1
|
Zuo Z, Wang Y, Fang Y, Zhao M, Wang Z, Yang Z, Jia B, Sun Y. A novel regulator of NLRP3 inflammasome: Peptides. Peptides 2025; 187:171381. [PMID: 40064242 DOI: 10.1016/j.peptides.2025.171381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
The NLRP3 inflammasome plays a crucial role as a critical regulator of the immune response and has been implicated in the pathogenesis of numerous diseases. Peptides, known for their remarkable potency, selectivity, and low toxicity, have been extensively employed in disease treatment. Recent research has unveiled the potential of peptides in modulating the activity of the NLRP3 inflammasome. This review begins by examining the structure of the NLRP3 inflammasome, encompassing NLRP3, ASC, and Caspase-1, along with the three activation pathways: canonical, non-canonical, and alternative. Subsequently, we provide a comprehensive summary of peptide modulators targeting the NLRP3 inflammasome and elucidate their underlying mechanisms. The efficacy of these modulators has been validated through in vitro and in vivo experiments on NLRP3 inflammasome regulation. Furthermore, we conduct sequence alignment of the identified peptides and investigate their binding sites on the NLRP3 protein. This work is a foundational exploration for advancing peptides as potential therapeutic agents for NLRP3-related diseases.
Collapse
Affiliation(s)
- Zhuo Zuo
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yaxing Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yanwei Fang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Mengya Zhao
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhe Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhouqi Yang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Bin Jia
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yulong Sun
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
2
|
Crosson T, Bretaud N, Ugolini S. Role of specialized sensory neuron subtypes in modulating peripheral immune responses. Immunity 2025:S1074-7613(25)00171-2. [PMID: 40324383 DOI: 10.1016/j.immuni.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
The immune and sensory nervous systems detect diverse threats, from tissue damage to infection, and coordinate protective responses to restore homeostasis. Like immune cells, sensory neurons exhibit remarkable heterogeneity, with advanced genetic models revealing that distinct subsets differentially regulate immune responses. Here, we review how various immune signals engage distinct subtypes of sensory neurons to mediate inflammatory pain, itch, relief, protective behavioral adaptations, and autonomic reflexes. We also highlight how specialized sensory neuron populations modulate immune function through the release of neuropeptides, neurokines, or glutamate. This functional specialization enables precise immunomodulation adapted to the kinetics and nature of immune responses, positioning sensory neurons as key regulators of host defense and tissue homeostasis.
Collapse
Affiliation(s)
- Théo Crosson
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ninon Bretaud
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sophie Ugolini
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| |
Collapse
|
3
|
Inoue Y, Fujii T, Kashu KY, Watanabe M, Masaki K, Tanaka E, Kira YI, Takeuchi H, Yamaura K, Isobe N. Associations between serum levels of alpha-calcitonin gene-related peptide and clinical features of neuromyelitis optica spectrum disorders. J Neuroimmunol 2025; 404:578615. [PMID: 40245783 DOI: 10.1016/j.jneuroim.2025.578615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025]
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are characterized by severe inflammation-mediated astrocytopathy in the central nervous system. Neuropathic pain (NP) is highly prevalent among patients with NMOSD, and significantly impairs their quality of life. Alpha-calcitonin gene-related peptide (α-CGRP) is a neuropeptide related to pain and neuroinflammation in the central and peripheral nerves; however, the involvement of α-CGRP in NMOSD pathophysiology remains unexplored. Here, we measured serum levels of α-CGRP in 33 patients with NMOSD and 36 healthy controls by enzyme-linked immunosorbent assay to clarify associations between serum α-CGRP levels and clinical NMOSD features, including NP. The NMOSD patients showed significantly higher serum α-CGRP levels than healthy controls [median (interquartile range), ng/mL; 1.89 (1.66-2.39) vs 1.54 (1.34-1.87), p = 0.008]. NMOSD patients with sensory or bowel and bladder dysfunction had elevated serum α-CGRP levels compared with those without [2.02 (1.76-2.80) vs 1.76 (1.44-1.95), p = 0.049; 2.19 (1.96-2.86) vs 1.71 (1.40-1.90), p < 0.001, respectively]. Serum α-CGRP levels were higher in NMOSD patients with neuropathic pain than in those without [2.00 (1.71-2.76) vs 1.78 (1.51-1.97), p = 0.120]. NMOSD patients with spinal cord lesions on magnetic resonance imaging showed significantly higher serum α-CGRP levels compared with those without [2.02 (1.73-2.83) vs 1.73 (1.36-1.87), p = 0.044]. These findings indicate an association between α-CGRP and NMOSD pathophysiological status, especially sensory and bowel and bladder dysfunction derived from spinal cord lesions.
Collapse
Affiliation(s)
- Yuka Inoue
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Anesthesiology and Critical Care Medicine, Kyushu University, Fukuoka, Japan.
| | - Takayuki Fujii
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kaoru Yoshida Kashu
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Eizo Tanaka
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yuu-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hajime Takeuchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Ken Yamaura
- Department of Anesthesiology and Critical Care Medicine, Kyushu University, Fukuoka, Japan.
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Hu X, Zeng F, Chen Z, Hu K, Chen Q, Xia Y, Yang H. Knockdown of LncRNA MEG3 promotes damage of vascular endothelial cells induced by vibration. Sci Rep 2025; 15:6569. [PMID: 39994394 PMCID: PMC11850629 DOI: 10.1038/s41598-025-91574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/21/2025] [Indexed: 02/26/2025] Open
Abstract
Hand-arm vibration syndrome (HAVS) is caused by long-term exposure to hand-transmitted vibration (HTV), and its pathogenesis has not been elucidated fully. We explored the molecular mechanism of HAVS and provided clues and a theoretical basis for the early prevention and treatment of HAVS. After vibration, samples were collected from the plasma of human workers, plasma of rat tails, and human umbilical vein endothelial cells (HUVECs). ELISAs were used to measure the expression of vasoactive factors. Cell Counting Kit-8 and electron microscopy were used to detect cell damage. Flow cytometry was employed to detect apoptosis. Real-time reverse transcription-polymerase chain reaction was used to measure the expression of long non-coding RNAs (lncRNAs). Western blotting was used to measure the expression of apoptosis-related proteins. Vibration could cause cell damage, apoptosis, and changes in the expression vasoactive factors and lncRNAs. The lncRNA maternally expressed gene 3 (MEG3) had a significant regulatory effect on cell damage, apoptotic proteins, and vascular regulatory factors in the HUVEC damage induced by vibration, as shown by the further decrease in viability and aggravation of injury after knockdown of MEG3 expression in HUVECs treated with vibration. Expression of vasoactive factors and apoptosis-related proteins was changed after interfering with MEG3 expression. In conclusion, vibration can affect the expression of vasoactive factors and lncRNA, and cause damage to vascular endothelial cells. MEG3 may be involved in the inflammatory damage to vascular endothelial cells induced by vibration.
Collapse
Affiliation(s)
- Xiuwen Hu
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, 510310, China
- School of Public Health, Guangdong Pharmaceutical University, China, NO. 283, Jianghai Dadao Street, Haizhu District, Guangzhou, 510300, China
- Outpatient Department, General Hospital of Central Theater Command, Wuhan, 430061, China
| | - Fanfei Zeng
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, 510310, China
- School of Public Health, Guangdong Pharmaceutical University, China, NO. 283, Jianghai Dadao Street, Haizhu District, Guangzhou, 510300, China
| | - Ziyu Chen
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, 510310, China
- School of Public Health, Guangdong Pharmaceutical University, China, NO. 283, Jianghai Dadao Street, Haizhu District, Guangzhou, 510300, China
| | - Kuan Hu
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, 510310, China
- School of Public Health, Guangdong Pharmaceutical University, China, NO. 283, Jianghai Dadao Street, Haizhu District, Guangzhou, 510300, China
| | - Qingsong Chen
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, 510310, China
- School of Public Health, Guangdong Pharmaceutical University, China, NO. 283, Jianghai Dadao Street, Haizhu District, Guangzhou, 510300, China
| | - Yun Xia
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, 510310, China
- School of Public Health, Guangdong Pharmaceutical University, China, NO. 283, Jianghai Dadao Street, Haizhu District, Guangzhou, 510300, China
| | - Hongyu Yang
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, 510310, China.
- School of Public Health, Guangdong Pharmaceutical University, China, NO. 283, Jianghai Dadao Street, Haizhu District, Guangzhou, 510300, China.
| |
Collapse
|
5
|
Guzman G, Kopruszinski CM, Barber KR, Lillo Vizin RC, Dodick DW, Navratilova E, Porreca F. Chronification of migraine sensitizes to CGRP in male and female mice. Cephalalgia 2025; 45:3331024251317446. [PMID: 39945018 DOI: 10.1177/03331024251317446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
BACKGROUND Acute therapies targeting calcitonin gene-related peptide (CGRP) for episodic migraine (EM) demonstrate efficacy in women, but evidence of efficacy in men remains to be established. By contrast, CGRP targeting therapies for migraine prevention are effective in both men and women with frequent EM or chronic migraine (CM). Preclinical studies have shown that supradural application of CGRP preferentially produces migraine-like pain behaviors in female rodents. We hypothesized that, in male mice, increased frequency of migraine-like pain may sensitize to nociceptive effects of CGRP and this might be associated with altered expression of CGRP in trigeminal ganglion (TG) neurons and/or in their dural projections. METHODS CM was modeled in male and female mice by repeated administration of nitroglycerin (NTG). Medication overuse headache (MOH), a form of CM, was modeled by repeated daily administration of sumatriptan. Following resolution of transient cutaneous allodynia (CA) elicited by NTG or sumatriptan, mice received a sex specific subthreshold dose of supradural CGRP that does not elicit CA in naïve male or female mice, and CA was evaluated. CGRP-positive cell bodies in the ophthalmic V1 region of the trigeminal ganglion (TGV1) and CGRP-positive nerve fibers innervating the dura mater were assessed. RESULTS Supradural administration of 1 pg of CGRP produced migraine-like pain behaviors in female, but not male, mice; a ten-fold lower dose was established as subthreshold in naïve female mice. Repeated NTG or sumatriptan produced transient CA in both female and male mice that resolved within 8-11 days after treatment cessation. Following resolution of CA, previously subthreshold doses of CGRP elicited CA in CM and MOH models in mice of both sexes, with no effects observed in vehicle treated controls. A higher number of CGRP-positive neurons in the TGV1 was found in naïve female compared to male mice. The number of CGRP-positive TGV1 neurons was increased in both sexes following repeated NTG. Similar nerve fiber density was observed in the dura mater of male and female mice and no differences were detected following repeated NTG. CONCLUSIONS As previously reported, CGRP produced female-selective migraine-like pain behaviors in naïve mice. Consistent with behavioral effects, female mice demonstrated a higher number of CGRP-positive cells in the TGV1. These findings appear relevant to clinical observations of female efficacy of CGRP-receptor antagonists for acute treatment in EM patients. In models of CM or MOH that are characterized by increased frequency of migraine-like pain, previously subthreshold doses of supradural CGRP now elicited migraine-like nociceptive behaviors in mice of both sexes. The increased pain responses were accompanied by increased number CGRP positive TGV1 cells in the NTG model in both female and male mice. These data suggest that increased frequency of migraine promotes physiological changes including increased expression of TGV1 CGRP along with sensitization to CGRP-induced nociception in both males and females. Thus, as EM transforms to CM, CGRP-dependent mechanisms may become increasingly important, consistent with observations of efficacy of CGRP targeting therapies for migraine prevention in both men and women. Our results also suggest the possibility of enhanced efficacy of CGRP-receptor antagonists for the acute treatment of migraine in men as migraine frequency increases.
