1
|
Abukar S, Embacher PA, Ciccarelli A, Varsani-Brown S, North IGW, Dean JA, Briscoe J, Ivanovitch K. Early coordination of cell migration and cardiac fate determination during mammalian gastrulation. EMBO J 2025:10.1038/s44318-025-00441-0. [PMID: 40360834 DOI: 10.1038/s44318-025-00441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/29/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
During gastrulation, mesodermal cells derived from distinct regions are destined to acquire specific cardiac fates after undergoing complex migratory movements. Here, we used light-sheet imaging of live mouse embryos between gastrulation and heart tube formation to track mesodermal cells and to reconstruct lineage trees and 3D migration paths for up to five cell divisions. We found independent progenitors emerging at specific times, contributing exclusively to left ventricle/atrioventricular canal (LV/AVC) or atrial myocytes. LV/AVC progenitors differentiated early to form the cardiac crescent, while atrial progenitors later generated the heart tube's Nr2f2+ inflow tract during morphogenesis. We also identified short-lived multipotent progenitors with broad potential, illustrating early developmental plasticity. Descendants of multipotent progenitors displayed greater dispersion and more diverse migratory trajectories within the anterior mesoderm than the progeny of uni-fated progenitors. Progenitors contributing to extraembryonic mesoderm (ExEm) exhibited the fastest and most dispersed migrations. In contrast, those giving rise to endocardial, LV/AVC, and pericardial cells showed a more gradual divergence, with late-stage behavioural shifts: endocardial cells increased in speed, while pericardial cells slowed down in comparison to LV/AVC cells. Together, these data reveal patterns of individual cell directionality and cardiac fate allocation within the seemingly unorganised migratory pattern of mesoderm cells.
Collapse
Affiliation(s)
- Shayma Abukar
- Developmental Biology and Cancer Department, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Peter A Embacher
- Department of Medical Physics and Biomedical Engineering, University College London, Gower St, London, WC1E 6BT, UK
| | | | | | - Isabel G W North
- Developmental Biology and Cancer Department, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Jamie A Dean
- Department of Medical Physics and Biomedical Engineering, University College London, Gower St, London, WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, London, WC1E 6BT, UK
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Kenzo Ivanovitch
- Developmental Biology and Cancer Department, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
2
|
Stougiannou TM, Christodoulou KC, Karangelis D. In Vitro Models of Cardiovascular Disease: Embryoid Bodies, Organoids and Everything in Between. Biomedicines 2024; 12:2714. [PMID: 39767621 PMCID: PMC11726960 DOI: 10.3390/biomedicines12122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Cardiovascular disease comprises a group of disorders affecting or originating within tissues and organs of the cardiovascular system; most, if not all, will eventually result in cardiomyocyte dysfunction or death, negatively impacting cardiac function. Effective models of cardiac disease are thus important for understanding crucial aspects of disease progression, while recent advancements in stem cell biology have allowed for the use of stem cell populations to derive such models. These include three-dimensional (3D) models such as stem cell-based models of embryos (SCME) as well as organoids, many of which are frequently derived from embryoid bodies (EB). Not only can they recapitulate 3D form and function, but the developmental programs governing the self-organization of cell populations into more complex tissues as well. Many different organoids and SCME constructs have been generated in recent years to recreate cardiac tissue and the complex developmental programs that give rise to its cellular composition and unique tissue morphology. It is thus the purpose of this narrative literature review to describe and summarize many of the recently derived cardiac organoid models as well as their use for the recapitulation of genetic and acquired disease. Owing to the cellular composition of the models examined, this review will focus on disease and tissue injury associated with embryonic/fetal tissues.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, Democritus University of Thrace University General Hospital, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
3
|
Misiti F, Diotaiuti P, Lombardo GE, Tellone E. Sphingosine-1-phosphate Decreases Erythrocyte Dysfunction Induced by β-Amyloid. Int J Mol Sci 2024; 25:5184. [PMID: 38791223 PMCID: PMC11121638 DOI: 10.3390/ijms25105184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Amyloid beta peptides (Aβ) have been identified as the main pathogenic agents in Alzheimer's disease (AD). Soluble Aβ oligomers, rather than monomer or insoluble amyloid fibrils, show red blood cell (RBC) membrane-binding capacity and trigger several morphological and functional alterations in RBCs that can result in impaired oxygen transport and delivery. Since bioactive lipids have been recently proposed as potent protective agents against Aβ toxicity, we investigated the role of sphingosine-1-phosphate (S1P) in signaling pathways involved in the mechanism underlying ATP release in Ab-treated RBCs. In RBCs following different treatments, the ATP, 2,3 DPG and cAMP levels and caspase 3 activity were determined by spectrophotometric and immunoassay. S1P rescued the inhibition of ATP release from RBCs triggered by Ab, through a mechanism involving caspase-3 and restoring 2,3 DPG and cAMP levels within the cell. These findings reveal the molecular basis of S1P protection against Aβ in RBCs and suggest new therapeutic avenues in AD.
Collapse
Affiliation(s)
- Francesco Misiti
- Human Sciences, Social and Health Department, University of Cassino and Lazio Meridionale, V. S. Angelo, Loc. Folcara, 03043 Cassino, Italy;
| | - Pierluigi Diotaiuti
- Human Sciences, Social and Health Department, University of Cassino and Lazio Meridionale, V. S. Angelo, Loc. Folcara, 03043 Cassino, Italy;
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (G.E.L.); (E.T.)
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (G.E.L.); (E.T.)
| |
Collapse
|
4
|
Prasad VP, Wagner S, Keul P, Hermann S, Levkau B, Schäfers M, Haufe G. Synthesis, radiosynthesis and biochemical evaluation of fluorinated analogues of sphingosine-1-phosphate receptor 3 specific antagonists using PET. Bioorg Med Chem 2024; 104:117697. [PMID: 38599005 DOI: 10.1016/j.bmc.2024.117697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Sphingosine-1-phosphate and its receptors (S1PRs) are involved in several diseases such as auto immunity, inflammation and cardiovascular disorders. The S1P analogue fingolimod (Gilenya®) is currently in use for the treatment of relapsing multiple sclerosis. S1PRs are also promising targets for clinical molecular imaging in vivo. The organ distribution of individual S1PRs can be potentially achieved by using S1PR subtype-specific (radiolabeled) chemical probes. Here, we report our efforts on synthesis and in vivo potency determination of new ligands for the S1P receptor 3 (S1P3) based on the S1P3 antagonist TY-52156 and in validation of a potential imaging tracer in vivo using Positron Emission Tomography (PET) after 18F-labelling. A p-fluorophenyl derivative exhibited excellent S1P3 antagonist activity in vitro, good serum stability, and medium lipophilicity. In vivo biodistribution experiments using 18F-PET exhibited significant uptake in the myocardium suggesting potential applications in cardiac imaging.
Collapse
Affiliation(s)
- Vysakh Puspha Prasad
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany; NRW Graduate School of Chemistry, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Petra Keul
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Multiscale Imaging Centre, Röntgenstraße 16, 48149 Münster, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany; European Institute for Molecular Imaging (EIMI), University of Münster, Multiscale Imaging Centre, Röntgenstraße 16, 48149 Münster, Germany; Cells-in-Motion Interfaculty Centre, University of Münster, Röntgenstraße 16, 48149 Münster, Germany
| | - Günter Haufe
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany; NRW Graduate School of Chemistry, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany; European Institute for Molecular Imaging (EIMI), University of Münster, Multiscale Imaging Centre, Röntgenstraße 16, 48149 Münster, Germany; Cells-in-Motion Interfaculty Centre, University of Münster, Röntgenstraße 16, 48149 Münster, Germany.
| |
Collapse
|
5
|
Ji X, Chen Z, Wang Q, Li B, Wei Y, Li Y, Lin J, Cheng W, Guo Y, Wu S, Mao L, Xiang Y, Lan T, Gu S, Wei M, Zhang JZ, Jiang L, Wang J, Xu J, Cao N. Sphingolipid metabolism controls mammalian heart regeneration. Cell Metab 2024; 36:839-856.e8. [PMID: 38367623 DOI: 10.1016/j.cmet.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/23/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
Utilization of lipids as energy substrates after birth causes cardiomyocyte (CM) cell-cycle arrest and loss of regenerative capacity in mammalian hearts. Beyond energy provision, proper management of lipid composition is crucial for cellular and organismal health, but its role in heart regeneration remains unclear. Here, we demonstrate widespread sphingolipid metabolism remodeling in neonatal hearts after injury and find that SphK1 and SphK2, isoenzymes producing the same sphingolipid metabolite sphingosine-1-phosphate (S1P), differently regulate cardiac regeneration. SphK2 is downregulated during heart development and determines CM proliferation via nuclear S1P-dependent modulation of histone acetylation. Reactivation of SphK2 induces adult CM cell-cycle re-entry and cytokinesis, thereby enhancing regeneration. Conversely, SphK1 is upregulated during development and promotes fibrosis through an S1P autocrine mechanism in cardiac fibroblasts. By fine-tuning the activity of each SphK isoform, we develop a therapy that simultaneously promotes myocardial repair and restricts fibrotic scarring to regenerate the infarcted adult hearts.
