PMID: 32174914 PMCID: PMC7054386 DOI: 10.3389/fimmu.2020.00254] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Maternal stress is a well-established risk factor for preterm birth and has been associated with adverse neonatal outcomes in the first and subsequent generations, including increased susceptibility to disease and lasting immunological changes. However, a causal link between prenatal maternal stress and preterm birth, as well as compromised neonatal immunity, has yet to be established. To fill this gap in knowledge, we used a murine model of prenatal maternal stress across three generations and high-dimensional flow cytometry to evaluate neonatal adaptive immunity. We report that recurrent prenatal maternal stress induced preterm birth in the first and second filial generations and negatively impacted early neonatal growth. Strikingly, prenatal maternal stress induced a systematic reduction in T cells and B cells, the former including regulatory CD4+ T cells as well as IL-4- and IL-17A-producing T cells, in the second generation. Yet, neonatal adaptive immunity gained resilience against prenatal maternal stress by the third generation. We also show that the rate of prenatal maternal stress-induced preterm birth can be reduced upon cessation of stress, though neonatal growth impairments persisted. These findings provide evidence that prenatal maternal stress causes preterm birth and affects neonatal immunity across generations, adverse effects that can be ameliorated upon cessation.
Collapse
Affiliation(s)
- Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Detroit Medical Center, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL, United States
| | - Amy-Eunice Furcron
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dustyn Levenson
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Chengrui Zou
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Office of Women's Health, Integrative Biosciences Center, Wayne State University, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - David Olson
- Department of Obstetrics and Gynecology, Pediatrics, and Physiology, University of Alberta, Edmonton, AB, Canada
| | - Gerlinde A. S. Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
13
|
Thomson EM, Filiatreault A, Guénette J. Stress hormones as potential mediators of air pollutant effects on the brain: Rapid induction of glucocorticoid-responsive genes. ENVIRONMENTAL RESEARCH 2019; 178:108717. [PMID: 31520820 DOI: 10.1016/j.envres.2019.108717] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/20/2019] [Accepted: 09/01/2019] [Indexed: 05/27/2023]
Abstract
Air pollution is associated with adverse effects on brain health including cognitive decline, dementia, anxiety, depression, and suicide. While toxicological studies have demonstrated the potential for repeated or chronic pollutant exposure to lead to disease states, characterisation of initial biological responses to exposure is needed to better understand underlying mechanisms. The brain is highly sensitive to glucocorticoids (primarily cortisol in humans, corticosterone in rodents), stress hormones that play important roles in cognition and mental health. We tested whether glucocorticoids could be implicated in central nervous system (CNS) effects of pollutant exposure by examining glucocorticoid-dependent signaling across brain regions after exposure to the common pollutant ozone. Male Fischer-344 rats were exposed for 4 h to air or 0.8 ppm ozone ± metyrapone (50 mg/kg), a drug that blocks corticosterone synthesis (n = 5/group). Key glucocorticoid-responsive genes (serum- and glucocorticoid-inducible kinase, SGK; glucocorticoid-inducible leucine zipper, GILZ), and a gene responsive to both glucocorticoids and oxidative stress (metallothionein (MT)-1), were increased by ozone in all brain regions (olfactory bulb, frontal lobe, cortex, midbrain, hippocampus, cerebellum, brainstem), correlating with plasma corticosterone levels. Metyrapone prevented the increase in SGK and GILZ, and reduced but did not eliminate the effect on MT-1, suggesting glucocorticoid-dependent and -independent regulation. Administering exogenous corticosterone (10 mg/kg) to air-exposed rats reproduced the ozone effects, confirming specificity. The results demonstrate that early pollutant effects include stress hormone-dependent signaling. As both ozone and particulate matter activate the hypothalamic-pituitary-adrenal axis, and elevated glucocorticoids are implicated in brain pathologies, stress hormones could contribute to CNS impacts of air pollutants.
Collapse
Affiliation(s)
- Errol M Thomson
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, K1A 0K9, Canada.
| | - Alain Filiatreault
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, K1A 0K9, Canada.
| | - Josée Guénette
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, K1A 0K9, Canada.
| |
Collapse
|
14
|
Deuter CE, Wingenfeld K, Schultebraucks K, Otte C, Kuehl LK. Influence of glucocorticoid and mineralocorticoid receptor stimulation on task switching. Horm Behav 2019; 109:18-24. [PMID: 30684522 DOI: 10.1016/j.yhbeh.2019.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 01/08/2023]
Abstract
The influence of stress on executive functions has been demonstrated in numerous studies and is potentially mediated by the stress-induced cortisol release. Yet, the impact of cortisol on cognitive flexibility and task switching in particular remains equivocal. In this study, we investigated the influence of pharmacological glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) stimulation, two corticosteroid receptor types known to be responsible for cortisol effects on the brain. We conducted two experiments, each with 80 healthy participants (40 women and 40 men), and tested the effect of the unspecific MR/GR agonist hydrocortisone (Experiment I) and the more specific MR agonist fludrocortisone (Experiment II) on switch costs and task rule congruency in a bivalent, cued task switching paradigm. The results did not confirm our hypotheses; we found no significant effects of our manipulations on task switching capacity, although general switching and congruency effects were observed. We discuss the absence of MR/GR-mediated effects and propose alternative mechanisms that could explain stress induced effects on task switching.
Collapse
Affiliation(s)
- Christian E Deuter
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany.
| | - Katja Wingenfeld
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Katharina Schultebraucks
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany; New York University School of Medicine, Department of Psychiatry, New York, NY, USA
| | - Christian Otte
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Linn K Kuehl
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| |
Collapse
|
15
|
Children's stress regulation mediates the association between prenatal maternal mood and child executive functions for boys, but not girls. Dev Psychopathol 2018; 30:953-969. [PMID: 30068413 DOI: 10.1017/s095457941800041x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prenatal exposure to maternal mood disturbances shapes children's cognitive development reflected in the critical construct of executive functions (EFs). Little is known, however, about underlying mechanisms. By examining cortisol responses in both everyday and lab challenge settings, we tested whether the child/offspring hypothalamic-pituitary-adrenal axis mediates effects of prenatal maternal mood on child EFs at age 6. In 107 Canadian children born to women with a wide range of anxious and depressive symptoms during pregnancy, we found that in boys but not girls, depressed and/or anxious prenatal maternal mood is associated with heightened diurnal cortisol levels in everyday settings, as well as heightened cortisol reactivity to a lab challenge and that this heightened reactivity was associated with poorer EFs. Among boys we also observed that cortisol reactivity but not diurnal cortisol mediated the association between depressed and/or anxious prenatal maternal mood and EFs. Depressed and/or anxious prenatal maternal mood was related to child EFs for both girls and boys. To our knowledge, this is the first study to demonstrate a mediating role for child stress regulation in the association between prenatal maternal stress-related mood disturbances and child EFs, providing evidence of a mechanism contributing to fetal programming of cognition.
Collapse
|
16
|
Frasch MG, Lobmaier SM, Stampalija T, Desplats P, Pallarés ME, Pastor V, Brocco MA, Wu HT, Schulkin J, Herry CL, Seely AJE, Metz GAS, Louzoun Y, Antonelli MC. Non-invasive biomarkers of fetal brain development reflecting prenatal stress: An integrative multi-scale multi-species perspective on data collection and analysis. Neurosci Biobehav Rev 2018; 117:165-183. [PMID: 29859198 DOI: 10.1016/j.neubiorev.2018.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/09/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
Prenatal stress (PS) impacts early postnatal behavioural and cognitive development. This process of 'fetal programming' is mediated by the effects of the prenatal experience on the developing hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS). We derive a multi-scale multi-species approach to devising preclinical and clinical studies to identify early non-invasively available pre- and postnatal biomarkers of PS. The multiple scales include brain epigenome, metabolome, microbiome and the ANS activity gauged via an array of advanced non-invasively obtainable properties of fetal heart rate fluctuations. The proposed framework has the potential to reveal mechanistic links between maternal stress during pregnancy and changes across these physiological scales. Such biomarkers may hence be useful as early and non-invasive predictors of neurodevelopmental trajectories influenced by the PS as well as follow-up indicators of success of therapeutic interventions to correct such altered neurodevelopmental trajectories. PS studies must be conducted on multiple scales derived from concerted observations in multiple animal models and human cohorts performed in an interactive and iterative manner and deploying machine learning for data synthesis, identification and validation of the best non-invasive detection and follow-up biomarkers, a prerequisite for designing effective therapeutic interventions.
