1
|
Bacterial killing by complement requires direct anchoring of membrane attack complex precursor C5b-7. PLoS Pathog 2020; 16:e1008606. [PMID: 32569291 PMCID: PMC7351214 DOI: 10.1371/journal.ppat.1008606] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/10/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022] Open
Abstract
An important effector function of the human complement system is to directly kill Gram-negative bacteria via Membrane Attack Complex (MAC) pores. MAC pores are assembled when surface-bound convertase enzymes convert C5 into C5b, which together with C6, C7, C8 and multiple copies of C9 forms a transmembrane pore that damages the bacterial cell envelope. Recently, we found that bacterial killing by MAC pores requires local conversion of C5 by surface-bound convertases. In this study we aimed to understand why local assembly of MAC pores is essential for bacterial killing. Here, we show that rapid interaction of C7 with C5b6 is required to form bactericidal MAC pores on Escherichia coli. Binding experiments with fluorescently labelled C6 show that C7 prevents release of C5b6 from the bacterial surface. Moreover, trypsin shaving experiments and atomic force microscopy revealed that this rapid interaction between C7 and C5b6 is crucial to efficiently anchor C5b-7 to the bacterial cell envelope and form complete MAC pores. Using complement-resistant clinical E. coli strains, we show that bacterial pathogens can prevent complement-dependent killing by interfering with the anchoring of C5b-7. While C5 convertase assembly was unaffected, these resistant strains blocked efficient anchoring of C5b-7 and thus prevented stable insertion of MAC pores into the bacterial cell envelope. Altogether, these findings provide basic molecular insights into how bactericidal MAC pores are assembled and how bacteria evade MAC-dependent killing. In this paper we focus on how the complement system, an essential part of the immune system, kills bacteria via so-called membrane attack complex (MAC) pores. The MAC is a large, ring-shaped pore that consists of five different proteins, which is assembled when the complement system is activated on the bacterial surface. Here, we aimed to better understand how MAC pores are assembled on Escherichia coli and how clinical E. coli strains resist killing by MAC pores. We uncover that rapid recruitment of one of the MAC proteins, namely C7, is crucial to efficiently anchor the MAC precursor to the bacterial surface and ensure killing of a variety of E. coli strains via MAC pores. Furthermore, we reveal that some clinical E. coli strains prevent this efficient anchoring of MAC precursors and thereby resist bacterial killing. These insights help us to better understand how the immune system kills bacteria and how pathogenic bacteria evade this.
Collapse
|
2
|
Vlaicu SI, Tatomir A, Boodhoo D, Vesa S, Mircea PA, Rus H. The role of complement system in adipose tissue-related inflammation. Immunol Res 2017; 64:653-64. [PMID: 26754764 DOI: 10.1007/s12026-015-8783-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As the common factor linking adipose tissue to the metabolic context of obesity, insulin resistance and atherosclerosis are associated with a low-grade chronic inflammatory status, to which the complement system is an important contributor. Adipose tissue synthesizes complement proteins and is a target of complement activation. C3a-desArg/acylation-stimulating protein stimulates lipogenesis and affects lipid metabolism. The C3a receptor and C5aR are involved in the development of adipocytes' insulin resistance through macrophage infiltration and the activation of adipose tissue. The terminal complement pathway has been found to be instrumental in promoting hyperglycemia-associated tissue damage, which is characteristic of the major vascular complications of diabetes mellitus and diabetic ketoacidosis. As a mediator of the effects of the terminal complement complex C5b-9, RGC-32 has an impact on energy expenditure as well as lipid and glucose metabolic homeostasis. All of this evidence, taken together, indicates an important role for complement activation in metabolic diseases.
Collapse
Affiliation(s)
- Sonia I Vlaicu
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA.,Department of Internal Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA.,Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Stefan Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Petru A Mircea
- Department of Internal Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA. .,Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA. .,Veterans Administration Multiple Sclerosis Center of Excellence, Baltimore, MD, USA.