Collapse
Affiliation(s)
- Xiaoqian Ji
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Zihao Chen
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Qiyuan Wang
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Bin Li
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yan Wei
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yun Li
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Lin
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Weisheng Cheng
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yijie Guo
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Shilin Wu
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Longkun Mao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yuzhou Xiang
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong 510006, China
| | - Shanshan Gu
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Meng Wei
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lan Jiang
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangdong 510080, China
| | - Nan Cao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China.
| |
Collapse
|
6
|
Liu J, Liu X, Luo Y, Huang F, Xie Y, Zheng S, Jia B, Xiao Z. Sphingolipids: drivers of cardiac fibrosis and atrial fibrillation. J Mol Med (Berl) 2024; 102:149-165. [PMID: 38015241 PMCID: PMC10858135 DOI: 10.1007/s00109-023-02391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023]
Abstract
Sphingolipids (SLs) are vital constituents of the plasma membrane of animal cells and concurrently regulate numerous cellular processes. An escalating number of research have evinced that SLs assume a crucial part in the progression of tissue fibrosis, a condition for which no efficacious cure exists as of now. Cardiac fibrosis, and in particular, atrial fibrosis, is a key factor in the emergence of atrial fibrillation (AF). AF has become one of the most widespread cardiac arrhythmias globally, with its incidence continuing to mount, thereby propelling it to the status of a major public health concern. This review expounds on the structure and biosynthesis pathways of several pivotal SLs, the pathophysiological mechanisms of AF, and the function of SLs in cardiac fibrosis. Delving into the influence of sphingolipid levels in the alleviation of cardiac fibrosis offers innovative therapeutic strategies to address cardiac fibrosis and AF.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ximao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yucheng Luo
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fangze Huang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Xie
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Xu X, Han Y, Zhu T, Fan F, Wang X, Liu Y, Luo D. The role of SphK/S1P/S1PR signaling pathway in bone metabolism. Biomed Pharmacother 2023; 169:115838. [PMID: 37944444 DOI: 10.1016/j.biopha.2023.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
There are a large number of people worldwide who suffer from osteoporosis, which imposes a huge economic burden, so it is necessary to explore the underlying mechanisms to achieve better supportive and curative care outcomes. Sphingosine kinase (SphK) is an enzyme that plays a crucial role in the synthesis of sphingosine-1-phosphate (S1P). S1P with paracrine and autocrine activities that act through its cell surface S1P receptors (S1PRs) and intracellular signals. In osteoporosis, S1P is indispensable for both normal and disease conditions. S1P has complicated roles in regulating osteoblast and osteoclast, respectively, and there have been exciting developments in understanding how SphK/S1P/S1PR signaling regulates these processes in response to osteoporosis therapy. Here, we review the proliferation, differentiation, apoptosis, and functions of S1P, specifically detailing the roles of S1P and S1PRs in osteoblasts and osteoclasts. Finally, we focus on the S1P-based therapeutic approaches in bone metabolism, which may provide valuable insights into potential therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Xuefeng Xu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Yi Han
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Tianxin Zhu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Faxin Fan
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Xin Wang
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Yuqing Liu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Duosheng Luo
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China.
| |
Collapse
|
8
|
Flora Y, Bohnert KA. SPIN-4/Spinster supports sperm activation in C. elegans via sphingosine-1-phosphate transport. Dev Biol 2023; 504:137-148. [PMID: 37805103 DOI: 10.1016/j.ydbio.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/17/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Spermiogenesis, a sperm-activation step, is crucial for the transformation of immotile spermatids into motile sperm. Though membrane transport of ions and molecules across the sperm plasma membrane has been implicated in this process, the full repertoire of transporters involved, and their respective substrates, is unclear. Here, we report that the major facilitator superfamily transporter SPIN-4/Spinster governs efficient spermiogenesis and fertility in the hermaphrodite nematode Caenorhabditis elegans. Unlike other C. elegans Spinster paralogs, SPIN-4 is germline-expressed. Moreover, SPIN-4 expression is gamete-specific; it is strongly expressed in developing sperm, where it localizes to the plasma membrane, but it is absent from oocytes. Consistent with these expression data, we demonstrate that knocking out spin-4 impairs sperm development, leading to the formation of non-motile sperm that lack pseudopodia. Consequently, hermaphrodites homozygous for the spin-4(knu1099) knockout allele show extensive sperm wasting and reduced self-progeny. We observe similar defects when we genetically inhibit production of sphingosine-1-phosphate, a lipid molecule that stimulates cell motility when exported extracellularly by Spinster homologs in other contexts. Remarkably, extracellular supplementation with sphingosine-1-phosphate rescues sperm activation and motility in the absence of SPIN-4, suggesting that Spinster-dependent efflux of sphingosine-1-phosphate plays a key role in sperm mobilization. These findings identify a new signaling mechanism in C. elegans spermiogenesis entailing Spinster and sphingosine-1-phosphate.
Collapse
Affiliation(s)
- Yash Flora
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - K Adam Bohnert
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
9
|
Shrestha R, McCann T, Saravanan H, Lieberth J, Koirala P, Bloomekatz J. The myocardium utilizes a platelet-derived growth factor receptor alpha (Pdgfra)-phosphoinositide 3-kinase (PI3K) signaling cascade to steer toward the midline during zebrafish heart tube formation. eLife 2023; 12:e85930. [PMID: 37921445 PMCID: PMC10651176 DOI: 10.7554/elife.85930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023] Open
Abstract
Coordinated cell movement is a fundamental process in organ formation. During heart development, bilateral myocardial precursors collectively move toward the midline (cardiac fusion) to form the primitive heart tube. Extrinsic influences such as the adjacent anterior endoderm are known to be required for cardiac fusion. We previously showed however, that the platelet-derived growth factor receptor alpha (Pdgfra) is also required for cardiac fusion (Bloomekatz et al., 2017). Nevertheless, an intrinsic mechanism that regulates myocardial movement has not been elucidated. Here, we show that the phosphoinositide 3-kinase (PI3K) intracellular signaling pathway has an essential intrinsic role in the myocardium directing movement toward the midline. In vivo imaging further reveals midline-oriented dynamic myocardial membrane protrusions that become unpolarized in PI3K-inhibited zebrafish embryos where myocardial movements are misdirected and slower. Moreover, we find that PI3K activity is dependent on and interacts with Pdgfra to regulate myocardial movement. Together our findings reveal an intrinsic myocardial steering mechanism that responds to extrinsic cues during the initiation of cardiac development.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of MississippiUniversityUnited States
| | - Tess McCann
- Department of Biology, University of MississippiUniversityUnited States
| | - Harini Saravanan
- Department of Biology, University of MississippiUniversityUnited States
| | - Jaret Lieberth
- Department of Biology, University of MississippiUniversityUnited States
| | - Prashanna Koirala
- Department of Biology, University of MississippiUniversityUnited States
| | - Joshua Bloomekatz
- Department of Biology, University of MississippiUniversityUnited States
| |
Collapse
|
10
|
Sun G, Wang B, Zhu H, Ye J, Liu X. Role of sphingosine 1-phosphate (S1P) in sepsis-associated intestinal injury. Front Med (Lausanne) 2023; 10:1265398. [PMID: 37746079 PMCID: PMC10514503 DOI: 10.3389/fmed.2023.1265398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a widespread lipid signaling molecule that binds to five sphingosine-1-phosphate receptors (S1PRs) to regulate downstream signaling pathways. Sepsis can cause intestinal injury and intestinal injury can aggravate sepsis. Thus, intestinal injury and sepsis are mutually interdependent. S1P is more abundant in intestinal tissues as compared to other tissues, exerts anti-inflammatory effects, promotes immune cell trafficking, and protects the intestinal barrier. Despite the clinical importance of S1P in inflammation, with a very well-defined mechanism in inflammatory bowel disease, their role in sepsis-induced intestinal injury has been relatively unexplored. In addition to regulating lymphocyte exit, the S1P-S1PR pathway has been implicated in the gut microbiota, intestinal epithelial cells (IECs), and immune cells in the lamina propria. This review mainly elaborates on the physiological role of S1P in sepsis, focusing on intestinal injury. We introduce the generation and metabolism of S1P, emphasize the maintenance of intestinal barrier homeostasis in sepsis, and the protective effect of S1P in the intestine. We also review the link between sepsis-induced intestinal injury and S1P-S1PRs signaling, as well as the underlying mechanisms of action. Finally, we discuss how S1PRs affect intestinal function and become targets for future drug development to improve the translational capacity of preclinical studies to the clinic.
Collapse
Affiliation(s)
- Gehui Sun
- Gannan Medical University, Ganzhou, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin Wang
- Gannan Medical University, Ganzhou, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongquan Zhu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- Gannan Medical University, Ganzhou, Jiangxi, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xiaofeng Liu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
11
|
Kharel Y, Huang T, Santos WL, Lynch KR. Assay of Sphingosine 1-phosphate Transporter Spinster Homolog 2 (Spns2) Inhibitors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:284-287. [PMID: 37454972 PMCID: PMC11974556 DOI: 10.1016/j.slasd.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The sphingosine-1-phosphate (S1P) pathway remains an active area of research for drug discovery because S1P modulators are effective medicine for autoimmune diseases such as multiple sclerosis and ulcerative colitis. As such, other nodes in the pathway can be probed for alternative therapeutic candidates. As S1P elicits its function in an 'outside-in' fashion, targeting the transporter, Spns2, which is upstream of the receptors, is of great interest. To support our medicinal chemistry campaign to inhibit S1P transport, we developed a mammalian cell-based assay. In this protocol, Spns2 inhibition is assessed by treating HeLa, U-937, and THP-1 cells with inhibitors and S1P exported in the extracellular milieu is quantified by LC-MS/MS. Our studies demonstrated that the amount of S1P in the media in inversely proportional to inhibitor concentration. The details of our investigations are described herein.
Collapse
Affiliation(s)
- Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Webster L Santos
- Department of Chemistry and VT Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
12
|
Cui L, Li C, Zhang G, Zhang L, Yao G, Zhuo Y, Cui N, Zhang S. S1P/S1PR2 promote pancreatic stellate cell activation and pancreatic fibrosis in chronic pancreatitis by regulating autophagy and the NLRP3 inflammasome. Chem Biol Interact 2023; 380:110541. [PMID: 37169277 DOI: 10.1016/j.cbi.2023.110541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid molecule that governs various functions by embedding its receptor, S1PR, in different cells. Chronic pancreatitis (CP) is characterized by pancreatic fibrosis via activation of pancreatic stellate cells (PSCs). However, the effect of S1P on CP and PSC activation is still unknown. Here, we conducted a series of experiments to explore the effect of S1P on a CP rat model and primary cultured PSCs. In vivo, CP was induced by intravenous injection of dibutyltin dichloride. S1P was administered at a dosage of 200 μg/kg body weight per day by intraperitoneal injection. After 4 weeks, serum, plasma and pancreas samples were collected for molecular analysis and histological detection. In vitro, PSCs were isolated and cultured for treatment with different doses of S1P. 3 MA and MCC950 were used to determine the effect of S1P on PSC activation by regulating autophagy and the NLRP3 inflammasome. JTE013 and Si-S1PR2 were applied to verify that the functions of S1P were realized by combining with S1PR2. Cells were collected for RT‒PCR, western blotting and immunofluorescence. The results showed that S1P was increased in the plasma and pancreatic tissue of CP rats. When S1P was administered to CP rats, the function and histomorphology of the pancreas were severely impaired. In addition, S1P promoted PSC activation, heightened autophagy and enhanced the NLRP3 inflammasome in vivo and in vitro. Moreover, S1PR2 mediated the effect of S1P on PSC activation by regulating autophagy and the NLRP3 inflammasome sequentially. In conclusion, S1P binding to S1PR2 promoted PSC activation and pancreatic fibrosis in CP by regulating autophagy and the NLRP3 inflammasome. These findings provide a theoretical basis for targeting S1P/S1PR2 to treat pancreatic fibrosis and further suggest that considering the role of autophagy and the NLRP3 inflammasome may help with the treatment pancreatic fibrosis.