Collapse
Affiliation(s)
- Gege Guzman
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - Kara R Barber
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Robson C Lillo Vizin
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - David W Dodick
- Science and Medicine Department, Atria Academy of Science and Medicine, New York, NY, USA
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
| | - Edita Navratilova
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
6
|
Chen K, Wu X, Li X, Pan H, Zhang W, Shang J, Di Y, Liu R, Zheng Z, Hou X. Antimicrobial Neuropeptides and Their Receptors: Immunoregulator and Therapeutic Targets for Immune Disorders. Molecules 2025; 30:568. [PMID: 39942672 PMCID: PMC11820534 DOI: 10.3390/molecules30030568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The interaction between the neuroendocrine system and the immune system plays a key role in the onset and progression of various diseases. Neuropeptides, recognized as common biochemical mediators of communication between these systems, are receiving increasing attention because of their potential therapeutic applications in immune-related disorders. Additionally, many neuropeptides share significant similarities with antimicrobial peptides (AMPs), and evidence shows that these antimicrobial neuropeptides are directly involved in innate immunity. This review examines 10 antimicrobial neuropeptides, including pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), α-melanocyte stimulating hormone (α-MSH), ghrelin, adrenomedullin (AM), neuropeptide Y (NPY), urocortin II (UCN II), calcitonin gene-related peptide (CGRP), substance P (SP), and catestatin (CST). Their expression characteristics and the immunomodulatory mechanisms mediated by their specific receptors are summarized, along with potential drugs targeting these receptors. Future studies should focus on further investigating antimicrobial neuropeptides and advancing the development of related drugs in preclinical and/or clinical studies to improve the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Kaiqi Chen
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Xiaojun Wu
- College of Medical Engineering, Jining Medical University, Jining 272067, China; (X.W.); (R.L.)
| | - Xiaoke Li
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Haoxuan Pan
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Wenhui Zhang
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Jinxi Shang
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Yinuo Di
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining 272067, China; (X.W.); (R.L.)
| | - Zhaodi Zheng
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Xitan Hou
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| |
Collapse
|
7
|
Wæver SL, Haanes KA. Differentially localizing isoforms of the migraine component calcitonin gene-related peptide (CGRP), in the mouse trigeminal ganglion: βCGRP is translated but, unlike αCGRP, not sorted into axons. J Headache Pain 2025; 26:11. [PMID: 39810127 PMCID: PMC11734551 DOI: 10.1186/s10194-024-01945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE The neuropeptide calcitonin gene-related peptide (CGRP) has been established to be a key signaling molecule in migraine, but little is known about the differences between the two isoforms: αCGRP and βCGRP. Previous studies have been hampered by their close similarity, making the development of specific antibodies nearly impossible. In this study we sought to test the hypothesis that αCGRP and βCGRP localize differently within the neurons of the mouse trigeminal ganglion (TG), using αCGRP knock out (KO) animals. METHODS We applied immunohistochemistry (IHC) on 15 TGs from three different genotypes of mice; wild type (WT) αCGRP heterozygote (Het) and αCGRP KOs, with a primary antibody targeting the mature neuropeptide sequence of both αCGRP and βCGRP. Subsequently, the localization patterns of the two isoforms were analyzed. Furthermore, similar IHCs were produced in KO animals after being treated with monoclonal CGRP antibodies to study the origin of the observed CGRP. Additional IHCs were conducted in KO and WT mice to locate CGRP sorting peptides within neuronal cell bodies. Lastly, bioinformatical analyses of the primary, secondary, and tertiary structure of the two isoforms were conducted. RESULTS The IHC showed that the key isoform localized within the axons of the mouse TG neurons, is αCGRP and not βCGRP. Furthermore, differences in intensities indicate that the model used in this study successfully knocks out αCGRP. We further categorized the localization patterns of CGRP in neuronal cell bodies in the TG and found using bioinformatic analyses that differences in localization might be explained by intracellular peptide sorting. IHC following injections with monoclonal CGRP antibodies in KO mice ruled out the possibility that the βCGRP observed in trigeminal neurons had peripheral origins. This conclusion was enhanced by IHC experiments which showed the presence of CGRP co-localizing sorting peptides in KO mice. CONCLUSION Our data show that mainly αCGRP and not βCGRP locate within the axons of the mouse TG neurons. The βCGRP observed within the TG neuronal cell bodies is synthesized intracellularly and not taken up from the environment. Furthermore, the isoforms appear to be sorted differentially into secretory vesicles in the cell bodies of TG neurons.
Collapse
Affiliation(s)
- Sofia Lyng Wæver
- Sensory Biology Unit, Translational Research Center, Rigshospitalet, Glostrup, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Agmund Haanes
- Sensory Biology Unit, Translational Research Center, Rigshospitalet, Glostrup, Denmark.
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
8
|
González-Hernández A, Villalón CM. The influence of pharmacodynamics and pharmacokinetics on the antimigraine efficacy and safety of novel anti-CGRPergic pharmacotherapies: a narrative review. Expert Opin Drug Metab Toxicol 2025; 21:41-52. [PMID: 39319681 DOI: 10.1080/17425255.2024.2409253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Migraine is a complex disorder, and its etiology is not yet fully understood. In the last 40 years, calcitonin gene-related peptide (CGRP) has been central to the understanding of migraine pathophysiology, leading to the development of new molecules targeting the CGRPergic system. These new molecules, such as gepants and monoclonal antibodies, are effective, well-tolerated, and safe, and are approved for clinical use. AREAS COVERED By searching multiple electronic scientific databases, this narrative review examined: (i) the role of CGRP in migraine; and (ii) the current knowledge on the effects of CGRPergic antimigraine pharmacotherapies, including a brief analysis of their pharmacodynamic and pharmacokinetic characteristics. EXPERT OPINION Current anti-CGRPergic medications, although effective, have limitations, such as side effects and lack of antimigraine efficacy in some patients. The existence of patients with medication-resistant migraine may be due to the: (i) complex migraine pathophysiology, in which several systems appear to be deregulated before, during, and after a migraine attack; and (ii) pharmacodynamic and pharmacokinetic properties of antimigraine medications. As envisioned here, although seminal studies support the notion that CGRP plays a key role in migraine headache, the dysfunction of CGRPergic transmission does not seem to be relevant in all cases.
Collapse
Affiliation(s)
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Ciudad de México, México
| |
Collapse
|
9
|
Shen YR, Cheng L, Zhang DF. TRPV1: A novel target for the therapy of diabetes and diabetic complications. Eur J Pharmacol 2024; 984:177021. [PMID: 39362389 DOI: 10.1016/j.ejphar.2024.177021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disease characterized by abnormally elevated blood glucose levels. Type II diabetes accounts for approximately 90% of all cases. Several drugs are available for hyperglycemia treatment. However, the current therapies for managing high blood glucose do not prevent or reverse the disease progression, which may result in complications and adverse effects, including diabetic neuropathy, retinopathy, and nephropathy. Hence, developing safer and more effective methods for lowering blood glucose levels is imperative. Transient receptor potential vanilloid-1 (TRPV1) is a significant member of the transient receptor potential family. It is present in numerous body tissues and organs and performs vital physiological functions. PURPOSE This review aimed to develop new targeted TRPV1 hypoglycemic drugs by systematically summarizing the mechanism of action of the TRPV1-based signaling pathway in preventing and treating diabetes and its complications. METHODS Literature searches were performed in the PubMed, Web of Science, Google Scholar, Medline, and Scopus databases for 10 years from 2013 to 2023. The search terms included "diabetes," "TRPV1," "diabetic complications," and "capsaicin." RESULTS TRPV1 is an essential potential target for treating diabetes mellitus and its complications. It reduces hepatic glucose production and food intake and promotes thermogenesis, metabolism, and insulin secretion. Activation of TRPV1 ameliorates diabetic nephropathy, retinopathy, myocardial infarction, vascular endothelial dysfunction, gastroparesis, and bladder dysfunction. Suppression of TRPV1 improves diabetes-related osteoporosis. However, the therapeutic effects of activating or suppressing TRPV1 may vary when treating diabetic neuropathy and periodontitis. CONCLUSION This review demonstrates that TRPV1 is a potential therapeutic target for diabetes and its complications. Additionally, it provides a theoretical basis for developing new hypoglycemic drugs that target TRPV1.
Collapse
Affiliation(s)
- Yu-Rong Shen
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Long Cheng
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
10
|
Zhang W, Zhang Y, Wang H, Sun X, Chen L, Zhou J. Animal Models of Chronic Migraine: From the Bench to Therapy. Curr Pain Headache Rep 2024; 28:1123-1133. [PMID: 38954246 DOI: 10.1007/s11916-024-01290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW Chronic migraine is a disabling progressive disorder without effective management approaches. Animal models have been developed and used in chronic migraine research. However, there are several problems with existing models. Therefore, we aimed to summarize and analyze existing animal models to facilitate translation from basic to clinical. RECENT FINDINGS The most commonly used models are the inflammatory soup induction model and the nitric oxide donor induction model. In addition, KATP openers have also been used in model induction. Based on the above models, some molecular targets have been identified, such as glutamate receptors. However, each model has its shortcomings and characteristics, and there are still some common problems that need to be solved, such as spontaneous headache, evaluation criteria after model establishment, and identification methods. In this review, we summarized and highlighted the advantages and limitations of the currently commonly used animal models of chronic migraine with a special focus on drug discovery and current therapeutic strategies, and discussed the directions that can be worked on in the future.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Yun Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Wang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Xuechun Sun
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Yang Z, Liu Y, Xiang Y, Chen R, Chen L, Wang S, Lv L, Zang M, Zhou N, Li S, Shi B, Li Y. ILC2-derived CGRP triggers acute inflammation and nociceptive responses in bacterial cystitis. Cell Rep 2024; 43:114859. [PMID: 39412984 DOI: 10.1016/j.celrep.2024.114859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP), a neuropeptide involved in nociceptor neuronal function, plays a critical role in mediating neuroinflammation and pain. In this study, we find that bladder group 2 innate lymphoid cells (ILC2s) function as primary producers of CGRP in the early phase of bacterial cystitis, contributing to increased inflammation, altered voiding behavior, and heightened pelvic allodynia. Furthermore, we demonstrate that interleukin (IL)-33, a cytokine secreted by urothelial cells, upregulates CGRP production by ILC2s in the bladder during uropathogenic Escherichia coli (UPEC) infection. Moreover, our research reveals that monocytes expressing high levels of receptor activity-modifying protein 1 (RAMP1), a CGRP receptor, mediate the pro-inflammatory effects of CGRP-producing ILC2s. In summary, our results underscore the significance of the immune cell-derived neuropeptides in the pathology of UPEC infection, suggesting a promising therapeutic approach targeting the IL-33-ILC2-CGRP axis for managing lower urinary tract symptoms in bacterial cystitis.
Collapse
Affiliation(s)
- Zizhuo Yang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Yaxiao Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China; Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yinrui Xiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Rui Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Shuai Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Linchen Lv
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Maolin Zang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Nan Zhou
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China; Shenzhen Research Institute of Shandong University, Shenzhen, China.
| | - Yan Li
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China; Shenzhen Research Institute of Shandong University, Shenzhen, China.
| |
Collapse
|
12
|
Kim DI, Park S, Park S, Ye M, Chen JY, Kang SJ, Jhang J, Hunker AC, Zweifel LS, Caron KM, Vaughan JM, Saghatelian A, Palmiter RD, Han S. Presynaptic sensor and silencer of peptidergic transmission reveal neuropeptides as primary transmitters in pontine fear circuit. Cell 2024; 187:5102-5117.e16. [PMID: 39043179 PMCID: PMC11380597 DOI: 10.1016/j.cell.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 11/17/2023] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Neurons produce and release neuropeptides to communicate with one another. Despite their importance in brain function, circuit-based mechanisms of peptidergic transmission are poorly understood, primarily due to the lack of tools for monitoring and manipulating neuropeptide release in vivo. Here, we report the development of two genetically encoded tools for investigating peptidergic transmission in behaving mice: a genetically encoded large dense core vesicle (LDCV) sensor that detects presynaptic neuropeptide release and a genetically encoded silencer that specifically degrades neuropeptides inside LDCVs. Using these tools, we show that neuropeptides, not glutamate, encode the unconditioned stimulus in the parabrachial-to-amygdalar threat pathway during Pavlovian threat learning. We also show that neuropeptides play important roles in encoding positive valence and suppressing conditioned threat response in the amygdala-to-parabrachial endogenous opioidergic circuit. These results show that our sensor and silencer for presynaptic peptidergic transmission are reliable tools to investigate neuropeptidergic systems in awake, behaving animals.