| |
Collapse
|
3
|
Ghosh P, Sahoo R, Vaidya A, Chorev M, Halperin JA. Role of complement and complement regulatory proteins in the complications of diabetes. Endocr Rev 2015; 36:272-88. [PMID: 25859860 PMCID: PMC4446516 DOI: 10.1210/er.2014-1099] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is well established that the organ damage that complicates human diabetes is caused by prolonged hyperglycemia, but the cellular and molecular mechanisms by which high levels of glucose cause tissue damage in humans are still not fully understood. The prevalent hypothesis explaining the mechanisms that may underlie the pathogenesis of diabetes complications includes overproduction of reactive oxygen species, increased flux through the polyol pathway, overactivity of the hexosamine pathway causing intracellular formation of advanced glycation end products, and activation of protein kinase C isoforms. In addition, experimental and clinical evidence reported in past decades supports a strong link between the complement system, complement regulatory proteins, and the pathogenesis of diabetes complications. In this article, we summarize the body of evidence that supports a role for the complement system and complement regulatory proteins in the pathogenesis of diabetic vascular complications, with specific emphasis on the role of the membrane attack complex (MAC) and of CD59, an extracellular cell membrane-anchored inhibitor of MAC formation that is inactivated by nonenzymatic glycation. We discuss a pathogenic model of human diabetic complications in which a combination of CD59 inactivation by glycation and hyperglycemia-induced complement activation increases MAC deposition, activates pathways of intracellular signaling, and induces the release of proinflammatory, prothrombotic cytokines and growth factors. Combined, complement-dependent and complement-independent mechanisms induced by high glucose promote inflammation, proliferation, and thrombosis as characteristically seen in the target organs of diabetes complications.
Collapse
Affiliation(s)
- Pamela Ghosh
- Division of Hematology, Department of Medicine (P.G., R.S., M.C., J.A.H.), and Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Rupam Sahoo
- Division of Hematology, Department of Medicine (P.G., R.S., M.C., J.A.H.), and Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Anand Vaidya
- Division of Hematology, Department of Medicine (P.G., R.S., M.C., J.A.H.), and Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Michael Chorev
- Division of Hematology, Department of Medicine (P.G., R.S., M.C., J.A.H.), and Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jose A Halperin
- Division of Hematology, Department of Medicine (P.G., R.S., M.C., J.A.H.), and Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
4
|
Aleshin AE, Schraufstatter IU, Stec B, Bankston LA, Liddington RC, DiScipio RG. Structure of complement C6 suggests a mechanism for initiation and unidirectional, sequential assembly of membrane attack complex (MAC). J Biol Chem 2012; 287:10210-10222. [PMID: 22267737 DOI: 10.1074/jbc.m111.327809] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complement membrane attack complex (MAC) is formed by the sequential assembly of C5b with four homologous proteins as follows: one copy each of C6, C7, and C8 and 12-14 copies of C9. Together these form a lytic pore in bacterial membranes. C6 through C9 comprise a MAC-perforin domain flanked by 4-9 "auxiliary" domains. Here, we report the crystal structure of C6, the first and longest of the pore proteins to be recruited by C5b. Comparisons with the structures of the C8αβγ heterodimer and perforin show that the central domain of C6 adopts a "closed" (perforin-like) state that is distinct from the "open" conformations in C8. We further show that C6, C8α, and C8β contain three homologous subdomains ("upper," "lower," and "regulatory") related by rotations about two hinge points. In C6, the regulatory segment includes four auxiliary domains that stabilize the closed conformation, inhibiting release of membrane-inserting elements. In C8β, rotation of the regulatory segment is linked to an opening of the central β-sheet of its clockwise partner, C8α. Based on these observations, we propose a model for initiation and unidirectional propagation of the MAC in which the auxiliary domains play key roles: in the assembly of the C5b-8 initiation complex; in driving and regulating the opening of the β-sheet of the MAC-performin domain of each new recruit as it adds to the growing pore; and in stabilizing the final pore. Our model of the assembled pore resembles those of the cholesterol-dependent cytolysins but is distinct from that recently proposed for perforin.
Collapse
Affiliation(s)
- Alexander E Aleshin
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037 and
| | | | - Boguslaw Stec
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037 and
| | - Laurie A Bankston
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037 and
| | - Robert C Liddington
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037 and.
| | - Richard G DiScipio
- Torrey Pines Institute for Molecular Studies, San Diego, California 92121
| |
Collapse
|
5
|
Tegla CA, Cudrici C, Patel S, Trippe R, Rus V, Niculescu F, Rus H. Membrane attack by complement: the assembly and biology of terminal complement complexes. Immunol Res 2012; 51:45-60. [PMID: 21850539 DOI: 10.1007/s12026-011-8239-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complement system activation plays an important role in both innate and acquired immunity. Activation of the complement and the subsequent formation of C5b-9 channels (the membrane attack complex) on the cell membranes lead to cell death. However, when the number of channels assembled on the surface of nucleated cells is limited, sublytic C5b-9 can induce cell cycle progression by activating signal transduction pathways and transcription factors and inhibiting apoptosis. This induction by C5b-9 is dependent upon the activation of the phosphatidylinositol 3-kinase/Akt/FOXO1 and ERK1 pathways in a Gi protein-dependent manner. C5b-9 induces sequential activation of CDK4 and CDK2, enabling the G1/S-phase transition and cellular proliferation. In addition, it induces RGC-32, a novel gene that plays a role in cell cycle activation by interacting with Akt and the cyclin B1-CDC2 complex. C5b-9 also inhibits apoptosis by inducing the phosphorylation of Bad and blocking the activation of FLIP, caspase-8, and Bid cleavage. Thus, sublytic C5b-9 plays an important role in cell activation, proliferation, and differentiation, thereby contributing to the maintenance of cell and tissue homeostasis.
