1
|
Malyshkina A, Brüggemann A, Paschen A, Dittmer U. Cytotoxic CD4 + T cells in chronic viral infections and cancer. Front Immunol 2023; 14:1271236. [PMID: 37965314 PMCID: PMC10642198 DOI: 10.3389/fimmu.2023.1271236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
CD4+ T cells play an important role in immune responses against pathogens and cancer cells. Although their main task is to provide help to other effector immune cells, a growing number of infections and cancer entities have been described in which CD4+ T cells exhibit direct effector functions against infected or transformed cells. The most important cell type in this context are cytotoxic CD4+ T cells (CD4+ CTL). In infectious diseases anti-viral CD4+ CTL are mainly found in chronic viral infections. Here, they often compensate for incomplete or exhausted CD8+ CTL responses. The induction of CD4+ CTL is counter-regulated by Tregs, most likely because they can be dangerous inducers of immunopathology. In viral infections, CD4+ CTL often kill via the Fas/FasL pathway, but they can also facilitate the exocytosis pathway of killing. Thus, they are very important effectors to keep persistent virus in check and guarantee host survival. In contrast to viral infections CD4+ CTL attracted attention as direct anti-tumor effectors in solid cancers only recently. Anti-tumor CD4+ CTL are defined by the expression of cytolytic markers and have been detected within the lymphocyte infiltrates of different human cancers. They kill tumor cells in an antigen-specific MHC class II-restricted manner not only by cytolysis but also by release of IFNγ. Thus, CD4+ CTL are interesting tools for cure approaches in chronic viral infections and cancer, but their potential to induce immunopathology has to be carefully taken into consideration.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alicia Brüggemann
- Department of Dermatology, Venereology, and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, Venereology, and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Wang B, Hu S, Fu X, Li L. CD4
+
Cytotoxic T Lymphocytes in Cancer Immunity and Immunotherapy. Adv Biol (Weinh) 2022; 7:e2200169. [PMID: 36193961 DOI: 10.1002/adbi.202200169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Indexed: 11/05/2022]
Abstract
CD4+ T cells have the ability to differentiate into relatively specialized effector subsets after exposure to innate immune signals. The remarkable plasticity of CD4+ T cells is required to achieve immune responses in different tissues and against various pathogens. Numerous studies have shown that CD4+ T cells can play direct and indispensable roles in protective immunity by killing infected or transformed cells. Although the lineage decision of commitment to the CD4+ or CD8+ cell lineage is once thought to be inflexible, the identification of antigen-experienced CD4+ T cells with cytotoxic activity suggests the existence of unexpected plasticity for these cells. The recognition of CD4+ cytotoxic T lymphocytes (CTLs) and the mechanisms driving the differentiation of this particular cell subset create opportunities to explore the roles of these effector cells in protective immunity and immune-related pathology. CD4+ CTLs are proven to play a protective role in antiviral immunity. Here, the latest investigations on the phenotypic and functional features of CD4+ CTLs and their roles in antitumor immunity and immunotherapy are briefly reviewed.
Collapse
Affiliation(s)
- Boyu Wang
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Shaojie Hu
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Xiangning Fu
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Lequn Li
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| |
Collapse
|
3
|
Hoeks C, Duran G, Hellings N, Broux B. When Helpers Go Above and Beyond: Development and Characterization of Cytotoxic CD4+ T Cells. Front Immunol 2022; 13:951900. [PMID: 35903098 PMCID: PMC9320319 DOI: 10.3389/fimmu.2022.951900] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Once regarded as an experimental artefact, cytotoxic CD4+ T cells (CD4 CTL) are presently recognized as a biologically relevant T cell subset with important functions in anti-viral, anti-tumor, and autoimmune responses. Despite the potentially large impact on their micro-environment, the absolute cell counts of CD4 CTL within the peripheral circulation are relatively low. With the rise of single cell analysis techniques, detection of these cells is greatly facilitated. This led to a renewed appraisal of CD4 CTL and an increased insight into their heterogeneous nature and ontogeny. In this review, we summarize the developmental path from naïve CD4+ T cells to terminally differentiated CD4 CTL, and present markers that can be used to detect or isolate CD4 CTL and their precursors. Subsets of CD4 CTL and their divergent functionalities are discussed. Finally, the importance of local cues as triggers for CD4 CTL differentiation is debated, posing the question whether CD4 CTL develop in the periphery and migrate to site of inflammation when called for, or that circulating CD4 CTL reflect cells that returned to the circulation following differentiation at the local inflammatory site they previously migrated to. Even though much remains to be learned about this intriguing T cell subset, it is clear that CD4 CTL represent interesting therapeutic targets for several pathologies.
Collapse
Affiliation(s)
- Cindy Hoeks
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Gayel Duran
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Niels Hellings
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Bieke Broux
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
- *Correspondence: Bieke Broux,
| |
Collapse
|
4
|
Abstract
Viruses are essentially, obligate intracellular parasites. They require a host to replicate their genetic material, spread to other cells, and eventually to other hosts. For humans, most viral infections are not considered lethal, regardless if at the cellular level, the virus can obliterate individual cells. Constant genomic mutations, (which can alter the antigenic content of viruses such as influenza or coronaviruses), zoonosis or immunosuppression/immunocompromisation, is when viruses achieve higher host mortality. Frequent examples of the severe consequenses of viral infection can be seen in children and the elderly. In most instances, the immune system will take a multifaceted approach in defending the host against viruses. Depending on the virus, the individual, and the point of entry, the immune system will initiate a robust response which involves multiple components. In this chapter, we expand on the total immune system, breaking it down to the two principal types: Innate and Adaptive Immunity, their different roles in viral recognition and clearance. Finally, how different viruses activate and evade different arms of the immune system.
Collapse
|
5
|
Perišić Nanut M, Pawelec G, Kos J. Human CD4+ T-Cell Clone Expansion Leads to the Expression of the Cysteine Peptidase Inhibitor Cystatin F. Int J Mol Sci 2021; 22:8408. [PMID: 34445118 PMCID: PMC8395124 DOI: 10.3390/ijms22168408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 01/12/2023] Open
Abstract
The existence of CD4+ cytotoxic T cells (CTLs) at relatively high levels under different pathological conditions in vivo suggests their role in protective and/or pathogenic immune functions. CD4+ CTLs utilize the fundamental cytotoxic effector mechanisms also utilized by CD8+ CTLs and natural killer cells. During long-term cultivation, CD4+ T cells were also shown to acquire cytotoxic functions. In this study, CD4+ human T-cell clones derived from activated peripheral blood lymphocytes of healthy young adults were examined for the expression of cytotoxic machinery components. Cystatin F is a protein inhibitor of cysteine cathepsins, synthesized by CD8+ CTLs and natural killer cells. Cystatin F affects the cytotoxic efficacy of these cells by inhibiting the major progranzyme convertases cathepsins C and H as well as cathepsin L, which is involved in perforin activation. Here, we show that human CD4+ T-cell clones express the cysteine cathepsins that are involved in the activation of granzymes and perforin. CD4+ T-cell clones contained both the inactive, dimeric form as well as the active, monomeric form of cystatin F. As in CD8+ CTLs, cysteine cathepsins C and H were the major targets of cystatin F in CD4+ T-cell clones. Furthermore, CD4+ T-cell clones expressed the active forms of perforin and granzymes A and B. The levels of the cystatin F decreased with time in culture concomitantly with an increase in the activities of granzymes A and B. Therefore, our results suggest that cystatin F plays a role in regulating CD4+ T cell cytotoxicity. Since cystatin F can be secreted and taken up by bystander cells, our results suggest that CD4+ CTLs may also be involved in regulating immune responses through cystatin F secretion.
Collapse
Affiliation(s)
- Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| | - Graham Pawelec
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15/3.008, 72076 Tübingen, Germany;
- Health Sciences North Research Institute, 56 Walford Rd, Sudbury, ON P3E 2H2, Canada
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Comparative Analysis of Immunoactivation by Nanosecond Pulsed Electric Fields and PD-1 Blockade in Murine Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2020; 2020:9582731. [PMID: 32802733 PMCID: PMC7416239 DOI: 10.1155/2020/9582731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/03/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
Nanosecond pulsed electric field (NsPEF) ablation effectively eliminates early-stage hepatocellular carcinoma (HCC) by local ablation and advanced HCC by inducing a remarkable and sustained host immune response. However, this approach is not sufficient to prevent cancer progression, and complementary approaches are necessary for effective immunotherapy. In this study, we evaluated the immunoactivating effects and mechanisms of action of nsPEF ablation and PD-1 blockade on an HCC orthotopic xenograft mouse model. Briefly, 24 C57BL-6J tumor-bearing mice were randomly assigned to three groups: nsPEF ablation group, anti-PD-1 administration group, and untreated control group. Tumor-infiltrating T, B, and NK cell levels and plasma concentrations of Th1 (IL-2, IFN-γ, and TNF-α), Th2 (IL-4, IL-5, IL-6, and IL-10), Th9 (IL-9), and Th17 (IL-17A, IL-17F, IL-21, and IL-22) cytokines were evaluated. Both nsPEF ablation and anti-PD-1 treatment induced immune cell infiltration in local tumors and modulated cytokine levels in the peripheral blood, with distinct changes in the two treatment groups. Based on these findings, both nsPEF ablation and PD-1 antibody administration can trigger a local and systemic immune response in a partially complementary manner, and nsPEF ablation should be considered along with PD-1 blockade for the treatment of HCC.