Collapse
Affiliation(s)
- Dong-Il Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sekun Park
- Howard Hughes Medical Institute, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Seahyung Park
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mao Ye
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jane Y Chen
- Howard Hughes Medical Institute, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sukjae J Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jinho Jhang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Avery C Hunker
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Larry S Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joan M Vaughan
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alan Saghatelian
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16419, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
13
|
Pan C, Xu Y, Jiang Z, Fan C, Chi Z, Zhang Y, Miao M, Ren Y, Wu Z, Xu L, Mei C, Chen Q, Xi Y, Chen X. Naringenin relieves paclitaxel-induced pain by suppressing calcitonin gene-related peptide signalling and enhances the anti-tumour action of paclitaxel. Br J Pharmacol 2024; 181:3136-3159. [PMID: 38715438 DOI: 10.1111/bph.16397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/01/2024] [Accepted: 03/21/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Chemotherapy-induced peripheral neuropathy (CIPN) commonly causes neuropathic pain, but its pathogenesis remains unclear, and effective therapies are lacking. Naringenin, a natural dihydroflavonoid compound, has anti-inflammatory, anti-nociceptive and anti-tumour activities. However, the effects of naringenin on chemotherapy-induced pain and chemotherapy effectiveness remain unexplored. EXPERIMENTAL APPROACH Female and male mouse models of chemotherapy-induced pain were established using paclitaxel. Effects of naringenin were assessed on pain induced by paclitaxel or calcitonin gene-related peptide (CGRP) and on CGRP expression in dorsal root ganglia (DRG) and spinal cord tissue. Additionally, we examined peripheral macrophage infiltration, glial activation, c-fos expression, DRG neuron excitability, microglial M1/M2 polarization, and phosphorylation of spinal NF-κB. Furthermore, we investigated the synergic effect and related mechanisms of naringenin and paclitaxel on cell survival of cancer cells in vitro. KEY RESULTS Systemic administration of naringenin attenuated paclitaxel-induced pain in both sexes. Naringenin reduced paclitaxel-enhanced CGRP expression in DRGs and the spinal cord, and alleviated CGRP-induced pain in naïve mice of both sexes. Naringenin mitigated macrophage infiltration and reversed paclitaxel-elevated c-fos expression and DRG neuron excitability. Naringenin decreased spinal glial activation and NF-κB phosphorylation in both sexes but influenced microglial M1/M2 polarization only in females. Co-administration of naringenin with paclitaxel enhanced paclitaxel's anti-tumour effect, impeded by an apoptosis inhibitor. CONCLUSION AND IMPLICATIONS Naringenin's anti-nociceptive mechanism involves CGRP signalling and neuroimmunoregulation. Furthermore, naringenin facilitates paclitaxel's anti-tumour action, possibly involving apoptosis. This study demonstrates naringenin's potential as a supplementary treatment in cancer therapy by mitigating side effects and potentiating efficacy of chemotherapy.
Collapse
Affiliation(s)
- Chen Pan
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Yuhao Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Zongsheng Jiang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Chengjiang Fan
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Zhexi Chi
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Yu Zhang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Mengmeng Miao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Yuxuan Ren
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Ziyi Wu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Linbin Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Changqing Mei
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Qingge Chen
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, China
- Department of Anesthesiology, The People's Hospital of Bozhou, Bozhou, China
| | - Yang Xi
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Xiaowei Chen
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Pascual-Mato M, Gárate G, González-Quintanilla V, Castro B, García MJ, Crespo J, Pascual J, Rivero M. Unravelling the role of beta-CGRP in inflammatory bowel disease and its potential role in gastrointestinal homeostasis. BMC Gastroenterol 2024; 24:262. [PMID: 39134940 PMCID: PMC11320777 DOI: 10.1186/s12876-024-03366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The role of beta calcitonin gene-related peptide (beta-CGRP) in gastrointestinal tract is obscure, but experimental models suggest an effect on the homeostasis of the intestinal mucosa. We measured beta-CGRP circulating levels in a large series of subjects with a recent diagnosis of inflammatory bowel disease (IBD), in order to assess the potential role of this neuropeptide in IBD pathogenesis. METHODS Morning serum beta-CGRP levels were measured by ELISA (CUSABIO, China) in 96 patients recently diagnosed of IBD and compared with those belonging from 50 matched healthy controls (HC) and 50 chronic migraine (CM) patients. RESULTS Beta-CGRP levels were lower in patients with IBD (3.1 ± 1.9 pg/mL; 2.9 [2.4-3.4] pg/mL) as compared to HC (4.7 ± 2.6; 4.9 [4.0-5.8] pg/mL; p < 0.001) and to CM patients (4.6 ± 2.6; 4.7 [3.3-6.2] pg/mL; p < 0.001). Beta-CGRP levels in CM were not significantly different to those of HC (p = 0.92). Regarding IBD diagnostic subtypes, beta-CGRP levels for ulcerative colitis (3.0 ± 1.9pg/mL; 2.5 [2.1-3.4] pg/mL) and Crohn's disease (3.3 ± 2.0 pg/mL; 3.2 [2.4-3.9] pg/mL) were significantly lower to those of HC (p < 0.01 and p < 0.05, respectively) and CM (p < 0.01 and p < 0.05, respectively). CONCLUSIONS We have found a significant reduction in serum beta-CGRP levels in patients with a recent diagnosis of all kinds of IBD as compared to two control groups without active intestinal disease, HC and CM, which may suggest a role for this neuropeptide in the pathophysiology of IBD. Our data indicate a protective role of beta-CGRP in the homeostasis of the alimentary tract.
Collapse
Affiliation(s)
- Marta Pascual-Mato
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), University Hospital Marqués de Valdecilla and Universidad de Cantabria, Santander, Spain
| | - Gabriel Gárate
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Av. Valdecilla s/n, Santander, 39008, Spain
| | - Vicente González-Quintanilla
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Av. Valdecilla s/n, Santander, 39008, Spain
| | - Beatriz Castro
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), University Hospital Marqués de Valdecilla and Universidad de Cantabria, Santander, Spain
| | - María José García
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), University Hospital Marqués de Valdecilla and Universidad de Cantabria, Santander, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), University Hospital Marqués de Valdecilla and Universidad de Cantabria, Santander, Spain
| | - Julio Pascual
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Av. Valdecilla s/n, Santander, 39008, Spain.
| | - Montserrat Rivero
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), University Hospital Marqués de Valdecilla and Universidad de Cantabria, Santander, Spain
| |
Collapse
|
15
|
Kuramoto H, Yabe M, Morishita R, Yoshimura R, Sakamoto H. Localization of sensory nerve terminals containing calcitonin gene-related peptide (CGRP) on striated muscle fibers in the rat esophagus: Evidence for triple innervation via motor endplates. Auton Neurosci 2024; 253:103177. [PMID: 38636284 DOI: 10.1016/j.autneu.2024.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/26/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Many esophageal striated muscles of mammals are dually innervated by the vagal and enteric nerves. Recently, substance P (SP)-sensory nerve terminals with calcitonin gene-related peptide (CGRP) were found on a few striated muscle fibers in the rat esophagus, implying that these muscle fibers are triply innervated. In this study, we examined the localization and origin of CGRP-nerve endings in striated muscles to consider their possible roles in the esophagus regarding triple innervation. METHODS Wholemounts of the rat esophagus were immunolabeled to detect CGRP-nerve endings in striated muscles. Also, retrograde tracing was performed by injecting Fast Blue (FB) into the esophagus, and cryostat sections of the medulla oblongata, nodose ganglion (NG), and the tenth thoracic (T10) dorsal root ganglion (DRG) were immunostained to identify the origin of the CGRP-nerve endings. RESULTS CGRP-fine, varicose nerve endings were localized in motor endplates on a few esophageal striated muscle fibers (4 %), most of which received nitric oxide (NO) synthase nerve terminals, and most of the CGRP nerve endings were SP- and transient receptor potential vanilloid member 1 (TRPV1)-positive. Retrograde tracing showed many FB-labeled CGRP-neurons positive for SP and TRPV1 in the NG and T10 DGR. CONCLUSIONS This study suggests that the CGRP-varicose nerve endings containing SP and TRPV1 in motor endplates are sensory, and a few esophageal striated muscle fibers are triply innervated. The nerve endings may detect acetylcholine-derived acetic acid from the vagal motor nerve endings and NO from esophageal intrinsic nerve terminals in the motor endplates to regulate esophageal motility.
Collapse
Affiliation(s)
- Hirofumi Kuramoto
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | - Mana Yabe
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Ryo Morishita
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Ryoichi Yoshimura
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Hiroshi Sakamoto
- Department of Physical Therapy, Health Science University, Yamanashi 401-0380, Japan
| |
Collapse
|
16
|
Deng L, Gillis JE, Chiu IM, Kaplan DH. Sensory neurons: An integrated component of innate immunity. Immunity 2024; 57:815-831. [PMID: 38599172 PMCID: PMC11555576 DOI: 10.1016/j.immuni.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
The sensory nervous system possesses the ability to integrate exogenous threats and endogenous signals to mediate downstream effector functions. Sensory neurons have been shown to activate or suppress host defense and immunity against pathogens, depending on the tissue and disease state. Through this lens, pro- and anti-inflammatory neuroimmune effector functions can be interpreted as evolutionary adaptations by host or pathogen. Here, we discuss recent and impactful examples of neuroimmune circuitry that regulate tissue homeostasis, autoinflammation, and host defense. Apparently paradoxical or conflicting reports in the literature also highlight the complexity of neuroimmune interactions that may depend on tissue- and microbe-specific cues. These findings expand our understanding of the nuanced mechanisms and the greater context of sensory neurons in innate immunity.
Collapse
Affiliation(s)
- Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Jacob E Gillis
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA.
| | - Daniel H Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
17
|
Qi L, Iskols M, Shi D, Reddy P, Walker C, Lezgiyeva K, Voisin T, Pawlak M, Kuchroo VK, Chiu IM, Ginty DD, Sharma N. A mouse DRG genetic toolkit reveals morphological and physiological diversity of somatosensory neuron subtypes. Cell 2024; 187:1508-1526.e16. [PMID: 38442711 PMCID: PMC10947841 DOI: 10.1016/j.cell.2024.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/12/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Dorsal root ganglia (DRG) somatosensory neurons detect mechanical, thermal, and chemical stimuli acting on the body. Achieving a holistic view of how different DRG neuron subtypes relay neural signals from the periphery to the CNS has been challenging with existing tools. Here, we develop and curate a mouse genetic toolkit that allows for interrogating the properties and functions of distinct cutaneous targeting DRG neuron subtypes. These tools have enabled a broad morphological analysis, which revealed distinct cutaneous axon arborization areas and branching patterns of the transcriptionally distinct DRG neuron subtypes. Moreover, in vivo physiological analysis revealed that each subtype has a distinct threshold and range of responses to mechanical and/or thermal stimuli. These findings support a model in which morphologically and physiologically distinct cutaneous DRG sensory neuron subtypes tile mechanical and thermal stimulus space to collectively encode a wide range of natural stimuli.