Collapse
Affiliation(s)
- Lihua Cui
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, 300100, China.
| | - Caixia Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, 300100, China
| | - Guixian Zhang
- Department of Cancer Pharmacology, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Duolun Road, Tianjin, 300020, China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, 300100, China
| | - Guowang Yao
- Department of Gastrointestinal Surgery, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, 300100, China
| | - Naiqiang Cui
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Shukun Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, 300100, China.
| |
Collapse
|
13
|
Montané-Romero ME, Martínez-Silva AV, Poot-Hernández AC, Escalante-Alcalde D. Plpp3, a novel regulator of pluripotency exit and endodermal differentiation of mouse embryonic stem cells. Biol Open 2023; 12:285908. [PMID: 36504260 PMCID: PMC9867895 DOI: 10.1242/bio.059665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
In recent decades, study of the actions of bioactive lipids such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) has increased since they are involved in regulating many processes, including self-renewal of embryonic stem cells, embryo development and cancer. Phospholipid phosphatase type 3 (PLPP3) has been shown to be a key player in regulating the balance of these lipids and, in consequence, their signaling. Different lines of evidence suggest that PLPP3 could play a role in endoderm development. To approach this hypothesis, we used mouse embryonic stem cells (ESC) as a model to study Plpp3 function in self-renewal and the transition towards differentiation. We found that lack of PLPP3 mainly affects endoderm formation during differentiation of suspension-formed embryoid bodies. PLPP3-deficient ESC strongly decrease the amount of FOXA2-expressing cells and fail to properly downregulate the expression of pluripotency factors when subjected to an endoderm-directed differentiation protocol. Impaired endoderm differentiation correlated with a transient reduction in nuclear localization of YAP1. These phenotypes were rescued by transiently restoring the expression of catalytically active hPLPP3. In conclusion, PLPP3 plays a role in downregulating pluripotency-associated factors and in endodermal differentiation. PLPP3 regulates proper lipid/YAP1 signaling required for endodermal differentiation.
Collapse
Affiliation(s)
- Martha E. Montané-Romero
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, México
| | - Ana V. Martínez-Silva
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, México
| | - Augusto C. Poot-Hernández
- Unidad de Bioinformática y Manejo de la Información, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, México
| | - Diana Escalante-Alcalde
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, México,Author for correspondence ()
| |
Collapse
|
14
|
Shrestha R, McCann T, Saravanan H, Lieberth J, Koirala P, Bloomekatz J. The myocardium utilizes Pdgfra-PI3K signaling to steer towards the midline during heart tube formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522612. [PMID: 36712046 PMCID: PMC9881939 DOI: 10.1101/2023.01.03.522612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Coordinated cell movement is a fundamental process in organ formation. During heart development, bilateral myocardial precursors collectively move towards the midline (cardiac fusion) to form the primitive heart tube. Along with extrinsic influences such as the adjacent anterior endoderm which are known to be required for cardiac fusion, we previously showed that the platelet-derived growth factor receptor alpha (Pdgfra) is also required. However, an intrinsic mechanism that regulates myocardial movement remains to be elucidated. Here, we uncover an essential intrinsic role in the myocardium for the phosphoinositide 3-kinase (PI3K) intracellular signaling pathway in directing myocardial movement towards the midline. In vivo imaging reveals that in PI3K-inhibited zebrafish embryos myocardial movements are misdirected and slower, while midline-oriented dynamic myocardial membrane protrusions become unpolarized. Moreover, PI3K activity is dependent on and genetically interacts with Pdgfra to regulate myocardial movement. Together our findings reveal an intrinsic myocardial steering mechanism that responds to extrinsic cues during the initiation of cardiac development.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of Mississippi, University, MS 38677
| | - Tess McCann
- Department of Biology, University of Mississippi, University, MS 38677
| | - Harini Saravanan
- Department of Biology, University of Mississippi, University, MS 38677
| | - Jaret Lieberth
- Department of Biology, University of Mississippi, University, MS 38677
| | - Prashanna Koirala
- Department of Biology, University of Mississippi, University, MS 38677
| | - Joshua Bloomekatz
- Department of Biology, University of Mississippi, University, MS 38677
| |
Collapse
|
15
|
Sánchez MF, Dietz MS, Müller U, Weghuber J, Gatterdam K, Wieneke R, Heilemann M, Lanzerstorfer P, Tampé R. Dynamic in Situ Confinement Triggers Ligand-Free Neuropeptide Receptor Signaling. NANO LETTERS 2022; 22:8363-8371. [PMID: 36219818 PMCID: PMC9614963 DOI: 10.1021/acs.nanolett.2c03506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Membrane receptor clustering is fundamental to cell-cell communication; however, the physiological function of receptor clustering in cell signaling remains enigmatic. Here, we developed a dynamic platform to induce cluster formation of neuropeptide Y2 hormone receptors (Y2R) in situ by a chelator nanotool. The multivalent interaction enabled a dynamic exchange of histidine-tagged Y2R within the clusters. Fast Y2R enrichment in clustered areas triggered ligand-independent signaling as determined by an increase in cytosolic calcium and cell migration. Notably, the calcium and motility response to ligand-induced activation was amplified in preclustered cells, suggesting a key role of receptor clustering in sensitizing the dose response to lower ligand concentrations. Ligand-independent versus ligand-induced signaling differed in the binding of arrestin-3 as a downstream effector, which was recruited to the clusters only in the presence of the ligand. This approach allows in situ receptor clustering, raising the possibility to explore different receptor activation modalities.
Collapse
Affiliation(s)
- M. Florencia Sánchez
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| | - Marina S. Dietz
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Ulrike Müller
- School
of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Julian Weghuber
- School
of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 4600 Wels, Austria
- FFoQSI
- Austrian Competence Centre for Feed and Food Quality, Safety &
Innovation, FFoQSI GmbH, Technopark 1D, 3430 Tulln, Austria
| | - Karl Gatterdam
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| | - Ralph Wieneke
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| | - Mike Heilemann
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Peter Lanzerstorfer
- School
of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Robert Tampé
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
16
|
Nodal signaling regulates asymmetric cellular behaviors, driving clockwise rotation of the heart tube in zebrafish. Commun Biol 2022; 5:996. [PMID: 36131094 PMCID: PMC9492702 DOI: 10.1038/s42003-022-03826-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Clockwise rotation of the primitive heart tube, a process regulated by restricted left-sided Nodal signaling, is the first morphological manifestation of left-right asymmetry. How Nodal regulates cell behaviors to drive asymmetric morphogenesis remains poorly understood. Here, using high-resolution live imaging of zebrafish embryos, we simultaneously visualized cellular dynamics underlying early heart morphogenesis and resulting changes in tissue shape, to identify two key cell behaviors: cell rearrangement and cell shape change, which convert initially flat heart primordia into a tube through convergent extension. Interestingly, left cells were more active in these behaviors than right cells, driving more rapid convergence of the left primordium, and thereby rotating the heart tube. Loss of Nodal signaling abolished the asymmetric cell behaviors as well as the asymmetric convergence of the left and right heart primordia. Collectively, our results demonstrate that Nodal signaling regulates the magnitude of morphological changes by acting on basic cellular behaviors underlying heart tube formation, driving asymmetric deformation and rotation of the heart tube.
Collapse
|
17
|
Mahabaleshwar H, Asharani PV, Loo TY, Koh SY, Pitman MR, Kwok S, Ma J, Hu B, Lin F, Li Lok X, Pitson SM, Saunders TE, Carney TJ. Slit‐Robo signalling establishes a Sphingosine‐1‐phosphate gradient to polarise fin mesenchyme. EMBO Rep 2022; 23:e54464. [DOI: 10.15252/embr.202154464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Harsha Mahabaleshwar
- Lee Kong Chian School of Medicine Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| | - PV Asharani
- Institute of Molecular and Cell Biology (IMCB) A*STAR (Agency for Science, Technology and Research) Singapore City Singapore
| | - Tricia Yi Loo
- Mechanobiology Institute National University of Singapore Singapore City Singapore
| | - Shze Yung Koh
- Lee Kong Chian School of Medicine Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| | - Melissa R Pitman
- Centre for Cancer Biology University of South Australia, and SA Pathology North Tce Adelaide SA Australia
- School of Biological Sciences University of Adelaide Adelaide South Australia Australia
| | - Samuel Kwok
- Lee Kong Chian School of Medicine Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| | - Jiajia Ma
- Lee Kong Chian School of Medicine Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| | - Bo Hu
- Department of Anatomy & Cell Biology Carver College of Medicine The University of Iowa Iowa City IA USA
| | - Fang Lin
- Department of Anatomy & Cell Biology Carver College of Medicine The University of Iowa Iowa City IA USA
| | - Xue Li Lok
- Institute of Molecular and Cell Biology (IMCB) A*STAR (Agency for Science, Technology and Research) Singapore City Singapore
| | - Stuart M Pitson
- Centre for Cancer Biology University of South Australia, and SA Pathology North Tce Adelaide SA Australia
| | - Timothy E Saunders
- Institute of Molecular and Cell Biology (IMCB) A*STAR (Agency for Science, Technology and Research) Singapore City Singapore
- Mechanobiology Institute National University of Singapore Singapore City Singapore
- Warwick Medical School University of Warwick Coventry UK
| | - Tom J Carney
- Lee Kong Chian School of Medicine Experimental Medicine Building Nanyang Technological University Singapore City Singapore
- Institute of Molecular and Cell Biology (IMCB) A*STAR (Agency for Science, Technology and Research) Singapore City Singapore
| |
Collapse
|
18
|
Cornean A, Gierten J, Welz B, Mateo JL, Thumberger T, Wittbrodt J. Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction. eLife 2022; 11:e72124. [PMID: 35373735 PMCID: PMC9033269 DOI: 10.7554/elife.72124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Single nucleotide variants (SNVs) are prevalent genetic factors shaping individual trait profiles and disease susceptibility. The recent development and optimizations of base editors, rubber and pencil genome editing tools now promise to enable direct functional assessment of SNVs in model organisms. However, the lack of bioinformatic tools aiding target prediction limits the application of base editing in vivo. Here, we provide a framework for adenine and cytosine base editing in medaka (Oryzias latipes) and zebrafish (Danio rerio), ideal for scalable validation studies. We developed an online base editing tool ACEofBASEs (a careful evaluation of base-edits), to facilitate decision-making by streamlining sgRNA design and performing off-target evaluation. We used state-of-the-art adenine (ABE) and cytosine base editors (CBE) in medaka and zebrafish to edit eye pigmentation genes and transgenic GFP function with high efficiencies. Base editing in the genes encoding troponin T and the potassium channel ERG faithfully recreated known cardiac phenotypes. Deep-sequencing of alleles revealed the abundance of intended edits in comparison to low levels of insertion or deletion (indel) events for ABE8e and evoBE4max. We finally validated missense mutations in novel candidate genes of congenital heart disease (CHD) dapk3, ube2b, usp44, and ptpn11 in F0 and F1 for a subset of these target genes with genotype-phenotype correlation. This base editing framework applies to a wide range of SNV-susceptible traits accessible in fish, facilitating straight-forward candidate validation and prioritization for detailed mechanistic downstream studies.