Collapse
|
7
|
Abstract
On the basis of the autologous tumor-infiltrating lymphocytes (TILs) or genetically modified TILs for adoptive cell therapy have received more attention. Programmed cell death protein 1 (PD-1) expression on the T cells exert complex response during the tumor immune response. But the composition and function of PD-1T-cell subsets in TILs from human lung cancer still limited. In blood and TILs from human lung cancer patients, we confirmed that PD-1 is expressed in higher levels in CD4T-cell subsets than in CD8T-cell subsets. To further analyze the function of PD-1T cells in TILs, we observed the cytokine production in different T-cell subsets. We found that higher interferon-γ and granzyme B production in CD4/CD8PD-1T-cell subsets in TILs than in peripheral blood mononuclear cells (PBMCs); except for PD-1Tscm, higher tumor necrosis factor-α production was observed in PD-1T-cell subsets in TILs than in PBMCs; the expression level of interleukin-17 were lower in PD-1T cells in TILs than in PBMCs; and perforin expression was significantly reduced in CD4PD-1T cells subsets in TILs compared with peripheral blood. Clarify elucidating the composition and function of PD-1T-cell subsets in TILs will have great value in clinical application for evaluating the sensitivity to PD-1 blockade and selecting the promising candidate T-cell subsets in TILs for combination immunotherapy in human lung cancer.
Collapse
|
8
|
Rao G, Latha K, Ott M, Sabbagh A, Marisetty A, Ling X, Zamler D, Doucette TA, Yang Y, Kong LY, Wei J, Fuller GN, Benavides F, Sonabend AM, Long J, Li S, Curran M, Heimberger AB. Anti-PD-1 Induces M1 Polarization in the Glioma Microenvironment and Exerts Therapeutic Efficacy in the Absence of CD8 Cytotoxic T Cells. Clin Cancer Res 2020; 26:4699-4712. [PMID: 32554515 DOI: 10.1158/1078-0432.ccr-19-4110] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Anti-programmed cell death protein 1 (PD-1) therapy has demonstrated inconsistent therapeutic results in patients with glioblastoma (GBM) including those with profound impairments in CD8 T-cell effector responses. EXPERIMENTAL DESIGN We ablated the CD8α gene in BL6 mice and intercrossed them with Ntv-a mice to determine how CD8 T cells affect malignant progression in forming endogenous gliomas. Tumor-bearing mice were treated with PD-1 to determine the efficacy of this treatment in the absence of T cells. The tumor microenvironment of treated and control mice was analyzed by IHC and FACS. RESULTS We observed a survival benefit in immunocompetent mice with endogenously arising intracranial glioblastomas after intravenous administration of anti-PD-1. The therapeutic effect of PD-1 administration persisted in mice even after genetic ablation of the CD8 gene (CD8-/-). CD11b+ and Iba1+ monocytes and macrophages were enriched in the glioma microenvironment of the CD8-/- mice. The macrophages and microglia assumed a proinflammatory M1 response signature in the setting of anti-PD-1 blockade through the elimination of PD-1-expressing macrophages and microglia in the tumor microenvironment. Anti-PD-1 can inhibit the proliferation of and induce apoptosis of microglia through antibody-dependent cellular cytotoxicity, as fluorescently labeled anti-PD-1 was shown to gain direct access to the glioma microenvironment. CONCLUSIONS Our results show that the therapeutic effect of anti-PD-1 blockade in GBM may be mediated by the innate immune system, rather than by CD8 T cells. Anti-PD-1 immunologically modulates innate immunity in the glioma microenvironment-likely a key mode of activity.
Collapse
Affiliation(s)
- Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Khatri Latha
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Martina Ott
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aria Sabbagh
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anantha Marisetty
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoyang Ling
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Zamler
- Department of Genomic Medicine and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tiffany A Doucette
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuhui Yang
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ling-Yuan Kong
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Wei
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adam M Sonabend
- Department of Neurosurgery, Feinberg School of Medicine, Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - James Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amy B Heimberger
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
9
|
Robins E, Zheng M, Ni Q, Liu S, Liang C, Zhang B, Guo J, Zhuang Y, He YW, Zhu P, Wan Y, Li QJ. Conversion of effector CD4 + T cells to a CD8 + MHC II-recognizing lineage. Cell Mol Immunol 2020; 18:150-161. [PMID: 32066854 DOI: 10.1038/s41423-019-0347-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022] Open
Abstract
CD4+ and CD8+ T cells are dichotomous lineages in adaptive immunity. While conventionally viewed as distinct fates that are fixed after thymic development, accumulating evidence indicates that these two populations can exhibit significant lineage plasticity, particularly upon TCR-mediated activation. We define a novel CD4-CD8αβ+ MHC II-recognizing population generated by lineage conversion from effector CD4+ T cells. CD4-CD8αβ+ effector T cells downregulated the expression of T helper cell-associated costimulatory molecules and increased the expression of cytotoxic T lymphocyte-associated cytotoxic molecules. This shift in functional potential corresponded with a CD8+-lineage skewed transcriptional profile. TCRβ repertoire sequencing and in vivo genetic lineage tracing in acutely infected wild-type mice demonstrated that CD4-CD8αβ+ effector T cells arise from fundamental lineage reprogramming of bona fide effector CD4+ T cells. Impairing autophagy via functional deletion of the initiating kinase Vps34 or the downstream enzyme Atg7 enhanced the generation of this cell population. These findings suggest that effector CD4+ T cells can exhibit a previously unreported degree of skewing towards the CD8+ T cell lineage, which may point towards a novel direction for HIV vaccine design.
Collapse
Affiliation(s)
- Elizabeth Robins
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA.,Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Ming Zheng
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Qingshan Ni
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| | - Siqi Liu
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Chen Liang
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Baojun Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jian Guo
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ping Zhu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Ying Wan
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
10
|
Taylor EB, Chinchar VG, Quiniou SMA, Wilson M, Bengtén E. Cloning and characterization of antiviral cytotoxic T lymphocytes in channel catfish, Ictalurus punctatus. Virology 2019; 540:184-194. [PMID: 31929000 DOI: 10.1016/j.virol.2019.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/10/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Abstract
To determine the role of piscine anti-viral cytotoxic cells, we analyzed the response of channel catfish to Ictalurid herpesvirus 1, commonly designated channel catfish virus (CCV). Peripheral blood leukocytes (PBL) from catfish immunized with MHC-matched, CCV-infected G14D cells (G14D-CCV) showed marked lysis of G14D-CCV but little to no lysis of uninfected allogenic (3B11) or syngeneic (G14D) cells. Expansion of effectors by in vitro culture in the presence of irradiated G14D-CCV cells generated cultures with enhanced cytotoxicity and often broader target range. Cytotoxic effectors expressed rearranged TCR genes, perforin, granzyme, and IFN-γ. Four clonal cytotoxic lines were developed and unique TCR gene rearrangements including γδ were detected. Furthermore, catfish CTL clones were either CD4+/CD8- or CD4-/CD8-. Two CTL lines showed markedly enhanced killing of G14D-CCV targets, while the other two lines displayed a broader target range. Collectively, catfish virus-specific CTL display unique features that illustrate the diversity of the ectothermic vertebrate immune response.
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - V Gregory Chinchar
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Sylvie M A Quiniou
- Warmwater Aquaculture Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Stoneville, MS, 38776, USA
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Eva Bengtén
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
11
|
Eshima K, Misawa K, Ohashi C, Iwabuchi K. Role of T-bet, the master regulator of Th1 cells, in the cytotoxicity of murine CD4 + T cells. Microbiol Immunol 2018; 62:348-356. [PMID: 29577371 DOI: 10.1111/1348-0421.12586] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/19/2018] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Although CD4+ T cells are generally regarded as helper T cells, some activated CD4+ T cells have cytotoxic properties. Given that CD4+ cytotoxic T lymphocytes (CTLs) often secrete IFN-γ, CTL activity among CD4+ T cells may be attributable to Th1 cells, where a T-box family molecule, T-bet serves as the "master regulator". However, although the essential contribution of T-bet to expression of IFN-γ has been well-documented, it remains unclear whether T-bet is involved in CD4+ T cell-mediated cytotoxicity. In this study, to investigate the ability of T-bet to confer cytolytic activity on CD4+ T cells, the T-bet gene (Tbx21) was introduced into non-cytocidal CD4+ T cell lines and their cytolytic function analyzed. Up-regulation of FasL (CD178), which provided the transfectant with cytotoxicity, was observed in Tbx21transfected CD4+ T cells but not in untransfected parental cells. In one cell line, T-bet transduction also induced perforin gene (Prf1) expression and Tbx21 transfectants efficiently killed Fas- target cells. Although T-bet was found to repress up-regulation of CD40L (CD154), which controls FasL-mediated cytolysis, the extent of CD40L up-regulation on in vitro-differentiated Th1 cells was similar to that on Th2 cells, suggesting the existence of a compensatory mechanism. These results collectively indicate that T-bet may be involved in the expression of genes, such as FasL and Prf1, which confer cytotoxicity on Th1 cells.
Collapse
Affiliation(s)
- Koji Eshima
- Department of Immunology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kana Misawa
- Department of Immunology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Chihiro Ohashi
- Department of Immunology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
12
|
Chalmin F, Humblin E, Ghiringhelli F, Végran F. Transcriptional Programs Underlying Cd4 T Cell Differentiation and Functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:1-61. [PMID: 30262030 DOI: 10.1016/bs.ircmb.2018.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the basis of cellular differentiation is a fundamental issue in developmental biology but also for the comprehension of pathological processes. In fact, the palette of developmental decisions for naive CD4 T cells is a critical aspect of the development of appropriate immune responses which could control infectious processes or cancer growth. However, the current accumulation of data on CD4 T cells biology reveals a complex world with different helper populations. Naive CD4 T cells can differentiate into different subtypes in response to cytokine stimulation. This stimulation involves a complex transcriptional network implicating the activation of Signal Transducer and Activator of Transcription but also master regulator transcription factors allowing the functions of each helper T lymphocyte subtype. In this review, we will present an overview of the transcriptional regulation which controls process of helper T cells differentiation. We will focus on the role of initiator transcriptional factors and on master regulators but also on other nonspecific transcriptional factors which refine the T helper polarization to stabilize or modulate the differentiation program.
