1
|
Kimourtzis G, Rangwani N, Jenkins BJ, Jani S, McNaughton PA, Raouf R. Prostaglandin E2 depolarises sensory axons in vitro in an ANO1 and Nav1.8 dependent manner. Sci Rep 2024; 14:17360. [PMID: 39075089 PMCID: PMC11286870 DOI: 10.1038/s41598-024-67793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Prostaglandin E2 (PGE2) is a major contributor to inflammatory pain hyperalgesia, however, the extent to which it modulates the activity of nociceptive axons is incompletely understood. We developed and characterized a microfluidic cell culture model to investigate sensitisation of the axons of dorsal root ganglia neurons. We show that application of PGE2 to fluidically isolated axons leads to sensitisation of their responses to depolarising stimuli. Interestingly the application of PGE2 to the DRG axons elicited a direct and persistent spiking activity propagated to the soma. Both the persistent activity and the membrane depolarisation in the axons are abolished by the EP4 receptor inhibitor and a blocker of cAMP synthesis. Further investigated into the mechanisms of the spiking activity showed that the PGE2 evoked depolarisation was inhibited by Nav1.8 sodium channel blockers but was refractory to the application of TTX or zatebradine. Interestingly, the depolarisation of axons was blocked by blocking ANO1 channels with T16Ainh-A01. We further show that PGE2-elicited axonal responses are altered by the changes in chloride gradient within the axons following treatment with bumetanide a Na-K-2Cl cotransporter NKCC1 inhibitor, but not by VU01240551 an inhibitor of potassium-chloride transporter KCC2. Our data demonstrate a novel role for PGE2/EP4/cAMP pathway which culminates in a sustained depolarisation of sensory axons mediated by a chloride current through ANO1 channels. Therefore, using a microfluidic culture model, we provide evidence for a potential dual function of PGE2 in inflammatory pain: it sensitises depolarisation-evoked responses in nociceptive axons and directly triggers action potentials by activating ANO1 and Nav1.8 channels.
Collapse
Affiliation(s)
- Georgios Kimourtzis
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
| | - Natasha Rangwani
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
| | - Bethan J Jenkins
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
| | - Siddharth Jani
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
| | - Peter A McNaughton
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
| | - Ramin Raouf
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
2
|
Bin NR, Prescott SL, Horio N, Wang Y, Chiu IM, Liberles SD. An airway-to-brain sensory pathway mediates influenza-induced sickness. Nature 2023; 615:660-667. [PMID: 36890237 PMCID: PMC10033449 DOI: 10.1038/s41586-023-05796-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/03/2023] [Indexed: 03/10/2023]
Abstract
Pathogen infection causes a stereotyped state of sickness that involves neuronally orchestrated behavioural and physiological changes1,2. On infection, immune cells release a 'storm' of cytokines and other mediators, many of which are detected by neurons3,4; yet, the responding neural circuits and neuro-immune interaction mechanisms that evoke sickness behaviour during naturalistic infections remain unclear. Over-the-counter medications such as aspirin and ibuprofen are widely used to alleviate sickness and act by blocking prostaglandin E2 (PGE2) synthesis5. A leading model is that PGE2 crosses the blood-brain barrier and directly engages hypothalamic neurons2. Here, using genetic tools that broadly cover a peripheral sensory neuron atlas, we instead identified a small population of PGE2-detecting glossopharyngeal sensory neurons (petrosal GABRA1 neurons) that are essential for influenza-induced sickness behaviour in mice. Ablating petrosal GABRA1 neurons or targeted knockout of PGE2 receptor 3 (EP3) in these neurons eliminates influenza-induced decreases in food intake, water intake and mobility during early-stage infection and improves survival. Genetically guided anatomical mapping revealed that petrosal GABRA1 neurons project to mucosal regions of the nasopharynx with increased expression of cyclooxygenase-2 after infection, and also display a specific axonal targeting pattern in the brainstem. Together, these findings reveal a primary airway-to-brain sensory pathway that detects locally produced prostaglandins and mediates systemic sickness responses to respiratory virus infection.
Collapse
Affiliation(s)
- Na-Ryum Bin
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Sara L Prescott
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nao Horio
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yandan Wang
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Basin S, Valentin S, Demoulin-Alexikova S, Demoulin B, Foucaud L, Gérard D, Pouget C, Allado E, Chenuel B, Poussel M. Impact of Inhaled Corticosteroids on the Modulation of Respiratory Defensive Reflexes During Artificial Limb Exercise in Ovalbumin-Sensitized Rabbits. Front Physiol 2022; 12:804577. [PMID: 35145425 PMCID: PMC8821955 DOI: 10.3389/fphys.2021.804577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction Cough is a major lower airway defense mechanism that can be triggered by exercise in asthma patients. Studies on cough reflex in experimental animal models revealed a decrease of cough reflex sensitivity during exercise in healthy animals, but a lack of desensitization in ovalbumin-sensitized rabbits. The aim of our study is to evaluate the impact of inhaled corticosteroids on cough reflex during artificial limb exercise in an animal model of eosinophilic airway inflammation. Materials and Methods Sixteen adult ovalbumin-sensitized rabbits were randomly divided into two groups. The “OVA-Corticoid” group (n = 8) received inhaled corticosteroids (budesonide; 1 mg/day during 2 consecutive days) while the “OVA-Control” (n = 8) group was exposed to saline nebulization. The sensitivity of defensive reflexes induced by direct mechanical stimulation of the trachea was studied in anesthetized animals, at rest and during artificial limb exercise. Cell count was performed on bronchoalveolar lavage fluid and middle lobe tissue sections to assess the level of eosinophilic inflammation. Results All rabbits were significantly sensitized but there was no difference in eosinophilic inflammation on bronchoalveolar lavage or tissue sections between the two groups. Artificial limb exercise resulted in a significant (p = 0.002) increase in minute ventilation by 30% (+ 209 mL.min–1, ± 102 mL/min–1), with no difference between the two groups. 322 mechanical tracheal stimulations were performed, 131 during exercise (40.7%) and 191 at rest (59.3%). Cough reflex was the main response encountered (46.9%), with a significant increase in cough reflex threshold during artificial limb exercise in the “OVA-Corticoid” group (p = 0.039). Cough reflex threshold remained unchanged in the “OVA-Control” group (p = 0.109). Conclusion Inhaled corticosteroids are able to restore desensitization of the cough reflex during artificial limb exercise in an animal model of airway eosinophilic inflammation. Airway inflammation thus appears to be involved in the physiopathology of exercise-induced cough in this ovalbumin sensitized rabbit model. Inhaled anti-inflammatory treatments could have potential benefit for the management of exercise-induced cough in asthma patients.
Collapse
Affiliation(s)
- Sarah Basin
- Department of Pneumology, CHRU Nancy, Nancy, France
- EA 3450 DevAH—Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
- *Correspondence: Sarah Basin,
| | - Simon Valentin
- Department of Pneumology, CHRU Nancy, Nancy, France
- EA 3450 DevAH—Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
| | - Silvia Demoulin-Alexikova
- EA 3450 DevAH—Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
- Department of Pediatric Respiratory Function Testing, CHRU Nancy, Nancy, France
| | - Bruno Demoulin
- EA 3450 DevAH—Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
| | - Laurent Foucaud
- EA 3450 DevAH—Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
| | | | - Celso Pouget
- Department of Pathology CHRU Nancy, Nancy, France
| | - Edem Allado
- EA 3450 DevAH—Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
- Pulmonary Function Testing and Exercise Physiology, CHRU Nancy, Nancy, France
| | - Bruno Chenuel
- EA 3450 DevAH—Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
- Pulmonary Function Testing and Exercise Physiology, CHRU Nancy, Nancy, France
| | - Mathias Poussel
- EA 3450 DevAH—Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
- Pulmonary Function Testing and Exercise Physiology, CHRU Nancy, Nancy, France
| |
Collapse
|
4
|
Abstract
The clinical term dyspnea (a.k.a. breathlessness or shortness of breath) encompasses at least three qualitatively distinct sensations that warn of threats to breathing: air hunger, effort to breathe, and chest tightness. Air hunger is a primal homeostatic warning signal of insufficient alveolar ventilation that can produce fear and anxiety and severely impacts the lives of patients with cardiopulmonary, neuromuscular, psychological, and end-stage disease. The sense of effort to breathe informs of increased respiratory muscle activity and warns of potential impediments to breathing. Most frequently associated with bronchoconstriction, chest tightness may warn of airway inflammation and constriction through activation of airway sensory nerves. This chapter reviews human and functional brain imaging studies with comparison to pertinent neurorespiratory studies in animals to propose the interoceptive networks underlying each sensation. The neural origins of their distinct sensory and affective dimensions are discussed, and areas for future research are proposed. Despite dyspnea's clinical prevalence and impact, management of dyspnea languishes decades behind the treatment of pain. The neurophysiological bases of current therapeutic approaches are reviewed; however, a better understanding of the neural mechanisms of dyspnea may lead to development of novel therapies and improved patient care.