Collapse
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA.
| | - Silvia M Lobmaier
- Frauenklinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tamara Stampalija
- Unit of Fetal Medicine and Prenatal Diagnosis, Institute for Mother and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Paula Desplats
- University of California, Departments of Neurosciences and Pathology, San Diego, USA
| | - María Eugenia Pallarés
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Verónica Pastor
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Marcela A Brocco
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | - Hau-Tieng Wu
- Department of Mathematics and Department of Statistical Science, Duke University, Durham, NC, USA; Mathematics Division, National Center for Theoretical Sciences, Taipei, Taiwan
| | - Jay Schulkin
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | | | | | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Yoram Louzoun
- Bar-Ilan University, Department of Applied Mathematics, Israel
| | - Marta C Antonelli
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Argentina
| |
Collapse
|
17
|
Thames AD, Kuhn TP, Mahmood Z, Bilder RM, Williamson TJ, Singer EJ, Arentoft A. Effects of social adversity and HIV on subcortical shape and neurocognitive function. Brain Imaging Behav 2018; 12:96-108. [PMID: 28130744 PMCID: PMC5529267 DOI: 10.1007/s11682-017-9676-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of the current study was to examine the independent and interactive effects of social adversity (SA) and HIV infection on subcortical shape alterations and cognitive functions. Participants included HIV+ (n = 70) and HIV- (n = 23) individuals who underwent MRI, neurocognitive and clinical assessment, in addition to completing questionnaires from which responses were used to create an SA score. Bilateral amygdalae and hippocampi were extracted from T1-weighted images. Parametric statistical analyses were used to compare the radial distance of the structure surface to a median curve to determine the presence of localized shape differences as a function of HIV, SA and their interaction. Next, multiple regression was used to examine the interactive association between HIV and SA with cognitive performance data. An HIV*SA interactive effect was found on the shape of the right amygdala and left hippocampus. Specifically, HIV-infected participants (but not HIV-uninfected controls) who evidenced higher levels of SA displayed an inward deformation of the surface consistent with reduced volume of these structures. We found interactive effects of HIV and SA on learning/memory performance. These results suggest that HIV+ individuals may be more vulnerable to neurological and cognitive changes in the hippocampus and amygdala as a function of SA than HIV- individuals, and that SA indicators of childhood SES and perceived racial discrimination are important components of adversity that are associated with cognitive performance.
Collapse
Affiliation(s)
- April D Thames
- David Geffen School of Medicine, University of California Los Angeles, 760 Westwood Plaza, 28-263, Los Angeles, CA, 90095, USA.
| | - Taylor P Kuhn
- David Geffen School of Medicine, University of California Los Angeles, 760 Westwood Plaza, 28-263, Los Angeles, CA, 90095, USA
- Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA
| | - Zanjbeel Mahmood
- David Geffen School of Medicine, University of California Los Angeles, 760 Westwood Plaza, 28-263, Los Angeles, CA, 90095, USA
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert M Bilder
- David Geffen School of Medicine, University of California Los Angeles, 760 Westwood Plaza, 28-263, Los Angeles, CA, 90095, USA
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy J Williamson
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Elyse J Singer
- David Geffen School of Medicine, University of California Los Angeles, 760 Westwood Plaza, 28-263, Los Angeles, CA, 90095, USA
| | | |
Collapse
|
18
|
Schmitz J, Kumsta R, Moser D, Güntürkün O, Ocklenburg S. DNA methylation in candidate genes for handedness predicts handedness direction. Laterality 2017; 23:441-461. [DOI: 10.1080/1357650x.2017.1377726] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Judith Schmitz
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| | - Robert Kumsta
- Genetic Psychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Dirk Moser
- Genetic Psychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Onur Güntürkün
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Sebastian Ocklenburg
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| |
Collapse
|
19
|
Thompson LA, Morgan G, Unger CA, Covey LA. Prenatal maternal cortisol measures predict learning and short-term memory performance in 3- but not 5-month-old infants. Dev Psychobiol 2017; 59:723-737. [PMID: 28691735 PMCID: PMC5561452 DOI: 10.1002/dev.21530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/09/2017] [Indexed: 11/11/2022]
Abstract
Little is known about relations between maternal prenatal stress and specific cognitive processes-learning and memory-in infants. A modified crib-mobile task was employed in a longitudinal design to test relations between maternal prenatal cortisol, prenatal subjective stress and anxiety, psychosocial variables, and learning and memory in 3- and 5-month-old infants. Results revealed that maternal prenatal cortisol was affected by particular psychosocial variables (e.g., maternal age, whether or not the infant's grandmother provided childcare, financial status), but was unrelated to measures of maternal depression, anxiety, and stress. Although maternal prenatal cortisol was not predictive of learning or memory performance in 5-month-old infants, higher levels of basal maternal cortisol and reduced prenatal cortisol response was predictive of some learning and short-term memory measures in 3-month-old infants. These results suggest an influence of maternal neuroendocrine functioning on fetal neurological development, and the importance of separate examination of subjective and biological measures of stress.
Collapse
Affiliation(s)
| | - Gin Morgan
- New Mexico State University, Las Cruces, New Mexico
| | | | | |
Collapse
|
20
|
Impact of prenatal stress on the dyadic behavior of mothers and their 6-month-old infants during a play situation: role of different dimensions of stress. J Neural Transm (Vienna) 2017; 124:1251-1260. [DOI: 10.1007/s00702-017-1770-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/23/2017] [Indexed: 01/13/2023]
|
21
|
Entringer S, Buss C, Heim C. [Early-life stress and vulnerability for disease in later life]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 59:1255-61. [PMID: 27604117 DOI: 10.1007/s00103-016-2436-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The rapidly growing research field of developmental programming of health and disease risk investigates the early life origins of individual vulnerability for common, complex disorders that confer a major burden of disease. OBJECTIVES The present article introduces the concept of developmental programming of disease vulnerability and summarizes studies on the mental and physical health consequences of exposure to childhood trauma and prenatal stress. Biological mechanisms that mediate disease risk after early life stress are discussed. The possibility of transgenerational transmission of effects of childhood trauma in exposed women to their children and potential mechanisms of this transmission are also presented. CONCLUSION A substantial number of studies show associations between early life stress and risk for mental and somatic diseases in later life. The underlying mechanisms are currently being studied at the molecular and epigenetic level. Potentially, these findings will allow unprecedented opportunities to improve the precision of current clinical diagnostic tools and the success of interventions. However, there is currently a lack of translation of research findings related to developmental programming to clinical applications.