Collapse
Affiliation(s)
- Alex Cornean
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- Heidelberg Biosciences International Graduate School (HBIGS)HeidelbergGermany
| | - Jakob Gierten
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- Department of Pediatric Cardiology, University Hospital HeidelbergHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)HeidelbergGermany
| | - Bettina Welz
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- Heidelberg Biosciences International Graduate School (HBIGS)HeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)HeidelbergGermany
| | - Juan Luis Mateo
- Deparment of Computer Science, University of OviedoOviedoSpain
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)HeidelbergGermany
| |
Collapse
|
19
|
McCann T, Shrestha R, Graham A, Bloomekatz J. Using Live Imaging to Examine Early Cardiac Development in Zebrafish. Methods Mol Biol 2022; 2438:133-145. [PMID: 35147940 DOI: 10.1007/978-1-0716-2035-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Visualizing dynamic cellular behaviors using live imaging is critical to the study of cell movement and to the study of cellular and embryonic polarity. Similarly, live imaging can be vital to elucidating the pathology of genetic disorders and diseases. Model systems such as zebrafish, whose in vivo development is accessible to both the microscope and genetic manipulation, are particularly well-suited to the use of live imaging. Here we describe an overall approach to conducting live-imaging experiments with a specific emphasis on investigating cell movements during the early stages of heart development in zebrafish.
Collapse
Affiliation(s)
- Tess McCann
- Department of Biology, University of Mississippi, University, MS, USA
| | - Rabina Shrestha
- Department of Biology, University of Mississippi, University, MS, USA
| | - Alexis Graham
- Department of Biology, University of Mississippi, University, MS, USA
| | - Joshua Bloomekatz
- Department of Biology, University of Mississippi, University, MS, USA.
| |
Collapse
|
20
|
Biologically active lipids in the regulation of lymphangiogenesis in disease states. Pharmacol Ther 2021; 232:108011. [PMID: 34614423 DOI: 10.1016/j.pharmthera.2021.108011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023]
Abstract
Lymphatic vessels have crucial roles in the regulation of interstitial fluids, immune surveillance, and the absorption of dietary fat in the intestine. Lymphatic function is also closely related to the pathogenesis of various disease states such as inflammation, lymphedema, endometriosis, liver dysfunction, and tumor metastasis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing lymphatic vessels, is a critical determinant in the above conditions. Although the effect of growth factors on lymphangiogenesis is well-characterized, and biologically active lipids are known to affect smooth muscle contractility and vasoaction, there is accumulating evidence that biologically active lipids are also important inducers of growth factors and cytokines that regulate lymphangiogenesis. This review discusses recent advances in our understanding of biologically active lipids, including arachidonic acid metabolites, sphingosine 1-phosphate, and lysophosphatidic acid, as regulators of lymphangiogenesis, and the emerging importance of the lymphangiogenesis as a therapeutic target.
Collapse
|
21
|
Cui M, Göbel V, Zhang H. Uncovering the 'sphinx' of sphingosine 1-phosphate signalling: from cellular events to organ morphogenesis. Biol Rev Camb Philos Soc 2021; 97:251-272. [PMID: 34585505 PMCID: PMC9292677 DOI: 10.1111/brv.12798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/02/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite, functioning as a signalling molecule in diverse cellular processes. Over the past few decades, studies of S1P signalling have revealed that the physiological activity of S1P largely depends on S1P metabolizing enzymes, transporters and receptors on the plasma membrane, as well as on the intracellular proteins that S1P binds directly to. In addition to its roles in cancer signalling, immunity and inflammation, a large body of evidence has identified a close link of S1P signalling with organ morphogenesis. Here we discuss the vital role of S1P signalling in orchestrating various cellular events during organ morphogenesis through analysing each component along the extracellular and intracellular S1P signalling axes. For each component, we review advances in our understanding of S1P signalling and function from the upstream regulators to the downstream effectors and from cellular behaviours to tissue organization, primarily in the context of morphogenetic mechanisms. S1P-mediated vesicular trafficking is also discussed as a function independent of its signalling function. A picture emerges that reveals a multifaceted role of S1P-dependent pathways in the development and maintenance of organ structure and function.
Collapse
Affiliation(s)
- Mengqiao Cui
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Verena Göbel
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, U.S.A
| | - Hongjie Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
22
|
Bornhorst D, Abdelilah-Seyfried S. Strong as a Hippo's Heart: Biomechanical Hippo Signaling During Zebrafish Cardiac Development. Front Cell Dev Biol 2021; 9:731101. [PMID: 34422841 PMCID: PMC8375320 DOI: 10.3389/fcell.2021.731101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The heart is comprised of multiple tissues that contribute to its physiological functions. During development, the growth of myocardium and endocardium is coupled and morphogenetic processes within these separate tissue layers are integrated. Here, we discuss the roles of mechanosensitive Hippo signaling in growth and morphogenesis of the zebrafish heart. Hippo signaling is involved in defining numbers of cardiac progenitor cells derived from the secondary heart field, in restricting the growth of the epicardium, and in guiding trabeculation and outflow tract formation. Recent work also shows that myocardial chamber dimensions serve as a blueprint for Hippo signaling-dependent growth of the endocardium. Evidently, Hippo pathway components act at the crossroads of various signaling pathways involved in embryonic zebrafish heart development. Elucidating how biomechanical Hippo signaling guides heart morphogenesis has direct implications for our understanding of cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Dorothee Bornhorst
- Stem Cell Program, Division of Hematology and Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Molecular Biology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
23
|
Da Silveira Cavalcante L, Tessier SN. Zebrafish as a New Tool in Heart Preservation Research. J Cardiovasc Dev Dis 2021; 8:39. [PMID: 33917701 PMCID: PMC8068018 DOI: 10.3390/jcdd8040039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Heart transplantation became a reality at the end of the 1960s as a life-saving option for patients with end-stage heart failure. Static cold storage (SCS) at 4-6 °C has remained the standard for heart preservation for decades. However, SCS only allows for short-term storage that precludes optimal matching programs, requires emergency surgeries, and results in the unnecessary discard of organs. Among the alternatives seeking to extend ex vivo lifespan and mitigate the shortage of organs are sub-zero or machine perfusion modalities. Sub-zero approaches aim to prolong cold ischemia tolerance by deepening metabolic stasis, while machine perfusion aims to support metabolism through the continuous delivery of oxygen and nutrients. Each of these approaches hold promise; however, complex barriers must be overcome before their potential can be fully realized. We suggest that one barrier facing all experimental efforts to extend ex vivo lifespan are limited research tools. Mammalian models are usually the first choice due to translational aspects, yet experimentation can be restricted by expertise, time, and resources. Instead, there are instances when smaller vertebrate models, like the zebrafish, could fill critical experimental gaps in the field. Taken together, this review provides a summary of the current gold standard for heart preservation as well as new technologies in ex vivo lifespan extension. Furthermore, we describe how existing tools in zebrafish research, including isolated organ, cell specific and functional assays, as well as molecular tools, could complement and elevate heart preservation research.
Collapse
Affiliation(s)
- Luciana Da Silveira Cavalcante
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 2114, USA;
- Shriners Hospitals for Children, Boston, MA 2114, USA
| | - Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 2114, USA;
- Shriners Hospitals for Children, Boston, MA 2114, USA
| |
Collapse
|
24
|
Drexler Y, Molina J, Mitrofanova A, Fornoni A, Merscher S. Sphingosine-1-Phosphate Metabolism and Signaling in Kidney Diseases. J Am Soc Nephrol 2021; 32:9-31. [PMID: 33376112 PMCID: PMC7894665 DOI: 10.1681/asn.2020050697] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the past few decades, sphingolipids and sphingolipid metabolites have gained attention because of their essential role in the pathogenesis and progression of kidney diseases. Studies in models of experimental and clinical nephropathies have described accumulation of sphingolipids and sphingolipid metabolites, and it has become clear that the intracellular sphingolipid composition of renal cells is an important determinant of renal function. Proper function of the glomerular filtration barrier depends heavily on the integrity of lipid rafts, which include sphingolipids as key components. In addition to contributing to the structural integrity of membranes, sphingolipid metabolites, such as sphingosine-1-phosphate (S1P), play important roles as second messengers regulating biologic processes, such as cell growth, differentiation, migration, and apoptosis. This review will focus on the role of S1P in renal cells and how aberrant extracellular and intracellular S1P signaling contributes to the pathogenesis and progression of kidney diseases.
