1
|
Chiwoneso TC, Luo Y, Xu Y, Chen X, Chen L, Sun J. Kinases and their derived inhibitors from natural products. Bioorg Chem 2025; 156:108196. [PMID: 39908736 DOI: 10.1016/j.bioorg.2025.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/03/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
Protein kinase dysregulation is a hallmark of many cancers, yet their tumorigenic mechanisms remain elusive despite 60 years of study. Since learning that their mechanism includes catalyzing phosphorylation of amino acids in protein substrates, researchers began devising their inhibition strategies. Initially, protein kinase inhibitors (PKIs) derived from natural products were employed despite high cytotoxicity risks. While synthetic PKIs proved less toxic, they face significant drug resistance challenges. This review examines the progress in understanding protein kinases' role in cancer, their classification and modes of action since their discovery. To illuminate the path towards less toxic yet highly effective kinase inhibitors, this study analyzes the synthesis and modification of all FDA-approved natural product derived kinase inhibitors (NPDKIs) as well as those that failed clinical trials. By providing insights into successful and unsuccessful approaches, this review also aims to advance medicinal chemistry strategies for developing more effective and safer PKIs, potentially improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Takudzwa Chipeperengo Chiwoneso
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Yajing Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Yifan Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Xinyu Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China.
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China.
| |
Collapse
|
2
|
Hao H, Bian Y, Yang N, Ji X, Bao J, Zhu K. Discovery of anti-tumor small molecule lead compounds targeting the SH3 domain of c-Src protein through virtual screening and biological evaluation. Arch Biochem Biophys 2025; 764:110286. [PMID: 39743031 DOI: 10.1016/j.abb.2024.110286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
c-Src, also known as cellular Src, is a non-receptor tyrosine kinase that plays a crucial role in various cellular processes, including cell proliferation, adhesion, and migration. Its dysregulation has been implicated in the development and progression of several diseases, particularly cancer. Current therapeutic agents targeting c-Src are primarily small molecules binding to its kinase domain. However, drug resistance often reduces the effectiveness of these drugs. The SH3 domain of c-Src is a highly conserved functional region with a low propensity for developing drug resistance, whereas there are no existing anti-cancer drugs specifically binding to this domain. In this study, structure-based virtual screening and thermal shift experimental verification identified three molecules that showed potent binding affinity with SH3 domain of c-Src. Subsequent kinase activity assay validated the inhibitory activity of these compounds against c-Src, with IC50 values ranging from 60.42 to 122.2 nM. Next, cell-level assays and preliminary study were conducted to further evaluate the efficacy of the identified active compounds. In conclusion, the present work has provided new chemical templates as lead structures for the future development of new antitumor therapeutics targeting the c-Src SH3 domain to overcome drug resistance.
Collapse
Affiliation(s)
- Haifang Hao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Yuan Bian
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Na Yang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xingzhao Ji
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Jie Bao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Kongkai Zhu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
3
|
Pelaz SG, Flores-Hernández R, Vujic T, Schvartz D, Álvarez-Vázquez A, Ding Y, García-Vicente L, Belloso A, Talaverón R, Sánchez JC, Tabernero A. A proteomic approach supports the clinical relevance of TAT-Cx43 266-283 in glioblastoma. Transl Res 2024; 272:95-110. [PMID: 38876188 DOI: 10.1016/j.trsl.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/18/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary brain cancer. The Src inhibitor, TAT-Cx43266-283, exerts antitumor effects in in vitro and in vivo models of GBM. Because addressing the mechanism of action is essential to translate these results to a clinical setting, in this study we carried out an unbiased proteomic approach. Data-independent acquisition mass spectrometry proteomics allowed the identification of 190 proteins whose abundance was modified by TAT-Cx43266-283. Our results were consistent with the inhibition of Src as the mechanism of action of TAT-Cx43266-283 and unveiled antitumor effectors, such as p120 catenin. Changes in the abundance of several proteins suggested that TAT-Cx43266-283 may also impact the brain microenvironment. Importantly, the proteins whose abundance was reduced by TAT-Cx43266-283 correlated with an improved GBM patient survival in clinical datasets and none of the proteins whose abundance was increased by TAT-Cx43266-283 correlated with shorter survival, supporting its use in clinical trials.
Collapse
Affiliation(s)
- Sara G Pelaz
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain.
| | - Raquel Flores-Hernández
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Tatjana Vujic
- Department of Medicine, University of Geneva, 1211, Geneva, Switzerland; University Center of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Geneva University Hospital and University of Geneva, Lausanne Geneva, Switzerland
| | - Domitille Schvartz
- Department of Medicine, University of Geneva, 1211, Geneva, Switzerland; University of Geneva, Faculty of Medicine, Proteomics Core Facility, Geneva, Switzerland
| | - Andrea Álvarez-Vázquez
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Yuxin Ding
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Laura García-Vicente
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Aitana Belloso
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Rocío Talaverón
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | | | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain.
| |
Collapse
|
4
|
Mosa FES, Alqahtani MA, El-Ghiaty MA, El-Mahrouk SR, Barakat K, El-Kadi AOS. Modulation of aryl hydrocarbon receptor activity by tyrosine kinase inhibitors (ponatinib and tofacitinib). Arch Biochem Biophys 2024; 759:110088. [PMID: 38992456 DOI: 10.1016/j.abb.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Ponatinib and tofacitinib, established kinase inhibitors and FDA-approved for chronic myeloid leukemia and rheumatoid arthritis, are recently undergoing investigation in diverse clinical trials for potential repurposing. The aryl hydrocarbon receptor (AhR), a transcription factor influencing a spectrum of physiological and pathophysiological activities, stands as a therapeutic target for numerous diseases. This study employs molecular modelling tools and in vitro assays to identify ponatinib and tofacitinib as AhR ligands, elucidating their binding and molecular interactions in the AhR PAS-B domain. Molecular docking analyses revealed that ponatinib and tofacitinib occupy the central pocket within the primary cavity, similar to AhR agonists 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and (benzo[a]pyrene) B[a]P. Our simulations also showed that these compounds exhibit good stability, stabilizing many hot spots within the PAS-B domain, including the Dα-Eα loop, which serves as a regulatory element for the binding pocket. Binding energy calculations highlighted ponatinib's superior predicted affinity, revealing F295 as a crucial residue in maintaining strong interaction with the two compounds. Our in vitro data suggest that ponatinib functions as an AhR antagonist, blocking the downstream signaling of AhR pathway induced by TCDD and B[a]P. Additionally, both tofacitinib and ponatinib cause impairment in AhR-regulated CYP1A1 enzyme activity induced by potent AhR agonists. This study unveils ponatinib and tofacitinib as potential modulators of AhR, providing valuable insights into their therapeutic roles in AhR-associated diseases and enhancing our understanding of the intricate relationship between kinase inhibitors and AhR.
Collapse
Affiliation(s)
- Farag E S Mosa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Zhao W, Ouyang C, Zhang L, Wang J, Zhang J, Zhang Y, Huang C, Xiao Q, Jiang B, Lin F, Zhang C, Zhu M, Xie C, Huang X, Zhang B, Zhao W, He J, Chen S, Liu X, Lin D, Li Q, Wang Z. The proto-oncogene tyrosine kinase c-SRC facilitates glioblastoma progression by remodeling fatty acid synthesis. Nat Commun 2024; 15:7455. [PMID: 39198451 PMCID: PMC11358276 DOI: 10.1038/s41467-024-51444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Increased fatty acid synthesis benefits glioblastoma malignancy. However, the coordinated regulation of cytosolic acetyl-CoA production, the exclusive substrate for fatty acid synthesis, remains unclear. Here, we show that proto-oncogene tyrosine kinase c-SRC is activated in glioblastoma and remodels cytosolic acetyl-CoA production for fatty acid synthesis. Firstly, acetate is an important substrate for fatty acid synthesis in glioblastoma. c-SRC phosphorylates acetyl-CoA synthetase ACSS2 at Tyr530 and Tyr562 to stimulate the conversion of acetate to acetyl-CoA in cytosol. Secondly, c-SRC inhibits citrate-derived acetyl-CoA synthesis by phosphorylating ATP-citrate lyase ACLY at Tyr682. ACLY phosphorylation shunts citrate to IDH1-catalyzed NADPH production to provide reducing equivalent for fatty acid synthesis. The c-SRC-unresponsive double-mutation of ACSS2 and ACLY significantly reduces fatty acid synthesis and hampers glioblastoma progression. In conclusion, this remodeling fulfills the dual needs of glioblastoma cells for both acetyl-CoA and NADPH in fatty acid synthesis and provides evidence for glioma treatment by c-SRC inhibition.
Collapse
Affiliation(s)
- Wentao Zhao
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Cong Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Liang Zhang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jinyang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jiaojiao Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Chen Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Qiao Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Bingchang Zhang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenpeng Zhao
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiawei He
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Sifang Chen
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiyao Liu
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Zheng L, Zhou B, Wu B, Tan Y, Huang J, Tyagi M, García Sakai V, Yamada T, O'Neill H, Zhang Q, Hong L. Decoupling of the onset of anharmonicity between a protein and its surface water around 200 K. eLife 2024; 13:RP95665. [PMID: 39158544 PMCID: PMC11333040 DOI: 10.7554/elife.95665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
The protein dynamical transition at ~200 K, where the biomolecule transforms from a harmonic, non-functional form to an anharmonic, functional state, has been thought to be slaved to the thermal activation of dynamics in its surface hydration water. Here, by selectively probing the dynamics of protein and hydration water using elastic neutron scattering and isotopic labeling, we found that the onset of anharmonicity in the two components around 200 K is decoupled. The one in protein is an intrinsic transition, whose characteristic temperature is independent of the instrumental resolution time, but varies with the biomolecular structure and the amount of hydration, while the one of water is merely a resolution effect.
Collapse
Affiliation(s)
- Lirong Zheng
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
| | - Bingxin Zhou
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong UniversityShanghaiChina
| | - Banghao Wu
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yang Tan
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong UniversityShanghaiChina
| | - Juan Huang
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiChina
| | - Madhusudan Tyagi
- Department of Materials Science and Engineering, University of MarylandCollege ParkUnited States
- NIST Center for Neutron Research, National Institute of Standards and Technology (NIST)GaithersburgUnited States
| | - Victoria García Sakai
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Science & Technology Facilities CouncilDidcotUnited Kingdom
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and SocietyIbarakiJapan
| | - Hugh O'Neill
- Biology and Soft Matter Division, Oak Ridge National LaboratoryOak RidgeUnited States
| | - Qiu Zhang
- Biology and Soft Matter Division, Oak Ridge National LaboratoryOak RidgeUnited States
| | - Liang Hong
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong UniversityShanghaiChina
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong UniveristyShanghaiChina
- Shanghai Artificial Intelligence LaboratoryShanghaiChina
| |
Collapse
|
7
|
Ramos R, Vale N. Dual Drug Repurposing: The Example of Saracatinib. Int J Mol Sci 2024; 25:4565. [PMID: 38674150 PMCID: PMC11050334 DOI: 10.3390/ijms25084565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Saracatinib (AZD0530) is a dual Src/Abl inhibitor initially developed by AstraZeneca for cancer treatment; however, data from 2006 to 2024 reveal that this drug has been tested not only for cancer treatment, but also for the treatment of other diseases. Despite the promising pre-clinical results and the tolerability shown in phase I trials, where a maximum tolerated dose of 175 mg was defined, phase II clinical data demonstrated a low therapeutic action against several cancers and an elevated rate of adverse effects. Recently, pre-clinical research aimed at reducing the toxic effects and enhancing the therapeutic performance of saracatinib using nanoparticles and different pharmacological combinations has shown promising results. Concomitantly, saracatinib was repurposed to treat Alzheimer's disease, targeting Fyn. It showed great clinical results and required a lower daily dose than that defined for cancer treatment, 125 mg and 175 mg, respectively. In addition to Alzheimer's disease, this Src inhibitor has also been studied in relation to other health conditions such as pulmonary and liver fibrosis and even for analgesic and anti-allergic functions. Although saracatinib is still not approved by the Food and Drug Administration (FDA), the large number of alternative uses for saracatinib and the elevated number of pre-clinical and clinical trials performed suggest the huge potential of this drug for the treatment of different kinds of diseases.