Collapse
Affiliation(s)
- Andrew P Binks
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States; Faculty of Health Sciences, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
5
|
Sharma P, Penn RB. Can GPCRs Be Targeted to Control Inflammation in Asthma? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:1-20. [PMID: 34019260 DOI: 10.1007/978-3-030-68748-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Historically, the drugs used to manage obstructive lung diseases (OLDs), asthma, and chronic obstructive pulmonary disease (COPD) either (1) directly regulate airway contraction by blocking or relaxing airway smooth muscle (ASM) contraction or (2) indirectly regulate ASM contraction by inhibiting the principal cause of ASM contraction/bronchoconstriction and airway inflammation. To date, these tasks have been respectively assigned to two diverse drug types: agonists/antagonists of G protein-coupled receptors (GPCRs) and inhaled or systemic steroids. These two types of drugs "stay in their lane" with respect to their actions and consequently require the addition of the other drug to effectively manage both inflammation and bronchoconstriction in OLDs. Indeed, it has been speculated that safety issues historically associated with beta-agonist use (beta-agonists activate the beta-2-adrenoceptor (β2AR) on airway smooth muscle (ASM) to provide bronchoprotection/bronchorelaxation) are a function of pro-inflammatory actions of β2AR agonism. Recently, however, previously unappreciated roles of various GPCRs on ASM contractility and on airway inflammation have been elucidated, raising the possibility that novel GPCR ligands targeting these GPCRs can be developed as anti-inflammatory therapeutics. Moreover, we now know that many GPCRs can be "tuned" and not just turned "off" or "on" to specifically activate the beneficial therapeutic signaling a receptor can transduce while avoiding detrimental signaling. Thus, the fledging field of biased agonism pharmacology has the potential to turn the β2AR into an anti-inflammatory facilitator in asthma, possibly reducing or eliminating the need for steroids.
Collapse
Affiliation(s)
- Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy, & Critical Care Medicine Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond B Penn
- Center for Translational Medicine, Division of Pulmonary, Allergy, & Critical Care Medicine Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Gao X, Zhuang J, Zhao L, Wei W, Xu F. Cross-effect of TRPV1 and EP3 receptor on coughs and bronchopulmonary C-neural activities. PLoS One 2021; 16:e0246375. [PMID: 33529249 PMCID: PMC7853511 DOI: 10.1371/journal.pone.0246375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
Prostaglandin E2 (PGE2)-induced coughs in vivo and vagal nerve depolarization in vitro are inhibited by systemic and local administration of prostaglandin EP3 receptor (L-798106) and TRPV1 antagonists (JNJ 17203212). These results indicate a modulating effect of TRPV1 on the EP3 receptor-mediated cough responses to PGE2 likely through the vagal sensory nerve. This study aimed to determine whether 1) inhalation of aerosolized JNJ 17203212 and L-798106 affected cough responses to citric acid (CA, mainly stimulating TRPV1) and PGE2; 2) TRPV1 and EP3 receptor morphologically are co-expressed and electrophysiologically functioned in the individual of vagal pulmonary C-neurons (cell bodies of bronchopulmonary C-fibers in the nodose/jugular ganglia); and 3) there was a cross-effect of TRPV1 and EP3 receptor on these neural excitations. To this end, aerosolized CA or PGE2 was inhaled by unanesthetized guinea pigs pretreated without or with each antagonist given in aerosol form. Immunofluorescence was applied to identify the co-expression of TRPV1 and EP3 receptor in vagal pulmonary C-neurons (retrogradely traced by DiI). Whole-cell voltage patch clamp approach was used to detect capsaicin (CAP)- and PGE2-induced currents in individual vagal pulmonary C-neurons and determine the effects of the TRPV1 and EP3 receptor antagonists on the evoked currents. We found that PGE2-induced cough was attenuated by JNJ 17203212 or L-798106 and CA-evoked cough greatly suppressed only by JNJ 17203212. Approximately 1/4 of vagal pulmonary C-neurons co-expressed EP3 with a cell size < 20 μm. Both CAP- and PGE2-induced currents could be recorded in the individuals of some vagal pulmonary C-neurons. The former was largely inhibited only by JNJ 17203212, while the latter was suppressed by JNJ 17203212 or L-798106. The similarity of the cross-effect of both antagonists on cough and vagal pulmonary C-neural activity suggests that a subgroup of vagal pulmonary C-neurons co-expressing TRPV1 and EP3 receptor is, at least in part, responsible for the cough response to PGE2.
Collapse
Affiliation(s)
- Xiuping Gao
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States of America
| | - Jianguo Zhuang
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States of America
| | - Lei Zhao
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States of America
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Wan Wei
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States of America
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Fadi Xu
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
7
|
Litvin DG, Denstaedt SJ, Borkowski LF, Nichols NL, Dick TE, Smith CB, Jacono FJ. Peripheral-to-central immune communication at the area postrema glial-barrier following bleomycin-induced sterile lung injury in adult rats. Brain Behav Immun 2020; 87:610-633. [PMID: 32097765 PMCID: PMC8895345 DOI: 10.1016/j.bbi.2020.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The pathways for peripheral-to-central immune communication (P → C I-comm) following sterile lung injury (SLI) are unknown. SLI evokes systemic and central inflammation, which alters central respiratory control and viscerosensory transmission in the nucleus tractus solitarii (nTS). These functional changes coincide with increased interleukin-1 beta (IL-1β) in the area postrema, a sensory circumventricular organ that connects P → C I-comm to brainstem circuits that control homeostasis. We hypothesize that IL-1β and its downstream transcriptional target, cyclooxygenase-2 (COX-2), mediate P → C I-comm in the nTS. In a rodent model of SLI induced by intratracheal bleomycin (Bleo), the sigh frequency and duration of post-sigh apnea increased in Bleo- compared to saline- treated rats one week after injury. This SLI-dependent change in respiratory control occurred concurrently with augmented IL-1β and COX-2 immunoreactivity (IR) in the funiculus separans (FS), a barrier between the AP and the brainstem. At this barrier, increases in IL-1β and COX-2 IR were confined to processes that stained for glial fibrillary acidic protein (GFAP) and that projected basolaterally to the nTS. Further, FS radial-glia did not express TNF-α or IL-6 following SLI. To test our hypothesis, we blocked central COX-1/2 activity by intracerebroventricular (ICV) infusion of Indomethacin (Ind). Continuous ICV Ind treatment prevented Bleo-dependent increases in GFAP + and IL-1β + IR, and restored characteristics of sighs that reset the rhythm. These data indicate that changes in sighs following SLI depend partially on activation of a central COX-dependent P → C I-comm via radial-glia of the FS.
Collapse
Affiliation(s)
- David G Litvin
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Scott J Denstaedt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Lauren F Borkowski
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Nicole L Nichols
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Corey B Smith
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
8
|
Jang Y, Kim M, Hwang SW. Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. J Neuroinflammation 2020; 17:30. [PMID: 31969159 PMCID: PMC6975075 DOI: 10.1186/s12974-020-1703-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022] Open
Abstract
Arachidonic acid-derived prostaglandins not only contribute to the development of inflammation as intercellular pro-inflammatory mediators, but also promote the excitability of the peripheral somatosensory system, contributing to pain exacerbation. Peripheral tissues undergo many forms of diseases that are frequently accompanied by inflammation. The somatosensory nerves innervating the inflamed areas experience heightened excitability and generate and transmit pain signals. Extensive studies have been carried out to elucidate how prostaglandins play their roles for such signaling at the cellular and molecular levels. Here, we briefly summarize the roles of arachidonic acid-derived prostaglandins, focusing on four prostaglandins and one thromboxane, particularly in terms of their actions on afferent nociceptors. We discuss the biosynthesis of the prostaglandins, their specific action sites, the pathological alteration of the expression levels of related proteins, the neuronal outcomes of receptor stimulation, their correlation with behavioral nociception, and the pharmacological efficacy of their regulators. This overview will help to a better understanding of the pathological roles that prostaglandins play in the somatosensory system and to a finding of critical molecular contributors to normalizing pain.
Collapse
Affiliation(s)
- Yongwoo Jang
- Department of Psychiatry and Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.,Department of Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Minseok Kim
- Department of Biomedical Sciences, Korea University, Seoul, 02841, South Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University, Seoul, 02841, South Korea. .,Department of Physiology, College of Medicine, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
9
|
Nayak AP, Deshpande DA, Penn RB. New targets for resolution of airway remodeling in obstructive lung diseases. F1000Res 2018; 7. [PMID: 29904584 PMCID: PMC5981194 DOI: 10.12688/f1000research.14581.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 12/17/2022] Open
Abstract
Airway remodeling (AR) is a progressive pathological feature of the obstructive lung diseases, including asthma and chronic obstructive pulmonary disease (COPD). The pathology manifests itself in the form of significant, progressive, and (to date) seemingly irreversible changes to distinct respiratory structural compartments. Consequently, AR correlates with disease severity and the gradual decline in pulmonary function associated with asthma and COPD. Although current asthma/COPD drugs manage airway contraction and inflammation, none of these effectively prevent or reverse features of AR. In this review, we provide a brief overview of the features and putative mechanisms affecting AR. We further discuss recently proposed strategies with promise for deterring or treating AR.