Collapse
Affiliation(s)
- Sonja Entringer
- Institut für Medizinische Psychologie, Charité Universitätsmedizin Berlin, Luisenstraβe 57, 10117, Berlin, Deutschland.
| | - Claudia Buss
- Institut für Medizinische Psychologie, Charité Universitätsmedizin Berlin, Luisenstraβe 57, 10117, Berlin, Deutschland
| | - Christine Heim
- Institut für Medizinische Psychologie, Charité Universitätsmedizin Berlin, Luisenstraβe 57, 10117, Berlin, Deutschland
| |
Collapse
|
22
|
Pearson RM, Bornstein MH, Cordero M, Scerif G, Mahedy L, Evans J, Abioye A, Stein A. Maternal perinatal mental health and offspring academic achievement at age 16: the mediating role of childhood executive function. J Child Psychol Psychiatry 2016; 57:491-501. [PMID: 26616637 PMCID: PMC4789117 DOI: 10.1111/jcpp.12483] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating risk pathways for under-achieving at school can inform strategies to reduce the number of adolescents leaving school without passing grades in core subjects. Maternal depression can compromise the quality of parental care and is associated with multiple negative child outcomes. However, only a few small studies have investigated the association between perinatal maternal depression and poor academic achievement in adolescence. The pathways to explain the risks are also unclear. METHOD Prospective observational data from 5,801 parents and adolescents taking part in a large UK population cohort (Avon-Longitudinal-Study-of-Parents-and-Children) were used to test associations between maternal and paternal depression and anxiety in the perinatal period, executive function (EF) at age 8, and academic achievement at the end of compulsory school at age 16. RESULTS Adolescents of postnatally depressed mothers were 1.5 times (1.19, 1.94, p = .001) as likely as adolescents of nondepressed mothers to fail to achieve a 'pass' grade in math; antenatal anxiety was also an independent predictor of poor math. Disruption in different components of EF explained small but significant proportions of these associations: attentional control explained 16% (4%, 27%, p < .001) of the association with postnatal depression, and working memory explained 17% (13%, 30%, p = .003) of the association with antenatal anxiety. A similar pattern was seen for language grades, but associations were confounded by maternal education. There was no evidence that paternal factors were independently associated with impaired child EF or adolescent exams. CONCLUSION Maternal postnatal depression and antenatal anxiety are risk factors for adolescents underachieving in math. Preventing, identifying, and treating maternal mental health in the perinatal period could, therefore, potentially increase adolescents' academic achievement. Different aspects of EF partially mediated these associations. Further work is needed, but if these pathways are causal, improving EF could reduce underachievement in math.
Collapse
Affiliation(s)
- Rebecca M. Pearson
- School of Social & Community MedicineUniversity of BristolBristolUK,Section of Child & Adolescent PsychiatryDepartment of PsychiatryUniversity of OxfordOxfordUK
| | - Marc H. Bornstein
- Child and Family ResearchEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaMDUSA
| | - Miguel Cordero
- School of Social & Community MedicineUniversity of BristolBristolUK
| | - Gaia Scerif
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| | - Liam Mahedy
- Institute of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Jonathan Evans
- School of Social & Community MedicineUniversity of BristolBristolUK
| | - Abu Abioye
- Section of Child & Adolescent PsychiatryDepartment of PsychiatryUniversity of OxfordOxfordUK
| | - Alan Stein
- Section of Child & Adolescent PsychiatryDepartment of PsychiatryUniversity of OxfordOxfordUK,School of Public HealthUniversity of WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
23
|
Duesenberg M, Weber J, Schulze L, Schaeuffele C, Roepke S, Hellmann-Regen J, Otte C, Wingenfeld K. Does cortisol modulate emotion recognition and empathy? Psychoneuroendocrinology 2016; 66:221-7. [PMID: 26851697 DOI: 10.1016/j.psyneuen.2016.01.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Emotion recognition and empathy are important aspects in the interaction and understanding of other people's behaviors and feelings. The Human environment comprises of stressful situations that impact social interactions on a daily basis. Aim of the study was to examine the effects of the stress hormone cortisol on emotion recognition and empathy. METHODS In this placebo-controlled study, 40 healthy men and 40 healthy women (mean age 24.5 years) received either 10mg of hydrocortisone or placebo. We used the Multifaceted Empathy Test to measure emotional and cognitive empathy. Furthermore, we examined emotion recognition from facial expressions, which contained two emotions (anger and sadness) and two emotion intensities (40% and 80%). RESULTS We did not find a main effect for treatment or sex on either empathy or emotion recognition but a sex × emotion interaction on emotion recognition. The main result was a four-way-interaction on emotion recognition including treatment, sex, emotion and task difficulty. At 40% task difficulty, women recognized angry faces better than men in the placebo condition. Furthermore, in the placebo condition, men recognized sadness better than anger. At 80% task difficulty, men and women performed equally well in recognizing sad faces but men performed worse compared to women with regard to angry faces. CONCLUSION Apparently, our results did not support the hypothesis that increases in cortisol concentration alone influence empathy and emotion recognition in healthy young individuals. However, sex and task difficulty appear to be important variables in emotion recognition from facial expressions.
Collapse
Affiliation(s)
- Moritz Duesenberg
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.
| | - Juliane Weber
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Lars Schulze
- Department of Clinical Psychology and Psychotherapy, Freie Universität Berlin, Germany
| | - Carmen Schaeuffele
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Stefan Roepke
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Julian Hellmann-Regen
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Christian Otte
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Katja Wingenfeld
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
24
|
Negrón-Oyarzo I, Lara-Vásquez A, Palacios-García I, Fuentealba P, Aboitiz F. Schizophrenia and reelin: a model based on prenatal stress to study epigenetics, brain development and behavior. Biol Res 2016; 49:16. [PMID: 26968981 PMCID: PMC4787713 DOI: 10.1186/s40659-016-0076-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/22/2016] [Indexed: 11/20/2022] Open
Abstract
Schizophrenia is a severe psychiatric disorder that results in a significant disability for the patient. The disorder is characterized by impairment of the adaptive orchestration of actions, a cognitive function that is mainly dependent on the prefrontal cortex. This behavioral deficit, together with cellular and neurophysiological alterations in the prefrontal cortex, as well as reduced density of GABAergic cells and aberrant oscillatory activity, all indicate structural and functional deficits of the prefrontal cortex in schizophrenia. Among the several risk factors for the development of schizophrenia, stress during the prenatal period has been identified as crucial. Thus, it is proposed that prenatal stress induces neurodevelopmental alterations in the prefrontal cortex that are expressed as cognitive impairment observed in schizophrenia. However, the precise mechanisms that link prenatal stress with the impairment of prefrontal cortex function is largely unknown. Reelin is an extracellular matrix protein involved in the development of cortical neural connectivity at embryonic stages, and in synaptic plasticity at postnatal stages. Interestingly, down-regulation of reelin expression has been associated with epigenetic changes in the reelin gene of the prefrontal cortex of schizophrenic patients. We recently showed that, similar to schizophrenic patients, prenatal stress induces down-expression of reelin associated with the methylation of its promoter in the rodent prefrontal cortex. These alterations were paralleled with altered prefrontal cortex functional connectivity and impairment in prefrontal cortex-dependent behavioral tasks. Therefore, considering molecular, cellular, physiological and behavioral evidence, we propose a unifying framework that links prenatal stress and prefrontal malfunction through epigenetic alterations of the reelin gene.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ariel Lara-Vásquez
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ismael Palacios-García
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Fuentealba
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
|
26
|
Entringer S, Buss C, Wadhwa PD. Prenatal stress, development, health and disease risk: A psychobiological perspective-2015 Curt Richter Award Paper. Psychoneuroendocrinology 2015; 62:366-75. [PMID: 26372770 PMCID: PMC4674548 DOI: 10.1016/j.psyneuen.2015.08.019] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022]
Abstract
The long-term consequences of exposure to excess stress, particularly during sensitive developmental windows, on the initiation and progression of many complex, common physical and mental disorders that confer a major global burden of disease are well established. The period of intrauterine life represents among the most sensitive of these windows, at which time the effects of stress may be transmitted inter-generationally from a mother to her as-yet-unborn child. As explicated by the concept of fetal or developmental programming of health and disease susceptibility, a growing body of evidence supports the notion that health and disease susceptibility is determined by the dynamic interplay between genetic makeup and environment, particularly during intrauterine and early postnatal life. Except in extreme cases, an adverse intrauterine exposure may not, per se, 'cause' disease, but, instead, may determine propensity for disease(s) in later life (by shaping phenotypic responsivity to endogenous and exogenous disease-related risk conditions). Accumulating evidence suggests that maternal psychological and social stress during pregnancy represents one such condition that may adversely affect the developing child, with important implications for a diverse range of physical and mental health outcomes. In this paper we review primarily our own contributions to the field of maternal stress during pregnancy and child mental and physical health-related outcomes. We present findings on stress-related maternal-placental-fetal endocrine and immune/inflammatory processes that may mediate the effects of various adverse conditions during pregnancy on the developing human embryo and fetus. We enunciate conceptual and methodological issues related to the assessment of stress during pregnancy and discuss potential mechanisms of intergenerational transmission of the effects of stress. Lastly, we describe on-going research and some future directions of our program.