Collapse
Affiliation(s)
- Raquel Ramos
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
8
|
Zhang H, Xu D, Huang H, Jiang H, Hu L, Liu L, Sun G, Gao J, Li Y, Xia C, Chen S, Zhou H, Kong X, Wang M, Luo C. Discovery of a Covalent Inhibitor Selectively Targeting the Autophosphorylation Site of c-Src Kinase. ACS Chem Biol 2024; 19:999-1010. [PMID: 38513196 DOI: 10.1021/acschembio.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Nonreceptor tyrosine kinase c-Src plays a crucial role in cell signaling and contributes to tumor progression. However, the development of selective c-Src inhibitors turns out to be challenging. In our previous study, we performed posttranslational modification-inspired drug design (PTMI-DD) to provide a plausible way for designing selective kinase inhibitors. In this study, after identifying a unique pocket comprising a less conserved cysteine and an autophosphorylation site in c-Src as well as a promiscuous covalent inhibitor, chemical optimization was performed to obtain (R)-LW-Srci-8 with nearly 75-fold improved potency (IC50 = 35.83 ± 7.21 nM). Crystallographic studies revealed the critical C-F···C═O interactions that may contribute to tight binding. The kinact and Ki values validated the improved binding affinity and decreased warhead reactivity of (R)-LW-Srci-8 for c-Src. Notably, in vitro tyrosine kinase profiling and cellular activity-based protein profiling (ABPP) cooperatively indicated a specific inhibition of c-Src by (R)-LW-Srci-8. Intriguingly, (R)-LW-Srci-8 preferentially binds to inactive c-Src with unphosphorylated Y419 both in vitro and in cells, subsequently disrupting the autophosphorylation. Collectively, our study demonstrated the feasibility of developing selective kinase inhibitors by cotargeting a nucleophilic residue and a posttranslational modification site and providing a chemical probe for c-Src functional studies.
Collapse
Affiliation(s)
- Huimin Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dounan Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongchan Huang
- Center for Chemical Biology and Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Hao Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linghao Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
| | - Liping Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Ge Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Jing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Yuanqing Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuicui Xia
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shijie Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Xiangqian Kong
- Center for Chemical Biology and Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Mingliang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
9
|
Wang YJ, Wang XY, Yang ZN, Shang XY, Mi SH, Liu Q, Yao GD, Song SJ. Exploring the mechanism of daphne-type diterpenes against gastric cancer cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-13. [PMID: 38347741 DOI: 10.1080/10286020.2024.2311149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/23/2024] [Indexed: 04/07/2025]
Abstract
Gastric cancer is one of the common malignant tumors. It is reported that daphne-type diterpenes have inhibitory effects on gastric cancer cells, but the mechanism is still unknown. To explore the detailed mechanism of the anticancer effect of daphne-type diterpenes, we carried out an integrated network pharmacology prediction study and selected an effective component (yuanhuacine, YHC) for the following validation in silico and in vitro. The result showed that daphne-type diterpenes exerted an anti-tumor effect by targeting proto-oncogene tyrosine-protein kinase SRC as well as regulating the Ras/MAPK signaling pathway, which caused the apoptosis and mitochondrial damage in gastric cancer cells.
Collapse
Affiliation(s)
- Yu-Jue Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin-Ye Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zi-Nuo Yang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin-Yue Shang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Si-Hui Mi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
10
|
Shen Y, TanTai J. Exosomes secreted by metastatic cancer cells promotes epithelial mesenchymal transition in small cell lung carcinoma: The key role of Src/TGF-β1 axis. Gene 2024; 892:147873. [PMID: 37832808 DOI: 10.1016/j.gene.2023.147873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Exosome-mediated epithelial mesenchymal transition (EMT) is key to cancer metastasis. c-Src is involved in the secretion of exosomes and initiation of EMT. Effects of exosomes from metastatic non-small cell lung carcinoma (NSCLC) cells on the EMT process in primary NSCLC cells were assessed. Levels of c-Src in NSCLC tissues were detected and the influence of exosomes from metastatic NSCLC cells on the exosome secretion and EMT process in primary NSCLC cells was assessed. The expression of c-Src was modulated, and the influence on the secretion of exosomes and EMT initiation was evaluated. The level of c-Src was higher in NSCLC specimen and NSCLC cells with promoted EMT process. The suppression of c-Src inhibited secretion of exosomes. Exosomes from metastatic NSCLC cells enhanced migration and invasion abilities of primary NSCLC cells, which had identical effects to c-Src overexpression. The suppression of c-Src inhibited growth and metastasis of solid tumors as well as secretion of exosomes, while the injection of exosomes with c-Src overexpression promoted lung metastasis. TGF-β1 restored the invasion and migration abilities even with c-Src knockdown. The exosomes from metastatic NSCLC cells with high c-Src expression of can increase c-Src level in primary NSCLC cells, contributing to the promoted EMT process through TGF-β1 pathway.
Collapse
Affiliation(s)
- Yuzhou Shen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jicheng TanTai
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
11
|
Mao W, Vandecan NM, Bingham CR, Tsang PK, Ulintz P, Sexton R, Bochar DA, Merajver SD, Soellner MB. Selective and Potent PROTAC Degraders of c-Src Kinase. ACS Chem Biol 2024; 19:110-116. [PMID: 38113191 PMCID: PMC11776100 DOI: 10.1021/acschembio.3c00548] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Using dasatinib linked to E3 ligase ligands, we identified a potent and selective dual Csk/c-Src PROTAC degrader. We then replaced dasatinib, the c-Src-directed ligand, with a conformation-selective analogue that stabilizes the αC-helix-out conformation of c-Src. Using the αC-helix-out ligand, we identified a PROTAC that is potent and selective for c-Src. We demonstrated a high degree of catalysis with our c-Src PROTACs. Using our c-Src PROTACs, we identified pharmacological advantages of c-Src degradation compared to inhibition with respect to cancer cell proliferation.
Collapse
Affiliation(s)
- Wuxiang Mao
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109
| | - Nathalie M. Vandecan
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109
| | - Christopher R. Bingham
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109
| | - Pui Ki Tsang
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109
| | - Peter Ulintz
- Department of Internal Medicine, University of Michigan, 1500 E. Medical Ave., Ann Arbor, MI 48109
| | - Rachel Sexton
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109
| | - Daniel A. Bochar
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109
| | - Sofia D. Merajver
- Department of Internal Medicine, University of Michigan, 1500 E. Medical Ave., Ann Arbor, MI 48109
| | - Matthew B. Soellner
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109
- Department of Internal Medicine, University of Michigan, 1500 E. Medical Ave., Ann Arbor, MI 48109
| |
Collapse
|
12
|
Dang XW, Duan JL, Ye E, Mao ND, Bai R, Zhou X, Ye XY. Recent advances of small-molecule c-Src inhibitors for potential therapeutic utilities. Bioorg Chem 2023; 142:106934. [PMID: 39492169 DOI: 10.1016/j.bioorg.2023.106934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Proto-oncogene tyrosine-protein kinase Src, also known as c-Src, belongs to the family of non-receptor tyrosine protein kinases (TKs) called Src kinases. It plays a crucial role in cell division, motility, adhesion, and survival in both normal cells and cancer cells by activating various signaling pathways mediated by multiple cytokines. Additionally, c-Src kinase has been implicated in osteoclasts and bone loss diseases mediated by inflammation and osteoporosis. In recent years, remarkable advancements have been achieved in the development of c-Src inhibitors, with several candidates progressing to the clinical stage. This review focuses on the research progress in several areas, including the mechanism of action, drug discovery, combination therapy, and clinical research. By presenting this information, we aim to provide researchers with convenient access to valuable insights and inspire new ideas to expedite future drug discovery programs.
Collapse
Affiliation(s)
- Xia-Wen Dang
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ji-Long Duan
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Emily Ye
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Nian-Dong Mao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - RenRen Bai
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Xinglu Zhou
- Drug Discovery, Hangzhou HealZen Therapeutics Co., Ltd., Hangzhou, Zhejiang 310018, China.
| | - Xiang-Yang Ye
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
13
|
Socodato R, Rodrigues-Santos A, Tedim-Moreira J, Almeida TO, Canedo T, Portugal CC, Relvas JB. RhoA balances microglial reactivity and survival during neuroinflammation. Cell Death Dis 2023; 14:690. [PMID: 37863874 PMCID: PMC10589285 DOI: 10.1038/s41419-023-06217-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Microglia are the largest myeloid cell population in the brain. During injury, disease, or inflammation, microglia adopt different functional states primarily involved in restoring brain homeostasis. However, sustained or exacerbated microglia inflammatory reactivity can lead to brain damage. Dynamic cytoskeleton reorganization correlates with alterations of microglial reactivity driven by external cues, and proteins controlling cytoskeletal reorganization, such as the Rho GTPase RhoA, are well positioned to refine or adjust the functional state of the microglia during injury, disease, or inflammation. Here, we use multi-biosensor-based live-cell imaging approaches and tissue-specific conditional gene ablation in mice to understand the role of RhoA in microglial response to inflammation. We found that a decrease in RhoA activity is an absolute requirement for microglial metabolic reprogramming and reactivity to inflammation. However, without RhoA, inflammation disrupts Ca2+ and pH homeostasis, dampening mitochondrial function, worsening microglial necrosis, and triggering microglial apoptosis. Our results suggest that a minimum level of RhoA activity is obligatory to concatenate microglia inflammatory reactivity and survival during neuroinflammation.