Collapse
Affiliation(s)
- Yelena Drexler
- Katz Family Division of Nephrology and Hypertension/Peggy and Harold Katz Family Drug Discovery Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | |
Collapse
|
25
|
Zhao Z, Zhu K, Li Y, Zhu Z, Pan L, Pan T, Borgens RB, Zhao M. Optimization of Electrical Stimulation for Safe and Effective Guidance of Human Cells. Bioelectricity 2020; 2:372-381. [PMID: 34476366 DOI: 10.1089/bioe.2020.0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Direct current (DC) electrical stimulation has been shown to have remarkable effects on regulating cell behaviors. Translation of this technology to clinical uses, however, has to overcome several obstacles, including Joule heat production, changes in pH and ion concentration, and electrode products that are detrimental to cells. Application of DC voltages in thick tissues where their thickness is >0.8 mm caused significant changes in temperature, pH, and ion concentrations. In this study, we developed a multifield and -chamber electrotaxis chip, and various stimulation schemes to determine effective and safe stimulation strategies to guide the migration of human vascular endothelial cells. The electrotaxis chip with a chamber thickness of 1 mm allows 10 voltages applied in one experiment. DC electric fields caused detrimental effects on cells in a 1 mm chamber that mimicking 3D tissue with a decrease in cell migration speed and an increase in necrosis and apoptosis. Using the chip, we were able to select optimal stimulation schemes that were effective in guiding cells with minimal detrimental effects. This experimental system can be used to determine optimal electrical stimulation schemes for cell migration, survival with minimal detrimental effects on cells, which will facilitate to bring electrical stimulation for in vivo use.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Department of Ophthalmology & Vision Science, Department of Dermatology, Institute for Regenerative Cures, University of California Davis, Sacramento, California, USA
| | - Kan Zhu
- Department of Ophthalmology & Vision Science, Department of Dermatology, Institute for Regenerative Cures, University of California Davis, Sacramento, California, USA.,Department of Ophthalmology, University of California Davis, School of Medicine, Sacramento, California, USA
| | - Yan Li
- Department of Ophthalmology & Vision Science, Department of Dermatology, Institute for Regenerative Cures, University of California Davis, Sacramento, California, USA
| | - Zijie Zhu
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Linjie Pan
- Center for Paralysis Research, Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Tingrui Pan
- Department of Ophthalmology, University of California Davis, School of Medicine, Sacramento, California, USA
| | - Richard B Borgens
- Center for Paralysis Research, Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Min Zhao
- Department of Ophthalmology & Vision Science, Department of Dermatology, Institute for Regenerative Cures, University of California Davis, Sacramento, California, USA.,Department of Ophthalmology, University of California Davis, School of Medicine, Sacramento, California, USA
| |
Collapse
|
26
|
Armistead J, Hatzold J, van Roye A, Fahle E, Hammerschmidt M. Entosis and apical cell extrusion constitute a tumor-suppressive mechanism downstream of Matriptase. J Cell Biol 2020; 219:132730. [PMID: 31819976 PMCID: PMC7041680 DOI: 10.1083/jcb.201905190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/02/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Armistead et al. show that in a bilayered epithelium in vivo, apical cell extrusion of basal cells is achieved via their engulfment by surface cells. In zebrafish hai1a mutants, this constitutes a tumor-suppressive mechanism, revealing a double face of Matriptase. The type II transmembrane serine protease Matriptase 1 (ST14) is commonly known as an oncogene, yet it also plays an understudied role in suppressing carcinogenesis. This double face is evident in the embryonic epidermis of zebrafish loss-of-function mutants in the cognate Matriptase inhibitor Hai1a (Spint1a). Mutant embryos display epidermal hyperplasia, but also apical cell extrusions, during which extruding outer keratinocytes carry out an entosis-like engulfment and entrainment of underlying basal cells, constituting a tumor-suppressive effect. These counteracting Matriptase effects depend on EGFR and the newly identified mediator phospholipase D (PLD), which promotes both mTORC1-dependent cell proliferation and sphingosine-1-phosphate (S1P)–dependent entosis and apical cell extrusion. Accordingly, hypomorphic hai1a mutants heal spontaneously, while otherwise lethal hai1a amorphs are efficiently rescued upon cotreatment with PLD inhibitors and S1P. Together, our data elucidate the mechanisms underlying the double face of Matriptase function in vivo and reveal the potential use of combinatorial carcinoma treatments when such double-face mechanisms are involved.
Collapse
Affiliation(s)
- Joy Armistead
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Anna van Roye
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Evelin Fahle
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
27
|
Liu Y, Zhu Z, Ho IHT, Shi Y, Li J, Wang X, Chan MTV, Cheng CHK. Genetic Deletion of miR-430 Disrupts Maternal-Zygotic Transition and Embryonic Body Plan. Front Genet 2020; 11:853. [PMID: 32849832 PMCID: PMC7417628 DOI: 10.3389/fgene.2020.00853] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
MiR-430 is considered an important regulator during embryonic development, but genetic loss-of-function study is still lacking. Here we demonstrated that genetic deletion of the miR-430 cluster resulted in developmental defects in cell movement, germ layer specification, axis patterning and organ progenitor formation in zebrafish. Transcriptome analysis indicated that the maternally provided transcripts were not properly degraded whereas the zygotic genome expressed genes were not fully activated in the miR-430 mutants. We further found that a reciprocal regulatory loop exists between miR-430 and maternally provided transcripts: the maternally provided transcripts (Nanog, Dicer1, Dgcr8, and AGOs) are required for miR-430 biogenesis and function, whereas miR-430 is required for the clearance of these maternally provided transcripts. These data provide the first genetic evidence that miR-430 is required for maternal-zygotic transition and subsequent establishment of embryonic body plan.
Collapse
Affiliation(s)
- Yun Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Zelong Biological Technology Limited Cooperation, Shenzhen, China
| | - Zeyao Zhu
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Idy H T Ho
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Anesthesia and Intensive Care, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yujian Shi
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Xia Wang
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Matthew T V Chan
- Department of Anesthesia and Intensive Care, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
Kipp M. Does Siponimod Exert Direct Effects in the Central Nervous System? Cells 2020; 9:cells9081771. [PMID: 32722245 PMCID: PMC7463861 DOI: 10.3390/cells9081771] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
The modulation of the sphingosine 1-phosphate receptor is an approved treatment for relapsing multiple sclerosis because of its anti-inflammatory effect of retaining lymphocytes in lymph nodes. Different sphingosine 1-phosphate receptor subtypes are expressed in the brain and spinal cord, and their pharmacological effects may improve disease development and neuropathology. Siponimod (BAF312) is a novel sphingosine 1-phosphate receptor modulator that has recently been approved for the treatment of active secondary progressive multiple sclerosis (MS). In this review article, we summarize recent evidence suggesting that the active role of siponimod in patients with progressive MS may be due to direct interaction with central nervous system cells. Additionally, we tried to summarize our current understanding of the function of siponimod and discuss the effects observed in the case of MS.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany
| |
Collapse
|
29
|
Schumacher JA, Wright ZA, Owen ML, Bredemeier NO, Sumanas S. Integrin α5 and Integrin α4 cooperate to promote endocardial differentiation and heart morphogenesis. Dev Biol 2020; 465:46-57. [PMID: 32628938 DOI: 10.1016/j.ydbio.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 10/23/2022]
Abstract
Endocardium is critically important for proper function of the cardiovascular system. Not only does endocardium connect the heart to blood vasculature, it also plays an important role in heart morphogenesis, valve formation, and ventricular trabeculation. The extracellular protein Fibronectin (Fn1) promotes endocardial differentiation, but the signaling pathways downstream of Fn1 that regulate endocardial development are not understood. Here, we analyzed the role of the Fibronectin receptors Integrin alpha5 (Itga5) and Integrin alpha4 (Itga4) in zebrafish heart development. We show that itga5 mRNA is expressed in both endocardium and myocardium during early stages of heart development. Through analysis of both itga5 single mutants and itga4;itga5 double mutants, we show that loss of both itga5 and itga4 results in enhanced defects in endocardial differentiation and morphogenesis compared to loss of itga5 alone. Loss of both itga5 and itga4 results in cardia bifida and severe myocardial morphology defects. Finally, we find that loss of itga5 and itga4 results in abnormally narrow anterior endodermal sheet morphology. Together, our results support a model in which Itga5 and Itga4 cooperate to promote endocardial differentiation, medial migration of endocardial and myocardial cells, and morphogenesis of anterior endoderm.
Collapse
Affiliation(s)
- Jennifer A Schumacher
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Biological Sciences, Miami University, Hamilton, OH, USA.
| | - Zoë A Wright
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mackenzie L Owen
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nina O Bredemeier
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
30
|
Whole-body tracking of single cells via positron emission tomography. Nat Biomed Eng 2020; 4:835-844. [PMID: 32541917 PMCID: PMC7423763 DOI: 10.1038/s41551-020-0570-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 05/15/2020] [Indexed: 01/14/2023]
Abstract
In vivo molecular imaging can measure the average kinetics and movement routes of injected cells through the body. Yet owing to the non-specific accumulation of the contrast agent and its efflux from the cells, most such imaging methods suffer from inaccurate estimations of the distribution of the cells. Here, we show that single human breast cancer cells loaded with mesoporous silica nanoparticles concentrating the 68Ga radioisotope and injected in immunodeficient mice can be tracked in real time from the pattern of annihilation photons detected by positron emission tomography, with respect to anatomical landmarks derived from X-ray computed tomography. We show that the cells travelled at an average velocity of 50 mm/s and arrested in the lungs two-to-three seconds after tail-vein injection in the mice, which is consistent with the blood-flow rate. Single-cell tracking could be used to determine the kinetics of cell trafficking and arrest during the earliest phase of the metastatic cascade, the trafficking of immune cells during cancer immunotherapy, and the distribution of cells after transplantation. One-sentence editorial summary: The travelling kinetics of single cells loaded with mesoporous silica nanoparticles concentrating the 68Ga radioisotope and injected in mice can be tracked in real time from the pattern of coincident gamma-rays detected by positron emission tomography.
Collapse
|
31
|
Wasserman AH, Venkatesan M, Aguirre A. Bioactive Lipid Signaling in Cardiovascular Disease, Development, and Regeneration. Cells 2020; 9:E1391. [PMID: 32503253 PMCID: PMC7349721 DOI: 10.3390/cells9061391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of death globally. Understanding and characterizing the biochemical context of the cardiovascular system in health and disease is a necessary preliminary step for developing novel therapeutic strategies aimed at restoring cardiovascular function. Bioactive lipids are a class of dietary-dependent, chemically heterogeneous lipids with potent biological signaling functions. They have been intensively studied for their roles in immunity, inflammation, and reproduction, among others. Recent advances in liquid chromatography-mass spectrometry techniques have revealed a staggering number of novel bioactive lipids, most of them unknown or very poorly characterized in a biological context. Some of these new bioactive lipids play important roles in cardiovascular biology, including development, inflammation, regeneration, stem cell differentiation, and regulation of cell proliferation. Identifying the lipid signaling pathways underlying these effects and uncovering their novel biological functions could pave the way for new therapeutic strategies aimed at CVD and cardiovascular regeneration.