Collapse
Affiliation(s)
- Ajay P Nayak
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Deepak A Deshpande
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Raymond B Penn
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
10
|
Prueitt RL, Goodman JE. Evaluation of neural reflex activation as a mode of action for the acute respiratory effects of ozone. Inhal Toxicol 2016; 28:484-99. [DOI: 10.1080/08958378.2016.1213332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Taylor-Clark TE. Role of reactive oxygen species and TRP channels in the cough reflex. Cell Calcium 2016; 60:155-62. [PMID: 27016063 DOI: 10.1016/j.ceca.2016.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/15/2022]
Abstract
The cough reflex is evoked by noxious stimuli in the airways. Although this reflex is essential for health, it can be triggered chronically in inflammatory and infectious airway disease. Neuronal transient receptor potential (TRP) channels such as ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are polymodal receptors expressed on airway nociceptive afferent nerves. Reactive oxygen species (ROS) and other reactive compounds are associated with inflammation, from either NADPH oxidase or mitochondria. These reactive compounds cause activation and hyperexcitability of nociceptive afferents innervating the airways, and evidence suggests key contributions of TRPA1 and TRPV1.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
12
|
Draijer C, Boorsma CE, Reker-Smit C, Post E, Poelstra K, Melgert BN. PGE2-treated macrophages inhibit development of allergic lung inflammation in mice. J Leukoc Biol 2016; 100:95-102. [PMID: 26931576 DOI: 10.1189/jlb.3mab1115-505r] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/06/2016] [Indexed: 11/24/2022] Open
Abstract
In healthy lungs, many macrophages are characterized by IL-10 production, and few are characterized by expression of IFN regulatory factor 5 (formerly M1) or YM1 and/or CD206 (formerly M2), whereas in asthma, this balance shifts toward few producing IL-10 and many expressing IFN regulatory factor 5 or YM1/CD206. In this study, we tested whether redressing the balance by reinstating IL-10 production could prevent house dust mite-induced allergic lung inflammation. PGE2 was found to be the best inducer of IL-10 in macrophages in vitro. Mice were then sensitized and challenged to house dust mites during a 2 wk protocol while treated with PGE2 in different ways. Lung inflammation was assessed 3 d after the last house dust mite challenge. House dust mite-exposed mice treated with free PGE2 had fewer infiltrating eosinophils in lungs and lower YM1 serum levels than vehicle-treated mice. Macrophage-specific delivery of PGE2 did not affect lung inflammation. Adoptive transfer of PGE2-treated macrophages led to fewer infiltrating eosinophils, macrophages, (activated) CD4(+), and regulatory T lymphocytes in lungs. Our study shows that the redirection of macrophage polarization by using PGE2 inhibits development of allergic lung inflammation. This beneficial effect of macrophage repolarization is a novel avenue to explore for therapeutic purposes.
Collapse
Affiliation(s)
- Christina Draijer
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands and Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Carian E Boorsma
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands and Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Catharina Reker-Smit
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands and
| | - Eduard Post
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands and
| | - Klaas Poelstra
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands and
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands and Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|
13
|
Noble MI. Abraham Guz memorial: Still unresolved hypotheses: Lung reflexes and perceptions of breathing. Respir Physiol Neurobiol 2015; 217:46-53. [DOI: 10.1016/j.resp.2015.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 11/30/2022]
|
14
|
Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. Proc Natl Acad Sci U S A 2014; 111:11515-20. [PMID: 25049382 DOI: 10.1073/pnas.1411032111] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Asthma is a common debilitating inflammatory lung disease affecting over 200 million people worldwide. Here, we investigated neurogenic components involved in asthmatic-like attacks using the ovalbumin-sensitized murine model of the disease, and identified a specific population of neurons that are required for airway hyperreactivity. We show that ablating or genetically silencing these neurons abolished the hyperreactive broncho-constrictions, even in the presence of a fully developed lung inflammatory immune response. These neurons are found in the vagal ganglia and are characterized by the expression of the transient receptor potential vanilloid 1 (TRPV1) ion channel. However, the TRPV1 channel itself is not required for the asthmatic-like hyperreactive airway response. We also demonstrate that optogenetic stimulation of this population of TRP-expressing cells with channelrhodopsin dramatically exacerbates airway hyperreactivity of inflamed airways. Notably, these cells express the sphingosine-1-phosphate receptor 3 (S1PR3), and stimulation with a S1PR3 agonist efficiently induced broncho-constrictions, even in the absence of ovalbumin sensitization and inflammation. Our results show that the airway hyperreactivity phenotype can be physiologically dissociated from the immune component, and provide a platform for devising therapeutic approaches to asthma that target these pathways separately.
Collapse
|
15
|
Serra J, Collado A, Solà R, Antonelli F, Torres X, Salgueiro M, Quiles C, Bostock H. Hyperexcitable C nociceptors in fibromyalgia. Ann Neurol 2014; 75:196-208. [DOI: 10.1002/ana.24065] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Jordi Serra
- Department of Neurology; MC Mutual; Barcelona Spain
- Neuroscience Technologies; Barcelona Science Park; Barcelona Spain
| | | | - Romà Solà
- Department of Neurology; MC Mutual; Barcelona Spain
- Neuroscience Technologies; Barcelona Science Park; Barcelona Spain
| | - Francesca Antonelli
- Department of Neurology; MC Mutual; Barcelona Spain
- Neuroscience Technologies; Barcelona Science Park; Barcelona Spain
| | | | | | - Cristina Quiles
- Department of Neurology; MC Mutual; Barcelona Spain
- Neuroscience Technologies; Barcelona Science Park; Barcelona Spain
| | - Hugh Bostock
- Department of Neurology; MC Mutual; Barcelona Spain
- Sobell Department of Motor Neuroscience and Movement Disorders; Institute of Neurology, University College London; London United Kingdom
| |
Collapse
|
16
|
Abstract
The history of allergic disease goes back to 1819, when Bostock described his own 'periodical affection of the eyes and chest', which he called 'summer catarrh'. Since they thought it was produced by the effluvium of new hay, this condition was also called hay fever. Later, in 1873, Blackley established that pollen played an important role in the causation of hay fever. Nowadays, the definition of allergy is 'An untoward physiologic event mediated by a variety of different immunologic reactions'. In this review, the term allergy will be restricted to the IgE-dependent reactions. The most important clinical manifestations of IgE-dependent reactions are allergic conjunctivitis, allergic rhinitis, allergic asthma and atopic dermatitis. However, this review will be restricted to allergic rhinitis. The histopathological features of allergic inflammation involve an increase in blood flow and vascular permeability, leading to plasma exudation and the formation of oedema. In addition, a cascade of events occurs which involves a variety of inflammatory cells. These inflammatory cells migrate under the influence of chemotactic agents to the site of injury and induce the process of repair. Several types of inflammatory cells have been implicated in the pathogenesis of allergic rhinitis. After specific or nonspecific stimuli, inflammatory mediators are generated from cells normally found in the nose, such as mast cells, antigen-presenting cells and epithelial cells (primary effector cells) and from cells recruited into the nose, such as basophils, eosinophils, lymphocytes, platelets and neutrophils (secondary effector cells). This review describes the identification of each of the inflammatory cells and their mediators which play a role in the perennial allergic processes in the nose of rhinitis patients.
Collapse
|
17
|
Turmel J, Bougault V, Boulet LP. Seasonal variations of cough reflex sensitivity in elite athletes training in cold air environment. COUGH 2012; 8:2. [PMID: 22449054 PMCID: PMC3356236 DOI: 10.1186/1745-9974-8-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/26/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Exercise-induced cough is common among athletes. Athletes training in cold air often report an increasingly troublesome cough during the winter season. Chronic airway irritation or inflammation may increase the sensory response of cough receptors. The aim of this study was to evaluate the seasonal variability of cough reflex sensitivity to capsaicin in elite athletes. METHODS Fifty-three elite winter athletes and 33 sedentary subjects completed a respiratory questionnaire and a capsaicin provocation test during the summer, fall, and winter. Allergy skin prick tests, spirometry, eucapnic voluntary hyperpnea test (EVH), methacholine inhalation test (MIT), and induced sputum analysis were also performed. RESULTS In athletes, the prevalence of cough immediately after exercise was high, particularly during winter. Athletes often showed a late occurrence of cough between 2-8 h after exercise. The cough reflex sensitivity to capsaicin was unchanged through the seasons in both athletes and non-athlete subjects. No significant correlations were found in groups between cough reflex sensitivity to capsaicin and the number of years in sport training, the number of hours of training per week, EVH response (% fall in FEV1), airway responsiveness to methacholine (PC20), airway inflammation or atopy. CONCLUSION The prevalence of cough immediately and a few hours after exercise is high in athletes and more frequently reported during winter. However, cough does not seem to be associated with cough reflex hypersensitivity to capsaicin, bronchoconstriction, or airway inflammation in the majority of athletes.
Collapse
Affiliation(s)
- Julie Turmel
- Centre de recherche de l'Institut universitaire de cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, Qc G1V 4G5, Canada.
| | | | | |
Collapse
|
18
|
Role of PGE2 in asthma and nonasthmatic eosinophilic bronchitis. Mediators Inflamm 2012; 2012:645383. [PMID: 22529528 PMCID: PMC3316983 DOI: 10.1155/2012/645383] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 11/17/2022] Open
Abstract
Eosinophilic bronchitis is a common cause of chronic cough, which like asthma is characterized by sputum eosinophilia, but unlike asthma there is no variable airflow obstruction or airway hyperresponsiveness. Several studies suggest that prostaglandins may play an important role in orchestrating interactions between different cells in several inflammatory diseases such as asthma. PGE2 is important because of the multiplicity of its effects on immune response in respiratory diseases; however, respiratory system appears to be unique in that PGE2 has beneficial effects. We described that the difference in airway function observed in patients with eosinophilic bronchitis and asthma could be due to differences in PGE2 production. PGE2 present in induced sputum supernatant from NAEB patients decreases BSMC proliferation, probably due to simultaneous stimulation of EP2 and EP4 receptors with inhibitory activity. This protective effect of PGE2 may not only be the result of a direct action exerted on airway smooth-muscle proliferation but may also be attributable to the other anti-inflammatory actions.