Collapse
Affiliation(s)
- Renato Socodato
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.
| | - Artur Rodrigues-Santos
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Joana Tedim-Moreira
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Tiago O Almeida
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- ICBAS - School of Medicine and Biomedical Sciences, Porto, Portugal
| | - Teresa Canedo
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Camila C Portugal
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - João B Relvas
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.
| |
Collapse
|
14
|
Zhu M, He Q, Wang Y, Duan L, Rong K, Wu Y, Ding Y, Mi Y, Ge X, Yang X, Yu Y. Exploring the mechanism of aloe-emodin in the treatment of liver cancer through network pharmacology and cell experiments. Front Pharmacol 2023; 14:1238841. [PMID: 37900162 PMCID: PMC10600456 DOI: 10.3389/fphar.2023.1238841] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Objective: Aloe-emodin (AE) is an anthraquinone compound extracted from the rhizome of the natural plant rhubarb. Initially, it was shown that AE exerts an anti-inflammatory effect. Further studies revealed its antitumor activity against various types of cancer. However, the mechanisms underlying these properties remain unclear. Based on network pharmacology and molecular docking, this study investigated the molecular mechanism of AE in the treatment of hepatocellular carcinoma (HCC), and evaluated its therapeutic effect through in vitro experiments. Methods: CTD, Pharmmapper, SuperPred and TargetNet were the databases to obtain potential drug-related targets. DisGenet, GeneCards, OMIM and TTD were used to identify potential disease-related targets. Intersection genes for drugs and diseases were obtained through the Venn diagram. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of intersecting genes were conducted by the website of Bioinformatics. Intersection genes were introduced into STRING to construct a protein-protein interaction network, while the Cytoscape3.9.1 software was used to visualize and analyze the core targets. AutoDock4.2.6 was utilized to achieve molecular docking between drug and core targets. In vitro experiments investigated the therapeutic effects and related mechanisms of AE. Results: 63 overlapped genes were obtained and GO analysis generated 3,646 entries by these 63 intersecting genes. KEGG analysis mainly involved apoptosis, proteoglycans in cancer, TNF signaling pathway, TP53 signaling pathway, PI3K-AKT signaling pathway, etc. AKT1, EGFR, ESR1, TP53, and SRC have been identified as core targets because the binding energies of them between aloe-emodin were less than -5 kcal/Mol.The mRNA and protein expression, prognosis, mutation status, and immune infiltration related to core targets were further revealed. The involvement of AKT1 and EGFR, as well as the key target of the PI3K-AKT signaling pathway, indicated the importance of this signaling pathway in the treatment of HCC using AE. The results of the Cell Counting Kit-8 assay and flow analysis demonstrated the therapeutic effect of AE. The downregulation of EGFR, PI3KR1, AKT1, and BCL2 in mRNA expression and PI3KR1, AKT,p-AKT in protein expression confirmed our hypothesis. Conclusion: Based on network pharmacology and molecular docking, our study initially showed that AE exerted a therapeutic effect on HCC by modulating multiple signaling pathways. Various analyses confirmed the antiproliferative activity and pro-apoptotic effect of AE on HCC through the PI3K-AKT signaling pathway. This study revealed the therapeutic mechanism of AE in the treatment of HCC through a novel approach, providing a theoretical basis for the clinical application of AE.
Collapse
Affiliation(s)
- Mingyang Zhu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingmin He
- Department of Gastroenterology, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Yanan Wang
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Liying Duan
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kang Rong
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingying Wu
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Ye Ding
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyang Ge
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaocui Yang
- Department of Gastroenterology, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Yong Yu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Pratap Reddy Gajulapalli V. Development of Kinase-Centric Drugs: A Computational Perspective. ChemMedChem 2023; 18:e202200693. [PMID: 37442809 DOI: 10.1002/cmdc.202200693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023]
Abstract
Kinases are prominent drug targets in the pharmaceutical and research community due to their involvement in signal transduction, physiological responses, and upon dysregulation, in diseases such as cancer, neurological and autoimmune disorders. Several FDA-approved small-molecule drugs have been developed to combat human diseases since Gleevec was approved for the treatment of chronic myelogenous leukemia. Kinases were considered "undruggable" in the beginning. Several FDA-approved small-molecule drugs have become available in recent years. Most of these drugs target ATP-binding sites, but a few target allosteric sites. Among kinases that belong to the same family, the catalytic domain shows high structural and sequence conservation. Inhibitors of ATP-binding sites can cause off-target binding. Because members of the same family have similar sequences and structural patterns, often complex relationships between kinases and inhibitors are observed. To design and develop drugs with desired selectivity, it is essential to understand the target selectivity for kinase inhibitors. To create new inhibitors with the desired selectivity, several experimental methods have been designed to profile the kinase selectivity of small molecules. Experimental approaches are often expensive, laborious, time-consuming, and limited by the available kinases. Researchers have used computational methodologies to address these limitations in the design and development of effective therapeutics. Many computational methods have been developed over the last few decades, either to complement experimental findings or to forecast kinase inhibitor activity and selectivity. The purpose of this review is to provide insight into recent advances in theoretical/computational approaches for the design of new kinase inhibitors with the desired selectivity and optimization of existing inhibitors.
Collapse
|
16
|
Akkawi C, Feuillard J, Diaz FL, Belkhir K, Godefroy N, Peloponese JM, Mougel M, Laine S. Murine leukemia virus (MLV) P50 protein induces cell transformation via transcriptional regulatory function. Retrovirology 2023; 20:16. [PMID: 37700325 PMCID: PMC10496198 DOI: 10.1186/s12977-023-00631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The murine leukemia virus (MLV) has been a powerful model of pathogenesis for the discovery of genes involved in cancer. Its splice donor (SD')-associated retroelement (SDARE) is important for infectivity and tumorigenesis, but the mechanism remains poorly characterized. Here, we show for the first time that P50 protein, which is produced from SDARE, acts as an accessory protein that transregulates transcription and induces cell transformation. RESULTS By infecting cells with MLV particles containing SDARE transcript alone (lacking genomic RNA), we show that SDARE can spread to neighbouring cells as shown by the presence of P50 in infected cells. Furthermore, a role for P50 in cell transformation was demonstrated by CCK8, TUNEL and anchorage-independent growth assays. We identified the integrase domain of P50 as being responsible for transregulation of the MLV promoter using luciferase assay and RTqPCR with P50 deleted mutants. Transcriptomic analysis furthermore revealed that the expression of hundreds of cellular RNAs involved in cancerogenesis were deregulated in the presence of P50, suggesting that P50 induces carcinogenic processes via its transcriptional regulatory function. CONCLUSION We propose a novel SDARE-mediated mode of propagation of the P50 accessory protein in surrounding cells. Moreover, due to its transforming properties, P50 expression could lead to a cellular and tissue microenvironment that is conducive to cancer development.
Collapse
Affiliation(s)
- Charbel Akkawi
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Jerome Feuillard
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Felipe Leon Diaz
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Khalid Belkhir
- ISEM, CNRS, EPHE, Université Montpellier, IRD, Montpellier, France
| | - Nelly Godefroy
- ISEM, CNRS, EPHE, Université Montpellier, IRD, Montpellier, France
| | | | - Marylene Mougel
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France.
| | - Sebastien Laine
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
17
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
18
|
Zou W, Green DR. Beggars banquet: Metabolism in the tumor immune microenvironment and cancer therapy. Cell Metab 2023; 35:1101-1113. [PMID: 37390822 PMCID: PMC10527949 DOI: 10.1016/j.cmet.2023.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
Metabolic programming in the tumor microenvironment (TME) alters tumor immunity and immunotherapeutic response in tumor-bearing mice and patients with cancer. Here, we review immune-related functions of core metabolic pathways, key metabolites, and crucial nutrient transporters in the TME, discuss their metabolic, signaling, and epigenetic impact on tumor immunity and immunotherapy, and explore how these insights can be applied to the development of more effective modalities to potentiate the function of T cells and sensitize tumor cell receptivity to immune attack, thereby overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Weiping Zou
- Departments of Surgery and Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Graduate Programs in Immunology and Cancer Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
19
|
Ichikawa-Tomikawa N, Sugimoto K, Kashiwagi K, Chiba H. The Src-Family Kinases SRC and BLK Contribute to the CLDN6-Adhesion Signaling. Cells 2023; 12:1696. [PMID: 37443730 PMCID: PMC10341166 DOI: 10.3390/cells12131696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Cell adhesion molecules, including integrins, cadherins, and claudins (CLDNs), are known to activate Src-family kinases (SFKs) that organize a variety of physiological and pathological processes; however, the underlying molecular basis remains unclear. Here, we identify the SFK members that are coupled with the CLDN6-adhesion signaling. Among SFK subtypes, BLK, FGR, HCK, and SRC were highly expressed in F9 cells and concentrated with CLDN6 along cell borders during epithelial differentiation. Immunoprecipitation assay showed that BLK and SRC, but not FGR or HCK, form a complex with CLDN6 via the C-terminal cytoplasmic domain. We also demonstrated, by pull-down assay, that recombinant BLK and SRC proteins directly bind to the C-terminal cytoplasmic domain of CLDN6 (CLDN6C). Unexpectedly, both recombinant SFK proteins recognized the CLDN6C peptide in a phosphotyrosine-independent manner. Furthermore, by comparing phenotypes of F9:Cldn6:Blk-/- and F9:Cldn6:Src-/- cells with those of wild-type F9 and F9:Cldn6 cells, we revealed that BLK and SRC are essential for CLDN6-triggered cellular events, namely epithelial differentiation and the expression of retinoid acid receptor target genes. These results indicate that selective SFK members appear to participate in the CLDN-adhesion signaling.
Collapse
Affiliation(s)
| | | | | | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (N.I.-T.); (K.S.); (K.K.)
| |
Collapse
|
20
|
Ota R, Watanabe T, Wazawa Y, Kuwajima H, Honda T, Soeda S, Saito Y, Yuki R, Fukumoto Y, Yamaguchi N, Yamaguchi N, Nakayama Y. V-Src delocalizes Aurora B by suppressing Aurora B kinase activity during monopolar cytokinesis. Cell Signal 2023:110764. [PMID: 37315749 DOI: 10.1016/j.cellsig.2023.110764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
c-Src tyrosine kinase plays roles in a wide range of signaling events and its increased activity is frequently observed in a variety of epithelial and non-epithelial cancers. v-Src, an oncogene first identified in the Rous sarcoma virus, is an oncogenic version of c-Src and has constitutively active tyrosine kinase activity. We previously showed that v-Src induces Aurora B delocalization, resulting in cytokinesis failure and binucleated cell formation. In the present study, we explored the mechanism underlying v-Src-induced Aurora B delocalization. Treatment with the Eg5 inhibitor (+)-S-trityl-L-cysteine (STLC) arrested cells in a prometaphase-like state with a monopolar spindle; upon further inhibition of cyclin-dependent kinase (CDK1) by RO-3306, cells underwent monopolar cytokinesis with bleb-like protrusions. Aurora B was localized to the protruding furrow region or the polarized plasma membrane 30 min after RO-3306 addition, whereas inducible v-Src expression caused Aurora B delocalization in cells undergoing monopolar cytokinesis. Delocalization was similarly observed in monopolar cytokinesis induced by inhibiting Mps1, instead of CDK1, in the STLC-arrested mitotic cells. Importantly, western blotting analysis and in vitro kinase assay revealed that v-Src decreased the levels of Aurora B autophosphorylation and its kinase activity. Furthermore, like v-Src, treatment with the Aurora B inhibitor ZM447439 also caused Aurora B delocalization at concentrations that partially inhibited Aurora B autophosphorylation. Given that phosphorylation of Aurora B by v-Src was not observed, these results suggest that v-Src causes Aurora B delocalization by indirectly suppressing Aurora B kinase activity.