Collapse
Affiliation(s)
- Fanny Chalmin
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France; Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France
| | - Etienne Humblin
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France; Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France
| | - François Ghiringhelli
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France; Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France; Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, Dijon, France
| | - Frédérique Végran
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France; Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, Dijon, France
| |
Collapse
|
13
|
Muraro E, Merlo A, Martorelli D, Cangemi M, Dalla Santa S, Dolcetti R, Rosato A. Fighting Viral Infections and Virus-Driven Tumors with Cytotoxic CD4 + T Cells. Front Immunol 2017; 8:197. [PMID: 28289418 PMCID: PMC5327441 DOI: 10.3389/fimmu.2017.00197] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
CD4+ T cells have been and are still largely regarded as the orchestrators of immune responses, being able to differentiate into distinct T helper cell populations based on differentiation signals, transcription factor expression, cytokine secretion, and specific functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired and carried out along with the evolution of several pathogenic infections. The relevant role of CD4+ T cell lytic features in the control of such infectious conditions also leads to their exploitation as a new immunotherapeutic approach. This review aims at summarizing currently available data about functional and therapeutic relevance of cytotoxic CD4+ T cells in the context of viral infections and virus-driven tumors.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Anna Merlo
- Department of Immunology and Blood Transfusions, San Bortolo Hospital, Vicenza, Italy
| | - Debora Martorelli
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Michela Cangemi
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | | | - Riccardo Dolcetti
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Antonio Rosato
- Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy
| |
Collapse
|
14
|
Juno JA, van Bockel D, Kent SJ, Kelleher AD, Zaunders JJ, Munier CML. Cytotoxic CD4 T Cells-Friend or Foe during Viral Infection? Front Immunol 2017; 8:19. [PMID: 28167943 PMCID: PMC5253382 DOI: 10.3389/fimmu.2017.00019] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 01/03/2023] Open
Abstract
CD4 T cells with cytotoxic function were once thought to be an artifact due to long-term in vitro cultures but have in more recent years become accepted and reported in the literature in response to a number of viral infections. In this review, we focus on cytotoxic CD4 T cells in the context of human viral infections and in some infections that affect mice and non-human primates. We examine the effector mechanisms used by cytotoxic CD4 cells, the phenotypes that describe this population, and the transcription factors and pathways that lead to their induction following infection. We further consider the cells that are the predominant targets of this effector subset and describe the viral infections in which CD4 cytotoxic T lymphocytes have been shown to play a protective or pathologic role. Cytotoxic CD4 T cells are detected in the circulation at much higher levels than previously realized and are now recognized to have an important role in the immune response to viral infections.
Collapse
Affiliation(s)
- Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne , Melbourne, VIC , Australia
| | - David van Bockel
- Immunovirology and Pathogenesis Program, The Kirby Institute for Infection and Immunity in Society, University of New South Wales Australia , Sydney, NSW , Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia; Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis Program, The Kirby Institute for Infection and Immunity in Society, University of New South Wales Australia, Sydney, NSW, Australia; St Vincent's Hospital, Sydney, NSW, Australia
| | - John J Zaunders
- Immunovirology and Pathogenesis Program, The Kirby Institute for Infection and Immunity in Society, University of New South Wales Australia, Sydney, NSW, Australia; St Vincent's Hospital, Sydney, NSW, Australia
| | - C Mee Ling Munier
- Immunovirology and Pathogenesis Program, The Kirby Institute for Infection and Immunity in Society, University of New South Wales Australia , Sydney, NSW , Australia
| |
Collapse
|
15
|
Munier CML, van Bockel D, Bailey M, Ip S, Xu Y, Alcantara S, Liu SM, Denyer G, Kaplan W, Suzuki K, Croft N, Purcell A, Tscharke D, Cooper DA, Kent SJ, Zaunders JJ, Kelleher AD. The primary immune response to Vaccinia virus vaccination includes cells with a distinct cytotoxic effector CD4 T-cell phenotype. Vaccine 2016; 34:5251-5261. [PMID: 27639281 DOI: 10.1016/j.vaccine.2016.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/09/2016] [Accepted: 09/06/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Smallpox was eradicated by a global program of inoculation with Vaccinia virus (VV). Robust VV-specific CD4 T-cell responses during primary infection are likely essential to controlling VV replication. Although there is increasing interest in cytolytic CD4 T-cells across many viral infections, the importance of these cells during acute VV infection is unclear. METHODS We undertook a detailed functional and genetic characterization of CD4 T-cells during acute VV-infection of humans. VV-specific T-cells were identified by up-regulation of activation markers directly ex vivo and through cytokine and co-stimulatory molecule expression. At day-13-post primary inoculation with VV, CD38highCD45RO+ CD4 T-cells were purified by cell sorting, RNA isolated and analysed by microarray. Differential expression of up-regulated genes in activated CD4 T-cells was confirmed at the mRNA and protein levels. We compared analyses of VV-specific CD4 T-cells to studies on 12 subjects with primary HIV infection (PHI). VV-specific T-cells lines were established from PBMCs collected post vaccination and checked for cytotoxicity potential. RESULTS A median 11.9% CD4 T-cells were CD38highCD45RO+ at day-13 post-VV inoculation, compared to 3.0% prior and 10.4% during PHI. Activated CD4 T-cells had an up-regulation of genes related to cytolytic function, including granzymes K and A, perforin, granulysin, TIA-1, and Rab27a. No difference was seen between CD4 T-cell expression of perforin or TIA-1 to VV and PHI, however granzyme k was more dominant in the VV response. At 25:1 effector to target ratio, two VV-specific T-cell lines exhibited 62% and 30% cytotoxicity respectively and CD107a degranulation. CONCLUSIONS We show for the first time that CD4 CTL are prominent in the early response to VV. Understanding the role of CD4 CTL in the generation of an effective anti-viral memory may help develop more effective vaccines for diseases such as HIV.
Collapse
Affiliation(s)
- C Mee Ling Munier
- The Kirby Institute for infection and immunity in society, UNSW Australia, Sydney, NSW, Australia.
| | - David van Bockel
- The Kirby Institute for infection and immunity in society, UNSW Australia, Sydney, NSW, Australia
| | - Michelle Bailey
- The Kirby Institute for infection and immunity in society, UNSW Australia, Sydney, NSW, Australia
| | - Susanna Ip
- The Kirby Institute for infection and immunity in society, UNSW Australia, Sydney, NSW, Australia
| | - Yin Xu
- The Kirby Institute for infection and immunity in society, UNSW Australia, Sydney, NSW, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Sue Min Liu
- The Garvan Institute, Sydney, NSW, Australia
| | - Gareth Denyer
- School of Molecular Bioscience, Faculty of Science, The University of Sydney, NSW, Australia
| | | | | | - Kazuo Suzuki
- The Kirby Institute for infection and immunity in society, UNSW Australia, Sydney, NSW, Australia; St Vincent's Hospital, Sydney, NSW, Australia
| | - Nathan Croft
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anthony Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - David Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David A Cooper
- The Kirby Institute for infection and immunity in society, UNSW Australia, Sydney, NSW, Australia; St Vincent's Hospital, Sydney, NSW, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University Melbourne, VIC, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia
| | - John J Zaunders
- The Kirby Institute for infection and immunity in society, UNSW Australia, Sydney, NSW, Australia; St Vincent's Hospital, Sydney, NSW, Australia
| | - Anthony D Kelleher
- The Kirby Institute for infection and immunity in society, UNSW Australia, Sydney, NSW, Australia; St Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
16
|
Malek Abrahimians E, Vander Elst L, Carlier VA, Saint-Remy JM. Thioreductase-Containing Epitopes Inhibit the Development of Type 1 Diabetes in the NOD Mouse Model. Front Immunol 2016; 7:67. [PMID: 26973647 PMCID: PMC4773585 DOI: 10.3389/fimmu.2016.00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/12/2016] [Indexed: 01/01/2023] Open
Abstract
Autoreactive CD4+ T cells recognizing islet-derived antigens play a primary role in type 1 diabetes. Specific suppression of such cells therefore represents a strategic target for the cure of the disease. We have developed a methodology by which CD4+ T cells acquire apoptosis-inducing properties on antigen-presenting cells after cognate recognition of natural sequence epitopes. We describe here that inclusion of a thiol-disulfide oxidoreductase (thioreductase) motif within the flanking residues of a single MHC class II-restricted GAD65 epitope induces GAD65-specific cytolytic CD4+ T cells (cCD4+ T). The latter, obtained either in vitro or by active immunization, acquire an effector memory phenotype and lyse APCs by a Fas–FasL interaction. Furthermore, cCD4+ T cells eliminate by apoptosis activated bystander CD4+ T cells recognizing alternative epitopes processed by the same APC. Active immunization with a GAD65 class II-restricted thioreductase-containing T cell epitope protects mice from diabetes and abrogates insulitis. Passive transfer of in vitro-elicited cCD4+ T cells establishes that such cells are efficient in suppressing autoimmunity. These findings provide strong evidence for a new vaccination strategy to prevent type 1 diabetes.
Collapse
Affiliation(s)
- Elin Malek Abrahimians
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium; ImCyse SA, Leuven, Belgium
| | - Luc Vander Elst
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium; ImCyse SA, Leuven, Belgium
| | - Vincent A Carlier
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium; ImCyse SA, Leuven, Belgium
| | - Jean-Marie Saint-Remy
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium; ImCyse SA, Leuven, Belgium
| |
Collapse
|
17
|
Riaz T, Sollid LM, Olsen I, de Souza GA. Quantitative Proteomics of Gut-Derived Th1 and Th1/Th17 Clones Reveal the Presence of CD28+ NKG2D- Th1 Cytotoxic CD4+ T cells. Mol Cell Proteomics 2015; 15:1007-16. [PMID: 26637539 DOI: 10.1074/mcp.m115.050138] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 12/13/2022] Open
Abstract
T-helper cells are differentiated from CD4+ T cells and are traditionally characterized by inflammatory or immunosuppressive responses in contrast to cytotoxic CD8+ T cells. Mass-spectrometry studies on T-helper cells are rare. In this study, we aimed to identify the proteomes of human Th1 and Th1/Th17 clones derived from intestinal biopsies of Crohn's disease patients and to identify differentially expressed proteins between the two phenotypes. Crohn's disease is an inflammatory bowel disease, with predominantly Th1- and Th17-mediated response where cells of the "mixed" phenotype Th1/Th17 have also been commonly found. High-resolution mass spectrometry was used for protein identification and quantitation. In total, we identified 7401 proteins from Th1 and Th1/Th17 clones, where 334 proteins were differentially expressed. Major differences were observed in cytotoxic proteins that were overrepresented in the Th1 clones. The findings were validated by flow cytometry analyses using staining with anti-granzyme B and anti-perforin and by a degranulation assay, confirming higher cytotoxic features of Th1 compared with Th1/Th17 clones. By testing a larger panel of T-helper cell clones from seven different Crohn's disease patients, we concluded that only a subgroup of the Th1 cell clones had cytotoxic features, and these expressed the surface markers T-cell-specific surface glycoprotein CD28 and were negative for expression of natural killer group 2 member D.