Collapse
|
19
|
Murray NPS, McKenzie DK, Gandevia SC, Butler JE. Effect of airway inflammation on short-latency reflex inhibition to inspiratory loading in human scalene muscles. Respir Physiol Neurobiol 2012; 181:148-53. [PMID: 22415066 DOI: 10.1016/j.resp.2012.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/03/2012] [Accepted: 02/17/2012] [Indexed: 11/15/2022]
Abstract
The short-latency reflex inhibition of human inspiratory muscles produced by loading is prolonged in asthma and obstructive sleep apnoea, both diseases involving airway and systemic inflammation. Both diseases also involve repetitive inspiratory loading. Although airway mucosal afferents are not critical components of the normal reflex arc, during airway inflammation, prolongation of the reflex may be caused by altered mucosal afferent sensitivity, or altered central processing of their inputs. We hypothesised that acute viral airway inflammation would replicate the reflex abnormality. The reflex was tested in 9 subjects with a "common cold" during both the acute infection and when well. Surface electrodes recorded electromyographic (EMG) activity bilaterally from scalene muscles. Latencies of the inhibitory response (IR) did not differ significantly (IR peak 67 vs 70 ms (p=0.12), and IR offset 87 vs 90 ms (p=0.23), between the inflamed and well conditions, respectively). There was no difference in any measure of the size of the reflex inhibition.
Collapse
Affiliation(s)
- Nicholas P S Murray
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
20
|
Lin S, Li H, Xu L, Moldoveanu B, Guardiola J, Yu J. Arachidonic acid products in airway nociceptor activation during acute lung injury. Exp Physiol 2011; 96:966-76. [PMID: 21622966 PMCID: PMC3162081 DOI: 10.1113/expphysiol.2011.058263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have reported that airway nociceptors [C fibre receptors (CFRs) and high-threshold Aδ fibre receptors (HTARs)] are activated during oleic acid (OA)-induced acute lung injury. In the present studies, we tested the hypothesis that this nociceptor activation is mediated by arachidonic acid products. In anaesthetized, open-chest, mechanically ventilated rabbits, we examined the response of the nociceptors to intravenous injection of OA before and after blocking the cyclo-oxygenase pathways with indomethacin. Pretreatment with indomethacin (20 mg kg(-1)) decreased the background activities of both CFRs (from 0.48 ± 0.12 to 0.25 ± 0.08 impulses/s, n = 7, P < 0.05) and HTARs (from 0.54 ± 0.14 to 0.23 ± 0.08 impulses/s, n = 10, P < 0.01). It also blocked the response of the nociceptors to OA. Likewise, pretreatment with thromboxane synthase inhibitor (ketoconazole) also blocked the nociceptor response to OA. In addition, local microinjection or intravenous injection of a thromboxane mimetic stimulated CFRs and HTARs. The present results clearly indicate that arachidonic acid metabolites mediate airway nociceptor activation during OA-induced acute lung injury and suggest that thromboxane may be a key mediator.
Collapse
Affiliation(s)
- Shuxin Lin
- Department of Medicine Univ. of Louisville, Louisville, KY 40292
| | - Huafeng Li
- Department of Medicine Univ. of Louisville, Louisville, KY 40292
| | - Ling Xu
- Department of Mathematics and Statistics, James Madison Univ, Harrisonburg, VA 22807
| | | | | | - Jerry Yu
- Department of Medicine Univ. of Louisville, Louisville, KY 40292
- Robley Rex VA Medical Center, Louisville, KY 40206
| |
Collapse
|
21
|
|
22
|
|
23
|
Bougault V, Turmel J, Boulet LP. Bronchial challenges and respiratory symptoms in elite swimmers and winter sport athletes: Airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest 2010; 138:31S-37S. [PMID: 20363843 DOI: 10.1378/chest.09-1689] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
UNLABELLED This study was aimed at the following: (1) the prevalence of airway hyperresponsiveness (AHR) and exercise-induced bronchoconstriction (EIB) in swimmers and winter sport athletes according to the previously recommended regulatory sport agencies criteria, (2) the relationship between respiratory symptoms and AHR/EIB, (3) the impact of the chosen cutoff value for AHR on its prevalence, and (4) the effect on the prevalence of the positive eucapnic voluntary hyperpnea (EVH) test of using the highest vs the lowest spirometric post-EVH values to calculate the magnitude of the airway response. We compared the prevalence of respiratory symptoms with responses to methacholine challenge and EVH in 45 swimmers, 45 winter sport athletes, and 30 controls. Two methacholine challenge cutoffs for AHR were analyzed: <or= 4 mg/mL (the sport agencies' criteria for AHR) and <or= 16 mg/mL. Sixty percent of swimmers, 29% of winter sport athletes, and 17% of controls had evidence of EIB or AHR (with the <or= 4 mg/mL criteria). Among athletes with a methacholine provocative concentration inducing a 20% decrease in the FEV(1) between 4 and 16 mg/mL, 43% of swimmers and 100% of winter sport athletes were symptomatic (P < .05). Prevalence of positive EVH tests were 39% in swimmers, 24% in winter sport athletes, and 13% in controls when the highest FEV(1) value measured at each time point post-EVH was used to identify maximal response for calculation of airway response, although these prevalences were higher if we used the lowest value. This study suggests that AHR/EIB is frequent in swimmers, whereas the frequently reported respiratory symptoms in winter sport athletes are often not related to AHR/EIB. Furthermore, the choice of methods for assessing methacholine challenge and EVH responses influences the prevalences of AHR and EIB. TRIAL REGISTRATION clinicaltrials.gov; Identifier NCT 00686491 and NCT 00686452.
Collapse
Affiliation(s)
- Valérie Bougault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | | | | |
Collapse
|
24
|
|
25
|
Maher SA, Birrell MA, Belvisi MG. Prostaglandin E2 mediates cough via the EP3 receptor: implications for future disease therapy. Am J Respir Crit Care Med 2009; 180:923-8. [PMID: 19729667 DOI: 10.1164/rccm.200903-0388oc] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE A significant population of patients with severe asthma and chronic obstructive pulmonary disease is less responsive to beta(2)-adrenoceptor agonists and corticosteroids, and there are possible safety issues concerning long-term use of these drugs. Inhaled prostaglandin E(2) (PGE(2)) is antiinflammatory and a bronchodilator in patients with asthma, but it also causes cough. OBJECTIVES We aimed to identify the receptor involved in PGE(2)-induced sensory nerve activation and cough using a range of in vitro and in vivo techniques. METHODS Depolarization of vagal sensory nerves (human, mouse, and guinea pig) was assessed as an indicator of sensory nerve acitivity. Cough was measured in a conscious guinea pig model. MEASUREMENTS AND MAIN RESULTS Using an extensive range of pharmacological tools, we identified that the EP(3) receptor mediates PGE(2)-induced depolarization of sensory nerves in human, mouse, and guinea pig. Further supporting evidence comes from data showing that responses to PGE(2) are virtually abolished in isolated vagus nerves from EP(3)-deficient mice (Ptger3(-/-)). Finally, we demonstrated the role of the EP(3) receptor in vivo using a selective EP(3) antagonist to attenuate PGE(2)-induced cough. CONCLUSIONS Identification of the receptor mediating PGE(2)-induced cough represents a key step in developing a drug that is antiinflammatory and a bronchodilator but without unwanted side effects.
Collapse
Affiliation(s)
- Sarah A Maher
- Respiratory Pharmacology, Airways Diseases, Imperial College London, Faculty of Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | | | | |
Collapse
|
26
|
Abstract
Several airway afferent nerve subtypes have been implicated in coughing. These include bronchopulmonary C-fibers, rapidly adapting airway mechanoreceptors and touch-sensitive tracheal Adelta-fibers (also called cough receptors). Although the last two afferent nerve subtypes are primarily sensitive to mechanical stimuli, all can be acted upon by one or more different chemical stimuli. In this review we catalogue the chemical agents that stimulate and/or modulate the activity of the airway afferent nerves involved in cough, and describe the specific mechanisms involved in these effects. In addition, we describe the mechanisms of action of a number of chemical inhibitors of these afferent nerve subtypes, and attempt to relate this information to the regulation of coughing in health and disease.
Collapse
Affiliation(s)
- S B Mazzone
- School of Biomedical Sciences, The University of Queensland, St. Lucia QLD 4072, Australia.
| | | |
Collapse
|
27
|
Sastre B, Fernández-Nieto M, Mollá R, López E, Lahoz C, Sastre J, del Pozo V, Quirce S. Increased prostaglandin E2 levels in the airway of patients with eosinophilic bronchitis. Allergy 2008; 63:58-66. [PMID: 17961198 DOI: 10.1111/j.1398-9995.2007.01515.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Eosinophilic bronchitis is a common cause of chronic cough, which like asthma is characterized by sputum eosinophilia, but unlike asthma there is no variable airflow obstruction or airway hyperresponsiveness. We tested the hypothesis that the different airway function in patients with eosinophilic bronchitis and asthma could be caused by an imbalance in the production of bronchoconstrictor (LTC(4)) and bronchoprotective (prostaglandin E(2); PGE(2)) lipid mediators. METHODS We measured cytokines levels, proinflammatory mediators and eicosanoids concentration in sputum from 13 subjects with nonasthmatic eosinophilic bronchitis, 13 subjects with asthma, and 11 healthy control subjects. Cytokines mRNA levels were measured by real time PCR, proinflammatory mediators, PGE(2), and LTC(4) were measured by enzyme immunoassays. RESULTS The median sputum eosinophil count was not statistically different in patients with asthma (7.95%) and eosinophilic bronchitis (15.29%). The levels of mRNA specific to interleukin-5 (IL-5), IL-4, IL-10, IL-13, interferon gamma (IFN-gamma), IL-2, vascular endothelial growth factor and transforming growth factor beta were similar in both conditions. In addition, no differences were found between asthma and eosinophilic bronchitis in proinflammatory cytokines, such as IL-8, IFN-gamma and tumor necrosis factor alpha (TNF-alpha) levels. Sputum cysteinyl-leukotrienes concentration was raised both in eosinophilic bronchitis and asthma patients. We found that induced sputum PGE(2) concentrations were significantly increased in subjects with eosinophilic bronchitis (838.3 +/- 612 pg/ml) when compared with asthmatic (7.54 +/- 2.14 pg/ml) and healthy subjects (4 +/- 1.3 pg/ml). CONCLUSION This data suggest that the difference in airway function observed in subjects with eosinophilic bronchitis and asthma could be due to differences in PGE(2) production in the airways.