Collapse
Affiliation(s)
- Ryoko Ota
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Takumi Watanabe
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yuuki Wazawa
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Hiroki Kuwajima
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Takuya Honda
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Shuhei Soeda
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Youhei Saito
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Ryuzaburo Yuki
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yasunori Fukumoto
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Noritaka Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yuji Nakayama
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
21
|
Roy R, Ria T, RoyMahaPatra D, Sk UH. Single Inhibitors versus Dual Inhibitors: Role of HDAC in Cancer. ACS OMEGA 2023; 8:16532-16544. [PMID: 37214715 PMCID: PMC10193415 DOI: 10.1021/acsomega.3c00222] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Due to the multimodal character of cancer, inhibition of two targets simultaneously by a single molecule is a beneficial and effective approach against cancer. Histone deacetylase (HDAC) was widely investigated as a novel category of anticancer drug targets due to its crucial role in various biological processes like cell-proliferation, metastasis, and apoptosis. Numerous HDAC inhibitors such as vorinostat and panobinostat are clinically approved but have limited usage due to their low efficacy, nonselectivity, drug resistance, and toxicity. Therefore, HDACs with a dual targeting ability have attracted great attention. The strategy of combining a HDAC inhibitor with other antitumor agents has been proved advantageous for combating the nonselectivity and drug resistivity problems associated with single-target drugs. Henceforth, we have highlighted dual-targeting inhibitors to target HDAC along with topoisomerase, receptor tyrosine kinase inhibitors, and the zeste homolog 2 enzyme. Our Review mainly focuses on the impact of the substituent effect along with the linker variation of well-known HDAC-inhibitor-conjugated anticancer drugs.
Collapse
|
22
|
Conrad SJ, Mays JK, Hearn CJ, Dunn JR. Targeted Ablation of Exon 2 of the Avian Leukosis Virus-A (ALV-A) Receptor Gene in a Chicken Fibroblast Cell Line by CRISPR Abrogates ALV-A Infection. Avian Dis 2023; 67:102-107. [PMID: 37140118 DOI: 10.1637/aviandiseases-d-22-00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/22/2022] [Indexed: 02/22/2023]
Abstract
The U.S. Department of Agriculture Avian Disease and Oncology Laboratory currently relies on live birds of specific genetic backgrounds for producing chicken-embryo fibroblasts that are used for the diagnosis and subtyping of field isolates associated with avian leukosis virus (ALV) outbreaks. As an alternative to maintaining live animals for this purpose, we are currently developing cell lines capable of achieving the same result by ablation of the entry receptors utilized by ALV strains. We used CRISPR-Cas9 on the cell fibroblast-derived cell line DF-1 to disrupt the tva gene, which encodes the receptor required for binding and entry of ALV-A into cells. We ultimately identified seven DF-1 clones that had biallelic and homozygous indels at the Cas9 target site, exon 2 of tva. When tested in vitro for their ability to host ALV-A, the five clones that had frameshift mutations that disrupted the Tva protein were unable to support ALV-A replication. This result clearly demonstrates that modified cell lines can be used as part of a battery of tests to determine ALV subtype for isolate characterization, thus eliminating the need for live birds.
Collapse
Affiliation(s)
- Steven J. Conrad
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, Athens, GA 30605
| | - Jody K. Mays
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823
| | - Cari J. Hearn
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823
| | - John R. Dunn
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, Athens, GA 30605
| |
Collapse
|
23
|
Chen YH, Hsu JY, Chu CT, Chang YW, Fan JR, Yang MH, Chen HC. Loss of cell-cell adhesion triggers cell migration through Rac1-dependent ROS generation. Life Sci Alliance 2023; 6:6/2/e202201529. [PMID: 36446524 PMCID: PMC9711860 DOI: 10.26508/lsa.202201529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Epithelial cells usually trigger their "migratory machinery" upon loss of adhesion to their neighbors. This default is important for both physiological (e.g., wound healing) and pathological (e.g., tumor metastasis) processes. However, the underlying mechanism for such a default remains unclear. In this study, we used the human head and neck squamous cell carcinoma (HNSCC) SAS cells as a model and found that loss of cell-cell adhesion induced reactive oxygen species (ROS) generation and vimentin expression, both of which were required for SAS cell migration upon loss of cell-cell adhesion. We demonstrated that Tiam1-mediated Rac1 activation was responsible for the ROS generation through NADPH-dependent oxidases. Moreover, the ROS-Src-STAT3 signaling pathway that led to vimentin expression was important for SAS cell migration. The activation of ROS, Src, and STAT3 was also detected in tumor biopsies from HNSCC patients. Notably, activated STAT3 was more abundant at the tumor invasive front and correlated with metastatic progression of HNSCC. Together, our results unveil a mechanism of how cells trigger their migration upon loss of cell-cell adhesion and highlight an important role of the ROS-Src-STAT3 signaling pathway in the progression of HNSCC.
Collapse
Affiliation(s)
- Yu-Hsuan Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jinn-Yuan Hsu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Tung Chu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yao-Wen Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Rong Fan
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hong-Chen Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan .,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
24
|
Vu AT, Akingunsade L, Hoffer K, Petersen C, Betz CS, Rothkamm K, Rieckmann T, Bussmann L, Kriegs M. Src family kinase targeting in head and neck tumor cells using SU6656, PP2 and dasatinib. Head Neck 2023; 45:147-155. [PMID: 36285353 DOI: 10.1002/hed.27216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND We have recently shown a frequent upregulation of Src-family kinases (SFK) in head and neck squamous cell carcinoma (HNSCC). Here we tested, if SFK targeting is effective especially in HNSCC cells with upregulated SFK signaling. METHODS The impact of SFK inhibitors SU6656, PP2 and dasatinib on three HNSCC cell lines with different SFK activity levels was analyzed using proliferation and colony formation assays, Western blot and functional kinomics. RESULTS Proliferation was blocked by all inhibitors in a micro-molar range. With respect to cell kill, dasatinib was most effective, while SU6656 showed moderate and PP2 minor effects. Cellular signaling was affected differently, with PP2 having no effect on SFK signaling while dasatinib probably has non-SFK specific effects. Only SU6656 showed clear SFK specific effects on signaling. CONCLUSION The results demonstrate potential benefit of SFK inhibition in HNSCC but they also highlight challenges due to non-specificities of the different drugs.
Collapse
Affiliation(s)
- Anh Thu Vu
- Department of Radiobiology & Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lara Akingunsade
- Department of Radiobiology & Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konstantin Hoffer
- Department of Radiobiology & Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiobiology & Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Stephan Betz
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiobiology & Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Radiobiology & Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lara Bussmann
- UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Department of Radiobiology & Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
25
|
Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:33-92. [PMID: 36967154 DOI: 10.1016/bs.ircmb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs), which originated from hematopoietic stem cells, are heterogeneous population of cells that have different differentiation patterns and widely presented in tumor microenvironment. For tumor research, myeloid suppressor cells have received extensive attention since their discovery due to their specific immunosuppressive properties, and the mechanisms of immunosuppression and therapeutic approaches for MDSCs have been investigated in a variety of different types of malignancies. To improve the efficacy of treatment for head and neck squamous cell carcinoma (HNSCC), a disease with a high occurrence, immunotherapy has gradually emerged in after traditional surgery and subsequent radiotherapy and chemotherapy, and has made some progress. In this review, we introduced the mechanisms on the development, differentiation, and elimination of MDSCs and provided a detailed overview of the mechanisms behind the immunosuppressive properties of MDSCs. We summarized the recent researches on MDSCs in HNSCC, especially for targeting-MDSCs therapy and combination with other types of therapy such as immune checkpoint blockade (ICB). Furthermore, we looked at drug delivery patterns and collected the current diverse drug delivery systems for the improvement that contributed to therapy against MDSCs in HNSCC. Most importantly, we made possible outlooks for the future research priorities, which provide a basis for further study on the clinical significance and therapeutic value of MDSCs in HNSCC.
Collapse
|
26
|
Yakymovych I, Yakymovych M, Hamidi A, Landström M, Heldin CH. The type II TGF-β receptor phosphorylates Tyr
182
in the type I receptor to activate downstream Src signaling. Sci Signal 2022; 15:eabp9521. [DOI: 10.1126/scisignal.abp9521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming growth factor–β (TGF-β) signaling has important roles during embryonic development and in tissue homeostasis. TGF-β ligands exert cellular effects by binding to type I (TβRI) and type II (TβRII) receptors and inducing both SMAD-dependent and SMAD-independent intracellular signaling pathways, the latter of which includes the activation of the tyrosine kinase Src. We investigated the mechanism by which TGF-β stimulation activates Src in human and mouse cells. Before TGF-β stimulation, inactive Src was complexed with TβRII. Upon TGF-β1 stimulation, TβRII associated with and phosphorylated TβRI at Tyr
182
. Binding of Src to TβRI involved the interaction of the Src SH2 domain with phosphorylated Tyr
182
and the interaction of the Src SH3 domain with a proline-rich region in TβRI and led to the activation of Src kinase activity and Src autophosphorylation. TGF-β1–induced Src activation required the kinase activities of TβRII and Src but not that of TβRI. Activated Src also phosphorylated TβRI on several tyrosine residues, which may stabilize the binding of Src to the receptor. Src activation was required for the ability of TGF-β to induce fibronectin production and migration in human breast carcinoma cells and to induce α–smooth muscle actin and actin reorganization in mouse fibroblasts. Thus, TGF-β induces Src activation by stimulating a direct interaction with TβRI that depends on tyrosine phosphorylation of TβRI by TβRII.
Collapse
Affiliation(s)
- Ihor Yakymovych
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Mariya Yakymovych
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Anahita Hamidi
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Maréne Landström
- Department of Medical Biosciences, Pathology Section, Umeå University, SE-901 87 Umeå, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| |
Collapse
|
27
|
Zhou Q, Liu S, Kou Y, Yang P, Liu H, Hasegawa T, Su R, Zhu G, Li M. ATP Promotes Oral Squamous Cell Carcinoma Cell Invasion and Migration by Activating the PI3K/AKT Pathway via the P2Y2-Src-EGFR Axis. ACS OMEGA 2022; 7:39760-39771. [PMID: 36385800 PMCID: PMC9648055 DOI: 10.1021/acsomega.2c03727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Oral cancer is one of the most common malignancies of the head and neck, and approximately 90% of oral cancers are oral squamous cell carcinomas (OSCCs). The purinergic P2Y2 receptor is upregulated in breast cancer, pancreatic cancer, colorectal cancer, and liver cancer, but its role in OSCC is still unclear. Here, we examined the effects of P2Y2 on the invasion and migration of oral cancer cells (SCC15 and CAL27). The BALB/c mouse model was used to observe the involvement of P2Y2 with tumors in vivo. P2Y2, Src, and EGFR are highly expressed in OSCC tissues and cell lines. Stimulation with ATP significantly enhanced cell invasion and migration in oral cancer cells, and enhanced the activity of Src and EGFR protein kinases, which is mediated by the PI3K/AKT signaling pathway. P2Y2 knockdown attenuated the above ATP-driven events in vitro and in vivo. The PI3K/AKT signaling pathway was blocked by Src or EGFR inhibitor. Extracellular ATP activates the PI3K/AKT pathway through the P2Y2-Src-EGFR axis to promote OSCC invasion and migration, and thus, P2Y2 may be a potential novel target for antimetastasis therapy.