Collapse
Affiliation(s)
- Cosmin A Tegla
- Department of Neurology, School of Medicine, University of Maryland, 655 W. Baltimore Street, BRB 12-033, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Rossi V, Wang Y, Esser AF. Topology of the membrane-bound form of complement protein C9 probed by glycosylation mapping, anti-peptide antibody binding, and disulfide modification. Mol Immunol 2010; 47:1553-60. [PMID: 20153530 DOI: 10.1016/j.molimm.2010.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/11/2010] [Accepted: 01/17/2010] [Indexed: 11/19/2022]
Abstract
The two N-linked oligosaccharides in native human C9 were deleted by site-specific mutagenesis. This aglycosyl-C9 did not differ from its native form in hemolytic and bactericidal activity. A new N-glycosylation site (K311N/E313T) was introduced into the turn of a helix-turn-helix [HTH] fold that had been postulated to form a transmembrane hairpin in membrane-bound C9. This glycosylated form of human C9 was as active as the native protein suggesting that the glycan chain remains on the external side of the membrane and that translocation of this hairpin is not required for membrane anchoring. Furthermore, flow cytometry provided evidence for the recognition of membrane-bound C9 on complement-lysed ghosts by an antibody specific for the HTH fold. A new N-glycosylation site (P26N) was also introduced close to the N-terminus of C9 to test whether this region was involved in C9 polymerization, which is thought to be required for cytolytic activity of C9. Again, this glycosylated C9 was as active as native C9 and could be induced to polymerize by heating or incubation with metal ions. The two C-terminal cystines within the MACPF domain could be eliminated partially or completely without affecting the hemolytic activity. Free sulfhydryl groups of unpaired cysteines in such C9 mutants are blocked since they could not be modified with SH-specific reagents. These results are discussed with respect to a recently proposed model that, on the basis of the MACPF structure in C8alpha, envisions membrane insertion of C9 to resemble the mechanism by which cholesterol-dependent cytolysins enter a membrane.
Collapse
Affiliation(s)
- Véronique Rossi
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
7
|
Wang Y, Bjes ES, Esser AF. Molecular aspects of complement-mediated bacterial killing. Periplasmic conversion of C9 from a protoxin to a toxin. J Biol Chem 2000; 275:4687-92. [PMID: 10671498 DOI: 10.1074/jbc.275.7.4687] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As part of the membrane attack complex complement protein C9 is responsible for direct killing of bacteria. Here we show that in the periplasmic space of an Escherichia coli cell C9 is converted from a protoxin to a toxin by periplasmic conditions missing in spheroplasts. This conversion is independent of the pathway by which C9 enters the periplasm. Both, C9 shocked into the periplasm and plasmid-expressed C9 targeted to the periplasm via a signal sequence are toxic. Toxicity requires disulfide-linked C9 because export into the periplasm of cells defective in disulfide bond synthesis (dsbA and dsbB mutants) is not toxic unless N-acetylcysteine is added externally to promote cystines. A N-terminal fragment, C9[1-144], is not toxic nor is cytoplasmically expressed C9, even in trxB mutants that are able to form disulfide bonds in the cytoplasm. Importantly, expression of full-length C9 in complement-resistant cells has no effect on their viability. Expression and translocation into the periplasm may provide a novel model to identify molecular mechanisms of other bactericidal disulfide-linked proteins and to investigate the nature of bacterial complement resistance.