Collapse
Affiliation(s)
- Sonja Entringer
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstraβe 57, 10117 Berlin, Germany; Departments of Pediatrics, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility (GNRF), 837 Health Sciences Road Irvine, CA 92697, USA.
| | - Claudia Buss
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstraβe 57, 10117 Berlin, Germany; Departments of Pediatrics, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility (GNRF), 837 Health Sciences Road Irvine, CA 92697, USA.
| | - Pathik D. Wadhwa
- Department of Pediatrics, University of California, Irvine, 3117
Gillespie Neuroscience Research Facility (GNRF), 837 Health Sciences Drive, Mail
Code: 4260, Irvine, CA 92697, USA,Department of Obstetrics & Gynecology, University of California,
Irvine, 3117 Gillespie Neuroscience Research Facility (GNRF), 837 Health Sciences
Drive, Mail Code: 4260, Irvine, CA 92697, USA,Department of Epidemiology, University of California, Irvine, 3117
Gillespie Neuroscience Research Facility (GNRF), 837 Health Sciences Drive, Mail
Code: 4260, Irvine, CA 92697, USA,Department of Psychiatry & Human Behavior, University of
California, Irvine, 3117 Gillespie Neuroscience Research Facility (GNRF), 837 Health
Sciences Drive, Mail Code: 4260, Irvine, CA 92697, USA
| |
Collapse
|
27
|
Developmental origin of abnormal dendritic growth in the mouse brain induced by in utero disruption of aryl hydrocarbon receptor signaling. Neurotoxicol Teratol 2015; 52:42-50. [PMID: 26526904 DOI: 10.1016/j.ntt.2015.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 09/26/2015] [Accepted: 10/21/2015] [Indexed: 11/20/2022]
Abstract
Increased prevalence of mental disorders cannot be solely attributed to genetic factors and is considered at least partly attributable to chemical exposure. Among various environmental chemicals, in utero and lactational dioxin exposure has been extensively studied and is known to induce higher brain function abnormalities in both humans and laboratory animals. However, how the perinatal dioxin exposure affects neuromorphological alterations has remained largely unknown. Therefore, in this study, we initially studied whether and how the over-expression of aryl hydrocarbon receptor (AhR), a dioxin receptor, would affect the dendritic growth in the hippocampus of the developing brain. Transfecting a constitutively active AhR plasmid into the hippocampus via in utero electroporation on gestational day (GD) 14 induced abnormal dendritic branch growth. Further, we observed that 14-day-old mice born to dams administered with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dose: 0, 0.6, or 3.0 μg/kg) on GD 12.5 exhibited disrupted dendritic branch growth in both the hippocampus and amygdala. Finally, we observed that 16-month-old mice born to dams exposed to perinatal TCDD as described above exhibited significantly reduced spine densities. These results indicated that abnormal micromorphology observed in the developing brain may persist until adulthood and may induce abnormal higher brain function later in life.
Collapse
|
28
|
Lomanowska AM, Boivin M, Hertzman C, Fleming AS. Parenting begets parenting: A neurobiological perspective on early adversity and the transmission of parenting styles across generations. Neuroscience 2015; 342:120-139. [PMID: 26386294 DOI: 10.1016/j.neuroscience.2015.09.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 12/30/2022]
Abstract
The developing brains of young children are highly sensitive to input from their social environment. Nurturing social experience during this time promotes the acquisition of social and cognitive skills and emotional competencies. However, many young children are confronted with obstacles to healthy development, including poverty, inappropriate care, and violence, and their enhanced sensitivity to the social environment means that they are highly susceptible to these adverse childhood experiences. One source of social adversity in early life can stem from parenting that is harsh, inconsistent, non-sensitive or hostile. Parenting is considered to be the cornerstone of early socio-emotional development and an adverse parenting style is associated with adjustment problems and a higher risk of developing mood and behavioral disorders. Importantly, there is a growing literature showing that an important predictor of parenting behavior is how parents, especially mothers, were parented themselves. In this review, we examine how adversity in early-life affects mothering behavior in later-life and how these effects may be perpetuated inter-generationally. Relying on studies in humans and animal models, we consider evidence for the intergenerational transmission of mothering styles. We then describe the psychological underpinnings of mothering, including responsiveness to young, executive function and affect, as well as the physiological mediators of mothering behavior, including hormones, brain regions and neurotransmitters, and we consider how development in these relevant domains may be affected by adversity experienced in early life. Finally, we explore how genes and early experience interact to predict mothering behavior, including the involvement of epigenetic mechanisms. Understanding how adverse parenting begets adverse parenting in the next generation is critical for designing interventions aimed at preventing this intergenerational cycle of early adversity.
Collapse
Affiliation(s)
- A M Lomanowska
- School of Psychology, Laval University, Quebec City, QC G1V 0A6, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Québec, Quebec City, QC G1J 2G3, Canada; Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - M Boivin
- School of Psychology, Laval University, Quebec City, QC G1V 0A6, Canada; Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Russian Federation
| | - C Hertzman
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z9, Canada
| | - A S Fleming
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Fraser Mustard Institute for Human Development, University of Toronto, Toronto, ON M5S 1V6, Canada.
| |
Collapse
|
29
|
Bock J, Wainstock T, Braun K, Segal M. Stress In Utero: Prenatal Programming of Brain Plasticity and Cognition. Biol Psychiatry 2015; 78:315-26. [PMID: 25863359 DOI: 10.1016/j.biopsych.2015.02.036] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/10/2015] [Accepted: 02/25/2015] [Indexed: 12/17/2022]
Abstract
Animal studies confirm earlier anecdotal observations in humans to indicate that early life experience has a profound impact on adult behavior, years after the original experience has vanished. These studies also highlight the role of early life adversaries in the shaping of a disordered brain. Evidence is accumulating to indicate that the epigenome, through which the environment regulates gene expression, is responsible for long-lasting effects of stress during pregnancy on brain and behavior. A possible differential effect of the environment on the epigenome may underlie the observation that only a small fraction of a population with similar genetic background deteriorates into mental disorders. Considerable progress has been made in the untangling of the epigenetic mechanisms that regulate emotional brain development. The present review focuses on the lasting effects of prenatal stress on brain plasticity and cognitive functions in human and rodent models. Although human studies stress the significance of early life experience in functional maturation, they lack the rigor inherent in controlled animal experiments. Furthermore, the analysis of molecular and cellular mechanisms affected by prenatal stress is possible only in experimental animals. The present review attempts to link human and animal studies while proposing molecular mechanisms that interfere with functional brain development.