Collapse
Affiliation(s)
- Qin Zhou
- Department
of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College
of Medicine, Shandong University and Shandong
Key Laboratory of Oral Tissue Regeneration and Shandong Engineering
Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
- Center
of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 250100, China
| | - Shanshan Liu
- Department
of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College
of Medicine, Shandong University and Shandong
Key Laboratory of Oral Tissue Regeneration and Shandong Engineering
Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
- Center
of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 250100, China
| | - Yuying Kou
- Department
of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College
of Medicine, Shandong University and Shandong
Key Laboratory of Oral Tissue Regeneration and Shandong Engineering
Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
- Center
of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 250100, China
| | - Panpan Yang
- Department
of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College
of Medicine, Shandong University and Shandong
Key Laboratory of Oral Tissue Regeneration and Shandong Engineering
Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
- Center
of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 250100, China
| | - Hongrui Liu
- Department
of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College
of Medicine, Shandong University and Shandong
Key Laboratory of Oral Tissue Regeneration and Shandong Engineering
Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
- Center
of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 250100, China
| | - Tomoka Hasegawa
- Department
of Developmental Biology of Hard Tissue, Graduate School of Dental
Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Rongjian Su
- College
of Basic Medicine of Jinzhou Medical University, Cell Biology and
Genetic Department of Jinzhou Medical University, Key Lab of Molecular
and Cellular Biology of the Education Department of Liaoning Province, Life Science Institute of Jinzhou Medical University, Jinzhou 121001, China
| | - Guoxiong Zhu
- Department
of Stomatology, No.960 Hospital of PLA, No. 25 Shifan Road, Jinan 250014, China
| | - Minqi Li
- Department
of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College
of Medicine, Shandong University and Shandong
Key Laboratory of Oral Tissue Regeneration and Shandong Engineering
Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
- Center
of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 250100, China
| |
Collapse
|
28
|
Pelaz SG, Tabernero A. Src: coordinating metabolism in cancer. Oncogene 2022; 41:4917-4928. [PMID: 36217026 PMCID: PMC9630107 DOI: 10.1038/s41388-022-02487-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022]
Abstract
Metabolism must be tightly regulated to fulfil the dynamic requirements of cancer cells during proliferation, migration, stemness and differentiation. Src is a node of several signals involved in many of these biological processes, and it is also an important regulator of cell metabolism. Glucose uptake, glycolysis, the pentose-phosphate pathway and oxidative phosphorylation are among the metabolic pathways that can be regulated by Src. Therefore, this oncoprotein is in an excellent position to coordinate and finely tune cell metabolism to fuel the different cancer cell activities. Here, we provide an up-to-date summary of recent progress made in determining the role of Src in glucose metabolism as well as the link of this role with cancer cell metabolic plasticity and tumour progression. We also discuss the opportunities and challenges facing this field.
Collapse
Affiliation(s)
- Sara G Pelaz
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain.
| |
Collapse
|
29
|
Zhou B, Hao Q, Liang Y, Kong E. Protein palmitoylation in cancer: molecular functions and therapeutic potential. Mol Oncol 2022; 17:3-26. [PMID: 36018061 PMCID: PMC9812842 DOI: 10.1002/1878-0261.13308] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 02/03/2023] Open
Abstract
Protein S-palmitoylation (hereinafter referred to as protein palmitoylation) is a reversible lipid posttranslational modification catalyzed by the zinc finger DHHC-type containing (ZDHHC) protein family. The reverse reaction, depalmitoylation, is catalyzed by palmitoyl-protein thioesterases (PPTs), including acyl-protein thioesterases (APT1/2), palmitoyl protein thioesterases (PPT1/2), or alpha/beta hydrolase domain-containing protein 17A/B/C (ABHD17A/B/C). Proteins encoded by several oncogenes and tumor suppressors are modified by palmitoylation, which enhances the hydrophobicity of specific protein subdomains, and can confer changes in protein stability, membrane localization, protein-protein interaction, and signal transduction. The importance for protein palmitoylation in tumorigenesis has just started to be elucidated in the past decade; palmitoylation appears to affect key aspects of cancer, including cancer cell proliferation and survival, cell invasion and metastasis, and antitumor immunity. Here we review the current literature on protein palmitoylation in the various cancer types, and discuss the potential of targeting of palmitoylation enzymes or palmitoylated proteins for tumor treatment.
Collapse
Affiliation(s)
- Binhui Zhou
- Institute of Psychiatry and NeuroscienceXinxiang Medical UniversityChina,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityChina
| | - Qianyun Hao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology IIPeking University Cancer Hospital & InstituteBeijingChina
| | - Yinming Liang
- Institute of Psychiatry and NeuroscienceXinxiang Medical UniversityChina,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityChina,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory MedicineXinxiang Medical UniversityChina
| | - Eryan Kong
- Institute of Psychiatry and NeuroscienceXinxiang Medical UniversityChina
| |
Collapse
|
30
|
Src Family Kinases: A Potential Therapeutic Target for Acute Kidney Injury. Biomolecules 2022; 12:biom12070984. [PMID: 35883540 PMCID: PMC9312434 DOI: 10.3390/biom12070984] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases and play a key role in regulating signal transduction. The mechanism of SFKs in various tumors has been widely studied, and there are more and more studies on its role in the kidney. Acute kidney injury (AKI) is a disease with complex pathogenesis, including oxidative stress (OS), inflammation, endoplasmic reticulum (ER) stress, autophagy, and apoptosis. In addition, fibrosis has a significant impact on the progression of AKI to developing chronic kidney disease (CKD). The mortality rate of this disease is very high, and there is no effective treatment drug at present. In recent years, some studies have found that SFKs, especially Src, Fyn, and Lyn, are involved in the pathogenesis of AKI. In this paper, the structure, function, and role of SFKs in AKI are discussed. SFKs play a crucial role in the occurrence and development of AKI, making them promising molecular targets for the treatment of AKI.
Collapse
|
31
|
Qing T, Mohsen H, Cannataro VL, Marczyk M, Rozenblit M, Foldi J, Murray M, Townsend JP, Kluger Y, Gerstein M, Pusztai L. Cancer Relevance of Human Genes. J Natl Cancer Inst 2022; 114:988-995. [PMID: 35417011 PMCID: PMC9275765 DOI: 10.1093/jnci/djac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/03/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We hypothesize that genes that directly or indirectly interact with core cancer genes (CCGs) in a comprehensive gene-gene interaction network may have functional importance in cancer. METHODS We categorized 12 767 human genes into CCGs (n = 468), 1 (n = 5467), 2 (n = 5573), 3 (n = 915), and more than 3 steps (n = 416) removed from the nearest CCG in the Search Tool for the Retrieval of Interacting Genes/Proteins network. We estimated cancer-relevant functional importance in these neighborhood categories using 1) gene dependency score, which reflects the effect of a gene on cell viability after knockdown; 2) somatic mutation frequency in The Cancer Genome Atlas; 3) effect size that estimates to what extent a mutation in a gene enhances cell survival; and 4) negative selection pressure of germline protein-truncating variants in healthy populations. RESULTS Cancer biology-related functional importance of genes decreases as their distance from the CCGs increases. Genes closer to cancer genes show greater connectedness in the network, have greater importance in maintaining cancer cell viability, are under greater negative germline selection pressure, and have higher somatic mutation frequency in cancer. Based on these 4 metrics, we provide cancer relevance annotation to known human genes. CONCLUSIONS A large number of human genes are connected to CCGs and could influence cancer biology to various extent when dysregulated; any given mutation may be functionally important in one but not in another individual depending on genomic context.
Collapse
Affiliation(s)
- Tao Qing
- Breast Medical Oncology, School of Medicine, Yale University, New Haven, CT, USA
| | - Hussein Mohsen
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
| | | | - Michal Marczyk
- Breast Medical Oncology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Mariya Rozenblit
- Breast Medical Oncology, School of Medicine, Yale University, New Haven, CT, USA
| | - Julia Foldi
- Breast Medical Oncology, School of Medicine, Yale University, New Haven, CT, USA
| | - Michael Murray
- Department of Genetics, Yale Center for Genomic Health, New Haven, CT, USA
| | - Jeffrey P Townsend
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Yuval Kluger
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
- Applied Mathematics Program, Yale University, New Haven, CT, USA
| | - Mark Gerstein
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, USA
| | - Lajos Pusztai
- Breast Medical Oncology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
32
|
Wan J, Zhao X, Liu J, Chen K, Li C. Src kinase mediates coelomocytes phagocytosis via interacting with focal adhesion kinase in Vibrio splendidus challenged Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:411-420. [PMID: 35462003 DOI: 10.1016/j.fsi.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Immune cells have many efficient ways to participate in the host immunity, including phagocytosis, which is an important pathway to eliminate pathogens. Only β-integrin-mediated phagocytosis pathways have been confirmed in Apostichopus japonicus. The Src family kinases (SFKs), a class of non-receptor tyrosine kinases plays an important role in the regulation of phagocytic signals in invertebrates. However, the SFK-mediated phagocytic mechanism is largely unknown in A. japonicus. In this study, a novel SFK homologue (AjSrc) with a conservative SH3 domain, an SH2 domain, and a tyrosine kinase domain was identified from A. japonicus. Both gene and protein expression of AjSrc and phosphorylation levels increased under Vibrio splendidus challenged, reaching the highest level at 24 h. Knock-down of AjSrc could depress coelomocytes' phagocytosis by 25% compared to the control group. To better understand the mechanism of AjSrc-mediated phagocytosis, focal adhesion kinase (FAK) was identified by a Co-immunoprecipitation experiment to be verified as an interactive protein of AjSrc. The phagocytosis rates of coelomocytes were decreased by 33% and 37% in AjFAK and AjSrc + AjFAK interference groups compared with the control group, respectively. Furthermore, the phosphorylation level of AjFAK was increased and reached the maximum level at 24 h post V. splendidus infection, as the same as that of AjSrc. Our results suggested that AjSrc could mediate V. splendidus-induced coelomocytes' phagocytosis via interacting with AjFAK and co-phosphorylation. This study enriched the mechanism of phagocytosis in echinoderm and provided the new theoretical foundation for disease control of sea cucumber.
Collapse
Affiliation(s)
- Junjie Wan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Jiqing Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Kaiyu Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
33
|
Effects of Electrical Stimulation on the Signal Transduction-Related Proteins, c-Src and Focal Adhesion Kinase, in Fibroblasts. Life (Basel) 2022; 12:life12040531. [PMID: 35455022 PMCID: PMC9024655 DOI: 10.3390/life12040531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022] Open
Abstract
Electrical stimulation of the skin and muscles, e.g., in the fields of rehabilitation medicine and acupuncture, is known to locally increase blood flow and metabolism, and thus have beneficial health effects. However, little is known about the changes in cellular morphology or regulation of the localization of specific proteins in response to electrical stimuli. The present study was performed to examine the effects of electrical stimulation on the cytoskeletal system of cultured fibroblasts. Following application of electrical stimulation to cultured fibroblastic cells for a period of about 2 h, the stress fibers in the cells became thicker and the cells showed a contracted appearance. Cells were subjected to periodic electrical stimulation for 0 (unstimulated control), 2, 5, or 20 h. The stress fibers showed an increase in thickness within 2 h, and became gradually thicker until 20 h. In addition, the focal adhesions and stress fibers were enlarged after 2 h of continuous stimulation, and both stress fibers and focal adhesions became larger and thicker after 20 h of periodic stimulation. Cells showed increased staining of focal adhesions with anti-phosphotyrosine antibody (PY-20) after electrical stimulation. Cells also showed increased staining of tyrosine-phosphorylated focal adhesion kinase (FAK) (pY397) and tyrosine-phosphorylated c-Src (pY418), indicating that electrical stimulation affected signal transduction-related proteins.