Collapse
Affiliation(s)
- Tahira Riaz
- From the Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway;
| | - Ludvig Magne Sollid
- From the Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway
| | - Ingrid Olsen
- From the Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway; Section for Immunology, Norwegian Veterinary Institute, Ullevaalsveien 68, 0454 Oslo, Norway
| | - Gustavo Antonio de Souza
- From the Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway
| |
Collapse
|
18
|
Cytomegalovirus-Specific CD4 T Cells Are Cytolytic and Mediate Vaccine Protection. J Virol 2015; 90:650-8. [PMID: 26491148 DOI: 10.1128/jvi.02123-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED CD4 T cells provide protection against cytomegalovirus (CMV) and other persistent viruses, and the ability to quantify and characterize epitope-specific responses is essential to gain a more precise understanding of their effector roles in this regard. Here, we report the first two I-A(d)-restricted CD4 T cell responses specific for mouse CMV (MCMV) epitopes and use a major histocompatibility complex class II (MHC-II) tetramer to characterize their phenotypes and functions. We demonstrate that MCMV-specific CD4 T cells can express high levels of granzyme B and kill target cells in an epitope- and organ-specific manner. In addition, CD4 T cell epitope vaccination of immunocompetent mice reduced MCMV replication in the same organs where CD4 cytotoxic T lymphocyte (CTL) activity was observed. Together, our studies show that MCMV epitope-specific CD4 T cells have the potential to mediate antiviral defense by multiple effector mechanisms in vivo. IMPORTANCE CD4 T cells mediate immune protection by using their T cell receptors to recognize specific portions of viral proteins, called epitopes, that are presented by major histocompatibility complex class II (MHC-II) molecules on the surfaces of professional antigen-presenting cells (APCs). In this study, we discovered the first two epitopes derived from mouse cytomegalovirus (MCMV) that are recognized by CD4 T cells in BALB/c mice, a mouse strain commonly used to study the pathogenesis of this virus infection. Here, we report the sequences of these epitopes, characterize the CD4 T cells that recognize them to fight off MCMV infection, and show that we can use the epitopes to vaccinate mice and protect against MCMV.
Collapse
|
19
|
Malek Abrahimians E, Carlier VA, Vander Elst L, Saint-Remy JMR. MHC Class II-Restricted Epitopes Containing an Oxidoreductase Activity Prompt CD4(+) T Cells with Apoptosis-Inducing Properties. Front Immunol 2015; 6:449. [PMID: 26388872 PMCID: PMC4556975 DOI: 10.3389/fimmu.2015.00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022] Open
Abstract
Abrogating an unwanted immune response toward a specific antigen without compromising the entire immune system is a hoped-for goal in immunotherapy. Instead of manipulating dendritic cells and suppressive regulatory T cells, depleting effector T cells or blocking their co-stimulatory pathways, we describe a method to specifically inhibit the presentation of an antigen eliciting an unwanted immune reaction. Inclusion of an oxidoreductase motif within the flanking residues of MHC class II epitopes polarizes CD4(+) T cells to cytolytic cells capable of inducing apoptosis in antigen presenting cells (APCs) displaying cognate peptides through MHC class II molecules. This novel function results from an increased synapse formation between both cells. Moreover, these cells eliminate by apoptosis bystander CD4(+) T cells activated at the surface of the APC. We hypothesize that they would thereby block the recruitment of cells of alternative specificity for the same autoantigen or cells specific for another antigen associated with the pathology, providing a system by which response against multiple antigens linked with the same disease can be suppressed. These findings open the way toward a novel form of antigen-specific immunosuppression.
Collapse
Affiliation(s)
- Elin Malek Abrahimians
- Center for Molecular and Vascular Biology, University of Leuven , Leuven , Belgium ; ImCyse SA , Leuven , Belgium
| | - Vincent A Carlier
- Center for Molecular and Vascular Biology, University of Leuven , Leuven , Belgium ; ImCyse SA , Leuven , Belgium
| | - Luc Vander Elst
- Center for Molecular and Vascular Biology, University of Leuven , Leuven , Belgium ; ImCyse SA , Leuven , Belgium
| | - Jean-Marie R Saint-Remy
- Center for Molecular and Vascular Biology, University of Leuven , Leuven , Belgium ; ImCyse SA , Leuven , Belgium
| |
Collapse
|
20
|
Coler RN, Hudson T, Hughes S, Huang PWD, Beebe EA, Orr MT. Vaccination Produces CD4 T Cells with a Novel CD154-CD40-Dependent Cytolytic Mechanism. THE JOURNAL OF IMMUNOLOGY 2015; 195:3190-7. [PMID: 26297758 DOI: 10.4049/jimmunol.1501118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/22/2015] [Indexed: 11/19/2022]
Abstract
The discovery of new vaccines against infectious diseases and cancer requires the development of novel adjuvants with well-defined activities. The TLR4 agonist adjuvant GLA-SE elicits robust Th1 responses to a variety of vaccine Ags and is in clinical development for both infectious diseases and cancer. We demonstrate that immunization with a recombinant protein Ag and GLA-SE also induces granzyme A expression in CD4 T cells and produces cytolytic cells that can be detected in vivo. Surprisingly, these in vivo CTLs were CD4 T cells, not CD8 T cells, and this cytolytic activity was not dependent on granzyme A/B or perforin. Unlike previously reported CD4 CTLs, the transcription factors Tbet and Eomes were not necessary for their development. CTL activity was also independent of the Fas ligand-Fas, TRAIL-DR5, and canonical death pathways, indicating a novel mechanism of CTL activity. Rather, the in vivo CD4 CTL activity induced by vaccination required T cell expression of CD154 (CD40L) and target cell expression of CD40. Thus, vaccination with a TLR4 agonist adjuvant induces CD4 CTLs, which kill through a previously unknown CD154-dependent mechanism.
Collapse
Affiliation(s)
- Rhea N Coler
- Infectious Disease Research Institute, Seattle, WA 98102; Department of Global Health, University of Washington, Seattle, WA 98105; and PAI Life Sciences, Seattle, WA 98102
| | - Thomas Hudson
- Infectious Disease Research Institute, Seattle, WA 98102
| | - Sean Hughes
- Infectious Disease Research Institute, Seattle, WA 98102
| | - Po-Wei D Huang
- Infectious Disease Research Institute, Seattle, WA 98102
| | - Elyse A Beebe
- Infectious Disease Research Institute, Seattle, WA 98102
| | - Mark T Orr
- Infectious Disease Research Institute, Seattle, WA 98102; Department of Global Health, University of Washington, Seattle, WA 98105; and
| |
Collapse
|
21
|
Abstract
Despite the growing number of preclinical and clinical trials focused on immunotherapy for the treatment of malignant gliomas, the prognosis for this disease remains grim. Cancer immunotherapy seeks to recruit an effective immune response to eliminate tumor cells. To date, cancer vaccines have shown only limited effectiveness because of our incomplete understanding of the necessary effector cells and mechanisms that yield efficient tumor clearance. CD8+ T cell cytotoxic activity has long been proposed as the primary effector function necessary for tumor regression. However, there is increasing evidence that indicates that components of the immune system other than CD8+ T cells play important roles in tumor eradication and control. The following review should provide an understanding of the mechanisms involved in an effective antitumor response to guide future therapeutic designs. The information provided suggests an alternate means of effective tumor clearance in malignant glioma to the canonical CD8+ cytotoxic T cell mechanism.
Collapse
Affiliation(s)
- G. Elizabeth Pluhar
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN. 55108
| | - Christopher A. Pennell
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN. 55445
| | - Michael R. Olin
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, MN. 55445
| |
Collapse
|
22
|
Waldmann H, Lefkovits I. Limiting dilution analysis of cells of the immune system II: What can be learnt? ACTA ACUST UNITED AC 2014; 5:295-8. [PMID: 25290547 DOI: 10.1016/0167-5699(84)90154-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Last month (p. 265) Herman Waldmann and Ivan Lefkovits described the principles underlying limiting dilution analysis. In this article they review some experimental approaches which have been useful in resolving some of the complexities of lymphocyte interactions.
Collapse
Affiliation(s)
| | - I Lefkovits
- Department of Pathology, University of Cambridge, New Addenbrooke's Hospital, Cambridge CB2 2QQ UK; Basel Institute for Immunology, Grenzacherstrasse 487, Postfach, CH-4005, Basel, Switzerland
| |
Collapse
|
23
|
Martirosyan A, Von Bargen K, Arce Gorvel V, Zhao W, Hanniffy S, Bonnardel J, Méresse S, Gorvel JP. In vivo identification and characterization of CD4⁺ cytotoxic T cells induced by virulent Brucella abortus infection. PLoS One 2013; 8:e82508. [PMID: 24367519 PMCID: PMC3868576 DOI: 10.1371/journal.pone.0082508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/24/2013] [Indexed: 12/20/2022] Open
Abstract
CD4+ T cells display a variety of helper functions necessary for an efficient adaptive immune response against bacterial invaders. This work reports the in vivo identification and characterization of murine cytotoxic CD4+ T cells (CD4+ CTL) during Brucella abortus infection. These CD4+ CTLs express granzyme B and exhibit immunophenotypic features consistent with fully differentiated T cells. They express CD25, CD44, CD62L ,CD43 molecules at their surface and produce IFN-γ. Moreover, these cells express neither the co-stimulatory molecule CD27 nor the memory T cell marker CD127. We show here that CD4+ CTLs are capable of cytolytic action against Brucella-infected antigen presenting cells (APC) but not against Mycobacterium-infected APC. Cytotoxic CD4+ T cell population appears at early stages of the infection concomitantly with high levels of IFN-γ and granzyme B expression. CD4+ CTLs represent a so far uncharacterized immune cell sub-type triggered by early immune responses upon Brucella abortus infection.