Collapse
Affiliation(s)
- B Sastre
- Immunology Department Fundación Jiménez Díaz Capio, CIBERES (ISCIII), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Carr MJ. Plasticity of the afferent innervation of the airways: The role of ion channels. Pulm Pharmacol Ther 2007; 20:412-5. [PMID: 17140832 DOI: 10.1016/j.pupt.2006.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 10/13/2006] [Indexed: 10/24/2022]
Abstract
Neuronal pathways associated with cough exhibit remarkable plasticity that can result in a persistent and uncontrollable urge to cough during disease. Afferent neurones involved in detecting tussive stimuli are polymodal, i.e. they respond to several types of stimuli including acid, inflammatory mediators such as bradykinin and mechanical stimuli. The pattern of action potential discharge following the encounter of the nerve terminal with a tussive stimulus is likely to determine the magnitude of the urge to cough and cough itself. The discharge pattern in sensory neurones is determined by multiple distinct voltage-gated ion channels. The function of many of these channels can be modulated via several signal transduction pathways coupled to receptors for a variety of inflammatory mediators. In particular, a key role of voltage-gated Na(+) and K(+) channel subtypes in shaping action potential discharge patterns in sensory neurones seems apparent. This modulation of transduction pathways may be an underlying mechanism of cough reflex plasticity.
Collapse
|
29
|
Rosi E, Stendardi L, Binazzi B, Scano G. Perception of airway obstruction and airway inflammation in asthma: a review. Lung 2007; 184:251-8. [PMID: 17235724 DOI: 10.1007/s00408-005-2590-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2006] [Indexed: 10/23/2022]
Abstract
Dyspnea has a multifactorial nature and the exact mechanism that causes breathlessness in asthma is not fully understood. There is compelling evidence that factors other than merely mechanical ones take part in the pathophysiology of breathlessness. Some recent reports attribute airway inflammation, which may contribute to the unexplained variability in the perception of dyspnea associated with bronchoconstriction. Eosinophil airway inflammation has been proposed as a determinant of breathlessness via mechanisms affecting either the mechanical pathways that control breathlessness or the afferent nerves involved in perception of dyspnea. In this review, data on the interrelation between inflammation and dyspnea sensation and the impact of treatment on dyspnea sensation are discussed. We conclude that regardless of whether mechanical or chemical inflammatory factors are involved, much variability in dyspnea scores remains unexplained.
Collapse
Affiliation(s)
- Elisabetta Rosi
- Section of Respiratory Medicine, Department of Medical-Surgical Specialty, University of Florence, Florence, Firenze, Italy
| | | | | | | |
Collapse
|
30
|
D'Amato G, Liccardi G, D'Amato M, Holgate S. Environmental risk factors and allergic bronchial asthma. Clin Exp Allergy 2006; 35:1113-24. [PMID: 16164436 DOI: 10.1111/j.1365-2222.2005.02328.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The prevalence of allergic respiratory diseases such as bronchial asthma has increased in recent years, especially in industrialized countries. A change in the genetic predisposition is an unlikely cause of the increase in allergic diseases because genetic changes in a population require several generations. Consequently, this increase may be explained by changes in environmental factors, including indoor and outdoor air pollution. Over the past two decades, there has been increasing interest in studies of air pollution and its effects on human health. Although the role played by outdoor pollutants in allergic sensitization of the airways has yet to be clarified, a body of evidence suggests that urbanization, with its high levels of vehicle emissions, and a westernized lifestyle are linked to the rising frequency of respiratory allergic diseases observed in most industrialized countries, and there is considerable evidence that asthmatic persons are at increased risk of developing asthma exacerbations with exposure to ozone, nitrogen dioxide, sulphur dioxide and inhalable particulate matter. However, it is not easy to evaluate the impact of air pollution on the timing of asthma exacerbations and on the prevalence of asthma in general. As concentrations of airborne allergens and air pollutants are frequently increased contemporaneously, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of allergic respiratory allergy and bronchial asthma. Pollinosis is frequently used to study the interrelationship between air pollution and respiratory allergy. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc) can affect both components (biological and chemical) of this interaction. By attaching to the surface of pollen grains and of plant-derived particles of paucimicronic size, pollutants could modify not only the morphology of these antigen-carrying agents but also their allergenic potential. In addition, by inducing airway inflammation, which increases airway permeability, pollutants overcome the mucosal barrier and could be able to "prime" allergen-induced responses. There are also observations that a thunderstorm occurring during pollen season can induce severe asthma attacks in pollinosis patients. After rupture by thunderstorm, pollen grains may release part of their cytoplasmic content, including inhalable, allergen-carrying paucimicronic particles.
Collapse
Affiliation(s)
- G D'Amato
- Department of Chest Diseases, Division of Pneumology and Allergology, High Speciality Hospital A. Cardarelli, Via Rione Sirignano 10, 80121 Naples, Italy.
| | | | | | | |
Collapse
|
31
|
Tanaka H, Kanako S, Abe S. Prostaglandin E2 receptor selective agonists E-prostanoid 2 and E-prostanoid 4 may have therapeutic effects on ovalbumin-induced bronchoconstriction. Chest 2005; 128:3717-23. [PMID: 16304339 DOI: 10.1378/chest.128.5.3717] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND The pharmacologic actions of prostaglandin E(2) (PGE(2)) are mediated through specific E-prostanoid (EP)-1, EP-2, EP-3, and EP-4 receptors. In this study, we determined which PGE(2) receptor subtype(s) contribute to the prevention of allergen-induced bronchoconstriction. METHODS We assessed the effects of these receptor agonists in ovalbumin (OA)-sensitized guinea pigs. The prostaglandin E receptor-subtype agonists tested were ONO-DI-004 (EP-1), ONO-AE1-259 (EP-2), ONO-AE-248 (EP-3), ONO-AE1-329 (EP-4), and sulprostone (EP-1 and EP-3) [Ono Pharmaceutical Company; Osaka, Japan]. We treated the animals with either PGE(2) or these agonists 15 min before OA challenge and measured respiratory resistance at 15 min, 1 h, and 3 h. RESULTS Allergen-induced bronchoconstriction was significantly (p < 0.01) suppressed at doses > 85 nmol/kg of PGE(2). The respiratory resistance elevations 15 min after OA challenge were significantly (p < 0.01) suppressed by preadministration of EP-2 and EP-4 agonists, but airway responsiveness to inhaled methacholine did not improve. EP-1, EP-3, or EP-1/EP-3 agonists had no effect on any parameter. CONCLUSIONS These results suggest that inhibition of OA-induced bronchoconstriction by PGE(2) acts through EP-2 and EP-4 receptors.
Collapse
Affiliation(s)
- Hiroshi Tanaka
- Third Department of Internal Medicine, Sapporo Medical University school of Medicine, Japan.
| | | | | |
Collapse
|
32
|
Nakajima T, Nishimura Y, Nishiuma T, Kotani Y, Funada Y, Nakata H, Yokoyama M. Characteristics of patients with chronic cough who developed classic asthma during the course of cough variant asthma: a longitudinal study. Respiration 2005; 72:606-11. [PMID: 16113512 DOI: 10.1159/000087459] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 01/25/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Some patients develop asthmatic symptoms such as wheezing and dyspnea during the course of cough variant asthma (CVA), which are considered precursors of classical asthma. OBJECTIVES To identify the characteristics of such patients, we investigated the nature of CVA patients with or without developing bronchial asthma in the longitudinal study. METHODS In 28 CVA patients whom we could observe over 5 years, duration of coughing, physical examination findings, pulmonary function and bronchial hyperresponsiveness to inhaled methacholine were retrospectively assessed. RESULTS Of these patients with CVA, 10 developed the asthmatic symptoms of wheezing and dyspnea (precursors of classical asthma) over 5 years. All these 10 patients showed marked bronchial hyperresponsiveness; however, there were no significant differences in the bronchial responsiveness to methacholine between patients with precursors of classical asthma and pure CVA patients who did not wheeze. The duration of coughing had a significant relationship with precursors of classical asthma. Seven patients with precursors of classical asthma developed wheezing in the first year and 1 patient each in the second, third and fourth year. CONCLUSIONS These findings of a 5-year observation suggest that longer duration of coughing may be an important factor that develops precursors of classical asthma in patients with CVA.
