1
|
Yan J, Bhadane R, Ran M, Ma X, Li Y, Zheng D, Salo-Ahen OMH, Zhang H. Development of Aptamer-DNAzyme based metal-nucleic acid frameworks for gastric cancer therapy. Nat Commun 2024; 15:3684. [PMID: 38693181 PMCID: PMC11063048 DOI: 10.1038/s41467-024-48149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
The metal-nucleic acid nanocomposites, first termed metal-nucleic acid frameworks (MNFs) in this work, show extraordinary potential as functional nanomaterials. However, thus far, realized MNFs face limitations including harsh synthesis conditions, instability, and non-targeting. Herein, we discover that longer oligonucleotides can enhance the synthesis efficiency and stability of MNFs by increasing oligonucleotide folding and entanglement probabilities during the reaction. Besides, longer oligonucleotides provide upgraded metal ions binding conditions, facilitating MNFs to load macromolecular protein drugs at room temperature. Furthermore, longer oligonucleotides facilitate functional expansion of nucleotide sequences, enabling disease-targeted MNFs. As a proof-of-concept, we build an interferon regulatory factor-1(IRF-1) loaded Ca2+/(aptamer-deoxyribozyme) MNF to target regulate glucose transporter (GLUT-1) expression in human epidermal growth factor receptor-2 (HER-2) positive gastric cancer cells. This MNF nanodevice disrupts GSH/ROS homeostasis, suppresses DNA repair, and augments ROS-mediated DNA damage therapy, with tumor inhibition rate up to 90%. Our work signifies a significant advancement towards an era of universal MNF application.
Collapse
Affiliation(s)
- Jiaqi Yan
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road, Shanghai, 200025, PR China
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Rajendra Bhadane
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, 20520, Turku, Finland
| | - Meixin Ran
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Xiaodong Ma
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Yuanqiang Li
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Dongdong Zheng
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Outi M H Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, 20520, Turku, Finland
| | - Hongbo Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
2
|
Liu Y, He Y, Cao J, Lu H, Zou R, Zuo Z, Li R, Zhang Y, Sun J. Correlative analysis of transcriptome and proteome in Penaeus vannamei reveals key signaling pathways are involved in IFN-like antiviral regulation mediated by interferon regulatory factor (PvIRF). Int J Biol Macromol 2023; 253:127138. [PMID: 37776923 DOI: 10.1016/j.ijbiomac.2023.127138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Interferon regulatory factors (IRFs) are crucial transcription factors that regulate interferon (IFN) induction in response to pathogen invasion. The regulatory mechanism of IRF has been well studied in vertebrates, but little has been known in arthropods. Therefore, in order to obtain new insights into the potential molecular mechanism of Peneaus vannamei IRF (PvIRF) in response to viral infection, comprehensive comparative analysis of the transcriptome and proteome profiles in shrimp infected with WSSV after knocking down PvIRF was conducted by using RNA sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ). The sequence characterization, molecular functional evolution and 3D spatial structure of PvIRF were analyzed by using bioinformatics methods. PvIRF share the higher homology with different species in N-terminal end (containing DNA binding domain (DBD) including DNA sequence recognition sites and metal binding site) than that in C-terminal end. Within 4 IRF subfamilies of vertebrates, PvIRF had closer relationship with IRF1 subfamily. The DBD of PvIRF and C. gigas IRF1a were composed of α-helices and β-folds which was similar with the DBD structure of M. musculus IRF2. Interestingly, different from the five Tryptophan repeats highly homologous in the DBD of vertebrate IRF, the first and fifth tryptophans of PvIRF mutate to Phenylalanine and Leucine respectively, while the mutations were conserved among shrimp IRFs. RNAi knockdown of PvIRF gene by double-strand RNA could obviously promote the in vivo propagation of WSSV in shrimp and increase the mortality of WSSV-infected shrimp. It suggested that PvIRF was involved in inhibiting the replication of WSSV in shrimp. A total of 8787 transcripts and 2846 proteins were identified with significantly differential abundances in WSSV-infected shrimp after PvIRF knockdown, among which several immune-related members were identified and categorized into 10 groups according to their possible functions. Furthermore, the variation of expression profile from members of key signaling pathways involving JAK/STAT and Toll signaling pathway implied that they might participate IRF-mediated IFN-like regulation in shrimp. Correlative analyses indicated that 722 differentially expressed proteins (DEPs) shared the same expression profiles with their corresponding transcripts, including recognition-related proteins (CTLs and ITGs), chitin-binding proteins (peritrophin), and effectors (ALFs and SWD), while 401 DEPs with the opposite expression profiles across the two levels emphasized the critical role of post-transcriptional and post-translational modification. The results provide candidate signaling pathway including pivotal genes and proteins involved in the regulatory mechanism of interferon mediated by IRF on shrimp antiviral response. This is the first report in crustacean to explore the IFN-like antiviral regulation pathway mediated by IRF on the basis of transcriptome and proteomics correlative analysis, and will provide new ideas for further research on innate immune and defense mechanisms of crustacean.