Collapse
Affiliation(s)
- Lijun Qi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David Shi
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pranav Reddy
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Christopher Walker
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Karina Lezgiyeva
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias Pawlak
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| | - Nikhil Sharma
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
18
|
Zhao X, Wu G, Zhang J, Yu Z, Wang J. Activation of CGRP receptor-mediated signaling promotes tendon-bone healing. SCIENCE ADVANCES 2024; 10:eadg7380. [PMID: 38457499 PMCID: PMC10923525 DOI: 10.1126/sciadv.adg7380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
Calcitonin gene-related peptide (CGRP), an osteopromotive neurotransmitter with a short half-life, shows increase while calcitonin receptor-like (CALCRL) level is decreased at the early stage in bone fractures. Therefore, the activation of CALCRL-mediated signaling may be more critical to promote the tendon-bone healing. We found CGRP enhanced osteogenic differentiation of BMSCs through PKA/CREB/JUNB pathway, contributing to improved sonic hedgehog (SHH) expression, which was verified at the tendon-bone interface (TBI) in the mice with Calcrl overexpression. The osteoblast-derived SHH and slit guidance ligand 3 were reported to favor nerve regeneration and type H (CD31hiEMCNhi) vessel formation, respectively. Encouragingly, the activation or inactivation of CALCRL-mediated signaling significantly increased or decreased intensity of type H vessel and nerve fiber at the TBI, respectively. Simultaneously, improved gait characteristics and biomechanical performance were observed in the Calcrl overexpression group. Together, the gene therapy targeting CGRP receptor may be a therapeutic strategy in sports medicine.
Collapse
Affiliation(s)
- Xibang Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, Guangdong, P. R. China
| | - Guanfu Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jiali Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, Guangdong, P. R. China
| |
Collapse
|
19
|
Jiang S, Xie W, Knapstein PR, Donat A, Albertsen LC, Sevecke J, Erdmann C, Appelt J, Fuchs M, Hildebrandt A, Maleitzke T, Frosch KH, Baranowsky A, Keller J. Transcript-dependent effects of the CALCA gene on the progression of post-traumatic osteoarthritis in mice. Commun Biol 2024; 7:223. [PMID: 38396204 PMCID: PMC10891124 DOI: 10.1038/s42003-024-05889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Osteoarthritis represents a chronic degenerative joint disease with exceptional clinical relevance. Polymorphisms of the CALCA gene, giving rise to either a procalcitonin/calcitonin (PCT/CT) or a calcitonin gene-related peptide alpha (αCGRP) transcript by alternative splicing, were reported to be associated with the development of osteoarthritis. The objective of this study was to investigate the role of both PCT/CT and αCGRP transcripts in a mouse model of post-traumatic osteoarthritis (ptOA). WT, αCGRP-/- and CALCA-/- mice were subjected to anterior cruciate ligament transection (ACLT) to induce ptOA of the knee. Mice were sacrificed 4 and 8 weeks post-surgery, followed by micro-CT and histological evaluation. Here we show that the expression of both PCT/CT and αCGRP transcripts is induced in ptOA knees. CALCA-/- mice show increased cartilage degeneration and subchondral bone loss with elevated osteoclast numbers compared to αCGRP-/- and WT mice. Osteophyte formation is reduced to the same extent in CALCA-/- and αCGRP-/- mice compared to WT controls, while a reduced synovitis score is noticed exclusively in mice lacking CALCA. Our data show that expression of the PCT/CT transcript protects from the progression of ptOA, while αCGRP promotes osteophyte formation, suggesting that CALCA-encoded peptides may represent novel targets for the treatment of ptOA.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Weixin Xie
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Richard Knapstein
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lilly-Charlotte Albertsen
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Sevecke
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Erdmann
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessika Appelt
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Melanie Fuchs
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Alexander Hildebrandt
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
| | - Tazio Maleitzke
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
- Department of Orthopaedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Karl-Heinz Frosch
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Trauma Surgery, Orthopedics and Sports Traumatology, BG Hospital Hamburg, Hamburg, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
20
|
Mishra G, Townsend KL. Sensory nerve and neuropeptide diversity in adipose tissues. Mol Cells 2024; 47:100030. [PMID: 38364960 PMCID: PMC10960112 DOI: 10.1016/j.mocell.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Both brown and white adipose tissues (BAT/WAT) are innervated by the peripheral nervous system, including efferent sympathetic nerves that communicate from the brain/central nervous system out to the tissue, and afferent sensory nerves that communicate from the tissue back to the brain and locally release neuropeptides to the tissue upon stimulation. This bidirectional neural communication is important for energy balance and metabolic control, as well as maintaining adipose tissue health through processes like browning (development of metabolically healthy brown adipocytes in WAT), thermogenesis, lipolysis, and adipogenesis. Decades of sensory nerve denervation studies have demonstrated the particular importance of adipose sensory nerves for brown adipose tissue and WAT functions, but far less is known about the tissue's sensory innervation compared to the better-studied sympathetic nerves and their neurotransmitter norepinephrine. In this review, we cover what is known and not yet known about sensory nerve activities in adipose, focusing on their effector neuropeptide actions in the tissue.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
21
|
Miki K, Takeshita N, Yamashita M, Kitamura M, Murakami S. Calcitonin gene-related peptide regulates periodontal tissue regeneration. Sci Rep 2024; 14:1344. [PMID: 38228723 PMCID: PMC10791604 DOI: 10.1038/s41598-024-52029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP), a neuropeptide composed of 37 amino acids secreted from the sensory nerve endings, reportedly possesses various physiological effects, such as vasodilation and neurotransmission. Recently, there have been increasing reports of the involvement of CGRP in bone metabolism; however, its specific role in the pathogenesis of periodontitis, particularly in the repair and healing processes, remains to be elucidated. Therefore, this study aimed to investigate dynamic expression patterns of CGRP during the destruction and regeneration processes of periodontal tissues in a mouse model of experimental periodontitis. We also explored the effects of CGRP on periodontal ligament cells, which can differentiate to hard tissue-forming cells (cementoblasts or osteoblasts). Our findings demonstrated that CGRP stimulation promotes the differentiation of periodontal ligament cells into hard tissue-forming cells. Experimental results using a ligature-induced periodontitis mouse model also suggested fluctuations in CGRP expression during periodontal tissue healing, underscoring the vital role of CGRP signaling in alveolar bone recovery. The study results highlight the important role of nerves in the periodontal ligament not only in sensory reception in the periphery, as previously known, but also in periodontal tissue homeostasis and tissue repair processes.
Collapse
Affiliation(s)
- Koji Miki
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Noboru Takeshita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Motozo Yamashita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kitamura
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinya Murakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
22
|
Ramzan F, Kiran L, Malik SN, Malik MI. Tachykinins Play a Major Role in Micro and Macrovascular Complications in Type 2 Diabetes Patients. Curr Diabetes Rev 2024; 20:e050523216590. [PMID: 37151064 DOI: 10.2174/1573399819666230505123844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 05/09/2023]
Abstract
Diabetes Mellitus is a metabolic disorder, which is characterized by an increase in blood glucose levels. The defects in the secretion or action of insulin are the major cause of diabetes. Increase in the blood glucose level exerts a negative effect on the normal functions of the body organs and this leads to the dysfunctions of cells and tissue and causes vascular complications in diabetic patients. Several studies indicate that neuropeptides are released from the neurosensory cells which are mainly known as tachykinins which provoke major vascular complications in diabetic patients. Tachykinins are known as pro-inflammatory peptides which increase vascular complications and vascular permeability. The duration and severity of diabetes disease increase the risk of vascular complication in patients. The aim of this review is to elaborate the role of tachykinins in microvascular and macrovascular complications in diabetic patients. The study concluded that tachykinins increase micro and macrovascular complications in diabetic patients.
Collapse
Affiliation(s)
- Faiqah Ramzan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, 29050, Dera Ismail Khan, Pakistan
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Laila Kiran
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, 29050, Dera Ismail Khan, Pakistan
| | - Shumaila Noreen Malik
- Department of Gynecology and Obstetrics, District Teaching Hospital, Dera Ismail Khan, Pakistan
| | | |
Collapse
|
23
|
Yao D, Chen Y, Chen G. The role of pain modulation pathway and related brain regions in pain. Rev Neurosci 2023; 34:899-914. [PMID: 37288945 DOI: 10.1515/revneuro-2023-0037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the "pain matrix", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.
Collapse
Affiliation(s)
- Dandan Yao
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
24
|
Ma J, Nguyen D, Madas J, Bizanti A, Mistareehi A, Kwiat AM, Chen J, Lin M, Christie R, Hunter P, Heal M, Baldwin S, Tappan S, Furness JB, Powley TL, Cheng Z(J. Organization and morphology of calcitonin gene-related peptide-immunoreactive axons in the whole mouse stomach. J Comp Neurol 2023; 531:1608-1632. [PMID: 37694767 PMCID: PMC10593087 DOI: 10.1002/cne.25519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 09/12/2023]
Abstract
Nociceptive afferent axons innervate the stomach and send signals to the brain and spinal cord. Peripheral nociceptive afferents can be detected with a variety of markers (e.g., substance P [SP] and calcitonin gene-related peptide [CGRP]). We recently examined the topographical organization and morphology of SP-immunoreactive (SP-IR) axons in the whole mouse stomach muscular layer. However, the distribution and morphological structure of CGRP-IR axons remain unclear. We used immunohistochemistry labeling and applied a combination of imaging techniques, including confocal and Zeiss Imager M2 microscopy, Neurolucida 360 tracing, and integration of axon tracing data into a 3D stomach scaffold to characterize CGRP-IR axons and terminals in the whole mouse stomach muscular layers. We found that: (1) CGRP-IR axons formed extensive terminal networks in both ventral and dorsal stomachs. (2) CGRP-IR axons densely innervated the blood vessels. (3) CGRP-IR axons ran in parallel with the longitudinal and circular muscles. Some axons ran at angles through the muscular layers. (4) They also formed varicose terminal contacts with individual myenteric ganglion neurons. (5) CGRP-IR occurred in DiI-labeled gastric-projecting neurons in the dorsal root and vagal nodose ganglia, indicating CGRP-IR axons were visceral afferent axons. (6) CGRP-IR axons did not colocalize with tyrosine hydroxylase or vesicular acetylcholine transporter axons in the stomach, indicating CGRP-IR axons were not visceral efferent axons. (7) CGRP-IR axons were traced and integrated into a 3D stomach scaffold. For the first time, we provided a topographical distribution map of CGRP-IR axon innervation of the whole stomach muscular layers at the cellular/axonal/varicosity scale.