Collapse
|
34
|
Whitley JA, Kim S, Lou L, Ye C, Alsaidan OA, Sulejmani E, Cai J, Desrochers EG, Beharry Z, Rickman CB, Klingeborn M, Liu Y, Xie Z, Cai H. Encapsulating Cas9 into extracellular vesicles by protein myristoylation. J Extracell Vesicles 2022; 11:e12196. [PMID: 35384352 PMCID: PMC8982324 DOI: 10.1002/jev2.12196] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 01/29/2023] Open
Abstract
CRISPR/Cas9 genome editing is a very promising avenue for the treatment of a variety of genetic diseases. However, it is still very challenging to encapsulate CRISPR/Cas9 machinery for delivery. Protein N-myristoylation is an irreversible co/post-translational modification that results in the covalent attachment of the myristoyl-group to the N-terminus of a target protein. It serves as an anchor for a protein to associate with the cell membrane and determines its intracellular trafficking and activity. Extracellular vesicles (EVs) are secreted vesicles that mediate cell-cell communication. In this study, we demonstrate that myristoylated proteins were preferentially encapsulated into EVs. The octapeptide derived from the leading sequence of the N-terminus of Src kinase was a favourable substrate for N-myristoyltransferase 1, the enzyme that catalyzes myristoylation. The fusion of the octapeptide onto the N-terminus of Cas9 promoted the myristoylation and encapsulation of Cas9 into EVs. Encapsulation of Cas9 and sgRNA-eGFP inside EVs was confirmed using protease digestion assays. Additionally, to increase the transfection potential, VSV-G was introduced into the EVs. The encapsulated Cas9 in EVs accounted for 0.7% of total EV protein. Importantly, the EVs coated with VSV-G encapsulating Cas9/sgRNA-eGFP showed up to 42% eGFP knock out efficiency with limited off-target effects in recipient cells. Our study provides a novel approach to encapsulate CRISPR/Cas9 protein and sgRNA into EVs. This strategy may open an effective avenue to utilize EVs as vehicles to deliver CRISPR/Cas9 for genome-editing-based gene therapy.
Collapse
Affiliation(s)
- Joseph Andrew Whitley
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| | - Sungjin Kim
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| | - Lei Lou
- School of Electrical and Computer EngineeringCollege of EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| | - Chenming Ye
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| | - Omar Awad Alsaidan
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| | - Essilvo Sulejmani
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| | - Jingwen Cai
- Department of Cellular Biology and AnatomyAugusta UniversityAugustaGeorgiaUSA
| | - Ellison Gerona Desrochers
- School of Electrical and Computer EngineeringCollege of EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| | - Zanna Beharry
- Department of Chemical and Physical SciencesUniversity of Virgin IslandsSt. ThomasVirgin Islands
| | - Catherine Bowes Rickman
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Cell BiologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Yutao Liu
- Department of Cellular Biology and AnatomyAugusta UniversityAugustaGeorgiaUSA
| | - Zhong‐Ru Xie
- School of Electrical and Computer EngineeringCollege of EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
35
|
Shah A, Patel C, Parmar G, Patel A, Jain M. A concise review on tyrosine kinase targeted cancer therapy. CURRENT DRUG THERAPY 2022. [DOI: 10.2174/1574885517666220331104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The tyrosine kinase (TK) family is considered one of the important family members of the kinase family due to its important role in various cellular processes like cell growth, cell differentiation, apoptosis, etc. Mutation, overexpression, and dysfunction of tyrosine kinase receptors lead to the development of malignancy; thus, they are considered as one of the important targets for the development of anti-cancer molecules. The tyrosine kinase family is majorly divided into two classes; receptor and non-receptor tyrosine kinase. Both of the classes have an important role in the development of tumour cells. Currently, there are more than 40 FDA-approved tyrosine kinase inhibitors, which are used in the treatment of various types of cancers. Tyrosine kinase inhibitors mainly block the phosphorylation of tyrosine residue of the corresponding kinase substrate and so activation of downstream signalling pathways can be inhibited. The promising results of tyrosine kinase inhibitors in solid tumours provide a revolution in oncology research. In this article, we had summarized the role of some important members of the tyrosine kinase family in the development and progression of tumour cells and the significance of tyrosine kinase inhibitors in the treatment of various types of cancer.
Collapse
Affiliation(s)
- Ashish Shah
- Department of Pharmacy, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
- Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Chhagan Patel
- Shree Sarvajaink Pharmacy College, Mehsana, Gujarat India
| | - Ghanshaym Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Anand, Gujarat, India
| | - Manav Jain
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| |
Collapse
|
36
|
Nam Y, Choi CM, Park YS, Jung H, Hwang HS, Lee JC, Lee JW, Lee JE, Kang JH, Jung BH, Ji W. CDCP1 Expression Is a Potential Biomarker of Poor Prognosis in Resected Stage I Non-Small-Cell Lung Cancer. J Clin Med 2022; 11:jcm11020341. [PMID: 35054034 PMCID: PMC8779436 DOI: 10.3390/jcm11020341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/25/2022] Open
Abstract
Background: Although early-stage lung cancer has increased owing to the introduction of screening programs, high recurrence rate remains a critical concern. We aimed to explore biomarkers related to the prognosis of surgically resected non-small-cell lung cancer (NSCLC). Methods: In this retrospective study, we collected medical records of patients with NSCLC and matched tissue microarray blocks from surgical specimens. Semiquantitative immunohistochemistry was performed for measuring the expression level of fibroblast activation protein-alpha (FAP-α), Jagged-1 (JAG1), and CUB-domain-containing protein 1 (CDCP1). Results: A total of 453 patients who underwent complete resection between January 2011 and February 2012 were enrolled; 55.2% patients had stage I NSCLC, and 31.1% presented squamous cell carcinoma. Disease stage was a significant risk factor for recurrence and death, and age ≥ 65 years and male sex were associated with poor overall survival. FAP-a and JaG1 were not related to survivals, while CDCP1-expressing patients exhibited poor disease-free and overall survival. Moreover, CDCP1 expression in stage I NSCLC was significantly associated with recurrence. Conclusions: Old age, male sex, and high pathological stage were poor prognostic factors in patients with NSCLC who underwent surgical resection. Furthermore, CDCP1 expression could serve as a biomarker for poor prognosis in stage I NSCLC.
Collapse
Affiliation(s)
- Yunha Nam
- Asan Medical Center, Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.); (C.-M.C.)
| | - Chang-Min Choi
- Asan Medical Center, Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.); (C.-M.C.)
- Asan Medical Center, Department of Oncology, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Young Soo Park
- Asan Medical Center, Department of Pathology, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.P.); (H.S.H.)
| | - HyunA Jung
- Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Hee Sang Hwang
- Asan Medical Center, Department of Pathology, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.P.); (H.S.H.)
| | - Jae Cheol Lee
- Asan Medical Center, Department of Oncology, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jung Wook Lee
- Therapeutic Antibody R&D Center, Theranotics Co., Ltd., Seoul 05842, Korea; (J.W.L.); (J.E.L.); (J.H.K.); (B.H.J.)
| | - Jung Eun Lee
- Therapeutic Antibody R&D Center, Theranotics Co., Ltd., Seoul 05842, Korea; (J.W.L.); (J.E.L.); (J.H.K.); (B.H.J.)
| | - Jung Hee Kang
- Therapeutic Antibody R&D Center, Theranotics Co., Ltd., Seoul 05842, Korea; (J.W.L.); (J.E.L.); (J.H.K.); (B.H.J.)
| | - Byung Hun Jung
- Therapeutic Antibody R&D Center, Theranotics Co., Ltd., Seoul 05842, Korea; (J.W.L.); (J.E.L.); (J.H.K.); (B.H.J.)
| | - Wonjun Ji
- Asan Medical Center, Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.); (C.-M.C.)
- Correspondence: ; Tel.: +82-2-3010-1699; Fax: +82-2-3010-6968
| |
Collapse
|
37
|
Chu CT, Chen YH, Chiu WT, Chen HC. Tyrosine phosphorylation of lamin A by Src promotes disassembly of nuclear lamina in interphase. Life Sci Alliance 2021; 4:4/10/e202101120. [PMID: 34385357 PMCID: PMC8362257 DOI: 10.26508/lsa.202101120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Lamins form the nuclear lamina, which is important for nuclear structure and activity. Although posttranslational modifications, in particular serine phosphorylation, have been shown to be important for structural properties and functions of lamins, little is known about the role of tyrosine phosphorylation in this regard. In this study, we found that the constitutively active Src Y527F mutant caused the disassembly of lamin A/C. We demonstrate that Src directly phosphorylates lamin A mainly at Tyr45 both in vitro and in intact cells. The phosphomimetic Y45D mutant was diffusively distributed in the nucleoplasm and failed to assemble into the nuclear lamina. Depletion of lamin A/C in HeLa cells induced nuclear dysmorphia and genomic instability as well as increased nuclear plasticity for cell migration, all of which were partially restored by re-expression of lamin A, but further promoted by the Y45D mutant. Together, our results reveal a novel mechanism for regulating the assembly of nuclear lamina through Src and suggest that aberrant phosphorylation of lamin A by Src may contribute to nuclear dysmorphia, genomic instability, and nuclear plasticity.
Collapse
Affiliation(s)
- Ching-Tung Chu
- Institue of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hsuan Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Chen Chen
- Institue of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan .,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institue of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
38
|
Tapia L, Solozabal N, Solà J, Pérez Y, Miller WT, Alfonso I. Modulation of Src Kinase Activity by Selective Substrate Recognition with Pseudopeptidic Cages. Chemistry 2021; 27:9542-9549. [PMID: 33904620 PMCID: PMC8362067 DOI: 10.1002/chem.202100990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 12/15/2022]
Abstract
The selective recognition of tyrosine residues in peptides is an appealing approach to inhibiting their tyrosine kinase (TK)-mediated phosphorylation. Herein, we describe pseudopeptidic cages that efficiently protect substrates from the action of the Src TK enzyme, precluding the corresponding Tyr phosphorylation. Fluorescence emission titrations show that the most efficient cage inhibitors strongly bind the peptide substrates with a very good correlation between the binding constant and the inhibitory potency. Structural insights and additional control experiments further support the proposed mechanism of selective supramolecular protection of the substrates. Moreover, the approach also works in a completely different kinase-substrate system. These results illustrate the potential of supramolecular complexes for the efficient and selective modulation of TK signaling.