Collapse
Affiliation(s)
- Yichen Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Yuxin He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jinlai Cao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Hangjia Lu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Ruifeng Zou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Zhihan Zuo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Yichen Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
3
|
Rundberg Nilsson AJ, Xian H, Shalapour S, Cammenga J, Karin M. IRF1 regulates self-renewal and stress responsiveness to support hematopoietic stem cell maintenance. SCIENCE ADVANCES 2023; 9:eadg5391. [PMID: 37889967 PMCID: PMC10610924 DOI: 10.1126/sciadv.adg5391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Hematopoietic stem cells (HSCs) are tightly controlled to maintain a balance between blood cell production and self-renewal. While inflammation-related signaling is a critical regulator of HSC activity, the underlying mechanisms and the precise functions of specific factors under steady-state and stress conditions remain incompletely understood. We investigated the role of interferon regulatory factor 1 (IRF1), a transcription factor that is affected by multiple inflammatory stimuli, in HSC regulation. Our findings demonstrate that the loss of IRF1 from mouse HSCs significantly impairs self-renewal, increases stress-induced proliferation, and confers resistance to apoptosis. In addition, given the frequent abnormal expression of IRF1 in leukemia, we explored the potential of IRF1 expression level as a stratification marker for human acute myeloid leukemia. We show that IRF1-based stratification identifies distinct cancer-related signatures in patient subgroups. These findings establish IRF1 as a pivotal HSC controller and provide previously unknown insights into HSC regulation, with potential implications to IRF1 functions in the context of leukemia.
Collapse
Affiliation(s)
- Alexandra J. S. Rundberg Nilsson
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Molecular Medicine and Gene Therapy, Institution for Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
- Lund Stem Cell Center, Medical Faculty, Lund University, Lund, Sweden
| | - Hongxu Xian
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jörg Cammenga
- Division of Molecular Medicine and Gene Therapy, Institution for Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
- Lund Stem Cell Center, Medical Faculty, Lund University, Lund, Sweden
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Schwartz I, Vunjak M, Budroni V, Cantoran García A, Mastrovito M, Soderholm A, Hinterndorfer M, de Almeida M, Hacker K, Wang J, Froussios K, Jude J, Decker T, Zuber J, Versteeg GA. SPOP targets the immune transcription factor IRF1 for proteasomal degradation. eLife 2023; 12:e89951. [PMID: 37622993 PMCID: PMC10491434 DOI: 10.7554/elife.89951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Adaptation of the functional proteome is essential to counter pathogens during infection, yet precisely timed degradation of these response proteins after pathogen clearance is likewise key to preventing autoimmunity. Interferon regulatory factor 1 (IRF1) plays an essential role as a transcription factor in driving the expression of immune response genes during infection. The striking difference in functional output with other IRFs is that IRF1 also drives the expression of various cell cycle inhibiting factors, making it an important tumor suppressor. Thus, it is critical to regulate the abundance of IRF1 to achieve a 'Goldilocks' zone in which there is sufficient IRF1 to prevent tumorigenesis, yet not too much which could drive excessive immune activation. Using genetic screening, we identified the E3 ligase receptor speckle type BTB/POZ protein (SPOP) to mediate IRF1 proteasomal turnover in human and mouse cells. We identified S/T-rich degrons in IRF1 required for its SPOP MATH domain-dependent turnover. In the absence of SPOP, elevated IRF1 protein levels functionally increased IRF1-dependent cellular responses, underpinning the biological significance of SPOP in curtailing IRF1 protein abundance.