Collapse
Affiliation(s)
- Anna Martirosyan
- Aix-Marseille University, CIML, 13288, Marseille, France
- CNRS, UMR 7280, 13288, Marseille, France
- INSERM, U631, 13288, Marseille, France
| | - Kristine Von Bargen
- Aix-Marseille University, CIML, 13288, Marseille, France
- CNRS, UMR 7280, 13288, Marseille, France
- INSERM, U631, 13288, Marseille, France
| | - Vilma Arce Gorvel
- Aix-Marseille University, CIML, 13288, Marseille, France
- CNRS, UMR 7280, 13288, Marseille, France
- INSERM, U631, 13288, Marseille, France
| | - Weidong Zhao
- Aix-Marseille University, CIML, 13288, Marseille, France
- CNRS, UMR 7280, 13288, Marseille, France
- INSERM, U631, 13288, Marseille, France
| | - Sean Hanniffy
- Aix-Marseille University, CIML, 13288, Marseille, France
- CNRS, UMR 7280, 13288, Marseille, France
- INSERM, U631, 13288, Marseille, France
| | - Johnny Bonnardel
- Aix-Marseille University, CIML, 13288, Marseille, France
- CNRS, UMR 7280, 13288, Marseille, France
- INSERM, U631, 13288, Marseille, France
| | - Stéphane Méresse
- Aix-Marseille University, CIML, 13288, Marseille, France
- CNRS, UMR 7280, 13288, Marseille, France
- INSERM, U631, 13288, Marseille, France
| | - Jean-Pierre Gorvel
- Aix-Marseille University, CIML, 13288, Marseille, France
- CNRS, UMR 7280, 13288, Marseille, France
- INSERM, U631, 13288, Marseille, France
- *
| |
Collapse
|
24
|
Abstract
During thymic development, thymocytes expressing a T cell receptor consisting of an alpha and beta chain (TCRαβ), commit to either the cytotoxic- or T helper-lineage fate. This lineage dichotomy is controlled by key transcription factors, including the T helper (Th) lineage master regulator, the Th-inducing BTB/POZ domain-containing Kruppel-like zinc-finger transcription factor, ThPOK, (formally cKrox or Zfp67; encoded by Zbtb7b), which suppresses the cytolytic program in major histocompatibility complex (MHC) class II-restricted CD4(+) thymocytes and the Runt related transcription factor 3 (Runx3), which counteracts ThPOK in MHC class I restricted precursor cells and promotes the lineage commitment of CD8αβ(+) cytolytic T lymphocytes (CTL). ThPOK continues to repress the CTL gene program in mature CD4(+) T cells, even as they differentiate into effector Th cell subsets. The Th cell fate however is not fixed and two recent studies showed that mature, antigen-stimulated CD4(+) T cells have the flexibility to terminate the expression of ThPOK and functionally reprogram to cytotoxic effector cells. This unexpected plasticity of CD4(+) T cells results in the post-thymic termination of the Th lineage fate and the functional differentiation of distinct MHC class II-restricted CD4(+) CTL. The recognition of CD4 CTL as a defined separate subset of effector cells and the identification of the mechanisms and factors that drive their reprogramming finally create new opportunities to explore the physiological relevance of these effector cells in vivo and to determine their pivotal roles in both, protective immunity as well as in immune-related pathology.
Collapse
Affiliation(s)
- Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA.
| | | |
Collapse
|
25
|
Cytokine-dependent induction of CD4+ T cells with cytotoxic potential during influenza virus infection. J Virol 2013; 87:11884-93. [PMID: 23986597 DOI: 10.1128/jvi.01461-13] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recent evidence has identified the role of granzyme B- and perforin-expressing CD4(+) T cells with cytotoxic potential in antiviral immunity. However, the in vivo cytokine cues and downstream pathways governing the differentiation of these cells are unclear. Here, we have identified that CD4(+) T cells with cytotoxic potential are specifically induced at the site of infection during influenza virus infection. The development of CD4(+) T cells with cytotoxic potential in vivo was dependent on the cooperation of the STAT2-dependent type I interferon signaling and the interleukin-2/interleukin-2 receptor alpha pathway for the induction of the transcription factors T-bet and Blimp-1. We showed that Blimp-1 promoted the binding of T-bet to the promoters of cytolytic genes in CD4(+) T cells and was required for the cytolytic function of the in vitro- and in vivo-generated CD4(+) T cells with cytotoxic potential. Thus, our data define the molecular basis of regulation of the in vivo development of this functionally cytotoxic Th subset during acute respiratory virus infection. The potential implications for the functions of these cells are discussed.
Collapse
|
26
|
|
27
|
Giaretta F, Bussolino S, Beltramo S, Fop F, Rossetti M, Messina M, Cantaluppi V, Ranghino A, Basso E, Camussi G, Segoloni GP, Biancone L. Different regulatory and cytotoxic CD4+ T lymphocyte profiles in renal transplants with antibody-mediated chronic rejection or long-term good graft function. Transpl Immunol 2012. [PMID: 23178518 DOI: 10.1016/j.trim.2012.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Comparative analysis of the different subsets of CD4(+) T-lymphocytes may provide hints on the immunologic mechanisms operating in the long-term fate of a kidney transplant. We analyzed peripheral regulatory CD4(+) T cells (Tregs) and CD4(+) cytotoxic T lymphocytes (CTLs) in antibody-mediated chronic rejection (AMCR), in middle-term kidney transplants (2-4 years, MTKT) with good graft function and rejection-free history, in long-term kidney transplants (>15 years, LTKT) and in normal healthy subjects (NHS). Transplant groups with good prognosis (MTKT and LTKT) displayed a significant lower amount of CD4(+)CD25(high) T lymphocytes than NHS, with a trend of a higher percentage in AMCR than in MTKT and LTKT. However, CD4(+)CD25(high) Foxp3(+) cells were significantly higher in LTKT and MTKT than AMCR. Characterization of CD4(+)CD25(high) T cells showed a marked increase of intracellular CTLA-4 in the AMCR group in respect to the other transplant groups, while the expression of the surface molecule seemed to follow a reverse trend. In addition, CD27, a costimulatory receptor involved in long-term T cell survival and prevention of immune tolerance, is significantly reduced in CD4(+)CD25(high) and CD4(+)Foxp3(+) T cells in the LTKT in respect to the other transplant groups. CD4(+)CD25(high)CD45RO(+) and CD4(+)Foxp3(+)CD45RO(+) regulatory T cells with memory function were increased in LTKT compared to NHS and for the latter also in AMCR group. Finally, CD4(+)CTLs that were quantified on the basis of granzyme A expression, were more represented in AMCR patients in comparison to the other groups. Strikingly, CD27 in the CD4(+)CTLs was suppressed in LTKT and MTKT and markedly expressed in AMCR group. No significant differences in the expression of CD28 were observed among different groups. In conclusion, different profiles of Tregs and CD4(+)CTL populations correlate with different long-term conditions of kidney-transplanted patients, suggesting their role in the development of immunologic events in kidney transplantation.
Collapse
Affiliation(s)
- Fulvia Giaretta
- Department of Internal Medicine, University of Torino and San Giovanni Battista Hospital, Corso Dogliotti 14, Torino 10126, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cytotoxic CD4 T cells in antiviral immunity. J Biomed Biotechnol 2011; 2011:954602. [PMID: 22174559 PMCID: PMC3228492 DOI: 10.1155/2011/954602] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 09/09/2011] [Indexed: 01/08/2023] Open
Abstract
CD4 T cells that acquire cytotoxic phenotype and function have been repeatedly identified in humans, mice, and other species in response to many diverse pathogens. Since CD4 cytotoxic T cells are able to recognize antigenic determinants unique from those recognized by the parallel CD8 cytotoxic T cells, they can potentially contribute additional immune surveillance and direct effector function by lysing infected or malignant cells. Here, we briefly review much of what is known about the generation of cytotoxic CD4 T cells and describe our current understanding of their role in antiviral immunity. Furthering our understanding of the many roles of CD4 T cells during an anti-viral response is important for developing effective vaccine strategies that promote long-lasting protective immunity.
Collapse
|
29
|
Abstract
It is generally believed that the role of CD4(+) T cells is to coordinate the different arms of the adaptive immune system to shape an effective response against a pathogen and regulate nonessential or deleterious activities. However, a growing body of evidence suggests that effector CD4(+) T cells can directly display potent antiviral activity themselves. The presence of cytolytic CD4(+) T cells has been demonstrated in the immune response to numerous viral infections in both humans and in animal models and it is likely that they play a critical role in the control of viral replication in vivo. This article describes the current research on virus-specific cytolytic CD4(+) T cells, with a focus on HIV-1 infection and the implications that this immune response has for vaccine design.