Collapse
Affiliation(s)
- Takeo Nakajima
- Division of Cardiovascular and Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Berkley KJ, Dmitrieva N, Curtis KS, Papka RE. Innervation of ectopic endometrium in a rat model of endometriosis. Proc Natl Acad Sci U S A 2004; 101:11094-8. [PMID: 15256593 PMCID: PMC491992 DOI: 10.1073/pnas.0403663101] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Indexed: 11/18/2022] Open
Abstract
Endometriosis (ENDO) is a disorder in which vascularized growths of endometrial tissue occur outside the uterus. Its symptoms include reduced fertility and severe pelvic pain. Mechanisms that maintain the ectopic growths and evoke symptoms are poorly understood. One factor not yet considered is that the ectopic growths develop their own innervation. Here, we tested the hypothesis that the growths develop both an autonomic and a sensory innervation. We used a rat model of surgically induced ENDO whose growths mimic those in women. Furthermore, similar to women with ENDO, such rats exhibit reduced fertility and increased pelvic nociception. The ENDO was induced by autotransplanting, on mesenteric cascade arteries, small pieces of uterus that formed vascularized cysts. The cysts and healthy uterus were harvested from proestrous rats and immunostained using the pan-neuronal marker PGP9.5 and specific markers for calcitonin gene-related peptide (CGRP) (sensory C and A delta fibers), substance P (SP) (sensory C and A delta fibers) and vesicular monoamine transporter (sympathetic fibers). Cysts (like the uterus) were robustly innervated, with many PGP9.5-stained neurites accompanying blood vessels and extending into nearby luminal epithelial layers. CGRP-, SP-, and vesicular monoamine transporter-immunostained neurites also were observed, with CGRP and SP neurites extending the furthest into the cyst lining. These results demonstrate that ectopic endometrial growths develop an autonomic and sensory innervation. This innervation could contribute not only to symptoms associated with ENDO but also to maintenance of the ectopic growths.
Collapse
Affiliation(s)
- Karen J Berkley
- Program in Neuroscience, Florida State University, Tallahassee, 32306-1270, USA.
| | | | | | | |
Collapse
|
34
|
Undem BJ, Chuaychoo B, Lee MG, Weinreich D, Myers AC, Kollarik M. Subtypes of vagal afferent C-fibres in guinea-pig lungs. J Physiol 2004; 556:905-17. [PMID: 14978204 PMCID: PMC1665007 DOI: 10.1113/jphysiol.2003.060079] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
An ex vivo, vagally innervated, lung preparation was used to address the hypothesis that vagal C-fibres comprise at least two distinct phenotypes. Histological and extracellular electrophysiological experiments revealed that vagal C-fibres innervating the pulmonary system are derived from cell bodies situated in two distinct vagal sensory ganglia. The jugular (superior) ganglion neurones project C-fibres to both the extrapulmonary airways (larynx, trachea and bronchus) and the lung parenchymal tissue. By contrast, C-fibres from nodose (inferior) neurones innervate primarily structures within the lungs. Histologically, nodose neurones projecting lung C-fibres were different from the jugular neurones in that they were significantly less likely to express neurokinins. The nerve terminals within the lungs of both nodose and jugular C-fibres responded with action potential discharge to capsaicin and bradykinin application, but only the nodose C-fibre population responded with action potential discharge to the P2X selective receptor agonist alpha,beta-methylene-ATP. Whole cell patch clamp recording of capsaicin-sensitive nodose and jugular ganglion neurones retrogradely labelled from the lung tissue revealed that, like the nerve terminals, lung specific nodose C-fibre neurones express functional P2X receptors, whereas lung specific jugular C-fibres do not. The data support the hypothesis that both neural crest-derived neurones (jugular ganglia) and placode-derived neurones (nodose ganglia) project C-fibres in the vagus, and that these two C-fibre populations represent distinct phenotypes.
Collapse
Affiliation(s)
- B J Undem
- Johns Hopkins School of Medicine, and University, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Patel HJ, Birrell MA, Crispino N, Hele DJ, Venkatesan P, Barnes PJ, Yacoub MH, Belvisi MG. Inhibition of guinea-pig and human sensory nerve activity and the cough reflex in guinea-pigs by cannabinoid (CB2) receptor activation. Br J Pharmacol 2003; 140:261-8. [PMID: 12970104 PMCID: PMC1574031 DOI: 10.1038/sj.bjp.0705435] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. There is considerable interest in novel therapies for cough, since currently used agents such as codeine have limited beneficial value due to the associated side effects. Sensory nerves in the airways mediate the cough reflex via activation of C-fibres and RARs. Evidence suggests that cannabinoids may inhibit sensory nerve-mediated responses. 2. We have investigated the inhibitory actions of cannabinoids on sensory nerve depolarisation mediated by capsaicin, hypertonic saline and PGE2 on isolated guinea-pig and human vagus nerve preparations, and the cough reflex in conscious guinea-pigs. 3. The non-selective cannabinoid (CB) receptor agonist, CP 55940, and the selective CB2 agonist, JWH 133 inhibited sensory nerve depolarisations of the guinea-pig vagus nerve induced by hypertonic saline, capsaicin and PGE2. These responses were abolished by the CB2 receptor antagonist SR144528, and unaffected by the CB1 antagonist SR141716A. Similarly, JWH 133 inhibited capsaicin-evoked nerve depolarisations in the human vagus nerve, and was prevented by SR144528. 4. Using a guinea-pig in vivo model of cough, JWH 133 (10 mg kg-1, i.p., 20 min) significantly reduced citric acid-induced cough in conscious guinea pigs compared to those treated with the vehicle control. 5. These data show that activation of the CB2 receptor subtype inhibits sensory nerve activation of guinea-pig and human vagus nerve, and the cough reflex in guinea-pigs, suggesting that the development of CB2 agonists, devoid of CB1-mediated central effects, will provide a new and safe antitussive treatment for chronic cough.
Collapse
MESH Headings
- Animals
- Camphanes/pharmacology
- Cannabinoids/pharmacology
- Capsaicin/pharmacology
- Consciousness
- Cough/physiopathology
- Cough/prevention & control
- Cyclohexanols/pharmacology
- Dinoprost/pharmacology
- Dose-Response Relationship, Drug
- Guinea Pigs
- Humans
- Hypertonic Solutions/pharmacology
- In Vitro Techniques
- Male
- Middle Aged
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Reflex/drug effects
- Rimonabant
- Vagus Nerve/drug effects
- Vagus Nerve/physiology
Collapse
Affiliation(s)
- Hema J Patel
- Respiratory Pharmacology Group, Guy Scadding Building, The National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Dovehouse Street, London SW3 6LY
| | - Mark A Birrell
- Respiratory Pharmacology Group, Guy Scadding Building, The National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Dovehouse Street, London SW3 6LY
| | - Natascia Crispino
- Respiratory Pharmacology Group, Guy Scadding Building, The National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Dovehouse Street, London SW3 6LY
| | - David J Hele
- Respiratory Pharmacology Group, Guy Scadding Building, The National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Dovehouse Street, London SW3 6LY
| | - Priya Venkatesan
- Respiratory Pharmacology Group, Guy Scadding Building, The National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Dovehouse Street, London SW3 6LY
| | - Peter J Barnes
- Department of Thoracic Medicine, Faculty of Medicine, The National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY
| | - Magdi H Yacoub
- Respiratory Pharmacology Group, Guy Scadding Building, The National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Dovehouse Street, London SW3 6LY
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Guy Scadding Building, The National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Dovehouse Street, London SW3 6LY
- Author for correspondence:
| |
Collapse
|
36
|
Abstract
The excitability and activity of vagal afferent nerves innervating the airways can be pharmacologically increased and decreased. Autacoids released as a result of airway inflammation can lead to substantial increases in afferent nerve activity, consequently altering pulmonary reflex physiology. In a manner analogous to hyperalgesia associated with inflammation in the somato-sensory system, increases in vagal afferent nerve activity in inflamed airways may lead to a heightened cough reflex, and increases in autonomic activity in the airways. These effects may contribute to many of the symptoms of inflammatory airway disease. Here we provide a brief overview of some of the mechanisms by which the afferent activity in airway nerves can be pharmacologically modified.
Collapse
Affiliation(s)
- Michael J Carr
- UCB Research Inc, 840 Memorial Drive, Cambridge, MA 02139, USA
| | | |
Collapse
|
37
|
Tilley SL, Hartney JM, Erikson CJ, Jania C, Nguyen M, Stock J, McNeisch J, Valancius C, Panettieri RA, Penn RB, Koller BH. Receptors and pathways mediating the effects of prostaglandin E2 on airway tone. Am J Physiol Lung Cell Mol Physiol 2003; 284:L599-606. [PMID: 12618422 DOI: 10.1152/ajplung.00324.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostaglandin E(2) (PGE(2)) has complex effects on airway tone, and the existence of four PGE(2) [E-prostanoid (EP)] receptors, each with distinct signaling characteristics, has provided a possible explanation for the seemingly contradictory actions of this lipid mediator. To identify the receptors mediating the actions of PGE(2) on bronchomotor tone, we examined its effects on the airways of wild-type and EP receptor-deficient mice. In conscious mice the administration of PGE(2) increased airway responsiveness primarily through the EP1 receptor, although on certain genetic backgrounds a contribution of the EP3 receptor was detected. These effects of PGE(2) were eliminated by pretreatment with either atropine or bupivacaine and were undetectable in anesthetized mice or in denervated tracheal rings, where only EP2-mediated relaxation of airway smooth muscle was observed. Together, our findings are consistent with a model in which PGE(2) modulates airway tone by activating multiple receptors expressed on various cell populations and in which the relative contribution of these receptors might depend on the expression of modifier alleles. PGE(2)/EP1/EP3-induced airway constriction occurs indirectly through activation of neural pathways, whereas PGE(2)-induced bronchodilation results from direct activation of EP2 receptors on airway smooth muscle. This segregation of EP receptor function within the airway suggests that PGE(2) analogs that selectively activate the EP2 receptor without activating the EP1/EP3 receptors might prove useful in the treatment of asthma.