Collapse
Affiliation(s)
- Irene Schwartz
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BiocenterViennaAustria
| | - Milica Vunjak
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BiocenterViennaAustria
| | - Valentina Budroni
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BiocenterViennaAustria
| | - Adriana Cantoran García
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
| | - Marialaura Mastrovito
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
| | - Adrian Soderholm
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BiocenterViennaAustria
| | - Matthias Hinterndorfer
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BiocenterViennaAustria
- Research Institute of Molecular Pathology, Vienna BiocenterViennaAustria
| | - Melanie de Almeida
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BiocenterViennaAustria
- Research Institute of Molecular Pathology, Vienna BiocenterViennaAustria
| | - Kathrin Hacker
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
| | - Jingkui Wang
- Research Institute of Molecular Pathology, Vienna BiocenterViennaAustria
| | - Kimon Froussios
- Research Institute of Molecular Pathology, Vienna BiocenterViennaAustria
| | - Julian Jude
- Research Institute of Molecular Pathology, Vienna BiocenterViennaAustria
| | - Thomas Decker
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna BiocenterViennaAustria
- Medical University of Vienna, Vienna BioCenterViennaAustria
| | - Gijs A Versteeg
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
| |
Collapse
|
5
|
Zhao JY, Yuan XK, Luo RZ, Wang LX, Gu W, Yamane D, Feng H. Phospholipase A and acyltransferase 4/retinoic acid receptor responder 3 at the intersection of tumor suppression and pathogen restriction. Front Immunol 2023; 14:1107239. [PMID: 37063830 PMCID: PMC10102619 DOI: 10.3389/fimmu.2023.1107239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Phospholipase A and acyltransferase (PLAAT) 4 is a class II tumor suppressor with phospholipid metabolizing abilities. It was characterized in late 2000s, and has since been referred to as 'tazarotene-induced gene 3' (TIG3) or 'retinoic acid receptor responder 3' (RARRES3) as a key downstream effector of retinoic acid signaling. Two decades of research have revealed the complexity of its function and regulatory roles in suppressing tumorigenesis. However, more recent findings have also identified PLAAT4 as a key anti-microbial effector enzyme acting downstream of interferon regulatory factor 1 (IRF1) and interferons (IFNs), favoring protection from virus and parasite infections. Unveiling the molecular mechanisms underlying its action may thus open new therapeutic avenues for the treatment of both cancer and infectious diseases. Herein, we aim to summarize a brief history of PLAAT4 discovery, its transcriptional regulation, and the potential mechanisms in tumor prevention and anti-pathogen defense, and discuss potential future directions of PLAAT4 research toward the development of therapeutic approaches targeting this enzyme with pleiotropic functions.
Collapse
Affiliation(s)
- Jian-Yong Zhao
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Xiang-Kun Yuan
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Rui-Zhen Luo
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Li-Xin Wang
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Wei Gu
- School of Medicine, Chongqing University, Chongqing, China
| | - Daisuke Yamane
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hui Feng
- School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Aditi, McKinnon PJ. Genome integrity and inflammation in the nervous system. DNA Repair (Amst) 2022; 119:103406. [PMID: 36148701 PMCID: PMC9844216 DOI: 10.1016/j.dnarep.2022.103406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
Preservation of genomic integrity is crucial for nervous system development and function. DNA repair deficiency results in several human diseases that are characterized by both neurodegeneration and neuroinflammation. Recent research has highlighted a role for compromised genomic integrity as a key factor driving neuropathology and triggering innate immune signaling to cause inflammation. Here we review the mechanisms by which DNA damage engages innate immune signaling and how this may promote neurological disease. We also consider the contributions of different neural cell types towards DNA damage-driven neuroinflammation. A deeper knowledge of genome maintenance mechanisms that prevent aberrant immune activation in neural cells will guide future therapies to ameliorate neurological disease.
Collapse
Affiliation(s)
- Aditi
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
7
|
Alternative Splicing in Cancer and Immune Cells. Cancers (Basel) 2022; 14:cancers14071726. [PMID: 35406498 PMCID: PMC8996879 DOI: 10.3390/cancers14071726] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
Splicing is a phenomenon enabling the excision of introns from pre-mRNA to give rise to mature mRNA. All the 20,000 genes of the human genome are concerned by this mechanism. Nevertheless, it is estimated that the proteome is composed of more than 100,000 proteins. How to go from 20,000 genes to more than 100,000 proteins? Alternative splicing (AS) is in charge of this diversity of proteins. AS which is found in most of the cells of an organism, participates in normal cells and in particular in immune cells, in the regulation of cellular behavior. In cancer, AS is highly dysregulated and involved in almost all of the hallmarks that characterize tumor cells. In view of the close link that exists between tumors and the immune system, we present in this review the literature relating to alternative splicing and immunotherapy. We also provide a global but not exhaustive view of AS in the immune system and tumor cells linked to the events that can lead to AS dysregulation in tumors.