Collapse
Affiliation(s)
- Damien Z Soghoian
- Ragon Institute of MGH, MIT and Harvard Massachusetts General Hospital, Harvard Medical School Building 149, 13th Street, 5th floor, #5217, Charlestown, Boston, MA 02129, USA
| | - Hendrik Streeck
- Ragon Institute of MGH, MIT and Harvard Massachusetts General Hospital, Harvard Medical School Building 149, 13th Street, 5th floor, #5217, Charlestown, Boston, MA 02129, USA
| |
Collapse
|
30
|
Martorelli D, Muraro E, Merlo A, Turrini R, Rosato A, Dolcetti R. Role of CD4+ cytotoxic T lymphocytes in the control of viral diseases and cancer. Int Rev Immunol 2010; 29:371-402. [PMID: 20635880 DOI: 10.3109/08830185.2010.489658] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Our knowledge on the physiological role of CD4(+) T lymphocytes has improved in the last decade: available data convincingly demonstrate that, besides the 'helper' activity, CD4(+) T cells may be also endowed with lytic properties. The cytotoxic function of these effector cells has a relevant role in the control of pathogenic infections and in mediating antitumor immune responses. On these bases, several immunotherapeutic approaches exploiting the cytotoxic properties of CD4(+) T cells are under investigation. This review summarizes available data supporting the functional and therapeutic relevance of cytotoxic CD4(+) T cells, with a particular focus on Epstein-Barr virus (EBV)-related disorders.
Collapse
Affiliation(s)
- Debora Martorelli
- Cancer Bioimmunotherapy Unit, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano (PN), Italy
| | | | | | | | | | | |
Collapse
|
31
|
Role of CD4+ and CD8+ T cells in clearance of primary pulmonary infection with Coxiella burnetii. Infect Immun 2010; 78:3019-26. [PMID: 20351144 DOI: 10.1128/iai.00101-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The mechanisms of the primary adaptive immune response to Coxiella burnetii are not well known. Following inoculation of the lungs with C. burnetii Nine Mile phase I (NMI), SCID mice developed pneumonia and splenomegaly and succumbed to infection, whereas wild-type mice cleared the infection by 24 days. SCID mice reconstituted with either CD4+ T cells or CD8+ T cells alone were able to control the infection, indicating that the presence of either type of T cells was sufficient to control infection, and B cells were not necessary for primary immunity. Similarly, wild-type mice depleted of either CD4+ T cells or CD8+ T cells controlled infections in their lungs, but these mice were highly susceptible if they were depleted of both types of T cells. However, compared to CD4+ T-cell-dependent protection, CD8+ T-cell-dependent protection resulted in less inflammation in the lungs and less growth of bacteria in the spleens.
Collapse
|
32
|
Mizuki N, Inoko H, Ohno S. Role of HLA and T lymphocytes in the immune response. Ocul Immunol Inflamm 2009; 2:57-91. [DOI: 10.3109/09273949409057064] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Strong ability of Nef-specific CD4+ cytotoxic T cells to suppress human immunodeficiency virus type 1 (HIV-1) replication in HIV-1-infected CD4+ T cells and macrophages. J Virol 2009; 83:7668-77. [PMID: 19457989 DOI: 10.1128/jvi.00513-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A restricted number of studies have shown that human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic CD4+ T cells are present in HIV-1-infected individuals. However, the roles of this type of CD4+ T cell in the immune responses against an HIV-1 infection remain unclear. In this study, we identified novel Nef epitope-specific HLA-DRB1*0803-restricted cytotoxic CD4+ T cells. The CD4+ T-cell clones specific for Nef187-203 showed strong gamma interferon production after having been stimulated with autologous B-lymphoblastoid cells infected with recombinant vaccinia virus expressing Nef or pulsed with heat-inactivated virus particles, indicating the presentation of the epitope antigen through both exogenous and endogenous major histocompatibility complex class II processing pathways. Nef187-203-specific CD4+ T-cell clones exhibited strong cytotoxic activity against both HIV-1-infected macrophages and CD4+ T cells from an HLA-DRB1*0803+ donor. In addition, these Nef-specific cytotoxic CD4+ T-cell clones exhibited strong ability to suppress HIV-1 replication in both macrophages and CD4+ T cells in vitro. Nef187-203-specific cytotoxic CD4+ T cells were detected in cultures of peptide-stimulated peripheral blood mononuclear cells (PBMCs) and in ex vivo PBMCs from 40% and 20% of DRB1*0803+ donors, respectively. These results suggest that HIV-1-specific CD4+ T cells may directly control HIV-1 infection in vivo by suppressing virus replication in HIV-1 natural host cells.
Collapse
|
34
|
Jursik C, Prchal M, Grillari-Voglauer R, Drbal K, Fuertbauer E, Jungfer H, Albert WH, Steinhuber E, Hemetsberger T, Grillari J, Stockinger H, Katinger H. Large-scale production and characterization of novel CD4+ cytotoxic T cells with broad tumor specificity for immunotherapy. Mol Cancer Res 2009; 7:339-53. [PMID: 19240181 DOI: 10.1158/1541-7786.mcr-07-2208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immune-cell-based approaches using cytotoxic and dendritic cells are under constant scrutiny to design novel therapies for the treatment of tumors. These strategies are hampered by the lack of efficient and economical large-scale production methods for effector cells. Here we describe the propagation of large amounts of a unique population of CD4(+) cytotoxic T cells, which we termed tumor killer T cells (TKTC), because of their potent and broad antitumor cell activity. With this cultivation strategy, TKTCs from peripheral blood mononuclear cells are generated within a short period of time using a pulse with a stimulating cell line followed by continuous growth in serum-free medium supplemented with a mixture of interleukin-2 and cyclosporin A. Expression and functional profiling did not allow a classification of TKTCs to any thus far defined subtype of T cells. Cytotoxic assays showed that TKTCs kill a panel of tumor targets of diverse tissue origin while leaving normal cells unaffected. Blocking experiments revealed that TKTC killing was, to a significant extent, mediated by tumor necrosis factor-related apoptosis-inducing ligand and was independent of MHC restriction. These results suggest that TKTCs have a high potential as a novel tool in the adoptive immunotherapy of cancer.
Collapse
Affiliation(s)
- Claudia Jursik
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
van de Berg PJ, van Leeuwen EM, ten Berge IJ, van Lier R. Cytotoxic human CD4(+) T cells. Curr Opin Immunol 2008; 20:339-43. [PMID: 18440213 DOI: 10.1016/j.coi.2008.03.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 02/02/2023]
Abstract
The induction of adaptive immune responses critically depends on helper signals provided by CD4(+) T cells. These signals not only license antigen presenting cells (APC) to activate naïve CD8(+) T cells leading to the formation of vast numbers of cytotoxic T lymphocytes but also support the differentiation of B cells into immunoglobulin-secreting plasma cells. Next to these helper functions, a subpopulation of CD4(+) T cells can also directly function as effector cells by executing cytotoxicity in a peptide-specific and MHC class II-restricted manner. Cytotoxic CD4(+) T cells may function in combating pathogens but additionally their presence has been associated with autoimmune disease and vascular damage. On the contrary, the induction of cytotoxic CD4(+) T cells may be a future target for vaccine strategies.
Collapse
Affiliation(s)
- Pablo J van de Berg
- Department of Experimental Immunology and Renal Transplant Unit, AMC, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
36
|
Landmeier S, Altvater B, Pscherer S, Eing BR, Kuehn J, Rooney CM, Juergens H, Rossig C. Gene-engineered varicella-zoster virus reactive CD4+ cytotoxic T cells exert tumor-specific effector function. Cancer Res 2007; 67:8335-43. [PMID: 17804749 DOI: 10.1158/0008-5472.can-06-4426] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
T cells with grafted specificities for surface antigens provide an avenue for rapidly producing immune effector cells with tumor specificity. However, the function of chimeric receptor (chRec) gene-modified T cells is limited by lack of T-cell expansion and persistence. We propose to use varicella zoster virus (VZV)-reactive T cells as host for the chRec because these cells can be expanded both in vitro and in vivo by stimulation of their native receptor during endogenous reexposure to the virus or by administration of VZV vaccine. We obtained human T cells reactive with VZV from the peripheral blood of seropositive donors by stimulation with VZV lysate and evaluated their characteristics after genetic modification with two tumor-specific model chRecs. Cultures dominated by cytolytic CD4(+) T cells (VZV-CTL) could be expanded and maintained in vitro. Gene-modified VZV-CTL recognized and lysed tumor targets in a MHC-independent manner while maintaining functional, MHC-restricted interaction with VZV antigen through their native receptor. Thus, chRec-transduced VZV-CTL may provide a source of potent tumor-reactive cells for adoptive immunotherapy of cancer. The availability of a safe and effective VZV vaccine provides the option of repeated in vivo stimulation to maintain high T-cell numbers until the tumor is eliminated.
Collapse
MESH Headings
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/physiology
- Cells, Cultured
- Cytotoxicity Tests, Immunologic
- Herpesvirus 3, Human/immunology
- Humans
- Immunotherapy/methods
- Lymphocyte Activation/immunology
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/therapy
- Organisms, Genetically Modified/physiology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Retroviridae/genetics
- Substrate Specificity
- T-Lymphocytes, Cytotoxic/metabolism
- Transduction, Genetic
Collapse
Affiliation(s)
- Silke Landmeier
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tanijiri T, Shimizu T, Uehira K, Yokoi T, Amuro H, Sugimoto H, Torii Y, Tajima K, Ito T, Amakawa R, Fukuhara S. Hodgkin's reed-sternberg cell line (KM-H2) promotes a bidirectional differentiation of CD4+CD25+Foxp3+ T cells and CD4+ cytotoxic T lymphocytes from CD4+ naive T cells. J Leukoc Biol 2007; 82:576-84. [PMID: 17545218 DOI: 10.1189/jlb.0906565] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A recent report revealed that a large population of Hodgkin's lymphoma-infiltrating lymphocytes (HLILs) consisted of regulatory T cells. In this study, we cocultured CD4+ naive T cells with KM-H2, which was established as a Hodgkin's Reed-Sternberg cell line, to clarify their ability to induce CD25+ Forkhead box P3+ (Foxp3+) T cells. The characteristic analyses of T cells cocultured with KM-H2 revealed the presence of CD4+CD25+ T cells. They expressed CTLA-4, glucocorticoid-induced TNFR family-related gene, and Foxp3 and could produce large amounts of IL-10. Conversely, KM-H2 also generated CD4+ CTLs, which expressed Granzyme B and T cell intracellular antigen-1 in addition to Foxp3+ T cells. They exhibit a strong cytotoxic effect against the parental KM-H2. In conclusion, KM-H2 promotes a bidirectional differentiation of CD4+ naive T cells toward Foxp3+ T cells and CD4+ CTLs. In addition to KM-H2, several cell lines that exhibit the APC function were able to generate Foxp3+ T cells and CD4+ CTLs. Conversely, the APC nonfunctioning cell lines examined did not induce both types of cells. Our findings suggest that the APC function of tumor cells is essential for the differentiation of CD4+ naive T cells into CD25+Foxp3+ T cells and CD4+ CTLs and at least partly explains the predominance of CD25+Foxp3+ T cells in HLILs and their contribution to a better prognosis. Therefore, in APC-functioning tumors, including classical Hodgkin lymphomas, which generate Foxp3+ T cells and CD4+ CTLs, these T cell repertories play a beneficial role synergistically in disease stability.