Collapse
Affiliation(s)
- Lucía Tapia
- Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia, IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Naiara Solozabal
- NMR FacilityInstitute for Advanced Chemistry of Catalonia, IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Jordi Solà
- Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia, IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Yolanda Pérez
- NMR FacilityInstitute for Advanced Chemistry of Catalonia, IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - W. Todd Miller
- Department of Physiology and BiophysicsStony Brook University and Department of Veterans Affairs Medical CenterStony BrookNY, 11794USA
| | - Ignacio Alfonso
- Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia, IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| |
Collapse
|
39
|
Yamaguchi N. [Novel Tyrosine Phosphorylation Signals in the Nucleus and on Mitotic Spindle Fibers and Lysosomes Revealed by Strong Inhibition of Tyrosine Dephosphorylation]. YAKUGAKU ZASSHI 2021; 141:927-947. [PMID: 34193653 DOI: 10.1248/yakushi.21-00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein-tyrosine phosphorylation is one of the posttranslational modifications and plays critical roles in regulating a wide variety of cellular processes, such as cell proliferation, differentiation, adhesion, migration, survival, and apoptosis. Protein-tyrosine phosphorylation is reversibly regulated by protein-tyrosine kinases and protein-tyrosine phosphatases. Strong inhibition of protein-tyrosine phosphatase activities is required to undoubtedly detect tyrosine phosphorylation. Our extremely careful usage of Na3VO4, a potent protein-tyrosine phosphatase inhibitor, has revealed not only the different intracellular trafficking pathways of Src-family tyrosine kinase members but also novel tyrosine phosphorylation signals in the nucleus and on mitotic spindle fibers and lysosomes. Furthermore, despite that the first identified oncogene product v-Src is generally believed to induce transformation through continuous stimulation of proliferation signaling by its strong tyrosine kinase activity, v-Src-driven transformation was found to be caused not by continuous proliferation signaling but by v-Src tyrosine kinase activity-dependent stochastic genome alterations. Here, I summarize our findings regarding novel tyrosine phosphorylation signaling in a spatiotemporal sense and highlight the significance of the roles of tyrosine phosphorylation in transcriptional regulation inside the nucleus and chromosome dynamics.
Collapse
Affiliation(s)
- Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
40
|
Ikeuchi M, Yuki R, Saito Y, Nakayama Y. The tumor suppressor LATS2 reduces v-Src-induced membrane blebs in a kinase activity-independent manner. FASEB J 2021; 35:e21242. [PMID: 33368671 DOI: 10.1096/fj.202001909r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022]
Abstract
When cells with excess DNA, such as tetraploid cells, undergo cell division, it can contribute to cellular transformation via asymmetrical chromosome segregation-generated genetic diversity. Cell cycle progression of tetraploid cells is suppressed by large tumor suppressor 2 (LATS2) kinase-induced inhibitory phosphorylation of the transcriptional coactivator Yes-associated protein (YAP). We recently reported that the oncogene v-Src induces tetraploidy and promotes cell cycle progression of tetraploid cells by suppressing LATS2 activity. We explore here the mechanism by which v-Src suppresses LATS2 activity and the role of LATS2 in v-Src-expressing cells. LATS2 was directly phosphorylated by v-Src and the proto-oncogene c-Src, resulting in decreased LATS2 kinase activity. This kinase-deficient LATS2 accumulated in a YAP transcriptional activity-dependent manner, and knockdown of either LATS2 or the LATS2-binding partner moesin-ezrin-radixin-like protein (Merlin) accelerated v-Src-induced membrane bleb formation. Upon v-Src expression, the interaction of Merlin with LATS2 was increased possibly due to a decrease in Merlin phosphorylation at Ser518, the dephosphorylation of which is required for the open conformation of Merlin and interaction with LATS2. LATS2 was colocalized with Merlin at the plasma membrane in a manner that depends on the Merlin-binding region of LATS2. The bleb formation in v-Src-expressing and LATS2-knockdown cells was rescued by the reexpression of wild-type or kinase-dead LATS2 but not the LATS2 mutant lacking the Merlin-binding region. These results suggest that the kinase-deficient LATS2 plays a role with Merlin at the plasma membrane in the maintenance of cortical rigidity in v-Src-expressing cells, which may cause tumor suppression.
Collapse
Affiliation(s)
- Masayoshi Ikeuchi
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan.,DC1, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ryuzaburo Yuki
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
41
|
Shuai W, Wang G, Zhang Y, Bu F, Zhang S, Miller DD, Li W, Ouyang L, Wang Y. Recent Progress on Tubulin Inhibitors with Dual Targeting Capabilities for Cancer Therapy. J Med Chem 2021; 64:7963-7990. [PMID: 34101463 DOI: 10.1021/acs.jmedchem.1c00100] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microtubules play a crucial role in multiple cellular functions including mitosis, cell signaling, and organelle trafficking, which makes the microtubule an important target for cancer therapy. Despite the great successes of microtubule-targeting agents in the clinic, the development of drug resistance and dose-limiting toxicity restrict their clinical efficacy. In recent years, multitarget therapy has been considered an effective strategy to achieve higher therapeutic efficacy, in particular dual-target drugs. In terms of the synergetic effect of tubulin and other antitumor agents such as receptor tyrosine kinases inhibitors, histone deacetylases inhibitors, DNA-damaging agents, and topoisomerase inhibitors in combination therapy, designing dual-target tubulin inhibitors is regarded as a promising approach to overcome these limitations and improve therapeutic efficacy. In this Perspective, we discussed rational target combinations, design strategies, structure-activity relationships, and future directions of dual-target tubulin inhibitors.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
42
|
Bußmann L, Hoffer K, von Bargen CM, Droste C, Lange T, Kemmling J, Schröder-Schwarz J, Vu AT, Akingunsade L, Nollau P, Rangarajan S, de Wijn R, Oetting A, Müller C, Böckelmann LC, Zech HB, Berger JC, Möckelmann N, Busch CJ, Böttcher A, Gatzemeier F, Klinghammer K, Simnica D, Binder M, Struve N, Rieckmann T, Schumacher U, Clauditz TS, Betz CS, Petersen C, Rothkamm K, Münscher A, Kriegs M. Analyzing tyrosine kinase activity in head and neck cancer by functional kinomics: Identification of hyperactivated Src family kinases as prognostic markers and potential targets. Int J Cancer 2021; 149:1166-1180. [PMID: 33890294 DOI: 10.1002/ijc.33606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/20/2023]
Abstract
Signal transduction via protein kinases is of central importance in cancer biology and treatment. However, the clinical success of kinase inhibitors is often hampered by a lack of robust predictive biomarkers, which is also caused by the discrepancy between kinase expression and activity. Therefore, there is a need for functional tests to identify aberrantly activated kinases in individual patients. Here we present a systematic analysis of the tyrosine kinases in head and neck cancer using such a test-functional kinome profiling. We detected increased tyrosine kinase activity in tumors compared with their corresponding normal tissue. Moreover, we identified members of the family of Src kinases (Src family kinases [SFK]) to be aberrantly activated in the majority of the tumors, which was confirmed by additional methods. We could also show that SFK hyperphosphorylation is associated with poor prognosis, while inhibition of SFK impaired cell proliferation, especially in cells with hyperactive SFK. In summary, functional kinome profiling identified SFK to be frequently hyperactivated in head and neck squamous cell carcinoma. SFK may therefore be potential therapeutic targets. These results furthermore demonstrate how functional tests help to increase our understanding of cancer biology and support the expansion of precision oncology.
Collapse
Affiliation(s)
- Lara Bußmann
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Laboratory of Radiobiology and Experimental Radiation Oncology, UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konstantin Hoffer
- Laboratory of Radiobiology and Experimental Radiation Oncology, UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara Marie von Bargen
- Department of Pathology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Conrad Droste
- Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Kemmling
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Schröder-Schwarz
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anh Thu Vu
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lara Akingunsade
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Nollau
- Department of Pediatric Hematology and Oncology, Research Institute Children's Cancer Center, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Rik de Wijn
- PamGene International B.V., 's-Hertogenbosch, The Netherlands
| | - Agnes Oetting
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Müller
- Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of General and Interventional Cardiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Clemens Böckelmann
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrike Barbara Zech
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joanna Caroline Berger
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolaus Möckelmann
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chia-Jung Busch
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne Böttcher
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fruzsina Gatzemeier
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Donjete Simnica
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Nina Struve
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Sebastian Clauditz
- Department of Pathology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Stephan Betz
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrian Münscher
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Otorhinolaryngology, Marienkrankenhaus Hamburg, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology and Experimental Radiation Oncology, UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
43
|
Ma H, Zhang J, Zhou L, Wen S, Tang HY, Jiang B, Zhang F, Suleman M, Sun D, Chen A, Zhao W, Lin F, Tsau MT, Shih LM, Xie C, Li X, Lin D, Hung LM, Cheng ML, Li Q. c-Src Promotes Tumorigenesis and Tumor Progression by Activating PFKFB3. Cell Rep 2021; 30:4235-4249.e6. [PMID: 32209481 DOI: 10.1016/j.celrep.2020.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/29/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Reprogramming of glucose metabolism is a key event in tumorigenesis and progression. Here, we show that active c-Src stimulates glycolysis by phosphorylating (Tyr194) and activating PFKFB3, a key enzyme that boosts glycolysis by producing fructose-2,6-bisphosphate and activating PFK1. Increased glycolysis intermediates replenish non-oxidative pentose phosphate pathway (PPP) and serine pathway for biosynthesis of cancer cells. PFKFB3 knockout (KO) cells and their counterpart reconstituted with PFKFB3-Y194F show comparably impaired abilities for proliferation, migration, and xenograft formation. Furthermore, PFKFB3-Y194F knockin mice show impaired glycolysis and, mating of these mice with APCmin/+ mice attenuates spontaneous colon cancer formation in APCmin/+ mice. In summary, we identify a specific mechanism by which c-Src mediates glucose metabolism to meet cancer cells' requirements for maximal biosynthesis and proliferation. The PFKFB3-Tyr194 phosphorylation level highly correlates with c-Src activity in clinical tumor samples, indicating its potential as an evaluation for tumor prognosis.
Collapse
Affiliation(s)
- Huanhuan Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jia Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lin Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shixiong Wen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fengqiong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Muhammad Suleman
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dachao Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ai Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wentao Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ming-Tong Tsau
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Lu-Min Shih
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaotong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Donghai Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Li-Man Hung
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; Center for Healthy and Aging Research, Chang Gung University, Taoyuan City 33302, Taiwan; Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan.