Collapse
Affiliation(s)
- Aaron H. Wasserman
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Manigandan Venkatesan
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aitor Aguirre
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
32
|
Shrestha R, Lieberth J, Tillman S, Natalizio J, Bloomekatz J. Using Zebrafish to Analyze the Genetic and Environmental Etiologies of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:189-223. [PMID: 32304074 DOI: 10.1007/978-981-15-2389-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Congenital heart defects (CHDs) are among the most common human birth defects. However, the etiology of a large proportion of CHDs remains undefined. Studies identifying the molecular and cellular mechanisms that underlie cardiac development have been critical to elucidating the origin of CHDs. Building upon this knowledge to understand the pathogenesis of CHDs requires examining how genetic or environmental stress changes normal cardiac development. Due to strong molecular conservation to humans and unique technical advantages, studies using zebrafish have elucidated both fundamental principles of cardiac development and have been used to create cardiac disease models. In this chapter we examine the unique toolset available to zebrafish researchers and how those tools are used to interrogate the genetic and environmental contributions to CHDs.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Jaret Lieberth
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Savanna Tillman
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Joseph Natalizio
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | | |
Collapse
|
33
|
Jozefczuk E, Guzik TJ, Siedlinski M. Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacol Res 2020; 156:104793. [PMID: 32278039 DOI: 10.1016/j.phrs.2020.104793] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a signaling lipid, synthetized by sphingosine kinases (SPHK1 and SPHK2), that affects cardiovascular function in various ways. S1P signaling is complex, particularly since its molecular action is reliant on the differential expression of its receptors (S1PR1, S1PR2, S1PR3, S1PR4, S1PR5) within various tissues. Significance of this sphingolipid is manifested early in vertebrate development as certain defects in S1P signaling result in embryonic lethality due to defective vasculo- or cardiogenesis. Similar in the mature organism, S1P orchestrates both physiological and pathological processes occurring in the heart and vasculature of higher eukaryotes. S1P regulates cell fate, vascular tone, endothelial function and integrity as well as lymphocyte trafficking, thus disbalance in its production and signaling has been linked with development of such pathologies as arterial hypertension, atherosclerosis, endothelial dysfunction and aberrant angiogenesis. Number of signaling mechanisms are critical - from endothelial nitric oxide synthase through STAT3, MAPK and Akt pathways to HDL particles involved in redox and inflammatory balance. Moreover, S1P controls both acute cardiac responses (cardiac inotropy and chronotropy), as well as chronic processes (such as apoptosis and hypertrophy), hence numerous studies demonstrate significance of S1P in the pathogenesis of hypertrophic/fibrotic heart disease, myocardial infarction and heart failure. This review presents current knowledge concerning the role of S1P in the cardiovascular system, as well as potential therapeutic approaches to target S1P signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- E Jozefczuk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - T J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland; Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - M Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland; Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.
| |
Collapse
|
34
|
Cartier A, Hla T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 2020; 366:366/6463/eaar5551. [PMID: 31624181 DOI: 10.1126/science.aar5551] [Citation(s) in RCA: 393] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Sphingosine 1-phosphate (S1P), a metabolic product of cell membrane sphingolipids, is bound to extracellular chaperones, is enriched in circulatory fluids, and binds to G protein-coupled S1P receptors (S1PRs) to regulate embryonic development, postnatal organ function, and disease. S1PRs regulate essential processes such as adaptive immune cell trafficking, vascular development, and homeostasis. Moreover, S1PR signaling is a driver of multiple diseases. The past decade has witnessed an exponential growth in this field, in part because of multidisciplinary research focused on this lipid mediator and the application of S1PR-targeted drugs in clinical medicine. This has revealed fundamental principles of lysophospholipid mediator signaling that not only clarify the complex and wide ranging actions of S1P but also guide the development of therapeutics and translational directions in immunological, cardiovascular, neurological, inflammatory, and fibrotic diseases.
Collapse
Affiliation(s)
- Andreane Cartier
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Józefczuk E, Nosalski R, Saju B, Crespo E, Szczepaniak P, Guzik TJ, Siedlinski M. Cardiovascular Effects of Pharmacological Targeting of Sphingosine Kinase 1. Hypertension 2020; 75:383-392. [PMID: 31838904 PMCID: PMC7055939 DOI: 10.1161/hypertensionaha.119.13450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/11/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
High blood pressure is a risk factor for cardiovascular diseases. Ang II (angiotensin II), a key pro-hypertensive hormone, mediates target organ consequences such as endothelial dysfunction and cardiac hypertrophy. S1P (sphingosine-1-phosphate), produced by Sphk1 (sphingosine kinase 1), plays a pivotal role in the pathogenesis of hypertension and downstream organ damage, as it controls vascular tone and regulates cardiac remodeling. Accordingly, we aimed to examine if pharmacological inhibition of Sphk1 using selective inhibitor PF543 can represent a useful vasoprotective and cardioprotective anti-hypertensive strategy in vivo. PF543 was administered intraperitoneally throughout a 14-day Ang II-infusion in C57BL6/J male mice. Pharmacological inhibition of Sphk1 improved endothelial function of arteries of hypertensive mice that could be mediated via decrease in eNOS (endothelial nitric oxide synthase) phosphorylation at T495. This effect was independent of blood pressure. Importantly, PF543 also reduced cardiac hypertrophy (heart to body weight ratio, 5.6±0.2 versus 6.4±0.1 versus 5.9±0.2 mg/g; P<0.05 for Sham, Ang II+placebo, and Ang II+PF543-treated mice, respectively). Mass spectrometry revealed that PF543 elevated cardiac sphingosine, that is, Sphk1 substrate, content in vivo. Mechanistically, RNA-Seq indicated a decreased expression of cardiac genes involved in actin/integrin organization, S1pr1 signaling, and tissue remodeling. Indeed, downregulation of Rock1 (Rho-associated coiled-coil containing protein kinase 1), Stat3 (signal transducer and activator of transcription 3), PKC (protein kinase C), and ERK1/2 (extracellular signal-regulated kinases 1/2) level/phosphorylation by PF543 was observed. In summary, pharmacological inhibition of Sphk1 partially protects against Ang II-induced cardiac hypertrophy and endothelial dysfunction. Therefore, it may represent a promising target for harnessing residual cardiovascular risk in hypertension.
Collapse
Affiliation(s)
- Ewelina Józefczuk
- From the Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland (E.J., R.N., P.S., T.J.G., M.S.)
| | - Ryszard Nosalski
- From the Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland (E.J., R.N., P.S., T.J.G., M.S.)
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasglow, United Kingdom (R.N., B.S., E.C., T.J.G.)
| | - Blessy Saju
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasglow, United Kingdom (R.N., B.S., E.C., T.J.G.)
| | - Eva Crespo
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasglow, United Kingdom (R.N., B.S., E.C., T.J.G.)
| | - Piotr Szczepaniak
- From the Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland (E.J., R.N., P.S., T.J.G., M.S.)
| | - Tomasz Jan Guzik
- From the Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland (E.J., R.N., P.S., T.J.G., M.S.)
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasglow, United Kingdom (R.N., B.S., E.C., T.J.G.)
| | - Mateusz Siedlinski
- From the Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland (E.J., R.N., P.S., T.J.G., M.S.)
| |
Collapse
|
36
|
Kovilakath A, Jamil M, Cowart LA. Sphingolipids in the Heart: From Cradle to Grave. Front Endocrinol (Lausanne) 2020; 11:652. [PMID: 33042014 PMCID: PMC7522163 DOI: 10.3389/fendo.2020.00652] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/11/2020] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide and this has largely been driven by the increase in metabolic disease in recent decades. Metabolic disease alters metabolism, distribution, and profiles of sphingolipids in multiple organs and tissues; as such, sphingolipid metabolism and signaling have been vigorously studied as contributors to metabolic pathophysiology in various pathological outcomes of obesity, including cardiovascular disease. Much experimental evidence suggests that targeting sphingolipid metabolism may be advantageous in the context of cardiometabolic disease. The heart, however, is a structurally and functionally complex organ where bioactive sphingolipids have been shown not only to mediate pathological processes, but also to contribute to essential functions in cardiogenesis and cardiac function. Additionally, some sphingolipids are protective in the context of ischemia/reperfusion injury. In addition to mechanistic contributions, untargeted lipidomics approaches used in recent years have identified some specific circulating sphingolipids as novel biomarkers in the context of cardiovascular disease. In this review, we summarize recent literature on both deleterious and beneficial contributions of sphingolipids to cardiogenesis and myocardial function as well as recent identification of novel sphingolipid biomarkers for cardiovascular disease risk prediction and diagnosis.
Collapse
Affiliation(s)
- Anna Kovilakath
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - Maryam Jamil
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - Lauren Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Hunter Holmes McGuire Veteran's Affairs Medical Center, Richmond, VA, United States
- *Correspondence: Lauren Ashley Cowart
| |
Collapse
|
37
|
Qi H, Cole J, Grambergs RC, Gillenwater JR, Mondal K, Khanam S, Dutta S, Stiles M, Proia RL, Allegood J, Mandal N. Sphingosine Kinase 2 Phosphorylation of FTY720 is Unnecessary for Prevention of Light-Induced Retinal Damage. Sci Rep 2019; 9:7771. [PMID: 31123291 PMCID: PMC6533254 DOI: 10.1038/s41598-019-44047-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian Sphingosine kinase 2 is the primary enzyme responsible for phosphorylating FTY720 to its active form, FTY720-P. Systemic FTY720 treatment confers significant protection to murine retinas from light- and disease-mediated photoreceptor cell death. It is not clear whether FTY720-P, FTY720, or both are responsible for this photoreceptor protection. We investigated Sphingosine kinase 2 knockout (Sphk2 KO) mouse retinas, tested their sensitivity to light, and measured what degree of protection from light-induced damage they receive from systemic FTY720 treatment. Sphk2 KO retinas were found to be similar to their wild-type counterparts in sensitivity to light damage. Additionally, FTY720 treatment protected Sphk2 KO retinas from light-induced damage despite significant retardation of FTY720 phosphorylation in Sphk2 KO mice. We conclude that FTY720 serves an active role in preventing photoreceptor cell death. Furthermore, we conclude that the phosphorylation of FTY720 is not necessary to provide this protective effect.
Collapse
Affiliation(s)
- Hui Qi
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73104, USA
| | - Jerome Cole
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Richard C Grambergs
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - John R Gillenwater
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Koushik Mondal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sufiya Khanam
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Soma Dutta
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Megan Stiles
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73104, USA
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 2329, USA
| | - Nawajes Mandal
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73104, USA. .,Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
38
|
Dissecting metabolism using zebrafish models of disease. Biochem Soc Trans 2019; 47:305-315. [PMID: 30700500 DOI: 10.1042/bst20180335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
Zebrafish (Danio rerio) are becoming an increasingly powerful model organism to study the role of metabolism in disease. Since its inception, the zebrafish model has relied on unique attributes such as the transparency of embryos, high fecundity and conservation with higher vertebrates, to perform phenotype-driven chemical and genetic screens. In this review, we describe how zebrafish have been used to reveal novel mechanisms by which metabolism regulates embryonic development, obesity, fatty liver disease and cancer. In addition, we will highlight how new approaches in advanced microscopy, transcriptomics and metabolomics using zebrafish as a model system have yielded fundamental insights into the mechanistic underpinnings of disease.