Collapse
|
8
|
Ajrouche R, Chandab G, Petit A, Strullu M, Nelken B, Plat G, Michel G, Domenech C, Clavel J, Bonaventure A. Allergies, genetic polymorphisms of Th2 interleukins, and childhood acute lymphoblastic leukemia: The ESTELLE study. Pediatr Blood Cancer 2022; 69:e29402. [PMID: 34662484 DOI: 10.1002/pbc.29402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 08/12/2021] [Accepted: 09/16/2021] [Indexed: 11/07/2022]
Abstract
CONTEXT A negative association between a history of allergy and childhood acute lymphoblastic leukemia (ALL) has been reported in previous studies, but remains debated. This work aimed to investigate this association accounting for genetic polymorphisms of the Th2 pathway cytokines (IL4, IL10, IL13, and IL4R). METHODS Analyses were based on the French case-control study ESTELLE (2010-2011). The complete sample included 629 ALL cases and 1421 population-based controls frequency-matched on age and gender. The child's medical history was collected through standardized maternal interview. Biological samples were collected, and genotyping data were available for 411 cases and 704 controls of European origin. Odds ratios (OR) were estimated using unconditional regression models adjusted for potential confounders. RESULTS In the complete sample, a significant inverse association was observed between ALL and reported history of allergic rhinitis or sinusitis (OR = 0.65 [0.42-0.98]; P = 0.04), but there was no obvious association with allergies overall. There was an interaction between genetic polymorphisms in IL4 and IL4R (Pinteraction = 0.003), as well as a gene-environment interaction between IL4R-rs1801275 and a reported history of asthma (IOR = 0.23; Pint = 0.008) and eczema (IOR = 0.47; Pint = 0.06). We observed no interaction with the candidate polymorphisms in IL4 and IL13. CONCLUSION These results suggest that the association between allergic symptoms and childhood ALL could be modified by IL4R-rs1801275, and that this variant could also interact with a functional variant in IL4 gene. Although they warrant confirmation, these results could help understand the pathological mechanisms under the reported inverse association between allergy and childhood ALL.
Collapse
Affiliation(s)
- Roula Ajrouche
- CRESS, Université de Paris INSERM, UMR 1153, Epidemiology of Childhood and Adolescent Cancers Team, Villejuif, France.,Faculty of Pharmacy, Lebanese University, Hadath, Lebanon
| | - Ghinaj Chandab
- CRESS, Université de Paris INSERM, UMR 1153, Epidemiology of Childhood and Adolescent Cancers Team, Villejuif, France.,Faculty of Pharmacy, Lebanese University, Hadath, Lebanon
| | - Arnaud Petit
- Sorbonne Université, UMRS_938, AP-HP, Hôpital Armand Trousseau, Paris, France
| | | | | | | | | | - Carine Domenech
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Université Lyon 1, Lyon, France
| | - Jacqueline Clavel
- CRESS, Université de Paris INSERM, UMR 1153, Epidemiology of Childhood and Adolescent Cancers Team, Villejuif, France.,National Registry of Childhood Cancers, Groupe Hospitalier Universitaire Paris-Sud, Assistance Publique Hôpitaux de Paris (AP-HP) Hôpital Paul Brousse, Villejuif, France and CHU de Nancy, Vandoeuvre-lès-Nancy, Nancy, France
| | - Audrey Bonaventure
- CRESS, Université de Paris INSERM, UMR 1153, Epidemiology of Childhood and Adolescent Cancers Team, Villejuif, France
| |
Collapse
|
9
|
Martínez-Sabadell A, Arenas EJ, Arribas J. IFNγ Signaling in Natural and Therapy-Induced Antitumor Responses. Clin Cancer Res 2021; 28:1243-1249. [PMID: 34785585 DOI: 10.1158/1078-0432.ccr-21-3226] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022]
Abstract
IFNγ is a cytokine produced by a restricted number of immune cells that acts on every nucleated cell type. Consistent with this remarkably wide spectrum of targets, the effects of IFNγ are highly pleiotropic. On cells of the immune system, IFNγ signaling has generally a pro-inflammatory effect, coordinating the innate and adaptive responses. On nonimmune cells, IFNγ tends to exert the opposite effect; it inhibits cell proliferation, induces cell death, and, in addition, promotes their recognition by the immune system. These effects on the immune and nonimmune compartments play a crucial role during the immunoediting of tumors and, as shown by recent reports, also determine the efficacy of certain immunotherapies. Different therapeutic interventions to target IFNγ signaling are currently under way, and the emerging picture indicates that rewiring IFNγ signaling, disrupted in some cancer cells, may be an efficacious antitumor therapeutic strategy.