Collapse
MESH Headings
- Anesthesia
- Animals
- Bronchoconstriction/drug effects
- Bronchoconstriction/physiology
- Consciousness
- Dinoprostone/metabolism
- Dinoprostone/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Prostaglandin E, EP3 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Trachea/drug effects
- Trachea/innervation
- Trachea/physiology
Collapse
Affiliation(s)
- Stephen L Tilley
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, 27599-7248, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xu F, Gu QH, Zhou T, Lee LY. Acute hypoxia prolongs the apnea induced by right atrial injection of capsaicin. J Appl Physiol (1985) 2003; 94:1446-54. [PMID: 12482767 DOI: 10.1152/japplphysiol.00767.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inspiratory central drive is augmented by acute hypoxia that leads to a hyperventilation, but it is inhibited by capsaicin (Cap)-induced stimulation of pulmonary C fibers (PCFs) that produces an expiratory apnea. We hypothesized that acute hypoxia should shorten or eliminate the Cap-induced apnea. The ventilatory responses to bolus injection of Cap (0.2-0.5 microg) into the right atrium before and during acute hypoxia (10% O(2) for approximately 1 min; Hypoxia+Cap) were compared in anesthetized and spontaneously breathing rats. We found that Cap injection during acute hypoxia produced an extremely long-lasting apnea (69.67 +/- 11.97 s) that was 16-fold longer than the apnea induced by Cap alone (expiratory duration = 4.37 +/- 0.53 s; P < 0.01). A similar prolonged apnea was also observed during hypoxia in anesthetized guinea pigs. Bilateral vagotomy abolished apneic responses to Cap both before and during hypoxia. Subsequent recording of single-fiber activity of PCFs (PCF(A)) showed that acute hypoxia did not significantly affect baseline PCF(A) but that it doubled PCF(A) responses to Cap via increasing both the firing rate (3.34 +/- 0.76 to 7.65 +/- 1.32 impulses/s; P < 0.05) and burst duration (1.12 +/- 0.18 to 2.32 +/- 0.31 s; P < 0.05). These results suggest that acute hypoxia augments PCF-mediated inspiratory inhibition and thereby leads to an extremely long-lasting apnea. This interaction is partially due to hypoxic sensitization of PCF response to Cap.
Collapse
Affiliation(s)
- Fadi Xu
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | |
Collapse
|
39
|
Hosoya K, Ishimitsu T. Protection of the cardiovascular system by imidapril, a versatile angiotensin-converting enzyme inhibitor. CARDIOVASCULAR DRUG REVIEWS 2002; 20:93-110. [PMID: 12177688 DOI: 10.1111/j.1527-3466.2002.tb00185.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Imidapril hydrochloride (imidapril) is a long-acting, non-sulfhydryl angiotensin-converting enzyme (ACE) inhibitor, which has been used clinically in the treatment of hypertension, chronic congestive heart failure (CHF), acute myocardial infarction (AMI), and diabetic nephropathy. It has the unique advantage over other ACE inhibitors in causing a lower incidence of dry cough. After oral administration, imidapril is rapidly converted in the liver to its active metabolite imidaprilat. The plasma levels of imidaprilat gradually increase in proportion to the dose, and decline slowly. The time to reach the maximum plasma concentration (T(max)) is 2.0 h for imidapril and 9.3 h for imidaprilat. The elimination half-lives (t(1/2)) of imidapril and imidaprilat is 1.7 and 14.8 h, respectively. Imidapril and its metabolites are excreted chiefly in the urine. As an ACE inhibitor, imidaprilat is as potent as enalaprilat, an active metabolite of enalapril, and about twice as potent as captopril. In patients with hypertension, blood pressure was still decreased at 24 h after imidapril administration. The antihypertensive effect of imidapril was dose-dependent. The maximal reduction of blood pressure and plasma ACE was achieved with imidapril, 10 mg once daily, and the additional effect was not prominent with higher doses. When administered to patients with AMI, imidapril improved left ventricular ejection fraction and reduced plasma brain natriuretic peptide (BNP) levels. In patients with mild-to-moderate CHF [New York Heart Association (NYHA) functional class II-III], imidapril increased exercise time and physical working capacity and decreased plasma atrial natriuretic peptide (ANP) and BNP levels in a dose-related manner. In patients with diabetic nephropathy, imidapril decreased urinary albumin excretion. Interestingly, imidapril improved asymptomatic dysphagia in patients with a history of stroke. In the same patients it increased serum substance P levels, while the angiotensin II receptor antagonist losartan was ineffective. These studies indicate that imidapril is a versatile ACE inhibitor. In addition to its effectiveness in the treatment of hypertension, CHF, and AMI, imidapril has beneficial effects in the treatment of diabetic nephropathy and asymptomatic dysphagia. Good tissue penetration and inhibition of tissue ACE by imidapril contributes to its effectiveness in preventing cardiovascular complications of hypertension. The major advantages of imidapril are its activity in the treatment of various cardiovascular diseases and lower incidence of cough compared with some of the older ACE inhibitors.
Collapse
Affiliation(s)
- Kazuyoshi Hosoya
- Department of Hypertension and Cardiorenal Medicine, Dokkyo University School of Medicine, Mibu, Tochigi, Japan
| | | |
Collapse
|
40
|
Xiang A, Uchida Y, Nomura A, Iijima H, Sakamoto T, Ishii Y, Morishima Y, Masuyama K, Zhang M, Hirano K, Sekizawa K. Involvement of thromboxane A(2) in airway mucous cells in asthma-related cough. J Appl Physiol (1985) 2002; 92:763-70. [PMID: 11796690 DOI: 10.1152/jappl.2002.92.2.763] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to elucidate the role of thromboxane A(2) (TxA(2)) on asthma-related cough in guinea pigs. Animals were immunosensitized and repeatedly challenged with ovalbumin as an antigen. Coughs were induced by the inhalation of 10(-5) M capsaicin solution for 10 min. Thromboxane synthetase (TxS) inhibitor OKY-046 and thromboxane-receptor antagonist AA-2414 significantly inhibited cough responses in repeatedly challenged animals. Inhalation of TxA(2) mimic STA-2- potentiated cough responses in normal and immunosensitized animals but not in repeatedly challenged ones. Moreover, STA-2-potentiated coughs were inhibited by administration of neurokinin-receptor antagonist FK-224. In repeatedly challenged animals, concentration of TxB(2) in airway lavage fluid, expression of TxS mRNA in tracheal epithelia, and the immunostaining intensity against TxS in mucous cells of the epithelium significantly increased compared with normal and sensitized animals. These results suggest that TxA(2) derived from mucous cells potentiated cough responses to capsaicin in allergic airway inflammation.
Collapse
Affiliation(s)
- Anbo Xiang
- Department of Pulmonary Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Undem BJ, Carr MJ. Pharmacology of airway afferent nerve activity. Respir Res 2002; 2:234-44. [PMID: 11686889 PMCID: PMC59581 DOI: 10.1186/rr62] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2001] [Accepted: 04/03/2001] [Indexed: 01/12/2023] Open
Abstract
Afferent nerves in the airways serve to regulate breathing pattern, cough, and airway autonomic neural tone. Pharmacologic agents that influence afferent nerve activity can be subclassified into compounds that modulate activity by indirect means (e.g. bronchial smooth muscle spasmogens) and those that act directly on the nerves. Directly acting agents affect afferent nerve activity by interacting with various ion channels and receptors within the membrane of the afferent terminals. Whether by direct or indirect means, most compounds that enter the airspace will modify afferent nerve activity, and through this action alter airway physiology.
Collapse
Affiliation(s)
- B J Undem
- Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland 21224, USA.
| | | |
Collapse
|
42
|
Mochizuki H, Ohki Y, Arakawa H, Kato M, Tokuyama K, Morikawa A. Effect of inhaled indomethacin on distilled water-induced airway epithelial cell swelling. J Appl Physiol (1985) 2002; 92:155-61. [PMID: 11744655 DOI: 10.1152/jappl.2002.92.1.155] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We evaluated the mechanism of the anti-asthmatic effect of inhaled indomethacin (Indo) by using an animal model (guinea pigs) of airway inflammation. After being exposed to either ozone or room air at identical flow rates (5 l/min) for 2 h, guinea pigs were anesthetized, tracheostomized, and lung resistance (RL) was subsequently measured. Guinea pigs inhaled either saline or Indo (1.5 mg/ml) for 1 min before undergoing an ultrasonically nebulized distilled water (UNDW) inhalation test. RL increased significantly after 10 min of UNDW inhalation in the room air and ozone groups but more so in the ozone group. This increase in RL was significantly suppressed by pretreatment with Indo. In the morphometric assessment of airway mucosa, a significant swelling of the epithelial cells after UNDW inhalation was observed in both the room air and ozone groups but especially so in the ozone group. This increase was also suppressed with Indo pretreatment. These results suggest that the increase in RL and the swelling of airway epithelial cells induced by inhaled UNDW in ozone-exposed guinea pigs was suppressed by pretreatment of inhaled Indo and that this suppression may be one of the reasons for the anti-asthmatic effect of inhaled Indo.