Collapse
|
39
|
Wang E, He X, Zeng M. The Role of S1P and the Related Signaling Pathway in the Development of Tissue Fibrosis. Front Pharmacol 2019; 9:1504. [PMID: 30687087 PMCID: PMC6338044 DOI: 10.3389/fphar.2018.01504] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
Tissue fibrosis, including pulmonary fibrosis, hepatic fibrosis, and cardiac fibrosis, is an important stage in the development of many diseases. It can lead to structural damage and dysfunction and even severe carcinogenesis or death. There is currently no effective method for the treatment of fibrosis. At present, the molecular mechanism of tissue fibrosis has not yet been fully elucidated, but many studies have demonstrated that it is involved in conveying the complex messages between fibroblasts and various cytokines. Sphingosine 1-phosphate (S1P) is a naturally bioactive sphingolipid. S1P and the related signaling pathways are important intracellular metabolic pathways involved in many life activities, including cell proliferation, differentiation, apoptosis, and cellular signal transduction. Increasing evidence suggests that S1P and its signaling pathways play an important role in the development of tissue fibrosis; however, the mechanisms of these effects have not yet been fully elucidated, and even the role of S1P and its signaling pathways are still controversial. This article focuses on the role of S1P and the related signaling pathways in the development of fibrosis of lung, liver, heart, and other tissues, with emphasis on the application of inhibitors of some of molecules in the pathway in clinical treatment of fibrosis diseases.
Collapse
Affiliation(s)
- Erjin Wang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xingxuan He
- Department of Human Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ming Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
40
|
Behrangi N, Fischbach F, Kipp M. Mechanism of Siponimod: Anti-Inflammatory and Neuroprotective Mode of Action. Cells 2019; 8:cells8010024. [PMID: 30621015 PMCID: PMC6356776 DOI: 10.3390/cells8010024] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disorder of the central nervous system (CNS), and represents one of the main causes of disability in young adults. On the histopathological level, the disease is characterized by inflammatory demyelination and diffuse neurodegeneration. Although on the surface the development of new inflammatory CNS lesions in MS may appear consistent with a primary recruitment of peripheral immune cells, questions have been raised as to whether lymphocyte and/or monocyte invasion into the brain are really at the root of inflammatory lesion development. In this review article, we discuss a less appreciated inflammation-neurodegeneration interplay, that is: Neurodegeneration can trigger the formation of new, focal inflammatory lesions. We summarize old and recent findings suggesting that new inflammatory lesions develop at sites of focal or diffuse degenerative processes within the CNS. Such a concept is discussed in the context of the EXPAND trial, showing that siponimod exerts anti-inflammatory and neuroprotective activities in secondary progressive MS patients. The verification or rejection of such a concept is vital for the development of new therapeutic strategies for progressive MS.
Collapse
Affiliation(s)
- Newshan Behrangi
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, University Medical Center, 39071 Rostock, Germany.
| | - Felix Fischbach
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, University Medical Center, 39071 Rostock, Germany.
| |
Collapse
|
41
|
Bian G, Yu C, Liu L, Fang C, Chen K, Ren P, Zhang Q, Liu F, Zhang K, Xue Q, Xiang J, Guo H, Song J, Zhao Y, Wu W, Chung SK, Sun R, Ju G, Wang J. Sphingosine 1-phosphate stimulates eyelid closure in the developing rat by stimulating EGFR signaling. Sci Signal 2018; 11:11/553/eaat1470. [DOI: 10.1126/scisignal.aat1470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In many mammals, the eyelids migrate over the eye and fuse during embryogenesis to protect the cornea from damage during birth and early life. Loss-of-function mutations affecting the epidermal growth factor receptor (EGFR) signaling pathway cause an eyes-open-at-birth (EOB) phenotype in rodents. We identified an insertional mutation in Spinster homolog 2 (Spns2) in a strain of transgenic rats exhibiting the EOB phenotype. Spns2, a sphingosine 1-phosphate (S1P) transporter that releases S1P from cells, was enriched at the tip of developing eyelids in wild-type rat embryos. Spns2 expression or treatment with S1P or any one of several EGFR ligands rescued the EOB Spns2 mutant phenotype in vivo and in tissue explants in vitro and rescued the formation of stress fibers in primary keratinocytes from mutants. S1P signaled through the receptors S1PR1, S1PR2, and S1PR3 to activate extracellular signal–regulated kinase (ERK) and EGFR-dependent mitogen-activated protein kinase kinase kinase 1 (MEKK1)–c-Jun signaling. S1P also induced the nuclear translocation of the transcription factor MAL in a manner dependent on EGFR signaling. MAL and c-Jun stimulated the expression of the microRNAs miR-21 and miR-222, both of which target the metalloprotease inhibitor TIMP3, thus promoting metalloprotease activity. The metalloproteases ADAM10 and ADAM17 stimulated EGFR signaling by cleaving a membrane-anchored form of EGF to release the ligand. Our results outline a network by which S1P transactivates EGFR signaling through a complex mechanism involving feedback between several intra- and extracellular molecules to promote eyelid fusion in the developing rat.
Collapse
|
42
|
Wu RS, Lam II, Clay H, Duong DN, Deo RC, Coughlin SR. A Rapid Method for Directed Gene Knockout for Screening in G0 Zebrafish. Dev Cell 2018; 46:112-125.e4. [PMID: 29974860 DOI: 10.1016/j.devcel.2018.06.003] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
Zebrafish is a powerful model for forward genetics. Reverse genetic approaches are limited by the time required to generate stable mutant lines. We describe a system for gene knockout that consistently produces null phenotypes in G0 zebrafish. Yolk injection of sets of four CRISPR/Cas9 ribonucleoprotein complexes redundantly targeting a single gene recapitulated germline-transmitted knockout phenotypes in >90% of G0 embryos for each of 8 test genes. Early embryonic (6 hpf) and stable adult phenotypes were produced. Simultaneous multi-gene knockout was feasible but associated with toxicity in some cases. To facilitate use, we generated a lookup table of four-guide sets for 21,386 zebrafish genes and validated several. Using this resource, we targeted 50 cardiomyocyte transcriptional regulators and uncovered a role of zbtb16a in cardiac development. This system provides a platform for rapid screening of genes of interest in development, physiology, and disease models in zebrafish.
Collapse
Affiliation(s)
- Roland S Wu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ian I Lam
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hilary Clay
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel N Duong
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rahul C Deo
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shaun R Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
43
|
Russo I, Femminò S, Barale C, Tullio F, Geuna S, Cavalot F, Pagliaro P, Penna C. Cardioprotective Properties of Human Platelets Are Lost in Uncontrolled Diabetes Mellitus: A Study in Isolated Rat Hearts. Front Physiol 2018; 9:875. [PMID: 30042694 PMCID: PMC6048273 DOI: 10.3389/fphys.2018.00875] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
Platelets affect myocardial damage from ischemia/reperfusion. Redox-dependent sphingosine-1-phosphate production and release are altered in diabetic platelets. Sphingosine-1-phosphate is a double-edged sword for ischemia/reperfusion injury. Therefore, we aimed to verify whether: (1) human healthy- or diabetic-platelets are cardioprotective, (2) sphingosine-1-phosphate receptors and downstream kinases play a role in platelet-induced cardioprotection, and (3) a correlation between platelet redox status and myocardial ischemia/reperfusion injury exists. Isolated rat hearts were subjected to 30-min ischemia and 1-h reperfusion. Infarct size was studied in hearts pretreated with healthy- or diabetic-platelets. Healthy-platelets were co-infused with sphingosine-1-phosphate receptor blocker, ERK-1/2 inhibitor, PI3K antagonist or PKC inhibitor to ascertain the cardioprotective mechanisms. In platelets we assessed (i) aggregation response to ADP, collagen, and arachidonic-acid, (ii) cyclooxygenase-1 levels, and (iii) AKT and ERK-phosphorylation. Platelet sphingosine-1-phosphate production and platelet levels of reactive oxygen species (ROS) were quantified and correlated to infarct size. Infarct size was reduced by about 22% in healthy-platelets pretreated hearts only. This cardioprotective effect was abrogated by either sphingosine-1-phosphate receptors or ERK/PI3K/PKC pathway blockade. Cyclooxygenase-1 levels and aggregation indices were higher in diabetic-platelets than healthy-platelets. Diabetic-platelets released less sphingosine-1-phosphate than healthy-platelets when mechanical or chemically stimulated in vitro. Yet, ROS levels were higher in diabetic-platelets and correlated with infarct size. Cardioprotective effects of healthy-platelet depend on the platelet’s capacity to activate cardiac sphingosine-1-phosphate receptors and ERK/PI3K/PKC pathways. However, diabetic-platelets release less S1P and lose cardioprotective effects. Platelet ROS levels correlate with infarct size. Whether these redox alterations are responsible for sphingosine-1-phosphate dysfunction in diabetic-platelets remains to be ascertained.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Clinical and Biological Sciences, AOU San Luigi, University of Turin, Turin, Italy
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, AOU San Luigi, University of Turin, Turin, Italy.,Istituto Nazionale Ricerche Cardiovascolari (INRC), Bologna, Italy
| | - Cristina Barale
- Department of Clinical and Biological Sciences, AOU San Luigi, University of Turin, Turin, Italy
| | - Francesca Tullio
- Department of Clinical and Biological Sciences, AOU San Luigi, University of Turin, Turin, Italy.,Istituto Nazionale Ricerche Cardiovascolari (INRC), Bologna, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, AOU San Luigi, University of Turin, Turin, Italy
| | - Franco Cavalot
- Internal Medicine and Metabolic Disease Unit, AOU San Luigi, University of Turin, Turin, Italy.,Ospedale San Luigi Gonzaga, Orbassano, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, AOU San Luigi, University of Turin, Turin, Italy.,Istituto Nazionale Ricerche Cardiovascolari (INRC), Bologna, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, AOU San Luigi, University of Turin, Turin, Italy.,Istituto Nazionale Ricerche Cardiovascolari (INRC), Bologna, Italy
| |
Collapse
|
44
|
Malhotra D, Shin J, Solnica-Krezel L, Raz E. Spatio-temporal regulation of concurrent developmental processes by generic signaling downstream of chemokine receptors. eLife 2018; 7:e33574. [PMID: 29873633 PMCID: PMC5990360 DOI: 10.7554/elife.33574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/19/2018] [Indexed: 01/09/2023] Open
Abstract