Collapse
Affiliation(s)
- Alex Martínez-Sabadell
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Enrique J Arenas
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos, Madrid, Spain
| | - Joaquín Arribas
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos, Madrid, Spain.,Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Bellaterra, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
10
|
Transcriptome Analysis of Cells Exposed to Actinomycin D and Nutlin-3a Reveals New Candidate p53-Target Genes and Indicates That CHIR-98014 Is an Important Inhibitor of p53 Activity. Int J Mol Sci 2021; 22:ijms222011072. [PMID: 34681730 PMCID: PMC8538697 DOI: 10.3390/ijms222011072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
Co-treatment with actinomycin D and nutlin-3a (A + N) strongly activates p53. Previously we reported that CHIR-98014 (GSK-3 kinase inhibitor), acting in cells exposed to A + N, prevents activation of TREM2-an innate immunity and p53-regulated gene associated with Alzheimer’s disease. In order to find novel candidate p53-target genes and genes regulated by CHIR-98014, we performed RNA-Seq of control A549 cells and the cells exposed to A + N, A + N with CHIR-98014 or to CHIR-98014. We validated the data for selected genes using RT-PCR and/or Western blotting. Using CRISPR/Cas9 technology we generated p53-deficient cells. These tools enabled us to identify dozens of candidate p53-regulated genes. We confirmed that p53 participates in upregulation of BLNK, APOE and IRF1. BLNK assists in activation of immune cells, APOE codes for apolipoprotein associated with Alzheimer’s disease and IRF1 is activated by interferon gamma and regulates expression of antiviral genes. CHIR-98014 prevented or inhibited the upregulation of a fraction of genes stimulated by A + N. Downregulation of GSK-3 did not mimic the activity of CHIR-98014. Our data generate the hypothesis, that an unidentified kinase inhibited by CHIR-98014, participates in modification of p53 and enables it to activate a subset of its target genes, e.g., the ones associated with innate immunity.
Collapse
|
11
|
Ajit K, Murphy BD, Banerjee A. Elucidating evolutionarily conserved mechanisms of diapause regulation using an in silico approach. FEBS Lett 2021; 595:1350-1374. [PMID: 33650678 DOI: 10.1002/1873-3468.14064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 11/11/2022]
Abstract
Embryonic diapause is an enigmatic phenomenon that appears in diverse species. Although regulatory mechanisms have been established, there is much to be discovered. Herein, we have made the first comprehensive attempt to elucidate diapause regulatory mechanisms using a computational approach. We found transcription factors unique to promoters of genes in diapause species. From pathway analysis and STRING PPI networks, the signaling pathways regulated by these unique transcription factors were identified. The pathways were then consolidated into a model to combine various known mechanisms of diapause regulation. This work also highlighted certain transcription factors that may act as 'master transcription factors' to regulate the phenomenon. Promoter analysis further suggested evidence for independent evolution for some of regulatory elements involved in diapause.