Collapse
Affiliation(s)
- Jichao Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Duyen Nguyen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jazune Madas
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Andrew M. Kwiat
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Mabelle Lin
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Richard Christie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Maci Heal
- MBF Bioscience, Williston, Vermont, USA
| | | | | | - John B. Furness
- Department of Anatomy & Physiology, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Terry L. Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Zixi (Jack) Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
25
|
Tokumoto M, Nakasa T, Nekomoto A, Ishikawa M, Ikuta Y, Miyaki S, Adachi N. Expression of calcitonin gene-related peptide induces ligament degeneration through endochondral ossification in osteoarthritis. Int J Rheum Dis 2023; 26:1932-1941. [PMID: 37452551 DOI: 10.1111/1756-185x.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/11/2022] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
AIM Osteoarthritis (OA) is a disease in which degeneration occurs in various tissues such as cartilage and subchondral bone. Degeneration of ligaments also plays an important role in OA progression, resulting in an increase in chondrocytes and ossification, but the factor that causes this is still unclear. It is reported that the expression of calcitonin gene-related peptide (CGRP) increases OA progression, and CGRP might play a role in ligament degeneration because CGRP has a function in endochondral ossification. The purpose of this study is to analyze the mechanism of ligament degeneration and the function of CGRP. METHODS To examine the relationship between ligament degeneration and CGRP expression, human posterior cruciate ligaments (PCL) from OA patients, and senescence-accelerated mouse prone 8 (SAMP8) mice were histologically analyzed. The effect of CGRP on human ligament cells on chondrogenesis, osteogenesis, and adipogenesis was also examined. RESULTS In human PCL and SAMP8 mice, CGRP expression increased as degeneration progressed, and decreased in severe degeneration. CGRP was expressed in the chondrocyte-like cells with SOX9. CGRP-positive cells expressing type II collagen increased with OA progression. CGRP upregulated the gene expression of VEGF, SOX9, RUNX2, COL10a1, and MMP13 in the human ligament cells. CGRP also promoted chondrogenesis and osteogenesis from the human ligament cells. CONCLUSION During OA progression, CGRP plays a role in the transdifferentiation from ligament cells to chondrocytes and promotes endochondral ossification in the ligament. CGRP would be the therapeutic target to prevent ligament degeneration.
Collapse
Affiliation(s)
- Maya Tokumoto
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translation and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Akinori Nekomoto
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Artificial Joints and Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasunari Ikuta
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Medical Center for Translation and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
26
|
Noor-Mohammadi E, Ligon CO, Mackenzie KD, Stratton J, Shnider SJ, Greenwood-Van Meerveld B. Antinociceptive Effects of an Anti-CGRP Antibody in Rat Models of Colon-Bladder Cross-Organ Sensitization. J Pharmacol Exp Ther 2023; 387:4-14. [PMID: 37164371 DOI: 10.1124/jpet.122.001480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/10/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023] Open
Abstract
Irritable bowel syndrome (IBS) and bladder pain syndrome/interstitial cystitis (BPS/IC) are comorbid visceral pain disorders seen commonly in women with unknown etiology and limited treatment options and can involve visceral organ cross-sensitization. Calcitonin gene-related peptide (CGRP) is a mediator of nociceptive processing and may serve as a target for therapy. In three rodent models, we employed a monoclonal anti-CGRP F(ab')2 to investigate the hypothesis that visceral organ cross-sensitization is mediated by abnormal CGRP signaling. Visceral organ cross-sensitization was induced in adult female rats via transurethral infusion of protamine sulfate (PS) into the urinary bladder or infusion into the colon of trinitrobenzene sulfonic acid (TNBS). Colonic sensitivity was assessed via the visceromotor response to colorectal distension (CRD). Bladder sensitivity was assessed as the frequency of abdominal withdrawal reflexes to von Frey filaments applied to the suprapubic region. PS- or TNBS-induced changes in colonic and bladder permeability were investigated in vitro via quantification of transepithelial electrical resistance (TEER). Peripheral administration of an anti-CGRP F(ab')2 inhibited PS-induced visceral pain behaviors and colon hyperpermeability. Similarly, TNBS-induced pain behaviors and colon and bladder hyperpermeability were attenuated by anti-CGRP F(ab')2 treatment. PS into the bladder or TNBS into the colon significantly increased the visceromotor response to CRD and abdominal withdrawal reflexes to suprapubic stimulation and decreased bladder and colon TEER. These findings suggest an important role of peripheral CGRP in visceral nociception and organ cross-sensitization and support the evaluation of CGRP as a therapeutic target for visceral pain in patients with IBS and/or BPS/IC. SIGNIFICANCE STATEMENT: A monoclonal antibody against calcitonin gene-related peptide (CGRP) was found to reduce concomitant colonic and bladder hypersensitivity and hyperpermeability. The results of this study suggest that CGRP-targeting antibodies, in addition to migraine prevention, may provide a novel treatment strategy for multiorgan abdominopelvic pain following injury or inflammation.
Collapse
Affiliation(s)
- Ehsan Noor-Mohammadi
- Department of Physiology (E.N.-M., C.O.L., B.G.-V.M.), University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; and TEVA Pharmaceuticals Ltd. (K.D.M., J.S., S.J.S.), Redwood City, California
| | - Casey O Ligon
- Department of Physiology (E.N.-M., C.O.L., B.G.-V.M.), University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; and TEVA Pharmaceuticals Ltd. (K.D.M., J.S., S.J.S.), Redwood City, California
| | - Kimberly D Mackenzie
- Department of Physiology (E.N.-M., C.O.L., B.G.-V.M.), University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; and TEVA Pharmaceuticals Ltd. (K.D.M., J.S., S.J.S.), Redwood City, California
| | - Jennifer Stratton
- Department of Physiology (E.N.-M., C.O.L., B.G.-V.M.), University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; and TEVA Pharmaceuticals Ltd. (K.D.M., J.S., S.J.S.), Redwood City, California
| | - Sara J Shnider
- Department of Physiology (E.N.-M., C.O.L., B.G.-V.M.), University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; and TEVA Pharmaceuticals Ltd. (K.D.M., J.S., S.J.S.), Redwood City, California
| | - Beverley Greenwood-Van Meerveld
- Department of Physiology (E.N.-M., C.O.L., B.G.-V.M.), University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; and TEVA Pharmaceuticals Ltd. (K.D.M., J.S., S.J.S.), Redwood City, California
| |
Collapse
|
27
|
Maruyama K. Senso-immunology: The Emerging Connection between Pain and Immunity. Keio J Med 2023; 72:77-87. [PMID: 37460327 DOI: 10.2302/kjm.2022-0037-ir] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The sensory and immune systems have been studied independently for a long time, whereas the interaction between the two has received little attention. We have carried out research to understand the interaction between the sensory and immune systems and have found that inflammation and bone destruction caused by fungal infection are suppressed by nociceptors. Furthermore, we have elucidated the molecular mechanism whereby fungal receptors are expressed on nociceptors and skin epithelium, how they cooperate to generate fungal pain, and how colitis and bone metabolism are regulated by mechanosensors expressed on the gut epithelium. Recently, we found that nociceptors prevent septic death by inhibiting microglia via nociceptor-derived hormones. This review summarizes our current state of knowledge on pain biology and outlines the mechanisms whereby pain and immunity interact. Our findings indicate that the sensory and immune systems share a variety of molecules and interact with each other to regulate our pathological and homeostatic conditions. This prompted us to advocate the interdisciplinary science named "senso-immunology," and this emerging field is expected to generate new ideas in both physiology and immunology, leading to the development of novel drugs to treat pain and inflammation.
Collapse
Affiliation(s)
- Kenta Maruyama
- National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
28
|
Labastida-Ramírez A, Caronna E, Gollion C, Stanyer E, Dapkute A, Braniste D, Naghshineh H, Meksa L, Chkhitunidze N, Gudadze T, Pozo-Rosich P, Burstein R, Hoffmann J. Mode and site of action of therapies targeting CGRP signaling. J Headache Pain 2023; 24:125. [PMID: 37691118 PMCID: PMC10494408 DOI: 10.1186/s10194-023-01644-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
Targeting CGRP has proved to be efficacious, tolerable, and safe to treat migraine; however, many patients with migraine do not benefit from drugs that antagonize the CGRPergic system. Therefore, this review focuses on summarizing the general pharmacology of the different types of treatments currently available, which target directly or indirectly the CGRP receptor or its ligand. Moreover, the latest evidence regarding the selectivity and site of action of CGRP small molecule antagonists (gepants) and monoclonal antibodies is critically discussed. Finally, the reasons behind non-responders to anti-CGRP drugs and rationale for combining and/or switching between these therapies are addressed.
Collapse
Affiliation(s)
- Alejandro Labastida-Ramírez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
| | - Edoardo Caronna
- Headache Unit, Neurology Department, Vall d'Hebron Universitary Hospital, Barcelona, Spain
- Headache Research Group, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Emily Stanyer
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | | | - Diana Braniste
- Institute of Neurology and Neurosurgery, Diomid Gherman, Chișinău, Moldova
- State University of Medicine and Pharmacy, Nicolae Testemițanu, Moldova
| | - Hoda Naghshineh
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Liga Meksa
- Headache Unit, Neurology and Neurosurgery Department, Riga East University Hospital Gailezers, Riga, Latvia
| | | | - Tamari Gudadze
- Department of Neurology, Christian Hospital Unna, Unna, Germany
| | - Patricia Pozo-Rosich
- Headache Unit, Neurology Department, Vall d'Hebron Universitary Hospital, Barcelona, Spain
- Headache Research Group, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
- Center for Life Science, Room 649, 3 Blackfan Circle, Boston, MA, 02215, USA
| | - Jan Hoffmann
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK.
- NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, UK.
| |
Collapse
|
29
|
Boinpally R, Butler M, Rojo J, Borbridge L, Wangsadipura V, Papinska A. Evaluation of the pharmacokinetic interactions and safety of atogepant coadministered with esomeprazole. Pain Manag 2023; 13:351-361. [PMID: 37424270 DOI: 10.2217/pmt-2023-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Aim: To investigate potential pharmacokinetic interactions between atogepant and esomeprazole. Methods: Atogepant, esomeprazole, or both were administered to 32 healthy adults in an open-label, nonrandomized, crossover study. Systemic exposure (area under the plasma concentration-time curve [AUC] and peak plasma concentration [Cmax]) for atogepant administered in combination versus alone were compared using a linear mixed effects model. Results: Coadministration with esomeprazole delayed atogepant time to Cmax by ∼1.5 h and reduced Cmax by ∼23% with no statistically significant change in AUC compared with atogepant alone. Administration of atogepant 60 mg alone or in combination with esomeprazole 40 mg was well tolerated in healthy adults. Conclusion: Esomeprazole had no clinically meaningful effect on atogepant pharmacokinetics. Clinical Trial Registration: unregistered phase I study.
Collapse
|
30
|
Ma J, Nguyen D, Madas J, Bizanti A, Mistareehi A, Kwiat AM, Chen J, Lin M, Christie R, Hunter P, Heal M, Baldwin S, Tappan S, Furness JB, Powley TL, Cheng ZJ. Mapping the Organization and Morphology of Calcitonin Gene-Related Peptide (CGRP)-IR Axons in the Whole Mouse Stomach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541811. [PMID: 37398245 PMCID: PMC10312482 DOI: 10.1101/2023.05.23.541811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Nociceptive afferent axons innervate the stomach and send signals to the brain and spinal cord. Peripheral nociceptive afferents can be detected with a variety of markers [e.g., substance P (SP) and calcitonin gene-related peptide (CGRP)]. We recently examined the topographical organization and morphology of SP-immunoreactive (SP-IR) axons in the whole mouse stomach muscular layer. However, the distribution and morphological structure of CGRP-IR axons remain unclear. We used immunohistochemistry labeling and applied a combination of imaging techniques, including confocal and Zeiss Imager M2 microscopy, Neurolucida 360 tracing, and integration of axon tracing data into a 3D stomach scaffold to characterize CGRP-IR axons and terminals in the whole mouse stomach muscular layers. We found that: 1) CGRP-IR axons formed extensive terminal networks in both ventral and dorsal stomachs. 2) CGRP-IR axons densely innervated the blood vessels. 3) CGRP-IR axons ran in parallel with the longitudinal and circular muscles. Some axons ran at angles through the muscular layers. 4) They also formed varicose terminal contacts with individual myenteric ganglion neurons. 5) CGRP-IR occurred in DiI-labeled gastric-projecting neurons in the dorsal root and vagal nodose ganglia, indicating CGRP-IR axons were visceral afferent axons. 6) CGRP-IR axons did not colocalize with tyrosine hydroxylase (TH) or vesicular acetylcholine transporter (VAChT) axons in the stomach, indicating CGRP-IR axons were not visceral efferent axons. 7) CGRP-IR axons were traced and integrated into a 3D stomach scaffold. For the first time, we provided a topographical distribution map of CGRP-IR axon innervation of the whole stomach muscular layers at the cellular/axonal/varicosity scale.