Collapse
Affiliation(s)
- Y Wang
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
8
|
Laine RO, Zeile W, Kang F, Purich DL, Southwick FS. Vinculin proteolysis unmasks an ActA homolog for actin-based Shigella motility. J Cell Biol 1997; 138:1255-64. [PMID: 9298981 PMCID: PMC2132544 DOI: 10.1083/jcb.138.6.1255] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To generate the forces needed for motility, the plasma membranes of nonmuscle cells adopt an activated state that dynamically reorganizes the actin cytoskeleton. By usurping components from focal contacts and the actin cytoskeleton, the intracellular pathogens Shigella flexneri and Listeria monocytogenes use molecular mimicry to create their own actin-based motors. We raised an antibody (designated FS-1) against the FEFPPPPTDE sequence of Listeria ActA, and this antibody: (a) localized at the trailing end of motile intracellular Shigella, (b) inhibited intracellular locomotion upon microinjection of Shigella-infected cells, and (c) cross-reacted with the proteolytically derived 90-kD human vinculin head fragment that contains the Vinc-1 oligoproline sequence, PDFPPPPPDL. Antibody FS-1 reacted only weakly with full-length vinculin, suggesting that the Vinc-1 sequence in full-length vinculin may be masked by its tail region and that this sequence is unmasked by proteolysis. Immunofluoresence staining with a monoclonal antibody against the head region of vinculin (Vin 11-5) localized to the back of motile bacteria (an identical staining pattern observed with the anti-ActA FS-1 antibody), indicating that motile bacteria attract a form of vinculin containing an unmasked Vinc-1 oligoproline sequence. Microinjection of submicromolar concentrations of a synthetic Vinc-1 peptide arrested Shigella intracellular motility, underscoring the functional importance of this sequence. Western blots revealed that Shigella infection induces vinculin proteolysis in PtK2 cells and generates p90 head fragment over the same 1-3 h time frame when intracellular bacteria move within the host cell cytoplasm. We also discovered that microinjected p90, but not full-length vinculin, accelerates rates of pathogen motility by a factor of 3 +/- 0.4 in Shigella-infected PtK2 cells. These experiments suggest that vinculin p90 is a rate-limiting component in actin-based Shigella motility, and that supplementing cells with p90 stimulates rocket tail growth. Earlier findings demonstrated that vinculin p90 binds to IcsA (Suzuki, T.A., S. Saga, and C. Sasakawa. 1996. J. Biol. Chem. 271:21878-21885) and to vasodilator-stimulated phosphoprotein (VASP) (Brindle, N.P.J., M. R. Hold, J.E. Davies, C.J. Price, and D.R. Critchley. 1996. Biochem. J. 318:753-757). We now offer a working model in which proteolysis unmasks vinculin's ActA-like oligoproline sequence. Unmasking of this site serves as a molecular switch that initiates assembly of an actin-based motility complex containing VASP and profilin.
Collapse
Affiliation(s)
- R O Laine
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Health Science Center, Gainesville, Florida 32610-0277, USA
| | | | | | | | | |
Collapse
|
9
|
Christiansen VJ, Sims PJ, Hamilton KK. Complement C5b-9 increases plasminogen binding and activation on human endothelial cells. Arterioscler Thromb Vasc Biol 1997; 17:164-71. [PMID: 9012652 DOI: 10.1161/01.atv.17.1.164] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Deposition of the terminal complement proteins (C5b-9) on human endothelial cells can result in cell lysis or nonlytic alterations of cell function including procoagulant responses. Because regulation of fibrinolysis is a central endothelial function and because C9 contains a carboxyl-terminal lysine similar to other proteins that bind and facilitate activation of plasminogen (PG), the effects of complement injury on PG binding and activation on these cells were investigated. Activation of complement through deposition of C5b67 complexes on endothelial cells resulted in a small increase (approximately 20%) in PG binding. Incorporation of C8 into C5b-8 resulted in no further increase in binding; however, specific 125I-PG binding was increased by approximately 100% after C5b-9 deposition. Moreover, PG was found to bind specifically to C7 and C9. The PG bound to endothelial cells after C5b-9 deposition was readily activated by tissue-type plasminogen activator (TPA). In a cell-free system, complement C9 and a synthetic peptide composed of the 20 carboxyl-terminal amino acids of C9 enhanced PG activation by TPA. Removal of the carboxyl-terminal lysine of C9 abolished the enhancement of PG activation without diminishing PG binding. We conclude that membrane C9 may comprise a binding site for PG and serve to enhance activation of this zymogen by TPA. These findings suggest that immune injury to the endothelium may enhance both the fibrin-generating and fibrinolytic capacity of the vessel wall.
Collapse
Affiliation(s)
- V J Christiansen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA.
| | | | | |
Collapse
|
10
|
Esser AF, Tarnuzzer RW, Tomlinson S, Tatar LD, Stanley KK. Horse complement protein C9: primary structure and cytotoxic activity. Mol Immunol 1996; 33:725-33. [PMID: 8760284 DOI: 10.1016/0161-5890(96)00007-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lack of hemolytic activity of horse serum is an inherent property of horse C9. To understand the molecular reasons for this deficiency we have cloned C9 cDNA from a horse liver cDNA library and have sequenced the cDNA yielding the complete coding sequence for horse C9. Purification of C9 from horse plasma and microsequencing established the N-terminus of the mature protein and verified that the correct horse C9 cDNA clone had been isolated. The deduced amino acid sequence corresponds to a mature protein of 526 amino acids that is 77% identical to human C9. It has the same domain structure as human C9 and contains 22 cysteines and four invariant tryptophans. The few differences include the N-terminus, which is an unblocked glycine in horse C9 but pyroglutamine in human C9, and three potential N-glycosylation sites compared to two in human C9. The N-terminal difference is unimportant since microsequencing of bovine C9, which is strongly hemolytic, established that it also has an unblocked glycine identical to horse C9. There are no obvious structural differences apparent that could resolve the differences in hemolytic potency between the two molecules. Aside from a few conservative replacements, both C9 sequences are identical between positions 250 and 360. This region includes the membrane interaction domain in C9 and the postulated transmembrane segment that is thought to constitute the wall of a putative transmembrane pore and, therefore, should be required for cytotoxicity. In agreement with this prediction we have observed that, in contrast to the marked decrease in hemolytic activity, horse C9 is very efficient in killing a variety of Gram-negative bacteria. These results demonstrate that horse C9 is a structurally competent molecule with efficient cytotoxic activity. Its inability to lyse erythrocytes may be related to the action of control proteins on target cell membranes.