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
44
|
Shin JY, Ahn SM. Src is essential for the endosomal delivery of the FGFR4 signaling complex in hepatocellular carcinoma. J Transl Med 2021; 19:138. [PMID: 33794926 PMCID: PMC8017611 DOI: 10.1186/s12967-021-02807-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Background Hepatocytes usually express fibroblast growth factor receptor 4 (FGFR4), but not its ligand, fibroblast growth factor 19 (FGF19). A subtype of hepatocellular carcinoma (HCC) expresses FGF19, which activates the FGFR4 signaling pathway that induces cell proliferation. FGFR4 inhibitors that target this mechanism are under clinical development for the treatment of HCCs with FGF19 amplification or FGFR4 overexpression. Src plays an essential role in the FGFR1 and FGFR2 signaling pathways. However, it is yet to be understood whether Src has any role in the FGF19-FGFR4 pathway in HCCs. In this study, we aimed to elucidate the role of Src in the FGF19-FGFR4 axis in HCC. Methods 3 HCC cell lines expressing both FGF19 and FGFR4 were selected. The expression of each protein was suppressed by siRNA treatment, and the activity-regulating relationship between FGFR4 and Src was investigated by westernblot. Co-immunoprecipitation was performed using the FGFR4 antibody to identify the endosomal complex formation and receptor endocytosis. The intracellular migration pathways of the endosomal complex were observed by immuno-fluorescence and nuclear co-immunoprecipitation. Dasatinib and BLU9931 were used for cytotoxicity comparison. Results FGFR4 modulates the activity of Src and Src modulates the expression of FGFR4, showing a mutual regulatory relationship. FGFR4 activated by FGF19 formed an endosomal complex with Src and STAT3 and moved to the nucleus. However, when Src was suppressed, the formation of the endosomal complex was not observed. FGFR4 was released from the complex transferred into the nucleus and the binding of Src and STAT3 was maintained. Dasatinib showed cytotoxic results comparable to BLU9931. The results of our study demonstrated that Src is essential for the nuclear transport of STAT3, as it induces the endosomal delivery of FGFR4 in FGF19-expressing HCC cell lines. Conclusions We found that Src is essential for the endosomal delivery of the FGFR4 signaling complex in HCC. Our findings provide a scientific rationale for repurposing Src inhibitors for the treatment of HCCs in which the FGFR4 pathway is activated. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02807-4.
Collapse
Affiliation(s)
- Ji-Yon Shin
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Sung-Min Ahn
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea. .,Department of Genome Medicine and Science, College of Medicine, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
45
|
Rystsov GK, Antipova TV, Zaitsev KV, Zemskova MY. Antitumor Activity of Monasnicotinic Acid Isolated from the Fungus Aspergillus cavernicola. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Azimian-Zavareh V, Dehghani-Ghobadi Z, Ebrahimi M, Mirzazadeh K, Nazarenko I, Hossein G. Wnt5A modulates integrin expression in a receptor-dependent manner in ovarian cancer cells. Sci Rep 2021; 11:5885. [PMID: 33723319 PMCID: PMC7970989 DOI: 10.1038/s41598-021-85356-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Wnt5A signals through various receptors that confer versatile biological functions. Here, we used Wnt5A overexpressing human ovarian SKOV-3 and OVCAR-3 stable clones for assessing integrin expression, cell proliferation, migration, invasion, and the ability of multicellular aggregates (MCAs) formation. We found here, that Wnt5A regulates differently the expression of its receptors in the stable Wnt5A overexpressing clones. The expression levels of Frizzled (FZD)-2 and -5, were increased in different clones. However ROR-1, -2 expression levels were differently regulated in clones. Wnt5A overexpressing clones showed increased cell proliferation, migration, and clonogenicity. Moreover, Wnt5A overexpressing SKOV-3 clone showed increased MCAs formation ability. Cell invasion had been increased in OVCAR-3-derived clones, while this was decreased in SKOV-3-derived clone. Importantly, αv integrin expression levels were increased in all assessed clones, accompanied by increased cell attachment to fibronectin and focal adhesion kinase activity. Moreover, the treatment of clones with Box5 as a Wnt5A/FZD5 antagonist abrogates ITGAV increase, cell proliferation, migration, and their attachment to fibronectin. Accordingly, we observed significantly higher expression levels of ITGAV and ITGB3 in human high-grade serous ovarian cancer specimens and ITGAV correlated positively with Wnt5A in metastatic serous type ovarian cancer. In summary, we hypothesize here, that Wnt5A/FZD-5 signaling modulate αv integrin expression levels that could be associated with ovarian cancer cell proliferation, migration, and fibronectin attachment.
Collapse
Affiliation(s)
- Vajihe Azimian-Zavareh
- Department of Animal Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Dehghani-Ghobadi
- Department of Animal Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Kian Mirzazadeh
- Department of Animal Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Ghamartaj Hossein
- Department of Animal Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran.
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
47
|
Rudd CE. How the Discovery of the CD4/CD8-p56 lck Complexes Changed Immunology and Immunotherapy. Front Cell Dev Biol 2021; 9:626095. [PMID: 33791292 PMCID: PMC8005572 DOI: 10.3389/fcell.2021.626095] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
The past 25 years have seen enormous progress in uncovering the receptors and signaling mechanisms on T-cells that activate their various effecter functions. Until the late 1980s, most studies on T-cells had focused on the influx of calcium and the levels of cAMP/GMP in T-cells. My laboratory then uncovered the interaction of CD4 and CD8 co-receptors with the protein-tyrosine kinase p56lck which are now widely accepted as the initiators of the tyrosine phosphorylation cascade leading to T-cell activation. The finding explained how immune recognition receptors expressed by many immune cells, which lack intrinsic catalytic activity, can transduce activation signals via non-covalent association with non-receptor tyrosine kinases. The discovery also established the concept that a protein tyrosine phosphorylation cascade operated in T-cells. In this vein, we and others then showed that the CD4- and CD8-p56lck complexes phosphorylate the TCR complexes which led to the identification of other protein-tyrosine kinases such as ZAP-70 and an array of substrates that are now central to studies in T-cell immunity. Other receptors such as B-cell receptor, Fc receptors and others were also subsequently found to use src kinases to control cell growth. In T-cells, p56lck driven phosphorylation targets include co-receptors such as CD28 and CTLA-4 and immune cell-specific adaptor proteins such as LAT and SLP-76 which act to integrate signals proximal to surface receptors. CD4/CD8-p56lck regulated events in T-cells include intracellular calcium mobilization, integrin activation and the induction of transcription factors for gene expression. Lastly, the identification of the targets of p56lck in the TCR and CD28 provided the framework for the development of chimeric antigen receptor (CAR) therapy in the treatment of cancer. In this review, I outline a history of the development of events that led to the development of the "TCR signaling paradigm" and its implications to immunology and immunotherapy.
Collapse
Affiliation(s)
- Christopher E. Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Universite de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
48
|
Lee S, Kim J, Jo J, Chang JW, Sim J, Yun H. Recent advances in development of hetero-bivalent kinase inhibitors. Eur J Med Chem 2021; 216:113318. [PMID: 33730624 DOI: 10.1016/j.ejmech.2021.113318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Identifying a pharmacological agent that targets only one of more than 500 kinases present in humans is an important challenge. One potential solution to this problem is the development of bivalent kinase inhibitors, which consist of two connected fragments, each bind to a dissimilar binding site of the bisubstrate enzyme. The main advantage of bivalent (type V) kinase inhibitors is generating more interactions with target enzymes that can enhance the molecules' selectivity and affinity compared to single-site inhibitors. Earlier type V inhibitors were not suitable for the cellular environment and were mostly used in in vitro studies. However, recently developed bivalent compounds have high kinase affinity, high biological and chemical stability in vivo. This review summarized the hetero-bivalent kinase inhibitors described in the literature from 2014 to the present. We attempted to classify the molecules by serine/threonine and tyrosine kinase inhibitors, and then each target kinase and its hetero-bivalent inhibitor was assessed in depth. In addition, we discussed the analysis of advantages, limitations, and perspectives of bivalent kinase inhibitors compared with the monovalent kinase inhibitors.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae Won Chang
- Department of Pharmacology & Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
49
|
Ling Y, Liu J, Qian J, Meng C, Guo J, Gao W, Xiong B, Ling C, Zhang Y. Recent Advances in Multi-target Drugs Targeting Protein Kinases and Histone Deacetylases in Cancer Therapy. Curr Med Chem 2021; 27:7264-7288. [PMID: 31894740 DOI: 10.2174/0929867327666200102115720] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/12/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
Abstract
Protein Kinase Inhibitors (PKIs) and Histone Deacetylase Inhibitors (HDACIs) are two important classes of anticancer agents and have provided a variety of small molecule drugs for the treatment of various types of human cancers. However, malignant tumors are of a multifactorial nature that can hardly be "cured" by targeting a single target, and treatment of cancers hence requires modulation of multiple biological targets to restore the physiological balance and generate sufficient therapeutic efficacy. Multi-target drugs have attracted great interest because of their advantages in the treatment of complex cancers by simultaneously targeting multiple signaling pathways and possibly leading to synergistic effects. Synergistic effects have been observed in the combination of kinase inhibitors, such as imatinib, dasatinib, or sorafenib, with an array of HDACIs including vorinostat, romidepsin, or panobinostat. A considerable number of multi-target agents based on PKIs and HDACIs have been developed. In this review, we summarize the recent literature on the development of multi-target kinase-HDAC inhibitors and provide our view on the challenges and future directions on this topic.
Collapse
Affiliation(s)
- Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Ji Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Jing Guo
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Weijie Gao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Biao Xiong
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Changchun Ling
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| |
Collapse
|
50
|
Zhai W, Ye X, Wang Y, Feng Y, Wang Y, Lin Y, Ding L, Yang L, Wang X, Kuang Y, Fu X, Eugene Chin Y, Jia B, Zhu B, Ren F, Chang Z. CREPT/RPRD1B promotes tumorigenesis through STAT3-driven gene transcription in a p300-dependent manner. Br J Cancer 2021; 124:1437-1448. [PMID: 33531691 PMCID: PMC8039031 DOI: 10.1038/s41416-021-01269-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 11/14/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) has been shown to upregulate gene transcription during tumorigenesis. However, how STAT3 initiates transcription remains to be exploited. This study is to reveal the role of CREPT (cell cycle-related and elevated-expression protein in tumours, or RPRD1B) in promoting STAT3 transcriptional activity. METHODS BALB/c nude mice, CREPT overexpression or deletion cells were employed for the assay of tumour formation, chromatin immunoprecipitation, assay for transposase-accessible chromatin using sequencing. RESULTS We demonstrate that CREPT, a recently identified oncoprotein, enhances STAT3 transcriptional activity to promote tumorigenesis. CREPT expression is positively correlated with activation of STAT3 signalling in tumours. Deletion of CREPT led to a decrease, but overexpression of CREPT resulted in an increase, in STAT3-initiated tumour cell proliferation, colony formation and tumour growth. Mechanistically, CREPT interacts with phosphorylated STAT3 (p-STAT3) and facilitates p-STAT3 to recruit p300 to occupy at the promoters of STAT3-targeted genes. Therefore, CREPT and STAT3 coordinately facilitate p300-mediated acetylation of histone 3 (H3K18ac and H3K27ac), further augmenting RNA polymerase II recruitment. Accordingly, depletion of p300 abolished CREPT-enhanced STAT3 transcriptional activity. CONCLUSIONS We propose that CREPT is a co-activator of STAT3 for recruiting p300. Our study provides an alternative strategy for the therapy of cancers related to STAT3.
Collapse
Affiliation(s)
- Wanli Zhai
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Science, Tsinghua University, Beijing, China
| | - Xiongjun Ye
- Urology and Lithotripsy Center, Peking University People's Hospital, Beijing, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Yarui Feng
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Ying Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Yuting Lin
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Science, Tsinghua University, Beijing, China
| | - Lidan Ding
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Liu Yang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Xuning Wang
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Yanshen Kuang
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Xinyuan Fu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Beijing, China
| | - Y Eugene Chin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Baoqing Jia
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Bingtao Zhu
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|