Collapse
Affiliation(s)
- Hiroyuki Mochizuki
- Department of Pediatrics, Gunma University School of Medicine, Maebashi 371-8511, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Chen CY, Bonham AC, Schelegle ES, Gershwin LJ, Plopper CG, Joad JP. Extended allergen exposure in asthmatic monkeys induces neuroplasticity in nucleus tractus solitarius. J Allergy Clin Immunol 2001; 108:557-62. [PMID: 11590381 DOI: 10.1067/mai.2001.118132] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Extended exposure to allergen exacerbates asthma symptoms, in part via complex interactions between inflammatory cells and mediators. One consequence of these interactions is the triggering of local and central nervous system (CNS) neuronal activity that might further exacerbate the asthma-like symptoms by causing bronchoconstriction, mucous secretion, increased microvascular leak, and cough. One CNS region that might be particularly important is the caudomedial nucleus tractus solitarius (NTS). NTS neurons not only integrate primary afferent inputs from lung sensory nerve fibers but also have direct exposure to inhaled allergens and allergen-induced blood-borne inflammatory mediators via a deficient blood-brain barrier. Given the capacity of CNS neurons to undergo plasticity, allergen-induced changes in NTS neuronal properties could contribute to the exaggerated respiratory responses to extended allergen exposure. OBJECTIVE In a recently developed rhesus monkey model of allergic asthma, we tested the hypothesis that extended exposure to allergen increases the intrinsic excitability of NTS neurons. METHODS Three adult monkeys were sensitized and then repeatedly exposed to aerosols of house dust mite allergen; 4 monkeys served as controls. Whole-cell current-clamp recordings were made to measure 3 indices of excitability: resting membrane potential, input resistance, and number of action potentials evoked by current injections. RESULTS Extended allergen exposure depolarized the resting membrane potential by 14% and increased the number of action potentials evoked by current injections (5-fold). CONCLUSION The finding that NTS neurons in a primate model of allergic asthma undergo intrinsic increases in excitability suggests that CNS mechanisms might contribute to the exaggerated symptoms in asthmatic individuals exposed to allergen.
Collapse
Affiliation(s)
- C Y Chen
- Department of Internal Medicine, School of Medicine, University of California at Davis, Sacramento, 95817, USA
| | | | | | | | | | | |
Collapse
|
44
|
Madden MC, Richards JH, Dailey LA, Hatch GE, Ghio AJ. Effect of ozone on diesel exhaust particle toxicity in rat lung. Toxicol Appl Pharmacol 2000; 168:140-8. [PMID: 11032769 DOI: 10.1006/taap.2000.9024] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ambient particulate matter (PM) concentrations have been associated with mortality and morbidity. Diesel exhaust particles (DEP) are present in ambient urban air PM. Coexisting with DEP (and PM) is ozone (O(3)), which has the potential to react with some components of DEP. Some reports have shown increased lung injury in rats coexposed to PM and O(3), but it is unclear whether this increased injury was due to direct interaction between the pollutants or via other mechanisms. To examine whether O(3) can directly react with and affect PM bioactivity, we exposed DEP to O(3) in a cell-free in vitro system and then examined the bioactivity of the resultant DEP in a rat model of lung injury. Standard Reference Material 2975 (diesel exhaust PM) was initially exposed to 0.1 ppm O(3) for 48 h and then instilled intratracheally in Sprague-Dawley rats. Rat lung inflammation and injury was examined 24 h after instillation by lung lavage. The DEP exposed to 0.1 ppm O(3) was more potent in increasing neutrophilia, lavage total protein, and LDH activity compared to unexposed DEP. The increased DEP activity induced by the O(3) exposure was not attributable to alteration by air that was also present during the O(3) exposure. Exposure of DEP to a higher O(3) concentration (1.0 ppm) led to a decreased bioactivity of the particles. In contrast, carbon black particles, low in organic content relative to DEP, did not exhibit an increase in any of the bioactivities examined after exposure to 0.1 ppm O(3). DEP incorporated O(3) (labeled with (18)O) in a linear fashion. These data suggest that ambient concentrations of O(3) can increase the biological potency of DEP. The ozonized DEP may play a role in the induction of lung responses by ambient PM.
Collapse
Affiliation(s)
- M C Madden
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina, 27711, USA.
| | | | | | | | | |
Collapse
|
45
|
Mutoh T, Bonham AC, Joad JP. Substance P in the nucleus of the solitary tract augments bronchopulmonary C fiber reflex output. Am J Physiol Regul Integr Comp Physiol 2000; 279:R1215-23. [PMID: 11003986 DOI: 10.1152/ajpregu.2000.279.4.r1215] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bronchopulmonary C fibers defend the lungs against injury from inhaled agents by a central nervous system reflex consisting of apnea, cough, bronchoconstriction, hypotension, and bradycardia. Glutamate is the putative neurotransmitter at the first central synapses in the nucleus of the solitary tract (NTS), but substance P, also released in the NTS, may modulate the transmission. To test the hypothesis that substance P in the NTS augments bronchopulmonary C fiber input and hence reflex output, we stimulated the C fibers with left atrial capsaicin (LA CAP) injections and compared the changes in phrenic nerve discharge, tracheal pressure (TP), arterial blood pressure (ABP), and heart rate (HR) in guinea pigs before and after substance P injections (200 microM, 25 nl) in the NTS. Substance P significantly augmented LA CAP-evoked increases in expiratory time by 10-fold and increases in TP and decreases in ABP and HR by threefold, effects prevented by neurokinin-1 (NK1) receptor antagonism. Thus substance P acting at NTS NK1 receptors can exaggerate bronchopulmonary C fiber reflex output. Because substance P synthesis in vagal airway C fibers may be enhanced in pathological conditions such as allergic asthma, the findings may help explain some of the associated respiratory symptoms including cough and bronchoconstriction.
Collapse
Affiliation(s)
- T Mutoh
- Departments of Internal Medicine and Pharmacology, University of California, Davis, Sacramento, California 95616, USA
| | | | | |
Collapse
|
46
|
Mukae S, Aoki S, Itoh S, Iwata T, Ueda H, Katagiri T. Bradykinin B(2) receptor gene polymorphism is associated with angiotensin-converting enzyme inhibitor-related cough. Hypertension 2000; 36:127-31. [PMID: 10904024 DOI: 10.1161/01.hyp.36.1.127] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The appearance of cough in association with angiotensin-converting enzyme (ACE) inhibitors is thought to be related to bradykinin, and it has been speculated that the elicitation of adverse effects is genetically predetermined. Several polymorphisms of the human bradykinin B(2) receptor gene may be involved in ACE inhibitor-related cough. To investigate this possibility, we identified the -58 thymine (T)/cytosine (C) polymorphism in subjects with ACE inhibitor-related cough. We classified the study population into 4 groups: subjects with and without cough that were treated with ACE inhibitors (n=30/30), nontreated essential hypertensive subjects (n=100), and normotensive subjects (n=100). The -58T/C was genotyped by the polymerase chain reaction single-strand conformation polymorphism method. The frequencies of the CC genotype and C allele of -58T/C were significantly higher in the nontreated hypertensive subjects than in the normotensive subjects. Conversely, the frequencies of the TT genotype and T allele were significantly higher in the subjects with cough than in the subjects without cough. These tendencies were more pronounced in females. Among the promoter assays of the human bradykinin B(2) receptor, -58T was found to have a higher transcription rate than that of -58C. This finding seems to suggest that the transcriptional activity of promoter might be involved in the appearance of ACE inhibitor-related cough. A genetic variant of the bradykinin receptor is involved in the elicitation of ACE inhibitor-related cough. It may be possible to predict the side effects of ACE inhibitors in advance.
Collapse
Affiliation(s)
- S Mukae
- Third Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- J Mullol
- Fundació Clínic per a la Recerca Biomèdica, IDIBAPS, Barcelona, Spain.
| | | |
Collapse
|
48
|
Lee LY, Hong JL. Involvement of prostanoids in cigarette smoking-induced pathophysiological effects in the lung. Prostaglandins Leukot Essent Fatty Acids 1999; 61:145-55. [PMID: 10582654 DOI: 10.1054/plef.1999.0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- L Y Lee
- Department of Physiology, University of Kentucky, Lexington 40536, USA.
| | | |
Collapse
|
49
|
Hosoe H, Kaise T, Ohmori K, Isohama Y, Kai H, Takahama K, Miyata T. Mucolytic and antitussive effects of erdosteine. J Pharm Pharmacol 1999; 51:959-66. [PMID: 10504037 DOI: 10.1211/0022357991773230] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
To investigate the influence of erdosteine, a new homocysteine-derived expectorant, on airway clearance we studied the effects of the drug on the viscosity of mucin, on the mucociliary transport rate in quails, on airway secretion in rats and on the cough reflex in guinea-pigs. The active metabolite of erdosteine, M1 (10 microM to 1 mM), significantly reduced the viscosity of porcine stomach mucin. Erdosteine by itself did not reduce viscosity. Erdosteine significantly promoted mucociliary transport in quails and increased airway secretion in rats. The effect was still apparent 24h after administration. Erdosteine significantly suppressed citric acid-induced cough reflexes in guinea-pigs but did not suppress mechanical stimuli-induced cough reflexes. Erdosteine suppressed the reduction of the recovery volume of bronchoalveolar lavage fluid and albumin leakage into the fluid in citric acid-exposed guinea-pigs. These results indicate that erdosteine removes sputum by reducing its viscosity, and by promoting mucociliary transport and sustained enhancement of airway secretion. It also suppressed the chemical stimulation-induced cough reflex and plasma leakage into the airway. These results suggest that erdosteine is an excellent expectorant with several modes of action.
Collapse
Affiliation(s)
- H Hosoe
- Drug Development Research Laboratories, Pharmaceutical Research Institute, Kyowa Hakko Kogyo Company Limited, Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Effects of amlodipine, nifedipine GITS, and indomethacin on angiotensin-converting enzyme inhibitor-induced cough: A randomized, placebo-controlled, double-masked, crossover study. Curr Ther Res Clin Exp 1999. [DOI: 10.1016/s0011-393x(00)88520-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|