Collapse
Affiliation(s)
- A F Esser
- Department of Comparative and Experimental Pathology, University of Florida Health Science Center, Gainesville, USA
| | | | | | | | | |
Collapse
|
11
|
Bañuelos S, Muga A. Structural requirements for the association of native and partially folded conformations of alpha-lactalbumin with model membranes. Biochemistry 1996; 35:3892-8. [PMID: 8672419 DOI: 10.1021/bi951468v] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effect of the structure and stability of several conformers of alpha-lactalbumin in aqueous solution on their association to negatively charged large unilamellar vesicles has been studied by circular dichroism, infrared spectroscopy, differential scanning calorimetry, and by content leakage experiments. Our results indicate that the affinity of alphaLA for negatively charged vesicles strongly depends on its conformational properties in solution. Analysis of the pH dependence of the interaction for the different conformers reveals that native-like, calcium-bound, ordered conformations become bilayer-associated through electrostatic forces. However, partially folded conformers are able to interact with negatively charged membranes at pHs higher than the protein isoelectric point, suggesting that hydrophobic interactions brought about by the exposure of hydorphobic residues at the protein surface are able to overcome the unfavorable electrostatic repulsion. Calorimetric and spectroscopic data in solution also indicate that substantial protein destabilization facilitates its subsequent membrane binding, and that the association process is favored for a set of conformers having significant secondary structure, but lacking native-like, stable tertiary structure. Aggregation of the unfolded alpha-lactalbumin molecules and burial of hydrophobic surfaces upon formation of ordered tertiary structure significantly reduce their membrane perturbing activity. These observations suggest that formation of a flexible strucutral intermediate of alpha-lactalbumin in solution is a prerequisite for its association with membranes.
Collapse
Affiliation(s)
- S Bañuelos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias,Universidad del País Vasco, Bilboa, Spain
| | | |
Collapse
|
12
|
Gu X, Dankert JR. Isolation of the C9b fragment of human complement component C9 using urea in the absence of detergents. J Immunol Methods 1996; 189:37-45. [PMID: 8576578 DOI: 10.1016/0022-1759(95)00225-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The bactericidal activity of the C5b-9 complex of complement is dependent upon the terminal complement component C9. The precursor C5b-8 complex is not harmful to bacterial cells until C9 is added to complete the C5b-9 complex. The C9 molecule can be proteolytically cleaved by thrombin to yield an intact, nicked molecule that remains fully functional when added to either bacterial cells or erythrocytes bearing pre-formed C5b-8 complexes. In investigating the membranolytic function of C9 in the C5b-9 complex, the carboxyl-terminal portion of the nicked molecule (C9b) has been shown to be membranolytic when added to erythrocytes, liposomes, or bacterial inner membranes in the absence of any other complement components. The isolation of C9b from nicked C9 has been accomplished by preparative gel electrophoresis using detergents, however the study of the activity of C9b in membrane systems may be complicated by the possible presence of residual detergent. To address this concern, we have used 4 M urea in conjunction with hydroxyapatite chromatography and a phosphate elution procedure to separate the domains of nicked C9. The isolated C9b domain, free of detergents and in the absence of any other complement components, was found to be membranolytic. C9b isolated in this manner was capable of lysing erythrocytes and inhibiting the growth of bacterial spheroplasts.