Collapse
Affiliation(s)
- Joerg Bock
- Otto von Guericke University Magdeburg (JB, KB), Magdeburg, Germany
| | - Tamar Wainstock
- Rollins School of Public Health (TW), Emory University, Atlanta, Georgia
| | - Katharina Braun
- Otto von Guericke University Magdeburg (JB, KB), Magdeburg, Germany
| | - Menahem Segal
- Department of Neurobiology (MS) Weizmann Institute, Rehovot, Israel.
| |
Collapse
|
30
|
Hygiene and other early childhood influences on the subsequent function of the immune system. Brain Res 2015; 1617:47-62. [DOI: 10.1016/j.brainres.2014.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/17/2014] [Accepted: 04/05/2014] [Indexed: 02/08/2023]
|
31
|
Fox M, Entringer S, Buss C, DeHaene J, Wadhwa PD. Intergenerational transmission of the effects of acculturation on health in Hispanic Americans: a fetal programming perspective. Am J Public Health 2015; 105 Suppl 3:S409-23. [PMID: 25905831 PMCID: PMC4455494 DOI: 10.2105/ajph.2015.302571] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2015] [Indexed: 11/04/2022]
Abstract
We propose a transdisciplinary, life span framework for examining the underlying cause of the observed intergenerational decline in health among Hispanic Americans. We focus on acculturation, and we posit that acculturation-related processes in first-generation Hispanic immigrant mothers may affect the intrauterine development of an unborn child, via the process of fetal programming, to produce phenotypic effects that may alter the susceptibility for noncommunicable chronic diseases. In this manner, an intergenerational cascade of perpetuation may become established. Our framework may shed light on the biological, behavioral, and social causes of intergenerational cycles of vulnerability among immigrant minority groups, with public health and policy implications for primary prevention and intervention.
Collapse
Affiliation(s)
- Molly Fox
- Molly Fox is with the Early Human and Lifespan Development Program and the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine. Sonja Entringer and Claudia Buss are with the UCI Development, Health, and Disease Research Program, School of Medicine, University of California, Irvine, and the Department of Medical Psychology, Charité Universitätsmedizin, Berlin, Germany. Jessica DeHaene and Pathik D. Wadhwa are with the UCI Development, Health, and Disease Research Program, School of Medicine, University of California, Irvine
| | | | | | | | | |
Collapse
|
32
|
Schitter AM, Nedeljkovic M, Baur H, Fleckenstein J, Raio L. Effects of Passive Hydrotherapy WATSU (WaterShiatsu) in the Third Trimester of Pregnancy: Results of a Controlled Pilot Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:437650. [PMID: 25815033 PMCID: PMC4359846 DOI: 10.1155/2015/437650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/26/2014] [Accepted: 09/15/2014] [Indexed: 12/03/2022]
Abstract
Background. WATSU (WaterShiatsu) is a complementary therapeutic treatment method comprising passive stretches and massage techniques administered in 35°C warm water. Pregnant women claim safe methods to reduce pain, stress, and fatigue. Therefore, we conducted a pilot study evaluating the effects of WATSU on pregnancy-related complaints in third trimester pregnant women. Methods. Nine healthy pregnant women at gestational week ≥34 were included in an intervention group (receiving WATSU) and compared to eight women in a passive control group (receiving no treatment). WATSU was performed on days 1 and 4 of the study, accompanied by ultrasound examinations. Outcomes include physiological and psychometric as well as qualitative data. Participants in the control group completed questionnaires only. Results. WATSU was found to significantly lower participants' levels of stress and pain and to improve their mental health-related quality of life and mood. In comparison to the passive control group, participants in the intervention group reported reduction in perceived stress from day 1 to day 8 (P = 0.036, Cohen's f = 0.57). Qualitative data indicate that WATSU was appreciated as enjoyable and deeply relaxing. No negative side effects were reported. Conclusion. Our findings support the notion that WATSU yields therapeutic benefits for pregnant women and warrant further research. This study has been registered at ClinicalTrials.gov: NCT01708018.
Collapse
Affiliation(s)
- Agnes M. Schitter
- Department of TCM/Acupuncture, Institute of Complementary Medicine IKOM, University of Bern, Imhoof-Pavillon, Inselspital, 3010 Bern, Switzerland
| | - Marko Nedeljkovic
- Department of TCM/Acupuncture, Institute of Complementary Medicine IKOM, University of Bern, Imhoof-Pavillon, Inselspital, 3010 Bern, Switzerland
| | - Heiner Baur
- Department of Health, Bern University of Applied Sciences, Murtenstrasse 10, 3008 Bern, Switzerland
| | - Johannes Fleckenstein
- Department of TCM/Acupuncture, Institute of Complementary Medicine IKOM, University of Bern, Imhoof-Pavillon, Inselspital, 3010 Bern, Switzerland
| | - Luigi Raio
- Department of Obstetrics and Gynecology Inselspital, University Hospital of Bern, Effingerstrasse 102, 3010 Bern, Switzerland
| |
Collapse
|
33
|
Spatial working memory and attention skills are predicted by maternal stress during pregnancy. Early Hum Dev 2015; 91:23-9. [PMID: 25460253 DOI: 10.1016/j.earlhumdev.2014.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 08/07/2014] [Accepted: 11/07/2014] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Experimental evidence in rodents shows that maternal stress during pregnancy (MSDP) negatively impacts spatial learning and memory in the offspring. We aim to investigate the association between MSDP (i.e., life events) and spatial working memory, as well as attention skills (attention shifting and attention focusing), in humans. The moderating roles of child sex, maternal anxiety during pregnancy and postnatal care are also investigated. METHODS Participants were 236 mother-child dyads that were followed from the second trimester of pregnancy until 4 years postpartum. Measurements included questionnaires and independent observations. RESULTS MSDP was negatively associated with attention shifting at 18 months when concurrent maternal anxiety was low. MSDP was associated with poorer spatial working memory at 4 years of age, but only for boys who experienced poorer postnatal care. CONCLUSION Consistent with results observed in rodents, MSDP was found to be associated with spatial working memory and attention skills. These results point to postnatal care and maternal anxiety during pregnancy as potential targets for interventions that aim to buffer children from the detrimental effects of MSDP.
Collapse
|
34
|
Desplats PA. Perinatal programming of neurodevelopment: epigenetic mechanisms and the prenatal shaping of the brain. ADVANCES IN NEUROBIOLOGY 2015; 10:335-61. [PMID: 25287548 DOI: 10.1007/978-1-4939-1372-5_16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent years have witnessed an exponential growth in the knowledge of epigenetic mechanisms, and piling evidence now links DNA methylation and histone modifications with a wide range of physiological processes from embryonic development to memory formation and behavior. Not surprisingly, deregulation of epigenetic modifications is associated with human diseases as well.An important feature of epigenetics is the ability of transducing environmental input into biological signaling, mainly by modulation of the transcriptome in response to a particular scenario. This characteristic generates developmental plasticity and allows the manifestation of a variety of phenotypes from the same genome.The early-life years represent a period of particular susceptibility to epigenetic alteration, as active changes in DNA methylation and histone marks are occurring as part of developmental programs and in response to environmental cues, which notably include psychosocial stimulation and maternal behavior. Memory formation and storage, response to stress in adult life, behavior, and manifestation of neurodegenerative conditions can all be imprinted in the organism by epigenetic modifications that contribute to shape the brain during prenatal or early postnatal life. Moreover, if these epigenetic alterations are preserved in the germ line, changes induced in one generation are likely inherited by future offspring. Programming by transgenerational inheritance thus represents a central mechanism by which environmental conditions may influence disease risk across multiple generations.As novel techniques emerge and as genome-wide profiling of disease-associated methylomes is achieved, epigenetic marks open a new source for biomarker discovery.