Collapse
|
31
|
Mariotton J, Cohen E, Zhu A, Auffray C, Barbosa Bomfim CC, Barry Delongchamps N, Zerbib M, Bomsel M, Ganor Y. TRPV1 activation in human Langerhans cells and T cells inhibits mucosal HIV-1 infection via CGRP-dependent and independent mechanisms. Proc Natl Acad Sci U S A 2023; 120:e2302509120. [PMID: 37216549 PMCID: PMC10235960 DOI: 10.1073/pnas.2302509120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Upon its mucosal transmission, HIV type 1 (HIV-1) rapidly targets genital antigen-presenting Langerhans cells (LCs), which subsequently transfer infectious virus to CD4+ T cells. We previously described an inhibitory neuroimmune cross talk, whereby calcitonin gene-related peptide (CGRP), a neuropeptide secreted by peripheral pain-sensing nociceptor neurons innervating all mucosal epithelia and associating with LCs, strongly inhibits HIV-1 transfer. As nociceptors secret CGRP following the activation of their Ca2+ ion channel transient receptor potential vanilloid 1 (TRPV1), and as we reported that LCs secret low levels of CGRP, we investigated whether LCs express functional TRPV1. We found that human LCs expressed mRNA and protein of TRPV1, which was functional and induced Ca2+ influx following activation with TRPV1 agonists, including capsaicin (CP). The treatment of LCs with TRPV1 agonists also increased CGRP secretion, reaching its anti-HIV-1 inhibitory concentrations. Accordingly, CP pretreatment significantly inhibited LCs-mediated HIV-1 transfer to CD4+ T cells, which was abrogated by both TRPV1 and CGRP receptor antagonists. Like CGRP, CP-induced inhibition of HIV-1 transfer was mediated via increased CCL3 secretion and HIV-1 degradation. CP also inhibited direct CD4+ T cells HIV-1 infection, but in CGRP-independent manners. Finally, pretreatment of inner foreskin tissue explants with CP markedly increased CGRP and CCL3 secretion, and upon subsequent polarized exposure to HIV-1, inhibited an increase in LC-T cell conjugate formation and consequently T cell infection. Our results reveal that TRPV1 activation in human LCs and CD4+ T cells inhibits mucosal HIV-1 infection, via CGRP-dependent/independent mechanisms. Formulations containing TRPV1 agonists, already approved for pain relief, could hence be useful against HIV-1.
Collapse
Affiliation(s)
- Jammy Mariotton
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | - Emmanuel Cohen
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | - Aiwei Zhu
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | - Cédric Auffray
- Laboratory of Regulation of T Cell Effector Functions, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | - Caio César Barbosa Bomfim
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | | | - Marc Zerbib
- Urology Service, Groupe Hospitalier (GH) Cochin-St Vincent de Paul, F-75014Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | - Yonatan Ganor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| |
Collapse
|
32
|
Straube A, Broessner G, Gaul C, Hamann X, Hipp J, Kraya T, Neeb L. Real-world effectiveness of fremanezumab in patients with migraine switching from another mAb targeting the CGRP pathway: a subgroup analysis of the Finesse Study. J Headache Pain 2023; 24:59. [PMID: 37221478 DOI: 10.1186/s10194-023-01593-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/07/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Monoclonal antibodies targeting the CGRP pathway are effective and safe for prophylactic treatment of episodic (EM) and chronic migraine (CM). In case of treatment failure of a CGRP pathway targeting mAb, physician has to decide whether using another anti-CGRP pathway mAb is useful. This interim analysis of Finesse Study evaluates effectiveness of the anti-CGRP mAb fremanezumab in patients with a history of other prior anti-CGRP pathway mAb treatments (switch patients). METHODS FINESSE, a non-interventional, prospective, multicentre, two-country (Germany-Austria) study observing migraine patients receiving fremanezumab in clinical routine. This subgroup analysis presents data on documented effectiveness over 3 months after the first dose of fremanezumab in switch patients. Effectiveness was evaluated based on reduction in average number of migraine days per month (MMDs), MIDAS and HIT-6 scores changes as well as in number of monthly days with acute migraine medication use. RESULTS One hundred fifty-three out of 867 patients with a history of anti-CGRP pathway mAb treatment prior to initiation of fremanezumab were analysed. Switch to fremanezumab led to ≥ 50% MMD reduction in 42.8% of migraine patients, with higher response rate in EM (48.0%) than in CM patients (36.5%). A ≥ 30% MMD reduction was achieved by 58.7% in CM patients. After three months, monthly number of migraine days decreased by 6.4 ± 5.87 (baseline: 13.6 ± 6.5; p < 0.0001) in all patients, 5.2 ± 4.04 in EM and 7.7 ± 7.45 in CM patients. MIDAS scores decreased from 73.3 ± 56.8 (baseline) to 50.3 ± 52.9 (after 3 months; p = 0.0014), HIT-6 scores decreased from 65.9 ± 5.0 to 60.9 ± 7.2 (p < 0.0001). Concomitant use of acute migraine medication had decreased from 9.7 ± 4.98 (baseline) to 4.9 ± 3.66 (3 months) (p < 0.0001). CONCLUSIONS Our results show that about 42.8% of anti-CGRP pathway mAb-non-responder benefit from switching to fremanezumab. These results suggest that switching to fremanezumab may be a promising option for patients experiencing poor tolerability or inadequate efficacy with prior other anti-CGRP pathway mAb use. TRIAL REGISTRATION FINESSE Study is registered on the European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (EUPAS44606).
Collapse
Affiliation(s)
- Andreas Straube
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany.
| | - Gregor Broessner
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Charly Gaul
- Headache Center Frankfurt, Frankfurt, Germany
| | | | | | - Torsten Kraya
- Department of Neurology, Hospital Sankt Georg Leipzig gGmbH, Leipzig, Germany
- Department of Neurology, Headache Center Halle, University Hospital Halle, Halle (Saale), Germany
| | - Lars Neeb
- Helios Global Health, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
33
|
Bálint L, Nelson-Maney N, Tian Y, Serafin DS, Caron KM. Clinical Potential of Adrenomedullin Signaling in the Cardiovascular System. Circ Res 2023; 132:1185-1202. [PMID: 37104556 PMCID: PMC10155262 DOI: 10.1161/circresaha.123.321673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023]
Abstract
Numerous clinical studies have revealed the utility of circulating AM (adrenomedullin) or MR-proAM (mid-regional proAM 45-92) as an effective prognostic and diagnostic biomarker for a variety of cardiovascular-related pathophysiologies. Thus, there is strong supporting evidence encouraging the exploration of the AM-CLR (calcitonin receptor-like receptor) signaling pathway as a therapeutic target. This is further bolstered because several drugs targeting the shared CGRP (calcitonin gene-related peptide)-CLR pathway are already Food and Drug Administration-approved and on the market for the treatment of migraine. In this review, we summarize the AM-CLR signaling pathway and its modulatory mechanisms and provide an overview of the current understanding of the physiological and pathological roles of AM-CLR signaling and the yet untapped potentials of AM as a biomarker or therapeutic target in cardiac and vascular diseases and provide an outlook on the recently emerged strategies that may provide further boost to the possible clinical applications of AM signaling.
Collapse
Affiliation(s)
- László Bálint
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Nathan Nelson-Maney
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Yanna Tian
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - D. Stephen Serafin
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| |
Collapse
|
34
|
Kaltseis K, Filippi V, Frank F, Eckhardt C, Schiefecker A, Broessner G. Monoclonal antibodies against CGRP (R): non-responders and switchers: real world data from an austrian case series. BMC Neurol 2023; 23:174. [PMID: 37118682 PMCID: PMC10142255 DOI: 10.1186/s12883-023-03203-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/10/2023] [Indexed: 04/30/2023] Open
Abstract
OBJECTIVE Assessement of the responder and non-responder rate to consecutive monoclonal CGRP-antibody (CGRP-mAb) treatment, the presence of side effects, analysis of predictors of response and loss-of-effectiveness evaluation over time. METHODS We conducted a retrospective analysis including 171 patients with episodic (EM) or chronic migraine (CM), who received one, two or three different CGRP-mAbs. Non-response was defined as ≤ 50% reduction of monthly migraine days (MMDs) in EM and ≤ 30% reduction of MMDs in CM after 3 months of treatment. RESULTS 123 (71.9%) responded to the first mAb. Side effects led to treatment discontinuation in 9 (5.3%) patients. Of the 26 patients who did not respond to the first mAb or experienced a loss of efficacy over time, 11 (42.3%) responded to the second and two (28.6%) of 7 to the third monoclonal antibody. Poor response to therapy was associated with a higher monthly migraine frequency (p = 0.028), a higher number of prior preventive migraine therapies (p = 0.011) and medication overuse (p = 0.022). CONCLUSION Our findings support mAb-class switch in non-responders or in patients experiencing a loss of effectiveness. The use of a third CGRP-mAb could be beneficial for some patients.
Collapse
Affiliation(s)
- Katharina Kaltseis
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Vera Filippi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Frank
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christine Eckhardt
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alois Schiefecker
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Broessner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
35
|
Qi L, Iskols M, Shi D, Reddy P, Walker C, Lezgiyeva K, Voisin T, Pawlak M, Kuchroo VK, Chiu I, Ginty DD, Sharma N. A DRG genetic toolkit reveals molecular, morphological, and functional diversity of somatosensory neuron subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537932. [PMID: 37131664 PMCID: PMC10153270 DOI: 10.1101/2023.04.22.537932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mechanical and thermal stimuli acting on the skin are detected by morphologically and physiologically distinct sensory neurons of the dorsal root ganglia (DRG). Achieving a holistic view of how this diverse neuronal population relays sensory information from the skin to the central nervous system (CNS) has been challenging with existing tools. Here, we used transcriptomic datasets of the mouse DRG to guide development and curation of a genetic toolkit to interrogate transcriptionally defined DRG neuron subtypes. Morphological analysis revealed unique cutaneous axon arborization areas and branching patterns of each subtype. Physiological analysis showed that subtypes exhibit distinct thresholds and ranges of responses to mechanical and/or thermal stimuli. The somatosensory neuron toolbox thus enables comprehensive phenotyping of most principal sensory neuron subtypes. Moreover, our findings support a population coding scheme in which the activation thresholds of morphologically and physiologically distinct cutaneous DRG neuron subtypes tile multiple dimensions of stimulus space.
Collapse
Affiliation(s)
- Lijun Qi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - David Shi
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Pranav Reddy
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Christopher Walker
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Karina Lezgiyeva
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Nikhil Sharma
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| |
Collapse
|
36
|
Ramachanderan R, Schramm S, Schaefer B. Migraine drugs. CHEMTEXTS 2023. [DOI: 10.1007/s40828-023-00178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractAccording to recent studies, migraine affects more than 1 billion people worldwide, making it one of the world’s most prevalent diseases. Although this highly debilitating illness has been known since ancient times, the first therapeutic drugs to treat migraine, ergotamine (Gynergen) and dihydroergotamine (Dihydergot), did not appear on the market until 1921 and 1946, respectively. Both drugs originated from Sandoz, the world’s leading pharmaceutical company in ergot alkaloid research at the time. Historically, ergot alkaloids had been primarily used in obstetrics, but with methysergide (1-methyl-lysergic acid 1′-hydroxy-butyl-(2S)-amide), it became apparent that they also held some potential in migraine treatment. Methysergide was the first effective prophylactic drug developed specifically to prevent migraine attacks in 1959. On the basis of significantly improved knowledge of migraine pathophysiology and the discovery of serotonin and its receptors, Glaxo was able to launch sumatriptan in 1992. It was the first member from the class of triptans, which are selective 5-HT1B/1D receptor agonists. Recent innovations in acute and preventive migraine therapy include lasmiditan, a selective 5-HT1F receptor agonist from Eli Lilly, the gepants, which are calcitonin gene-related peptide (CGRP) receptor antagonists discovered at Merck & Co and BMS, and anti-CGRP/receptor monoclonal antibodies from Amgen, Pfizer, Eli Lilly, and others.