Collapse
Affiliation(s)
- Tsutomu Tanijiri
- The First Department of Internal Medicine, Kansai Medical University, 10-15, Fumizono-Cho, Moriguchi-City, Osaka, 570-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Li Pira G, Ivaldi F, Bottone L, Koopman G, Manca F. Helper function of cytolytic lymphocytes: Switching roles in the immune response. Eur J Immunol 2007; 37:66-77. [PMID: 17171758 DOI: 10.1002/eji.200636337] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
T helper (Th) cells and cytolytic T lymphocytes (CTL) play defined roles in the cellular immune response. This distinction wavered when Th lymphocytes were shown to kill antigen-presenting cells displaying the relevant antigen. Here we demonstrate that also the opposite can be true: CTL can exert helper functions. We noticed that certain CMV-specific CTL lines grew after antigen activation also without exogenous IL-2. These lines produced their own IL-2, which supported the expansion of other CTL and Th cell lines. High levels of helper cytokines like IL-4, IL-5 and IL-6 were detected in the culture supernatants. Thus, we set up a helper assay to study the functional interactions between T cells (or their supernatants) and B cells. Conditioned media from helper CTL lines induced secretion of antigen-specific antibodies by B cells pulsed with antigen as first signal. We conclude that it is possible to isolate CTL lines that exhibit helper functions for T cells and B cells. If this possibility is proven also in vivo, we should revise some of our views on the pathogenesis of diseases in which CD8 cells are key players, such as in viral infections, graft rejection and GVHD.
Collapse
|
39
|
van Leeuwen EMM, Remmerswaal EBM, Heemskerk MHM, ten Berge IJM, van Lier RAW. Strong selection of virus-specific cytotoxic CD4+ T-cell clones during primary human cytomegalovirus infection. Blood 2006; 108:3121-7. [PMID: 16840731 DOI: 10.1182/blood-2006-03-006809] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To obtain insight into human CD4+ T cell differentiation and selection in vivo, we longitudinally studied cytomegalovirus (CMV)-specific CD4+ T cells after primary infection. Early in infection, CMV-specific CD4+ T cells have the appearance of interferon gamma (IFNgamma)-producing T-helper 1 (TH1) type cells, whereas during latency a large population of CMV-specific CD4+ CD28- T cells emerges with immediate cytotoxic capacity. We demonstrate that CD4+ CD28- T cells could lyse CMV antigen-expressing target cells in a class II-dependent manner. To clarify the clonal relationship between early and late CMV-specific CD4+ T cells, we determined their Vbeta usage and CDR3 sequences. The T-cell receptor beta (TCRbeta) diversity in the early CMV-specific CD4+ T-cell population was high in contrast to the use of a very restricted set of TCRbeta sequences in latent infection. T-cell clones found in the late CMV-specific CD4+ T-cell population could not be retrieved from the early CD4+ T-cell population, or were present only at a low frequency. The observation that dominant CMV-specific CD4+ clones during latency were only poorly represented in the acute phase suggests that after the initial control of the virus strong selection and/or priming of novel clones takes place in persistent infections in humans.
Collapse
Affiliation(s)
- Ester M M van Leeuwen
- Department of Experimental Immunology, Division of Nephrology, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
40
|
Abstract
Recognition of a peptide-MHC complex by the T cell receptor (TCR) is a key interaction that initiates T lymphocyte activation or silencing during an immune response. Fluorochrome-labeled recombinant MHC class II-peptide reagents function as soluble mimetics of this interaction, bind to their specific TCR, and allow for detection of antigen-specific CD4+ T cells. These reagents are now under scrutiny for "immune staging" of patients at risk of type 1 diabetes, in an effort to diagnose islet autoimmunity early enough to block immune-mediated beta cell destruction. Several issues are currently being addressed to improve the performance of these T cell assays: enrichment steps for better sensitivity, multiplexing of several islet epitopes, simultaneous monitoring of CD4+ and CD8+ responses, detection of low avidity T cells, combination of quantitative (number of positive cells) and qualitative (cytokine secretion, naive/memory phenotype) readouts. CD4+ T cells are key effectors of autoimmunity, and these MHC class II peptide reagents, through their signaling properties, might also provide therapeutics to block the autoimmune process at its onset, analogous to the use of OKT3gammao1(AlaAla) anti-CD3 antibody but in an antigen-specific fashion. The aim of such therapeutics is to potentiate different physiological control mechanisms to restore immune tolerance. Mechanisms initiated by this pathway may be capable of triggering elimination of pathogenic T cells through antigen-specific apoptosis and anergy, combined with the induction of regulatory T cells with broad suppressive function.
Collapse
Affiliation(s)
- Roberto Mallone
- Benaroya Research Institute at Virginia Mason and Department of Immunology
University of Washington School of MedicineUS
| | - Gerald T. Nepom
- Benaroya Research Institute at Virginia Mason and Department of Immunology
University of Washington School of MedicineUS
| |
Collapse
|
41
|
|
42
|
Norris PJ, Moffett HF, Yang OO, Kaufmann DE, Clark MJ, Addo MM, Rosenberg ES. Beyond help: direct effector functions of human immunodeficiency virus type 1-specific CD4(+) T cells. J Virol 2004; 78:8844-51. [PMID: 15280492 PMCID: PMC479080 DOI: 10.1128/jvi.78.16.8844-8851.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The immune correlates of protection in human immunodeficiency virus type 1 (HIV-1) infection remain poorly defined, particularly the contribution of CD4(+) T cells. Here we explore the effector functions of HIV-1-specific CD4(+) T cells. We demonstrate HIV-1 p24-specific CD4(+)-T-cell cytolytic activity in peripheral blood mononuclear cells directly ex vivo and after enrichment by antigen-specific stimulation. We further show that in a rare long-term nonprogressor, both an HIV-1-specific CD4(+)-T-cell clone and CD4(+) T cells directly ex vivo exert potent suppression of HIV-1 replication. Suppression of viral replication was dependent on cell-cell contact between the effector CD4(+) T cells and the target cells. While the antiviral effector activity of CD8(+) T cells has been well documented, these results strongly suggest that HIV-1-specific CD4(+) T cells are capable of directly contributing to antiviral immunity.
Collapse
Affiliation(s)
- Philip J Norris
- Blood Systems Research Institute, 270 Masonic Ave., San Francisco, CA 94118, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Schultz ES, Schuler-Thurner B, Stroobant V, Jenne L, Berger TG, Thielemanns K, van der Bruggen P, Schuler G. Functional Analysis of Tumor-Specific Th Cell Responses Detected in Melanoma Patients after Dendritic Cell-Based Immunotherapy. THE JOURNAL OF IMMUNOLOGY 2004; 172:1304-10. [PMID: 14707109 DOI: 10.4049/jimmunol.172.2.1304] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, we have demonstrated that tumor-specific CD4+ Th cell responses can be rapidly induced in advanced melanoma patients by vaccination with peptide-loaded monocyte-derived dendritic cells. Most patients showed a T cell reactivity against a melanoma Ag 3 (MAGE-3) peptide (MAGE-3(243-258)), which has been previously found to be presented by HLA-DP4 molecules. To analyze the functional and specificity profile of this in vivo T cell response in detail, peptide-specific CD4+ T cell clones were established from postvaccination blood samples of two HLA-DP4 patients. These T cell clones recognized not only peptide-loaded stimulator cells but also dendritic cells loaded with a recombinant MAGE-3 protein, demonstrating that these T cells were directed against a naturally processed MAGE-3 epitope. The isolated CD4+ Th cells showed a typical Th1 cytokine profile upon stimulation. From the first patient several CD4+ T cell clones recognizing the antigenic peptide used for vaccination in the context of HLA-DP4 were obtained, whereas we have isolated from the second patient CD4+ T cell clones which were restricted by HLA-DQB1*0604. Analyzing a panel of truncated peptides revealed that the CD4+ T cell clones recognized different core epitopes within the original peptide used for vaccination. Importantly, a DP4-restricted T cell clone was stimulated by dendritic cells loaded with apoptotic or necrotic tumor cells and even directly recognized HLA class II- and MAGE-3-expressing tumor cells. Moreover, these T cells exhibited cytolytic activity involving Fas-Fas ligand interactions. These findings support that vaccination-induced CD4+ Th cells might play an important functional role in antitumor immunity.
Collapse
Affiliation(s)
- Erwin S Schultz
- Department of Dermatology, University Hospital of Erlangen, Hartmannstrasse 14, D-91052 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hicks C, Cheung C, Lindeman R. Restimulation of tumour-specific immunity in a patient with AML following injection with B7-1 positive autologous blasts. Leuk Res 2003; 27:1051-61. [PMID: 12859998 DOI: 10.1016/s0145-2126(03)00058-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leukaemic blast cells lack co-stimulatory molecules such as B7, necessary for T-lymphocyte activation. We have used modified CD80+ (B7-1+) tumour cells, with autologous, IL-2 producing, stromal marrow cells in a series of subcutaneous vaccinations to provide a localised environment for the enhancement of cytotoxic T-lymphocytes (CTL) in a patient with acute myeloid leukaemia (AML). Localised inflammation was evident after the fifth and sixth injections with a reduction in the number of circulating blasts in the following 2 weeks. Peripheral blood in vitro CTL activity increased 36-47% after five injections.CD4 T-lymphocytes (5.7%) expanded from post-injection skin biopsies, expressed intracellular IFNgamma and perforin when exposed to autologous B7-1+ blasts and when co-cultured with either B7-1+ or unmanipulated autologous blast cells showed proliferative responses. In this patient, co-injection of B7-1+ tumour cells, together with a local source of sustained IL-2, resulted in an autologous anti-leukaemic in vitro immune response.