Collapse
Affiliation(s)
- Paula A Desplats
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA,
| |
Collapse
|
35
|
Marques AH, Bjørke-Monsen AL, Teixeira AL, Silverman MN. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology. Brain Res 2014; 1617:28-46. [PMID: 25451133 DOI: 10.1016/j.brainres.2014.10.051] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/20/2014] [Accepted: 10/25/2014] [Indexed: 12/14/2022]
Abstract
Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying mechanisms of protection. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Collapse
Affiliation(s)
- Andrea Horvath Marques
- Obsessive--Compulsive Spectrum Disorders Program, Department & Institute of Psychiatry, University of São Paulo, Medical School, São Paulo, Brazil.
| | | | - Antônio L Teixeira
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marni N Silverman
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
36
|
Vaiserman AM. Epigenetic programming by early-life stress: Evidence from human populations. Dev Dyn 2014; 244:254-65. [PMID: 25298004 DOI: 10.1002/dvdy.24211] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A substantial body of experimental and epidemiological evidence has been accumulated suggesting that stressful events in early life including acute perinatal stress, maternal deprivation or separation, and variation in maternal care may lead to neuroendocrine perturbations thereby affecting reproductive performance, cognitive functions, and stress responses as well as the risk for infectious, cardio-metabolic and psychiatric diseases in later life. RESULTS Findings from recent studies based on both genome-wide and candidate gene approaches highlighted the importance of mechanisms that are involved in epigenetic regulation of gene expression, such as DNA methylation, histone modifications, and non-coding RNAs, in the long-term effects of exposure to stress in early life. CONCLUSIONS This review is focused on the findings from human studies indicating the role of epigenetic mechanisms in the causal link between early-life stress and later-life health outcomes.
Collapse
Affiliation(s)
- A M Vaiserman
- D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kiev, Ukraine
| |
Collapse
|
37
|
Negrón-Oyarzo I, Neira D, Espinosa N, Fuentealba P, Aboitiz F. Prenatal Stress Produces Persistence of Remote Memory and Disrupts Functional Connectivity in the Hippocampal-Prefrontal Cortex Axis. Cereb Cortex 2014; 25:3132-43. [PMID: 24860018 DOI: 10.1093/cercor/bhu108] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prenatal stress is a risk factor for the development of neuropsychiatric disorders, many of which are commonly characterized by an increased persistence of aversive remote memory. Here, we addressed the effect of prenatal stress on both memory consolidation and functional connectivity in the hippocampal-prefrontal cortex axis, a dynamical interplay that is critical for mnemonic processing. Pregnant mice of the C57BL6 strain were subjected to restraint stressed during the last week of pregnancy, and male offspring were behaviorally tested at adulthood for recent and remote spatial memory performance in the Barnes Maze test under an aversive context. Prenatal stress did not affect the acquisition or recall of recent memory. In contrast, it produced the persistence of remote spatial memory. Memory persistence was not associated with alterations in major network rhythms, such as hippocampal sharp-wave ripples (SWRs) or neocortical spindles. Instead, it was associated with a large decrease in the basal discharge activity of identified principal neurons in the medial prefrontal cortex (mPFC) as measured in urethane anesthetized mice. Furthermore, functional connectivity was disrupted, as the temporal coupling between neuronal discharge in the mPFC and hippocampal SWRs was decreased by prenatal stress. These results could be relevant to understand the biological basis of the persistence of aversive remote memories in stress-related disorders.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Neira
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nelson Espinosa
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Fuentealba
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile Fundación San Juan de Dios, Barcelona, Spain
| | - Francisco Aboitiz
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
38
|
Sominsky L, Spencer SJ. Eating behavior and stress: a pathway to obesity. Front Psychol 2014; 5:434. [PMID: 24860541 PMCID: PMC4026680 DOI: 10.3389/fpsyg.2014.00434] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/24/2014] [Indexed: 11/13/2022] Open
Abstract
Stress causes or contributes to a huge variety of diseases and disorders. Recent evidence suggests obesity and other eating-related disorders may be among these. Immediately after a stressful event is experienced, there is a corticotropin-releasing-hormone (CRH)-mediated suppression of food intake. This diverts the body’s resources away from the less pressing need to find and consume food, prioritizing fight, flight, or withdrawal behaviors so the stressful event can be dealt with. In the hours following this, however, there is a glucocorticoid-mediated stimulation of hunger and eating behavior. In the case of an acute stress that requires a physical response, such as a predator-prey interaction, this hypothalamic-pituitary-adrenal (HPA) axis modulation of food intake allows the stressful event to be dealt with and the energy used to be replaced afterward. In the case of ongoing psychological stress, however, chronically elevated glucocorticoids can lead to chronically stimulated eating behavior and excessive weight gain. In particular, stress can enhance the propensity to eat high calorie “palatable” food via its interaction with central reward pathways. Activation of this circuitry can also interact with the HPA axis to suppress its further activation, meaning not only can stress encourage eating behavior, but eating can suppress the HPA axis and the feeling of stress. In this review we will explore the theme of eating behavior and stress and how these can modulate one another. We will address the interactions between the HPA axis and eating, introducing a potential integrative role for the orexigenic hormone, ghrelin. We will also examine early life and epigenetic modulation of the HPA axis and how this can influence eating behavior. Finally, we will investigate the clinical implications of changes to HPA axis function and how this may be contributing to obesity in our society.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health Sciences and Health Innovations Research Institute, RMIT University Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health Sciences and Health Innovations Research Institute, RMIT University Melbourne, VIC, Australia
| |
Collapse
|
39
|
Zhu P, Sun MS, Hao JH, Chen YJ, Jiang XM, Tao RX, Huang K, Tao FB. Does prenatal maternal stress impair cognitive development and alter temperament characteristics in toddlers with healthy birth outcomes? Dev Med Child Neurol 2014; 56:283-9. [PMID: 24512346 DOI: 10.1111/dmcn.12378] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 12/13/2022]
Abstract
AIM The aim of this study was to assess the cognitive and behavioural development of children with healthy birth outcomes whose mothers were exposed to prenatal stress but did not experience pregnancy complications. METHOD In this prospective study, self-reported data, including the Prenatal Life Events Checklist about stressful life events (SLEs) during different stages of pregnancy, were collected at 32 to 34 weeks' gestation. Thirty-eight healthy females (mean age 27 y 8 mo, SD 2 y 4 mo) who were exposed to severe SLEs in the first trimester were defined as the exposed infant group, and 114 matched comparison participants were defined as the unexposed infant group (1:3). Maternal postnatal depressive symptoms were assessed with the Edinburgh Postnatal Depression Scale. The Bayley Scales of Infant Development and the Toddler Temperament Scale were used to evaluate the cognitive development and temperament characteristics of the infants with healthy birth outcomes when they were 16 to 18 months old. RESULTS A randomized block multivariate analysis of covariance showed that the mental development index scores of the infants of mothers with prenatal exposure to SLEs in the first trimester averaged seven points (95% confidence interval 3.23-10.73 points) lower than those of the unexposed infants. Moreover, the infants in the exposed group achieved higher scores for regularity (adjusted mean [SD] 2.77 [0.65] vs. 2.52 [0.78], F(5,146) =5.27, p=0.023) and for persistence and attention span (adjusted mean 3.61 [0.72] vs. 3.35 [0.52], F(5,146) =5.51, p=0.020). INTERPRETATION This study provides evidence that lower cognitive ability and less optimal worse behavioural response in infants might independently result from prenatal maternal stress.
Collapse
Affiliation(s)
- Peng Zhu
- Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Markham JA, Mullins SE, Koenig JI. Periadolescent maturation of the prefrontal cortex is sex-specific and is disrupted by prenatal stress. J Comp Neurol 2013; 521:1828-43. [PMID: 23172080 DOI: 10.1002/cne.23262] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/01/2012] [Accepted: 11/06/2012] [Indexed: 12/19/2022]
Abstract
The prefrontal cortex (PFC) undergoes dramatic, sex-specific maturation during adolescence. Adolescence is a vulnerable window for developing mental illnesses that show significant sexual dimorphisms. Gestational stress is associated with increased risk for both schizophrenia, which is more common among men, and cognitive deficits. We have shown that male, but not female, rats exposed to prenatal stress develop postpubertal deficits in cognitive behaviors supported by the prefrontal cortex. Here we tested the hypothesis that repeated variable prenatal stress during the third week of rat gestation disrupts periadolescent development of prefrontal neurons in a sex-specific fashion. Using Golgi-Cox stained tissue, we compared dendritic arborization and spine density of prelimbic layer III neurons in prenatally stressed and control animals at juvenile (day 20), prepubertal (day 30), postpubertal (day 56), and adult (day 90) ages (N = 115). Dendritic ramification followed a sex-specific pattern that was disrupted during adolescence in prenatally stressed males, but not in females. In contrast, the impact of prenatal stress on the female PFC was not evident until adulthood. Prenatal stress also caused reductions in brain and body weights, and the latter effect was more pronounced among males. Additionally, there was a trend toward reduced testosterone levels for adult prenatally stressed males. Our findings indicate that, similarly to humans, the rat PFC undergoes sex-specific development during adolescence and furthermore that this process is disrupted by prenatal stress. These findings may be relevant to both the development of normal sex differences in cognition as well as differential male-female vulnerability to psychiatric conditions.