Graphical abstract
Collapse
|
37
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
Hanč P, Messou MA, Wang Y, von Andrian UH. Control of myeloid cell functions by nociceptors. Front Immunol 2023; 14:1127571. [PMID: 37006298 PMCID: PMC10064072 DOI: 10.3389/fimmu.2023.1127571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
The immune system has evolved to protect the host from infectious agents, parasites, and tumor growth, and to ensure the maintenance of homeostasis. Similarly, the primary function of the somatosensory branch of the peripheral nervous system is to collect and interpret sensory information about the environment, allowing the organism to react to or avoid situations that could otherwise have deleterious effects. Consequently, a teleological argument can be made that it is of advantage for the two systems to cooperate and form an “integrated defense system” that benefits from the unique strengths of both subsystems. Indeed, nociceptors, sensory neurons that detect noxious stimuli and elicit the sensation of pain or itch, exhibit potent immunomodulatory capabilities. Depending on the context and the cellular identity of their communication partners, nociceptors can play both pro- or anti-inflammatory roles, promote tissue repair or aggravate inflammatory damage, improve resistance to pathogens or impair their clearance. In light of such variability, it is not surprising that the full extent of interactions between nociceptors and the immune system remains to be established. Nonetheless, the field of peripheral neuroimmunology is advancing at a rapid pace, and general rules that appear to govern the outcomes of such neuroimmune interactions are beginning to emerge. Thus, in this review, we summarize our current understanding of the interaction between nociceptors and, specifically, the myeloid cells of the innate immune system, while pointing out some of the outstanding questions and unresolved controversies in the field. We focus on such interactions within the densely innervated barrier tissues, which can serve as points of entry for infectious agents and, where known, highlight the molecular mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Pavel Hanč
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: Pavel Hanč, ; Ulrich H. von Andrian,
| | - Marie-Angèle Messou
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Yidi Wang
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Ulrich H. von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: Pavel Hanč, ; Ulrich H. von Andrian,
| |
Collapse
|
39
|
Zhu W, Li W, Jiang J, Wang D, Mao X, Zhang J, Zhang X, Chang J, Yao P, Yang X, Da Costa C, Zhang Y, Yu J, Li H, Li S, Chi X, Li N. Chronic salmon calcitonin exerts an antidepressant effect via modulating the p38 MAPK signaling pathway. Front Mol Neurosci 2023; 16:1071327. [PMID: 36969556 PMCID: PMC10036804 DOI: 10.3389/fnmol.2023.1071327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Depression is a common recurrent psychiatric disorder with a high lifetime prevalence and suicide rate. At present, although several traditional clinical drugs such as fluoxetine and ketamine, are widely used, medications with a high efficiency and reduced side effects are of urgent need. Our group has recently reported that a single administration of salmon calcitonin (sCT) could ameliorate a depressive-like phenotype via the amylin signaling pathway in a mouse model established by chronic restraint stress (CRS). However, the molecular mechanism underlying the antidepressant effect needs to be addressed. In this study, we investigated the antidepressant potential of sCT applied chronically and its underlying mechanism. In addition, using transcriptomics, we found the MAPK signaling pathway was upregulated in the hippocampus of CRS-treated mice. Further phosphorylation levels of ERK/p38/JNK kinases were also enhanced, and sCT treatment was able only to downregulate the phosphorylation level of p38/JNK, with phosphorylated ERK level unaffected. Finally, we found that the antidepressant effect of sCT was blocked by p38 agonists rather than JNK agonists. These results provide a mechanistic explanation of the antidepressant effect of sCT, suggesting its potential for treating the depressive disorder in the clinic.
Collapse
Affiliation(s)
- Wenhui Zhu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinliang Mao
- Perfect Life and Health Institute, Zhongshan, Guangdong, China
| | - Jin Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xunzhi Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Peijia Yao
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | | | - Ying Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiezhong Yu
- The Fourth People’s Hospital of Datong City, Datong, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, United Kingdom
- China-UK Institute for Frontier Science, Shenzhen, China
- *Correspondence: Huiliang Li,
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Shupeng Li,
| | - Xinjin Chi
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Xinjin Chi,
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- China-UK Institute for Frontier Science, Shenzhen, China
- The Fifth People’s Hospital of Datong City, Datong, China
- Ningning Li,
| |
Collapse
|
40
|
Root S, Ahn K, Kirsch J, Hoskin JL. Review of Tolerability of Fremanezumab for Episodic and Chronic Migraine. Neuropsychiatr Dis Treat 2023; 19:391-401. [PMID: 36846598 PMCID: PMC9951598 DOI: 10.2147/ndt.s371686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) monoclonal antibodies (mAbs) were the first class of medication specifically developed for the prevention of migraine. Fremanezumab is one of four CGRP mAbs currently available and is approved by the US Food and Drug Administration (FDA) for the preventative treatment of episodic and chronic migraines. This narrative review summarizes the history of fremanezumab development, the trials that led to its approval, and the later studies published evaluating its tolerability and efficacy. Evidence of fremanezumab for clinically significant efficacy and tolerability in patients with chronic migraine is especially important when considering the high level of disability, lower quality of life scores, and higher levels of health-care utilization associated with this condition. Multiple clinical trials demonstrated superiority of fremanezumab over placebo in terms of efficacy while demonstrating good tolerability. Treatment-related adverse reactions did not differ significantly compared to placebo and dropout rates were minimal. The most commonly observed treatment-related adverse reaction was mild-to-moderate injection site reaction, described as erythema, pain, induration, or swelling at the injection site.
Collapse
Affiliation(s)
- Shane Root
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
- University of Arizona School of Medicine, Phoenix, AZ, USA
- Creighton University School of Medicine, Omaha, NE, USA
| | - Kevin Ahn
- Creighton University School of Medicine, Omaha, NE, USA
| | - Jack Kirsch
- Creighton University School of Medicine, Omaha, NE, USA
| | - Justin L Hoskin
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
- University of Arizona School of Medicine, Phoenix, AZ, USA
- Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
41
|
Assefa F. The role of sensory and sympathetic nerves in craniofacial bone regeneration. Neuropeptides 2023; 99:102328. [PMID: 36827755 DOI: 10.1016/j.npep.2023.102328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Multiple factors regulate the regeneration of craniofacial bone defects. The nervous system is recognized as one of the critical regulators of bone mass, thereby suggesting a role for neuronal pathways in bone regeneration. However, in the context of craniofacial bone regeneration, little is known about the interplay between the nervous system and craniofacial bone. Sensory and sympathetic nerves interact with the bone through their neuropeptides, neurotransmitters, proteins, peptides, and amino acid derivates. The neuron-derived factors, such as semaphorin 3A (SEMA3A), substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), and vasoactive intestinal peptide (VIP), possess a remarkable role in craniofacial regeneration. This review summarizes the roles of these factors and recently published factors such as secretoneurin (SN) and spexin (SPX) in the osteoblast and osteoclast differentiation, bone metabolism, growth, remodeling and discusses the novel application of nerve-based craniofacial bone regeneration. Moreover, the review will facilitate understanding the mechanism of action and provide potential treatment direction for the craniofacial bone defect.
Collapse
Affiliation(s)
- Freshet Assefa
- Department of Biochemistry, Collage of Medicine and Health Sciences, Hawassa University, P.O.Box 1560, Hawassa, Ethiopia.
| |
Collapse
|
42
|
Procalcitonin and Adrenomedullin in Infectious Diseases. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Calcitonin (CT) and adrenomedullin (ADM) are members of the CT family. Procalcitonin (PCT) is a prohormone of CT. Elevations in serum PCT and ADM levels are associated with severe sepsis and coronavirus disease 2019 (COVID-19). PCT enhances sepsis mortality and it binds to the CGRP receptor, which is a heterodimer of CT receptor-like receptor and receptor activity-modifying protein 1. The N-terminal truncated form of PCT, PCT3-116, is produced by the cleavage of PCT by dipeptidyl peptidase 4 (DPP-4) and is the main form of PCT in serum during sepsis, inducing microvascular permeability. Mid-regional pro-adrenomedullin (MR-proADM) is used instead of ADM as a biological indicator because ADM is rapidly degraded, and MR-proADM is released at the same rate as ADM. ADM reduces endothelial permeability and promotes endothelial stability. Endothelial dysfunction is responsible for multiple organ failure in sepsis and COVID-19 patients. Therefore, ADM may be an important molecule for improving the severity associated with sepsis and COVID-19. This review focuses on the current knowledge of PCT and ADM in sepsis and COVID-19.
Collapse
|
43
|
Mohammadi A, Dehkordi NR, Mahmoudi S, Rafeie N, Sabri H, Valizadeh M, Poorsoleiman T, Jafari A, Mokhtari A, Khanjarani A, Salimi Y, Mokhtari M, Deravi N. Effects of Drugs and Chemotherapeutic Agents on Dental Implant Osseointegration: A Narrative Review. Curr Rev Clin Exp Pharmacol 2023; 19:42-60. [PMID: 35674294 DOI: 10.2174/2772432817666220607114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dental implants have been one of the most popular treatments for rehabilitating individuals with single missing teeth or fully edentulous jaws since their introduction. As more implant patients are well-aged and take several medications due to various systemic conditions, clinicians should take into consideration the possible drug implications on bone remodeling and osseointegration. OBJECTIVE The present study aims to examine and review some desirable and unwelcomed implications of medicine on osseointegration. METHODS A broad search for proper relevant studies was conducted in four databases, including Web of Science, Pubmed, Scopus, and Google Scholar. RESULTS Some commonly prescribed medicines, such as nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, proton pump inhibitors (PPIs), selective serotonin reuptake inhibitors (SSRIs), anticoagulants, metformin, and chemotherapeutic agents, may jeopardize osseointegration. On the contrary, some therapeutic agents, such as anabolic, anti-catabolic, or dual anabolic agents may enhance osseointegration and increase the treatment's success rate. CONCLUSION Systemic medications that enhance osseointegration include mineralization promoters and bone resorption inhibitors. On the other hand, medications often given to the elderly with systemic problems might interfere with osseointegration, leading to implant failure. However, to validate the research, more human studies with a higher level of evidence are required.
Collapse
Affiliation(s)
- Aida Mohammadi
- Dental Materials Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Roqani Dehkordi
- Department of Periodontology, Faculty of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sadaf Mahmoudi
- Department of Endodontics, School of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Niyousha Rafeie
- Dental Research Center, Dentistry Research Institute, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamoun Sabri
- Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Valizadeh
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Taniya Poorsoleiman
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Aryan Jafari
- Dental Materials Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Mokhtari
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arshia Khanjarani
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasaman Salimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Melika Mokhtari
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Okano M, Hirahara K, Kiuchi M, Onoue M, Iwamura C, Kokubo K, Hishiya T, Morimoto Y, Ikehara Y, Murakami A, Ebihara N, Nakayama T. Interleukin-33-activated neuropeptide CGRP-producing memory Th2 cells cooperate with somatosensory neurons to induce conjunctival itch. Immunity 2022; 55:2352-2368.e7. [PMID: 36272417 DOI: 10.1016/j.immuni.2022.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Allergic conjunctivitis is a chronic inflammatory disease that is characterized by severe itch in the conjunctiva, but how neuro-immune interactions shape the pathogenesis of severe itch remains unclear. We identified a subset of memory-type pathogenic Th2 cells that preferentially expressed Il1rl1-encoding ST2 and Calca-encoding calcitonin-gene-related peptide (CGRP) in the inflammatory conjunctiva using a single-cell analysis. The IL-33-ST2 axis in memory Th2 cells controlled the axonal elongation of the peripheral sensory C-fiber and the induction of severe itch. Pharmacological blockade and genetic deletion of CGRP signaling in vivo attenuated scratching behavior. The analysis of giant papillae from patients with severe allergic conjunctivitis revealed ectopic lymphoid structure formation with the accumulation of IL-33-producing epithelial cells and CGRP-producing pathogenic CD4+ T cells accompanied by peripheral nerve elongation. Thus, the IL-33-ST2-CGRP axis directs severe itch with neuro-reconstruction in the inflammatory conjunctiva and is a potential therapeutic target for severe itch in allergic conjunctivitis.