Collapse
Affiliation(s)
- X Gu
- Department of Biology, University of Southwestern Louisiana, Lafayette 70504, USA
| | | |
Collapse
|
13
|
|
14
|
Hatanaka M, Seya T, Inai S, Shimizu A. The functions of the ninth component of human complement are sustained by disulfide bonds with different susceptibilities to reduction. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1209:117-22. [PMID: 7947973 DOI: 10.1016/0167-4838(94)90146-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Purified C9 with expected hemolytic and polymerizing activities was found to contain approximately 0.2 mol of sulfhydryl groups/mol of C9. By proteolysis of C9 with labeled SH groups, the SH residues on intact C9 were mapped to Cys-359 and Cys-384 which, presumably, form an intra-domain disulfide bond in the intact molecule. The blocking of these sulfhydryl residues by alkylation, however, had minimal influence on the functions of C9. On the other hand, reduction of C9 by 1 mM dithiothreitol (DTT) (6-fold molar excess over Cys residues) followed by alkylation resulted in a complete block of polymerization activity and a 50% loss of C9 hemolytic activity. In contrast, the ability of C9 to bind EAC1-8 remained largely unaffected. The loss of poly-C9 formation activity correlated with the alkylation of approx. 6 liberated sulfhydryl groups. Hemolytic activity was abolished by treatment with > 5 mM DTT which allowed the liberation of approximately 18 sulfhydryl groups. Most of the DTT-susceptible disulfides were within the C9a fragment (an N-terminal peptide derived by thrombin). Thus, three major functions of C9, EAC1-8 binding, polymerization, and hemolytic activity, are sustained by disulfide bond-dependent conformational motifs with different susceptibility to reducing reagents. The maintenance of the N-terminal C9a region is essential for polymerization, but not EAC1-8 binding activity of C9. Taken together, the results of the present study differentiate in molecular terms several of the functional portions of C9, and stress the significance of intra-chain disulfide linkages in maintaining the structural components necessary for the functions of C9.
Collapse
Affiliation(s)
- M Hatanaka
- Department of Immunology, Center for Adult Diseases Osaka, Japan
| | | | | | | |
Collapse
|
15
|
Itagaki S, Akiyama H, Saito H, McGeer PL. Ultrastructural localization of complement membrane attack complex (MAC)-like immunoreactivity in brains of patients with Alzheimer's disease. Brain Res 1994; 645:78-84. [PMID: 8062101 DOI: 10.1016/0006-8993(94)91640-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The membrane attack complex (MAC) of complement, also known as C5b-9, was localized in Alzheimer's disease (AD) brain by immunoelectron microscopy using a monoclonal antibody to a neoantigenic epitope of soluble C5b-9 (SC5b-9). Immunopositivity was detected in association with lamellated bodies in the neuronal cytoplasm, lipofuscin granules, lysosomes and neurofibrillary tangles (NFTs). Such intracellular localization of MAC-like immunoreactive (MAC-LI) staining suggests that neurons remove membrane-inserted MAC fragments by endocytosis. These endocytosed membrane fragments then proceed by retrograde transport to the perikaryon for lysosomal degradation. Attachment to the abnormal cytoskeletal proteins found in neurofibrillary tangles also occurs. The results provide further evidence that complement-mediated injury of neurons plays a part in the pathophysiology of AD.
Collapse
Affiliation(s)
- S Itagaki
- Department of Psychiatry, Hibarigaoka Hospital, Fukushima, Japan
| | | | | | | |
Collapse
|
16
|
Abstract
The membrane attack complex of complement is formed by the molecular fusion of the five terminal complement proteins, C5, C6, C7, C8, and C9. While the assembly process on a target membrane and its modulation by restriction factors present on host cells is now quite well understood the molecular details of the architecture of the complex still need much further clarification. This is especially true for the interaction of the last acting protein C9, which provides the cytotoxic action of the complex, with the precursor C5b-8 complex. Because of this lack of structural details the molecular mechanisms that lead to complement-mediated cell death remain cryptic, however, it is hoped that recent advances in controlling the assembly process and in site-specific modification of the terminal complement proteins by recombinant DNA techniques should change this predicament quickly.
Collapse
Affiliation(s)
- A F Esser
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City 64110
| |
Collapse
|
17
|
Lakey JH, Parker MW, González-Mañas JM, Duché D, Vriend G, Baty D, Pattus F. The role of electrostatic charge in the membrane insertion of colicin A. Calculation and mutation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:155-63. [PMID: 8119283 DOI: 10.1111/j.1432-1033.1994.tb18610.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The bacterial toxin colicin A binds spontaneously to the surfaces of negatively charged membranes. The surface-bound toxin must subsequently, however, become an acidic 'molten globule' before it can fully insert into the lipid bilayer. Clearly, electrostatic interactions must play a significant role in both events. The electrostatic field around the toxin in solution was calculated using the finite-difference Poisson-Boltzmann method of the Delphi programme and the known X-ray structure. A large positively charged surface was identified which could be involved in the binding of colicin to negatively charged membranes. The applicability of the result was tested by also calculating the fields around modelled structures of the closely related colicins B and N. Surprisingly, colicin N showed a similar charge distribution in spite of its isoelectric point of pI 10.20 (colicin A has pI 5.44). One reason for this is the strong conservation of certain negative charges in all colicins. There is a single highly conserved aspartate residue (Asp78) on the positively charged face which provides a small but discrete region of negative charge. This residue, Asp78, was replaced by asparagine in the mutant D78N. D78N binds faster to negatively charged vesicles but inserts only half as fast as the wild-type protein into the membrane core. This indicates that, first, the initial membrane binding has a significant electrostatic component and, second, that the isolated charge on Asp78 plays a role in the formation of the insertion intermediate.