Collapse
Affiliation(s)
- Christine Hicks
- Department of Haematology, Prince of Wales Hospital, Randwick, Sydney, NSW 2031, Australia.
| | | | | |
Collapse
|
45
|
Janssens W, Carlier V, Wu B, VanderElst L, Jacquemin MG, Saint-Remy JMR. CD4+CD25+ T Cells Lyse Antigen-Presenting B Cells by Fas-Fas Ligand Interaction in an Epitope-Specific Manner. THE JOURNAL OF IMMUNOLOGY 2003; 171:4604-12. [PMID: 14568934 DOI: 10.4049/jimmunol.171.9.4604] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Suppression by regulatory T cells is now acknowledged to play a key role in the down-regulation of T cell responses to foreign and self Ags. In addition to the naturally occurring CD4(+)CD25(+) population, several subtypes of induced regulatory cells have been reported, but their mechanisms of action remain unclear. Conversely, cytotoxic CD4(+) cells that lyse cells presenting their cognate peptide have been described, but their potential role in immunoregulation remains to be delineated. A CD4(+) T cell line derived from BALB/c mice immunized with peptide 21-35, containing a major T cell epitope of a common allergen, Dermatophagoides pteronyssinus group 2 allergen, was found to lyse the Ag-presenting WEHI cell line via Fas-Fas ligand and only in the presence of the cognate peptide. Cytolytic activity was likewise shown for other T cell lines and occurred even after a single cycle of in vitro stimulation. Moreover, T cells that efficiently lysed WEHI cells were unresponsive to stimulation with their cognate Ag and were dependent on IL-2 for growth and survival, which was reflected in a constitutive expression of CD25 independently of activation status. Proliferating B cells were also killed by the CTLs. By lysing Ag-presenting B cells in an epitope-specific manner, the nonproliferating CTLs were shown to down-regulate the proliferation of bystander T cells. These data demonstrate that cytotoxic CD4(+)CD25(+) T cells that lack proliferation capacities have the potential to down-regulate an immune response by killing Ag-presenting B cells. This could represent an important and specific down-regulatory mechanism of secondary immune responses in vivo.
Collapse
Affiliation(s)
- Wim Janssens
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Steinhoff M, Hummel M, Anagnostopoulos I, Kaudewitz P, Seitz V, Assaf C, Sander C, Stein H. Single-cell analysis of CD30+ cells in lymphomatoid papulosis demonstrates a common clonal T-cell origin. Blood 2002; 100:578-84. [PMID: 12091351 DOI: 10.1182/blood-2001-12-0199] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lymphomatoid papulosis (LyP) represents an intriguing cutaneous T-cell lymphoproliferative disorder with a histologic appearance resembling malignant lymphoma. This finding strongly contrasts with the benign clinical course of the disease. However, in 10% to 20% of cases, LyP can precede, coexist with, or follow malignant lymphoma. In these cases, the same T-cell population has been shown to be present in the LyP as well as in the associated lymphoma. In most LyP cases, there is-despite the sometimes extremely long course of the disease-no evolution of a secondary lymphoma. The investigation of these uncomplicated LyP cases for the presence of clonal T-cell receptor rearrangements has produced heterogeneous results. This might be explained by biologic or technical reasons arising from analyzing whole tissue DNA extracts. To definitively clarify whether the large atypical CD30(+) cells in LyP without associated lymphoma all belong to the same clone or represent individually rearranged T cells, we analyzed the T-cell receptor-gamma rearrangements of single CD30+ as well as of single CD30- cells isolated from 14 LyP lesions of 11 patients. By using this approach we could demonstrate that the CD30+ cells represent members of a single T-cell clone in all LyP cases. Moreover, in 3 patients the same CD30+ cell clone was found in anatomically and temporally separate lesions. In contrast, with only a few exceptions, the CD30- cells were polyclonal in all instances and unrelated to the CD30+ cell clone. Our results demonstrate that LyP unequivocally represents a monoclonal T-cell disorder of CD30+ cells in all instances.
Collapse
Affiliation(s)
- Matthias Steinhoff
- Department of Dermatology, Ludwig-Maximillians-University Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Appay V, Zaunders JJ, Papagno L, Sutton J, Jaramillo A, Waters A, Easterbrook P, Grey P, Smith D, McMichael AJ, Cooper DA, Rowland-Jones SL, Kelleher AD. Characterization of CD4(+) CTLs ex vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5954-8. [PMID: 12023402 DOI: 10.4049/jimmunol.168.11.5954] [Citation(s) in RCA: 446] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cytotoxic potential of CD8(+) T cells and NK cells plays a crucial role in the immune response to pathogens. Although in vitro studies have reported that CD4(+) T cells are also able to mediate perforin-mediated killing, the in vivo existence and relevance of cytotoxic CD4(+) T cells have been the subject of debate. Here we show that a population of CD4(+) perforin(+) T cells is present in the circulation at low numbers in healthy donors and is markedly expanded in donors with chronic viral infections, in particular HIV infection, at all stages of the disease, including early primary infection. Ex vivo analysis shows that these cells have cytotoxic potential mediated through the release of perforin. In comparison with more classical CD4(+) T cells, this subset displays a distinct surface phenotype and functional profile most consistent with end-stage differentiated T cells and include Ag experienced CD4(+) T cells. The existence of CD4(+) cytotoxic T cells in vivo at relatively high levels in chronic viral infection suggests a role in the immune response.
Collapse
Affiliation(s)
- Victor Appay
- Medical Research Council Human Immunology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Curnow J, Corlett L, Willcox N, Vincent A. Presentation by myoblasts of an epitope from endogenous acetylcholine receptor indicates a potential role in the spreading of the immune response. J Neuroimmunol 2001; 115:127-34. [PMID: 11282162 DOI: 10.1016/s0165-5728(01)00272-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is generally considered that myoblasts are unable to prime naive T cell responses without help from professional antigen-presenting cells (APC). However, their ability to present endogenous antigens to previously primed T lymphocytes in the secondary phase of a T cell response has not been well studied. We show here that primary human myoblasts, when stimulated with IFNgamma to express class II MHC, can present an endogenous epitope, probably an acetylcholine receptor (AChR) peptide, to a CD4(+) AChR-specific T helper lymphocyte clone. Presentation leads to secretion of IFNgamma by the T cell clone and, in addition, killing of the myoblast. Our results suggest that, during the effector phase of the immune response, myoblasts could enhance the inflammatory response by presenting endogenous antigen, and thereby become targets for CD4(+) T lymphocyte-induced cytotoxicity; subsequent release of myoblast antigens could then lead to inter- and intra-molecular determinant spreading.
Collapse
Affiliation(s)
- J Curnow
- Neurosciences Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, OX3 9DS, Oxford, UK
| | | | | | | |
Collapse
|
49
|
Kaneko T. Human autoreactive (Th0) CD4(+) T-cell clones with cytolytic activity recognizing autologous activated T cells as the target. Hum Immunol 2000; 61:780-8. [PMID: 10980388 DOI: 10.1016/s0198-8859(00)00146-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In attempt to obtain a clue to understanding possible physiological roles played by autoreactive T cells, autoreactive T-cell clones originally derived from an allogeneic mixed lymphocyte culture have been analyzed for their target spectrum, lytic function and cytokine profiles. Five CD4(+) T-cell clones established from allogeneic MLR, in which the stimulator cells shared certain class II MHC antigens with the responder, turned out to be reactive to autologous PBL. Among these, three clones were cytolytic against autologous B-cell line. These three cytolytic autoreactive clones were shown to be capable of specifically lysing autologous activated T cells expressing class II MHC molecules, raising possibility that such autoreactive clones might play a role in negatively regulating T cell responses. Cytolysis by an autoreactive clone 21C5 was inhibited completely by concanamycin A (CMA) known as a specific inhibitor of perforin, suggesting an involvement of the perforin/granzyme system. T-cell clones derived from the same MLC showed distinct correlation between their specificity and lymphokine profiles. Thus, the three cytolytic autoreactive clones belonged to Th0, whereas the two noncytolytic autoreactive clones belonged to Th2 and three alloreactive CD4(+) clones derived from the same culture were of Th1 type.
Collapse
Affiliation(s)
- T Kaneko
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan.
| |
Collapse
|
50
|
Hahn S, Erb P. The immunomodulatory role of CD4-positive cytotoxic T-lymphocytes in health and disease. Int Rev Immunol 2000; 18:449-64. [PMID: 10672496 DOI: 10.3109/08830189909088493] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Among the CD4-positive (CD4+) T-lymphocytes a population exists which expresses cytolytic activity. These 'killer' cells belong to the T helper type 1 (Th1) subset and if activated, express Fas-ligand (FasL) which induces apoptosis in Fas-positive target cells. The major targets of these CD4+ cytotoxic T-lymphocytes (CTL) are cells of the immune system, such as T, B cells and macrophages which express Fas upon activation. Thus, CD4+ CTL play a major immunoregulatory part through the elimination of activated myeloid and lymphoid cells during and upon completion of an immune response. In certain diseases, such as in HIV-infection and some autoimmune disorders, the functional activity of CD4+ CTL is disturbed preferentially at the level of FasL-Fas interaction, further emphasizing their important immunoregulatory role. Furthermore, Fas-ligand expressing tumors can evade the attack of Fas-positive CD4+ CTL and other effector cells, thereby giving them an opportunity to expand.
Collapse
Affiliation(s)
- S Hahn
- Institute for Medical Microbiology, University of Basel, Switzerland
| | | |
Collapse
|