Chemokines are secreted proteins that regulate a range of processes in eukaryotic organisms. Interestingly, different chemokine receptors control distinct biological processes, and the same receptor can direct different cellular responses, but the basis for this phenomenon is not known. To understand this property of chemokine signaling, we examined the function of the chemokine receptors Cxcr4a, Cxcr4b, Ccr7, Ccr9 in the context of diverse processes in embryonic development in zebrafish. Our results reveal that the specific response to chemokine signaling is dictated by cell-type-specific chemokine receptor signal interpretation modules (CRIM) rather than by chemokine-receptor-specific signals. Thus, a generic signal provided by different receptors leads to discrete responses that depend on the specific identity of the cell that receives the signal. We present the implications of employing generic signals in different contexts such as gastrulation, axis specification and single-cell migration.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cell Movement/genetics
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Receptors, CCR/genetics
- Receptors, CCR/metabolism
- Receptors, CCR7/genetics
- Receptors, CCR7/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Signal Transduction/genetics
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
| | - Jimann Shin
- Department of Developmental BiologyWashington University School of MedicineSt LouisMissouri
| | | | - Erez Raz
- Institute for Cell BiologyZMBEMuensterGermany
| |
Collapse
|
45
|
Guzzolino E, Chiavacci E, Ahuja N, Mariani L, Evangelista M, Ippolito C, Rizzo M, Garrity D, Cremisi F, Pitto L. Post-transcriptional Modulation of Sphingosine-1-Phosphate Receptor 1 by miR-19a Affects Cardiovascular Development in Zebrafish. Front Cell Dev Biol 2018; 6:58. [PMID: 29922649 PMCID: PMC5996577 DOI: 10.3389/fcell.2018.00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Sphingosine-1-phosphate is a bioactive lipid and a signaling molecule integrated into many physiological systems such as differentiation, proliferation and migration. In mammals S1P acts through binding to a family of five trans-membrane, G-protein coupled receptors (S1PRs) whose complex role has not been completely elucidated. In this study we use zebrafish, in which seven s1prs have been identified, to investigate the role of s1pr1. In mammals S1PR1 is the most highly expressed S1P receptor in the developing heart and regulates vascular development, but in zebrafish the data concerning its role are contradictory. Here we show that overexpression of zebrafish s1pr1 affects both vascular and cardiac development. Moreover we demonstrate that s1pr1 expression is strongly repressed by miR-19a during the early phases of zebrafish development. In line with this observation and with a recent study showing that miR-19a is downregulated in a zebrafish Holt-Oram model, we now demonstrate that s1pr1 is upregulated in heartstring hearts. Next we investigated whether defects induced by s1pr1 upregulation might contribute to the morphological alterations caused by Tbx5 depletion. We show that downregulation of s1pr1 is able to partially rescue cardiac and fin defects induced by Tbx5 depletion. Taken together, these data support a role for s1pr1 in zebrafish cardiovascular development, suggest the involvement of this receptor in the Tbx5 regulatory circuitry, and further support the crucial role of microRNAs in early phase of zebrafish development.
Collapse
Affiliation(s)
- Elena Guzzolino
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Elena Chiavacci
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Neha Ahuja
- Department of Biology, Center for Cardiovascular Research, Colorado State University, Fort Collins, CO, United States
| | - Laura Mariani
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Monica Evangelista
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Deborah Garrity
- Department of Biology, Center for Cardiovascular Research, Colorado State University, Fort Collins, CO, United States
| | | | - Letizia Pitto
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| |
Collapse
|
46
|
Badawy SMM, Okada T, Kajimoto T, Hirase M, Matovelo SA, Nakamura S, Yoshida D, Ijuin T, Nakamura SI. Extracellular α-synuclein drives sphingosine 1-phosphate receptor subtype 1 out of lipid rafts, leading to impaired inhibitory G-protein signaling. J Biol Chem 2018; 293:8208-8216. [PMID: 29632069 DOI: 10.1074/jbc.ra118.001986] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/04/2018] [Indexed: 11/06/2022] Open
Abstract
α-Synuclein (α-Syn)-positive intracytoplasmic inclusions, known as Lewy bodies, are thought to be involved in the pathogenesis of Lewy body diseases, such as Parkinson's disease (PD). Although growing evidence suggests that cell-to-cell transmission of α-Syn is associated with the progression of PD and that extracellular α-Syn promotes formation of inclusion bodies, its precise mechanism of action in the extracellular space remains unclear. Here, as indicated by both conventional fractionation techniques and FRET-based protein-protein interaction analysis, we demonstrate that extracellular α-Syn causes expulsion of sphingosine 1-phosphate receptor subtype 1 (S1P1R) from the lipid raft fractions. S1P1R regulates vesicular trafficking, and its expulsion involved α-Syn binding to membrane-surface gangliosides. Consequently, the S1P1R became refractory to S1P stimulation required for activating inhibitory G-protein (Gi) in the plasma membranes. Moreover, the extracellular α-Syn also induced uncoupling of the S1P1R on internal vesicles, resulting in the reduced amount of CD63 molecule (CD63) in the lumen of multivesicular endosomes, together with a decrease in CD63 in the released exosomes from α-Syn-treated cells. Furthermore, cholesterol-depleting agent-induced S1P1R expulsion from the rafts also resulted in S1P1R uncoupling. Taken together, these results suggest that extracellular α-Syn-induced expulsion of S1P1R from lipid rafts promotes the uncoupling of S1P1R from Gi, thereby blocking subsequent Gi signals, such as inhibition of cargo sorting into exosomal vesicles in multivesicular endosomes. These findings help shed additional light on PD pathogenesis.
Collapse
Affiliation(s)
- Shaymaa Mohamed Mohamed Badawy
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Taro Okada
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Mitsuhiro Hirase
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shubi Ambwene Matovelo
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shunsuke Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Daisuke Yoshida
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Takeshi Ijuin
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan.
| |
Collapse
|
47
|
Busnelli M, Manzini S, Parolini C, Escalante-Alcalde D, Chiesa G. Lipid phosphate phosphatase 3 in vascular pathophysiology. Atherosclerosis 2018. [DOI: 10.1016/j.atherosclerosis.2018.02.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Qi Y, Mair N, Kummer KK, Leitner MG, Camprubí-Robles M, Langeslag M, Kress M. Identification of Chloride Channels CLCN3 and CLCN5 Mediating the Excitatory Cl - Currents Activated by Sphingosine-1-Phosphate in Sensory Neurons. Front Mol Neurosci 2018; 11:33. [PMID: 29479306 PMCID: PMC5811518 DOI: 10.3389/fnmol.2018.00033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in numerous physiological and pathophysiological processes. We have previously reported a S1P-induced nocifensive response in mice by excitation of sensory neurons via activation of an excitatory chloride current. The underlying molecular mechanism for the S1P-induced chloride conductance remains elusive. In the present study, we identified two CLCN voltage-gated chloride channels, CLCN3 and CLCN5, which mediated a S1P-induced excitatory Cl- current in sensory neurons by combining RNA-seq, adenovirus-based gene silencing and whole-cell electrophysiological voltage-clamp recordings. Downregulation of CLCN3 and CLCN5 channels by adenovirus-mediated delivery of shRNA dramatically reduced S1P-induced Cl- current and membrane depolarization in sensory neurons. The mechanism of S1P-induced activation of the chloride current involved Rho GTPase but not Rho-associated protein kinase. Although S1P-induced potentiation of TRPV1-mediated ionic currents also involved Rho-dependent process, the lack of correlation of the S1P-activated Cl- current and the potentiation of TRPV1 by S1P suggests that CLCN3 and CLCN5 are necessary components for S1P-induced excitatory Cl- currents but not for the amplification of TRPV1-mediated currents in sensory neurons. This study provides a novel mechanistic insight into the importance of bioactive sphingolipids in nociception.
Collapse
Affiliation(s)
- Yanmei Qi
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Norbert Mair
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai K Kummer
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael G Leitner
- Department of Neurophysiology, Philipps University of Marburg, Marburg, Germany
| | - María Camprubí-Robles
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michiel Langeslag
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
49
|
Mendelson K, Pandey S, Hisano Y, Carellini F, Das BC, Hla T, Evans T. The ceramide synthase 2b gene mediates genomic sensing and regulation of sphingosine levels during zebrafish embryogenesis. eLife 2017; 6:21992. [PMID: 28956531 PMCID: PMC5650468 DOI: 10.7554/elife.21992] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 09/25/2017] [Indexed: 12/23/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is generated through phosphorylation of sphingosine by sphingosine kinases (Sphk1 and Sphk2). We show that sphk2 maternal-zygotic mutant zebrafish embryos (sphk2MZ) display early developmental phenotypes, including a delay in epiboly, depleted S1P levels, elevated levels of sphingosine, and resistance to sphingosine toxicity. The sphk2MZ embryos also have strikingly increased levels of maternal transcripts encoding ceramide synthase 2b (Cers2b), and loss of Cers2b in sphk2MZ embryos phenocopies sphingosine toxicity. An upstream region of the cers2b promoter supports enhanced expression of a reporter gene in sphk2MZ embryos compared to wildtype embryos. Furthermore, ectopic expression of Cers2b protein itself reduces activity of the promoter, and this repression is relieved by exogenous sphingosine. Therefore, the sphk2MZ genome recognizes the lack of sphingosine kinase activity and up-regulates cers2b as a salvage pathway for sphingosine turnover. Cers2b can also function as a sphingolipid-responsive factor to mediate at least part of a feedback regulatory mechanism.
Collapse
Affiliation(s)
- Karen Mendelson
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, United States.,Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, United States
| | - Suveg Pandey
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, United States
| | - Yu Hisano
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - Frank Carellini
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, United States
| | - Bhaskar C Das
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Timothy Hla
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, United States
| |
Collapse
|
50
|
Gut P, Reischauer S, Stainier DYR, Arnaout R. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev 2017; 97:889-938. [PMID: 28468832 PMCID: PMC5817164 DOI: 10.1152/physrev.00038.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date.
Collapse
Affiliation(s)
- Philipp Gut
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sven Reischauer
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Didier Y R Stainier
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Rima Arnaout
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|