Collapse
Affiliation(s)
- J H Lakey
- Department of Biochemistry and Genetics, Medical School, University of Newcastle-upon-Tyne, England
| | | | | | | | | | | | | |
Collapse
|
18
|
Iwamoto M, Nakamura M, Mitsui K, Ando S, Ohno-Iwashita Y. Membrane disorganization induced by perfringolysin O (theta-toxin) of Clostridium perfringens--effect of toxin binding and self-assembly on liposomes. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1153:89-96. [PMID: 8241254 DOI: 10.1016/0005-2736(93)90279-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
theta-Toxin (perfringolysin O) of Clostridium perfringens binds to membrane cholesterol with high (Kd approximately 10(-9) M) and low (Kd approximately 10(-7) M) affinities and causes membrane lysis of intact cells and liposomes. In order to understand the lytic process at the molecular level, the lysis of liposomes was investigated in comparison with that of intact cells. The toxin dose required to cause 50% lysis (RD50) of phosphatidylcholine/phosphatidylglycerol (82:18, mol/mol) liposomes containing 36-40 mol% cholesterol was 300-1400-times higher than the RD50 value for sheep or human erythrocytes when samples with the same cholesterol concentration were compared. However, the average number of toxin molecules bound per liposome vesicle at 50% lysis was estimated as 10-18 from the RD50 values, close to the number on erythrocytes at 50% lysis, suggesting that the number of toxin molecules adsorbed per vesicle is important for lysis. As to the toxin dose required for membrane lysis, no significant difference was observed between liposomes containing both high- and low-affinity toxin-binding sites and those containing only low-affinity sites, suggesting that theta-toxin molecules bound to low-affinity sites can assemble and cause membrane lysis as well as those bound to high-affinity sites. theta-Toxin assembles on liposomal membranes, as on erythrocytes, in a high-molecular-weight polymeric form as judged from sedimentation patterns in sucrose density-gradient centrifugation. The high-molecular-weight polymers were detected only under conditions where cell or liposome lysis occurred. At low toxin doses, slower sedimenting toxin oligomers and monomers were predominant on liposomal membranes. These results indicate that toxin assembly on membranes is essential for liposome lysis as it is for cell lysis and that assembly occurs on membranes without membrane proteins.
Collapse
Affiliation(s)
- M Iwamoto
- Department of Membrane Biochemistry, Tokyo Metropolitan Institute of Gerontology, Japan
| | | | | | | | | |
Collapse
|
19
|
Biesecker G, Lachmann P, Henderson R. Structure of complement poly-C9 determined in projection by cryo-electron microscopy and single particle analysis. Mol Immunol 1993; 30:1369-82. [PMID: 8232323 DOI: 10.1016/0161-5890(93)90098-v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ring-like complement 'lesions' found on membranes of complement lysed cells comprise a complex of components C5b through C9 that coalesce to form hollow cylinders which penetrate the membrane bilayer and create lytic pores. Walls of these C5b-9 membrane attack complex cylinders may consist primarily of the C9 component, since samples of purified, isolated C9 can polymerize into cylindrical structures which appear identical with the fully assembled C5b-9 complex. The structure of these poly-C9 molecules has been investigated using the techniques of cryo-electron microscopy and single particle analysis. Sets of single poly-C9 particles viewed as rings were selected from cryo-EM images, then particles were aligned and treated by correspondence analysis to identify the principle interparticle similarities and variations. The highest ranking variation found was the presence or absence of a dense inner ring of protein density. Other important variations were interpreted as different types of particle tilt. These results were used in selecting a subgroup of untilted particles for averaging and symmetry analysis. The rotational power spectrum of the initial average suggested 13-fold symmetry. The 13-fold symmetry was used to select and group particles for further analysis. Individual particles were 13-fold rotational averaged and those with enhanced peripheral features were placed into either a right-handed subgroup or into a left-handed subgroup based on orientation of the peripheral features. Particles within each group were aligned and averaged, and a poly-C9 structure was produced which shows important structural details and from which the C9 monomer structure can be deduced. The poly-C9 structure contains a dense inner ring of diameter between 113-181 A and which is modulated into 13 discrete peaks with peak-to-peak separation of approx. 35 A. The dense inner ring is surrounded by a less dense, concentric outer rim extending to 254 A diameter. The outer rim contains projections that are contiguous with the inner peaks but are skewed relative to the ring radius to produce the appearance of a pin-wheel. These projections correspond with the peripheral features picked up in the rotationally averaged individual particles; the left- or right-handed orientation of projections may result from the up/down orientation of individual particles in ice. The C9 monomer structure within the cylinder is suggested by the density distribution. The monomer would be a rod with diameter of 35 A, oriented parallel to the cylinder axis and would be roughly perpendicular to a membrane.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G Biesecker