Collapse
Affiliation(s)
- Julie A Markham
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland 21228, USA.
| | | | | |
Collapse
|
41
|
Entringer S, Wadhwa PD. Developmental programming of obesity and metabolic dysfunction: role of prenatal stress and stress biology. NESTLE NUTRITION INSTITUTE WORKSHOP SERIES 2013; 74:107-20. [PMID: 23887109 DOI: 10.1159/000348454] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epidemiological, clinical, physiological, cellular and molecular evidence suggests the origins of obesity and metabolic dysfunction can be traced back to intrauterine life and supports an important role for maternal nutrition prior to and during gestation in fetal programming. The elucidation of underlying mechanisms is an area of interest and intense investigation. We propose that in addition to maternal nutrition-related processes, it may be important to concurrently consider the potential role of intrauterine stress and stress biology. We frame our arguments in the larger context of an evolutionary-developmental perspective that supports roles for both nutrition and stress as key environmental conditions driving natural selection and developmental plasticity. We suggest that intrauterine stress exposure may interact with the nutritional milieu, and that stress biology may represent an underlying mechanism mediating the effects of diverse intrauterine perturbations, including but not limited to maternal nutritional insults (undernutrition and overnutrition), on brain and peripheral targets of programming of body composition, energy balance homeostasis and metabolic function. We discuss putative maternal-placental-fetal endocrine and immune/inflammatory candidate processes that may underlie the long-term effects of intrauterine stress.
Collapse
Affiliation(s)
- Sonja Entringer
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | | |
Collapse
|
42
|
Spencer SJ. Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress. Front Neurosci 2013; 7:109. [PMID: 23785312 PMCID: PMC3683620 DOI: 10.3389/fnins.2013.00109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/31/2013] [Indexed: 01/24/2023] Open
Abstract
Feeding behavior is closely regulated by neuroendocrine mechanisms that can be influenced by stressful life events. However, the feeding response to stress varies among individuals with some increasing and others decreasing food intake after stress. In addition to the impact of acute lifestyle and genetic backgrounds, the early life environment can have a life-long influence on neuroendocrine mechanisms connecting stress to feeding behavior and may partially explain these opposing feeding responses to stress. In this review I will discuss the perinatal programming of adult hypothalamic stress and feeding circuitry. Specifically I will address how early life (prenatal and postnatal) nutrition, early life stress, and the early life hormonal profile can program the hypothalamic-pituitary-adrenal (HPA) axis, the endocrine arm of the body's response to stress long-term and how these changes can, in turn, influence the hypothalamic circuitry responsible for regulating feeding behavior. Thus, over- or under-feeding and/or stressful events during critical windows of early development can alter glucocorticoid (GC) regulation of the HPA axis, leading to changes in the GC influence on energy storage and changes in GC negative feedback on HPA axis-derived satiety signals such as corticotropin-releasing-hormone. Furthermore, peripheral hormones controlling satiety, such as leptin and insulin are altered by early life events, and can be influenced, in early life and adulthood, by stress. Importantly, these neuroendocrine signals act as trophic factors during development to stimulate connectivity throughout the hypothalamus. The interplay between these neuroendocrine signals, the perinatal environment, and activation of the stress circuitry in adulthood thus strongly influences feeding behavior and may explain why individuals have unique feeding responses to similar stressors.
Collapse
Affiliation(s)
- Sarah J Spencer
- School of Health Sciences and Health Innovations Research Institute, RMIT University Melbourne, VIC, Australia
| |
Collapse
|
43
|
Rook GAW, Lowry CA, Raison CL. Microbial 'Old Friends', immunoregulation and stress resilience. EVOLUTION MEDICINE AND PUBLIC HEALTH 2013; 2013:46-64. [PMID: 24481186 PMCID: PMC3868387 DOI: 10.1093/emph/eot004] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic inflammatory diseases (autoimmunity, allergy and inflammatory bowel diseases) are increasing in prevalence in urban communities in high-income countries. One important factor is reduced exposure to immunoregulation-inducing macro- and microorganisms and microbiota that accompanied mammalian evolution (the hygiene hypothesis or 'Old Friends' mechanism). Reduced exposure to these organisms predisposes to poor regulation of inflammation. But inflammation is equally relevant to psychiatric disorders. Inflammatory mediators modulate brain development, cognition and mood, and accompany low socioeconomic status and some cases of depression in developed countries. The risk of all these conditions (chronic inflammatory and psychiatric) is increased in urban versus rural communities, and increased in immigrants, particularly if they move from a low- to a high-income country during infancy, and often the prevalence increases further in second generation immigrants, suggesting that critical exposures modulating disease risk occur during pregnancy and infancy. Diminished exposure to immunoregulation-inducing Old Friends in the perinatal period may enhance the consequences of psychosocial stressors, which induce increased levels of inflammatory mediators, modulate the microbiota and increase the risk for developing all known psychiatric conditions. In later life, the detrimental effects of psychosocial stressors may be exaggerated when the stress occurs against a background of reduced immunoregulation, so that more inflammation (and therefore more psychiatric symptoms) result from any given level of psychosocial stress. This interaction between immunoregulatory deficits and psychosocial stressors may lead to reduced stress resilience in modern urban communities. This concept suggests novel interpretations of recent epidemiology, and novel approaches to the increasing burden of psychiatric disease.
Collapse
Affiliation(s)
- Graham A W Rook
- Centre for Clinical Microbiology, Department of Infection, University College London (UCL), London, UK; Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA and Department of Psychiatry, College of Medicine and Norton School of Family and Consumer Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|
44
|
Li J, Robinson M, Malacova E, Jacoby P, Foster J, van Eekelen A. Maternal life stress events in pregnancy link to children's school achievement at age 10 years. J Pediatr 2013; 162:483-9. [PMID: 23084705 DOI: 10.1016/j.jpeds.2012.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 07/26/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To test the hypothesis that maternal antenatal exposure to life stress events is associated with lower achievement in literacy and numeracy at age 10 years, with sex differences in this link. STUDY DESIGN The Western Australian Pregnancy Cohort Study recruited 2900 women at 18 weeks' pregnancy, and 2868 children were followed up at birth and postnatally. At age 10 years, information on 1038 children was linked to their literacy and numeracy test scores. Multivariate regression models were used to test the foregoing hypotheses, adjusting for important confounders. RESULTS In girls, maternal antenatal exposure to 4 or more maternal life stress events or death of the mother's friend and/or relative was associated with lower reading scores. In contrast, exposure to 3 or more life stress events or to a pregnancy or financial problem was associated with higher reading scores in boys. Furthermore, maternal exposure to 4 or more life stress events was associated with higher mathematic scores and a residential move was linked to higher writing scores in boys. CONCLUSION Maternal antenatal exposure to life stress events has differing effects on the school performance of male and female offspring. Further research is needed to explore the reasons for this sex difference.