Collapse
Affiliation(s)
- Mikiko Okano
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Ophthalmology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; AMED-PRIME, AMED, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Miki Onoue
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Ophthalmology, Juntendo University School of Medicine, Tokyo 113-8431, Japan
| | - Chiaki Iwamura
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takahisa Hishiya
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yuki Morimoto
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yuzuru Ikehara
- Department of Molecular and Tumor Pathology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo 113-8431, Japan
| | - Nobuyuki Ebihara
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
45
|
Rissardo JP, Caprara ALF. Gepants for Acute and Preventive Migraine Treatment: A Narrative Review. Brain Sci 2022; 12:1612. [PMID: 36552072 PMCID: PMC9775271 DOI: 10.3390/brainsci12121612] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) antagonists are a class of medications that act as antagonists of the CGRP receptor or ligand. They can be divided into monoclonal antibodies and non-peptide small molecules, also known as gepants. CGRP antagonists were the first oral agents specifically designed to prevent migraines. The second generation of gepants includes rimegepant (BHV-3000, BMS-927711), ubrogepant (MK-1602), and atogepant (AGN-241689, MK-8031). Zavegepant (BHV-3500, BMS-742413) belongs to the third generation of gepants characterized by different administration routes. The chemical and pharmacological properties of this new generation of gepants were calculated. The clinical trials showed that the new generation of CGRP antagonists is effective for the acute and/or preventive treatment of migraines. No increased mortality risks were observed to be associated with the second- and third-generation gepants. Moreover, the majority of the serious adverse events reported probably occurred unrelated to the medications. Interesting facts about gepants were highlighted, such as potency, hepatotoxicity, concomitant use with monoclonal antibodies targeting the CGRP, comparative analysis with triptans, and the "acute and preventive" treatment of migraine. Further studies should include an elderly population and compare the medications inside this class and with triptans. There are still concerns regarding the long-term side effects of these medications, such as chronic vascular hemodynamic impairment. Meanwhile, careful pharmacovigilance and safety monitoring should be performed in the clinical practice use of gepants.
Collapse
Affiliation(s)
- Jamir Pitton Rissardo
- Medicine Department, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | | |
Collapse
|
46
|
Sekiguchi T. Evolution of calcitonin/calcitonin gene-related peptide family in chordates: Identification of CT/CGRP family peptides in cartilaginous fish genome. Gen Comp Endocrinol 2022; 328:114123. [PMID: 36075341 DOI: 10.1016/j.ygcen.2022.114123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/04/2022]
Abstract
The calcitonin (CT)/CT gene-related peptide (CGRP) family is a peptide gene family that is widely found in bilaterians. CT, CGRP, adrenomedullin (AM), amylin (AMY), and CT receptor-stimulating peptide (CRSP) are members of the CT/CGRP family. In mammals, CT is involved in calcium homeostasis, while CGRP and AM primarily function in vasodilation. AMY and CRSP are associated with anorectic effects. Diversification of the molecular features and physiological functions of the CT/CGRP family in vertebrate lineages have been extensively reported. However, the origin and diversification mechanisms of the vertebrate CT/CGRP family of peptides remain unclear. In this review, the molecular characteristics of CT/CGRP family peptides and their receptors, along with their major physiological functions in mammals and teleosts, are introduced. Furthermore, novel candidates of the CT/CGRP family in cartilaginous fish are presented based on genomic information. The CT/CGRP family peptides and receptors in urochordates and cephalochordates, which are closely related to vertebrates, are also described. Finally, a putative evolutionary scenario of the CT/CGRP family peptides and receptors in chordates is discussed.
Collapse
Affiliation(s)
- Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan.
| |
Collapse
|
47
|
Li L, Zhao H, Ma X, Jiao F, Lin J. Calcitonin gene-related peptide predicts therapeutic response to midodrine hydrochloride in children with vasovagal syncope. Front Neurosci 2022; 16:1026539. [PMID: 36267231 PMCID: PMC9577468 DOI: 10.3389/fnins.2022.1026539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The vasoconstriction agent midodrine hydrochloride is a vital treatment for pediatric patients diagnosed with vasovagal syncope (VVS), although the efficacy is variable. This study was designed to explore the value of calcitonin gene-related peptide (CGRP) in predicting the effect of midodrine hydrochloride treatment upon VVS patients. In total, 55 children diagnosed with VVS were treated with midodrine hydrochloride for 3 months. Therapeutic response was evaluated using a symptom score system. CGRP levels were significantly higher in VVS patients (68.700 ± 6.460) than in control subjects (43.400 ± 5.810; t = 18.207, P < 0.001) and symptom scores correlated positively with CGRP concentrations (r = 0.779, P < 0.001). Patients treated with midodrine hydrochloride showed a significant reduction in symptom scores [4 (0, 6.5) vs. 1 (1, 2); z = -6.481; P < 0.001]. However, the value of plasma CGRP were potently elevated in the positive-response subjects than in the negative-response subjects (70.080 ± 5.040) vs. (61.150 ± 3.090); t = 5.817; P < 0.001). The area under the ROC curve showed that the value of CGRP for predicting the therapeutic response to midodrine hydrochloride was 0.946 (95% CI: 0.879-0.997, P < 0.001). With high sensitivity (97.7%) and specificity (83.3%), CGRP predicted the therapeutic response to midodrine hydrochloride (cut-off value, 62.56 pg/ml). In conclusion, CGRP can be used to predict the effect of midodrine hydrochloride administration in VVS patients.
Collapse
Affiliation(s)
- Lintian Li
- School of Public Health, Xi’an Jiaotong University, Xi’an, China
| | - Huacai Zhao
- Department of Surgical, The Third Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Xiuxiu Ma
- School of Public Health, Xi’an Jiaotong University, Xi’an, China
| | - Fuyong Jiao
- Department of Pediatrics, The Third Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Jing Lin
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Child and Adolescent Health Science Center, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
48
|
Scuteri D, Tarsitano A, Tonin P, Bagetta G, Corasaniti MT. Focus on zavegepant: the first intranasal third-generation gepant. Pain Manag 2022; 12:879-885. [PMID: 36189708 DOI: 10.2217/pmt-2022-0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Migraine is the leading cause of years lived with disability in people under 50 and its burden is increased by calcitonin gene-related peptide (CGRP)-driven chronicity. Newly approved small molecules that antagonize the CGRP receptor, gepants, have advanced from the hepatotoxic first-generation telcagepant to third-generation intranasal zavegepant; during this process of drug development, rimegepant, ubrogepant and atogepant, which are orally administered, have been launched and approved for clinical use with no warning for hepatotoxicity. Real-world, long-term postmarketing data about the efficacy and safety of gepants are awaited. The aim of the present drug evaluation study was to provide an overview of the novel, third-generation intranasal Zavegepant, encompassing its development and future perspectives.
Collapse
Affiliation(s)
- Damiana Scuteri
- Department of Pharmacy, Pharmacotechnology Documentation & Transfer Unit, Preclinical & Translational Pharmacology, Health & Nutritional Sciences, University of Calabria, Rende, 87036, Italy.,Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, 88900, Italy
| | - Assunta Tarsitano
- Pain Therapy Center, Provincial Health Authority (ASP), Cosenza, 87100, Italy
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, 88900, Italy
| | - Giacinto Bagetta
- Department of Pharmacy, Pharmacotechnology Documentation & Transfer Unit, Preclinical & Translational Pharmacology, Health & Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | | |
Collapse
|
49
|
Edvinsson L. Calcitonin gene-related peptide (CGRP) is a key molecule released in acute migraine attacks-Successful translation of basic science to clinical practice. J Intern Med 2022; 292:575-586. [PMID: 35532284 PMCID: PMC9546117 DOI: 10.1111/joim.13506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Migraine is a highly prevalent neurovascular disorder afflicting more than 15% of the global population. Nearly three times more females are afflicted by migraine in the 18-50 years age group, compared to males. Migraine attacks are most often sporadic, but a subgroup of individuals experience a gradual increase in frequency over time; among these, up to 1%-2% of the global population develop chronic migraine. Although migraine symptoms have been known for centuries, the underlying mechanisms remain largely unknown. Two theories have dominated the current thinking-a neurovascular theory and a central neuronal theory with the origin of the attacks in the hypothalamus. During the last decades, the understanding of migraine has markedly advanced. This is supported by the early seminal demonstration of the trigeminovascular reflex 35 years ago and the insight that calcitonin gene-related peptide (CGRP) is a key molecule released in acute migraine attacks. The more recent findings that gepants, small molecule CGRP receptor blockers, and monoclonal antibodies generated against CGRP, or its canonical receptor are useful for the treatment of migraine, are other important issues. CGRP has been established as a key molecule in the neurobiology of migraine. Moreover, monoclonal antibodies to CGRP or the CGRP receptor represent a breakthrough in the understanding of migraine pathophysiology and have emerged as an efficacious prophylactic treatment for patients with severe migraine with excellent tolerability. This review describes the progression of research to reach the clinical usefulness of a large group of molecules that have in common the interaction with CGRP mechanisms in the trigeminal system to alleviate the burden for individuals afflicted by migraine.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Medicine, Institute of Clinical Sciences, University Hospital Lund, Lund, Sweden.,Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Glostrup, Denmark
| |
Collapse
|
50
|
Frank F, Kaltseis K, Filippi V, Broessner G. Hypoxia-related mechanisms inducing acute mountain sickness and migraine. Front Physiol 2022; 13:994469. [PMID: 36148300 PMCID: PMC9485719 DOI: 10.3389/fphys.2022.994469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Experimental models of human diseases are vital for pathophysiological and therapeutic research. To investigate the initiation, maintenance, pathophysiology and even termination of a migraine/headache attack these models are urgently needed. Results from different studies promote the profound involvement of hypoxia in migraine and other primary/secondary headaches. The possible mechanisms that drive the induction of headaches through hypoxia are still unknown, but several modes of action, such as increased blood flow, dilation of cerebral arteries, the release of nitroglycerin, calcitonin gene-related peptide and adenosine or increased oxygen extraction are discussed intensively. In studies exposing healthy volunteers and people with a history of migraine to controlled normobaric hypoxia, our research group could demonstrate normobaric hypoxia to be an effective trigger of migraine headaches. Furthermore, a longitudinal measurement of calcitonin gene-related peptide (CGRP), during a hypoxic challenge in migraine patients, revealed increasing CGRP levels with prolonged hypoxic challenge. Since GRP has been linked to migraine and other headache disorders, hypoxia could be regarded as initiator for headaches on a neurotransmitter basis. Furthermore, it has been known for more than 2 decades from studies in vitro and in vivo that hypoxia can induce cortical spreading depression, a phenomenon believed to represent aura. Considering the increased prevalence of migraine in altitude populations and the solid pathophysiological changes on cellular and neurotransmitter level–the role of hypoxia should be investigated in greater detail by the headache community.
Collapse
|