- Department of Pathology, Hahnemann University, Philadelphia, PA 19102
| | | | | |
Collapse
|
20
|
Interaction between apolipoproteins A-I and A-II and the membrane attack complex of complement. Affinity of the apoproteins for polymeric C9. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53740-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
21
|
Milik M, Skolnick J. Insertion of peptide chains into lipid membranes: an off-lattice Monte Carlo dynamics model. Proteins 1993; 15:10-25. [PMID: 8451235 DOI: 10.1002/prot.340150104] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A combination of dynamic Monte Carlo simulation techniques with a hydropathy scale method for the prediction of the location of transmembrane fragments in membrane proteins is described. The new hydropathy scale proposed here is based on experimental data for the interactions of tripeptides with phospholipid membranes (Jacobs, R.E., White, S.H. Biochemistry 26:6127-6134, 1987) and the self-solvation effect in protein systems (Roseman, M.A. J. Mol. Biol. 200:513-522, 1988). The simulations give good predictions both for the state of association and the orientation of the peptide relative to the membrane surface of a number of peptides including Magain2, M2 delta, and melittin. Furthermore, for Pf1 bacteriophage coat protein, in accord with experiment, the simulations predict that the C-terminus forms a transmembrane helix and the N-terminus forms a helix which is adsorbed on the surface of the bilayer. Finally, the present series of simulations provide a number of insights into the mechanism of insertion of peptides into cell membranes.
Collapse
Affiliation(s)
- M Milik
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
22
|
van der Goot FG, Lakey JH, Pattus F. The molten globule intermediate for protein insertion or translocation through membranes. Trends Cell Biol 1992. [DOI: 10.1016/0962-8924(92)90184-o] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Ninomiya H, Sims P. The human complement regulatory protein CD59 binds to the alpha-chain of C8 and to the “b”domain of C9. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42266-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Hatanaka M, Seya T, Yoden A, Fukamoto K, Semba T, Inai S. Analysis of C5b-8 binding sites in the C9 molecule using monoclonal antibodies: participation of two separate epitopes of C9 in C5b-8 binding. Mol Immunol 1992; 29:911-6. [PMID: 1378934 DOI: 10.1016/0161-5890(92)90129-l] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
C5b-8 binding sites in C9 were examined using mAbs raised against C9. Among 16 mAbs, two, designated P40 and X197, blocked C9-mediated EAC1-8 lysis. C9 pretreated with the mAbs failed to bind to EAC1-8 at 4 degrees C. In addition, the mAbs became inaccessible to the C9 that had been incorporated into EAC1-8 at 4 degrees C. These findings suggest that C9 binding to EAC1-8, but not its membrane spanning or polymerization, is blocked by mAbs. By immunoblotting analysis using alpha-thrombin proteolytic fragments derived from C9 [a N-terminal fragment of mol. wt 25,000 (C9a) and a C-terminal one of mol. wt 37,000 (C9b)] and tryptic fragments of C9 (mol. wts 53,000 (C9a') and 20,000 (C9b')), the epitopes of P40 and X197 were mapped to the N-terminal and C-terminal regions of C9b, respectively. Both P40 and X197 bound to the C9 polymerized with Zn2+ in the fluid phase, whereas X197 but not P40 reacted with the membrane attack complex (MAC) formed on membranes. The results suggest that two distinct epitopes are involved in C9 binding to EAC1-8, and behave in a different manner for globular C9 bound to EAC1-8 at 4 degrees C, C9 assembled in MAC, or poly-C9 induced by Zn2+. These mAbs may be useful in clarifying the conformational states of C9 and in analyzing the molecular interaction between C9 and its inhibitors.
Collapse
Affiliation(s)
- M Hatanaka
- Department of Clinical Pathology, Osaka Medical College, Takatsuki, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Immune defence systems (complement, cytolytic lymphocytes) make use of transmembrane pores assembled from up to 20 soluble monomers in a highly regulated process to induce cell death. Inhibitors of pore formation have been found which protect blood, endothelial and epithelial cells from the destructive effect of complement lesions. Recently, a pore-forming protein showing immunological crossreactivity to complement C9 has been found in the protozoan parasite Trypanosoma cruzi, thereby extending this protein family and generalizing its means of generating non-selective membrane permeability.
Collapse
Affiliation(s)
- M C Peitsch
- University of Lausanne, Epalinges, Switzerland
| | | |
Collapse
|
26
|
The primary structure of glycoprotein III from bovine adrenal medullary chromaffin granules. Sequence similarity with human serum protein-40,40 and rat Sertoli cell glycoprotein. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39193-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|