Collapse
Affiliation(s)
- Jianghong Li
- Curtin Health Innovation Research Institute, Center for Population Health Research, Curtin University, Perth, Australia.
| | | | | | | | | | | |
Collapse
|
45
|
Capra L, Tezza G, Mazzei F, Boner AL. The origins of health and disease: the influence of maternal diseases and lifestyle during gestation. Ital J Pediatr 2013; 39:7. [PMID: 23343462 PMCID: PMC3599191 DOI: 10.1186/1824-7288-39-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/11/2013] [Indexed: 11/10/2022] Open
Abstract
According to the Barker hypothesis, the period of pregnancy and the intrauterine environment are crucial to the tendency to develop diseases like hypertension, diabetes, coronary heart disease, metabolic disorders, pulmonary, renal and mental illnesses. The external environment affects the development of a particular phenotype suitable for an environment with characteristics that closely resemble intrauterine conditions. If the extra-uterine environment differs greatly from the intra-uterine one, the fetus is more prone to develop disease. Subsequent studies have shown that maternal diseases like depression and anxiety, epilepsy, asthma, anemia and metabolic disorders, like diabetes, are able to determine alterations in growth and fetal development. Similarly, the maternal lifestyle, particularly diet, exercise and smoking during pregnancy, have an important role in determining the risk to develop diseases that manifest themselves both during childhood and particularly in adulthood. Finally, there are abundant potential sources of pollutants, both indoor and outdoor, in the environment in which the child lives, which can contribute to an increased probability to the development of several diseases and that in some cases could be easily avoided.
Collapse
Affiliation(s)
- Lucetta Capra
- Department of Reproduction and Growth, Section of Pediatrics, Azienda Ospedaliera Universitaria Sant’Anna Ferrara, Ferrara, Italy
| | - Giovanna Tezza
- Department of Life Sciences and Reproduction, Section of Pediatrics, University of Verona, Policlinico G.B. Rossi, Verona, Italy
| | - Federica Mazzei
- Department of Life Sciences and Reproduction, Section of Pediatrics, University of Verona, Policlinico G.B. Rossi, Verona, Italy
| | - Attilio L Boner
- Department of Life Sciences and Reproduction, Section of Pediatrics, University of Verona, Policlinico G.B. Rossi, Verona, Italy
| |
Collapse
|
46
|
Entringer S, Buss C, Wadhwa PD. Prenatal stress, telomere biology, and fetal programming of health and disease risk. Sci Signal 2012; 5:pt12. [PMID: 23112344 DOI: 10.1126/scisignal.2003580] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A substantial body of epidemiological, clinical, cellular, and molecular evidence converges to suggest that conditions during the intrauterine period of life play a critical role in developmental programming to influence subsequent health and susceptibility for common, complex disorders. Elucidation of the biological mechanisms underlying these effects is an area of considerable interest and investigation, and it is important to determine whether these mechanisms are distinct for different health outcomes or whether there are some common underlying pathways that may account for the effects of disparate prenatal and early postnatal conditions on various health and disease risk phenotypes. We propose that telomere biology may represent a common underlying mechanism connecting fetal programming and subsequent health outcomes. It appears that the initial establishment of telomere length and regulation of telomere homeostasis may be plastic and receptive to the influence of intrauterine and other early life conditions. Moreover, telomere homeostasis in various cell types may serve as a fundamental integrator and regulator of processes underlying cell genomic integrity and function, aging, and senescence over the life span. We advance the hypothesis that context- and time-inappropriate exposures to various forms of physiological stress (maternal-placental-fetal endocrine aberrations and immune, inflammatory, and oxidative stresses) during the intrauterine period of development may alter or program the telomere biology system in a manner that accelerates cellular dysfunction, aging, and disease susceptibility over the life span.
Collapse
Affiliation(s)
- Sonja Entringer
- Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
47
|
Schwabe L, Bohbot VD, Wolf OT. Prenatal stress changes learning strategies in adulthood. Hippocampus 2012; 22:2136-43. [DOI: 10.1002/hipo.22034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2012] [Indexed: 11/06/2022]
|
48
|
Fetal programming of body composition, obesity, and metabolic function: the role of intrauterine stress and stress biology. J Nutr Metab 2012; 2012:632548. [PMID: 22655178 PMCID: PMC3359710 DOI: 10.1155/2012/632548] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 02/21/2012] [Indexed: 12/12/2022] Open
Abstract
Epidemiological, clinical, physiological, cellular, and molecular evidence suggests that the origins of obesity and metabolic dysfunction can be traced back to intrauterine life and supports an important role for maternal nutrition prior to and during gestation in fetal programming. The elucidation of underlying mechanisms is an area of interest and intense investigation. In this perspectives paper we propose that in addition to maternal nutrition-related processes it may be important to concurrently consider the potential role of intrauterine stress and stress biology. We frame our arguments in the larger context of an evolutionary-developmental perspective that supports roles for both nutrition and stress as key environmental conditions driving natural selection and developmental plasticity. We suggest that intrauterine stress exposure may interact with the nutritional milieu, and that stress biology may represent an underlying mechanism mediating the effects of diverse intrauterine perturbations, including but not limited to maternal nutritional insults (undernutrition and overnutrition), on brain and peripheral targets of programming of body composition, energy balance homeostasis, and metabolic function. We discuss putative maternal-placental-fetal endocrine and immune/inflammatory candidate mechanisms that may underlie the long-term effects of intrauterine stress. We conclude with a commentary of the implications for future research and clinical practice.
Collapse
|
49
|
Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proc Natl Acad Sci U S A 2012; 109:E1312-9. [PMID: 22529357 DOI: 10.1073/pnas.1201295109] [Citation(s) in RCA: 437] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stress-related variation in the intrauterine milieu may impact brain development and emergent function, with long-term implications in terms of susceptibility for affective disorders. Studies in animals suggest limbic regions in the developing brain are particularly sensitive to exposure to the stress hormone cortisol. However, the nature, magnitude, and time course of these effects have not yet been adequately characterized in humans. A prospective, longitudinal study was conducted in 65 normal, healthy mother-child dyads to examine the association of maternal cortisol in early, mid-, and late gestation with subsequent measures at approximately 7 y age of child amygdala and hippocampus volume and affective problems. After accounting for the effects of potential confounding pre- and postnatal factors, higher maternal cortisol levels in earlier but not later gestation was associated with a larger right amygdala volume in girls (a 1 SD increase in cortisol was associated with a 6.4% increase in right amygdala volume), but not in boys. Moreover, higher maternal cortisol levels in early gestation was associated with more affective problems in girls, and this association was mediated, in part, by amygdala volume. No association between maternal cortisol in pregnancy and child hippocampus volume was observed in either sex. The current findings represent, to the best of our knowledge, the first report linking maternal stress hormone levels in human pregnancy with subsequent child amygdala volume and affect. The results underscore the importance of the intrauterine environment and suggest the origins of neuropsychiatric disorders may have their foundations early in life.
Collapse
|
50
|
Abstract
Stress has long been suggested to be an important correlate of uncontrolled drinking and relapse. An important hormonal response system to stress-the hypothalamic-pituitary-adrenal (HPA) axis-may be involved in this process, particularly stress hormones known as glucocorticoids and primarily cortisol. The actions of this hormone system normally are tightly regulated to ensure that the body can respond quickly to stressful events and return to a normal state just as rapidly. The main determinants of HPA axis activity are genetic background, early-life environment, and current life stress. Alterations in HPA axis regulation are associated with problematic alcohol use and dependence; however, the nature of this dysregulation appears to vary with respect to stage of alcohol dependence. Much of this research has focused specifically on the role of cortisol in the risk for, development of, and relapse to chronic alcohol use. These studies found that cortisol can interact with the brain's reward system, which may contribute to alcohol's reinforcing effects. Cortisol also can influence a person's cognitive processes, promoting habit-based learning, which may contribute to habit formation and risk of relapse. Finally, cortisol levels during abstinence may be useful clinical indicators of relapse vulnerability in alcohol-dependent people.
Collapse
|