Collapse
Affiliation(s)
- Kamal Ajit
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| | - Bruce D Murphy
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médicine Vétérinaire, Université Montréal, St-Hyacinthe, QC, Canada
| | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| |
Collapse
|
12
|
A rapid method for solubilization of chimeric human interferon regulatory factor-1 (IRF-1) protein in Escherichia coli. Mol Biol Rep 2021; 48:2307-2314. [PMID: 33721170 DOI: 10.1007/s11033-021-06260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
Interferon regulatory factor-1 (IRF-1) is a vertebrate transcription factor that plays significant roles in cell cycle regulation, anti-viral response, tumor suppression and immune response. High-level expression of recombinant IRF-1 at 37 °C leads to the formation of insoluble aggregates (insoluble fraction) in Escherichia coli (E. coli), which usually devoid of biological activity. In this study, we use chemical additives such as mannitol, proline, L-arginine and CTAB (cetyl trimethly ammonium bromide) at the recommended concentration during cell lysis to aid in solubility at 37 °C. The use of additives resulted in the increased solubility of the recombinant glutathione S-transferase-linked human IRF-1, with L-arginine being most effective. Here, we developed an efficient process for the manufacturing of soluble IRF-1 with the aid of minimizing the formation of degradation products and optimizing protein purification conditions. This result was further confirmed by western blot with anti-GST and anti-IRF-1 polyclonal antibodies. The functionality of GST-huIRF-1 was attained by elerophoretic mobility shift assay study as a clear band shifting showed with virus response element-Interferon beta (VRE-IFNβ) promoter region. Taken together, the biological activity of purified GST-huIRF-1 was also optimized and confirmed by supershift assay concluded that GST-huIRF-1 interacts with the VRE motif of IFNβ promoter that reflected to require for IFNβ gene regulation. We describe a straightforward approach for the production of absolutely soluble and biologically active IRF-1 in E. coli. This method can be further used for the study of other recombinant proteins and this study will pave way for the analysis of IRF-1 function in vitro.
Collapse
|
13
|
Ehrlich M, Bacharach E. Oncolytic Virotherapy: The Cancer Cell Side. Cancers (Basel) 2021; 13:cancers13050939. [PMID: 33668131 PMCID: PMC7956656 DOI: 10.3390/cancers13050939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Oncolytic viruses (OVs) are a promising immunotherapy that specifically target and kill cancer cells and stimulate anti-tumor immunity. While different OVs are endowed with distinct features, which enhance their specificity towards tumor cells; attributes of the cancer cell also critically contribute to this specificity. Such features comprise defects in innate immunity, including antiviral responses, and the metabolic reprogramming of the malignant cell. The tumorigenic features which support OV replication can be intrinsic to the transformation process (e.g., a direct consequence of the activity of a given oncogene), or acquired in the course of tumor immunoediting—the selection process applied by antitumor immunity. Oncogene-induced epigenetic silencing plays an important role in negative regulation of immunostimulatory antiviral responses in the cancer cells. Reversal of such silencing may also provide a strong immunostimulant in the form of viral mimicry by activation of endogenous retroelements. Here we review features of the cancer cell that support viral replication, tumor immunoediting and the connection between oncogenic signaling, DNA methylation and viral oncolysis. As such, this review concentrates on the malignant cell, while detailed description of different OVs can be found in the accompanied reviews of this issue. Abstract Cell autonomous immunity genes mediate the multiple stages of anti-viral defenses, including recognition of invading pathogens, inhibition of viral replication, reprogramming of cellular metabolism, programmed-cell-death, paracrine induction of antiviral state, and activation of immunostimulatory inflammation. In tumor development and/or immunotherapy settings, selective pressure applied by the immune system results in tumor immunoediting, a reduction in the immunostimulatory potential of the cancer cell. This editing process comprises the reduced expression and/or function of cell autonomous immunity genes, allowing for immune-evasion of the tumor while concomitantly attenuating anti-viral defenses. Combined with the oncogene-enhanced anabolic nature of cancer-cell metabolism, this attenuation of antiviral defenses contributes to viral replication and to the selectivity of oncolytic viruses (OVs) towards malignant cells. Here, we review the manners by which oncogene-mediated transformation and tumor immunoediting combine to alter the intracellular milieu of tumor cells, for the benefit of OV replication. We also explore the functional connection between oncogenic signaling and epigenetic silencing, and the way by which restriction of such silencing results in immune activation. Together, the picture that emerges is one in which OVs and epigenetic modifiers are part of a growing therapeutic toolbox that employs activation of anti-tumor immunity for cancer therapy.
Collapse
|
14
|
Yanai H, Negishi H, Taniguchi T. The IRF family of transcription factors: Inception, impact and implications in oncogenesis. Oncoimmunology 2021; 1:1376-1386. [PMID: 23243601 PMCID: PMC3518510 DOI: 10.4161/onci.22475] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Members of the interferon-regulatory factor (IRF) proteins family were originally identified as transcriptional regulators of the Type I interferon system. Thanks to consistent advances made in our understanding of the immunobiology of innate receptors, it is now clear that several IRFs are critical for the elicitation of innate pattern recognition receptors, and—as a consequence—for adaptive immunity. In addition, IRFs have attracted great attentions as they modulate cellular responses that are involved in tumorigenesis. The regulation of oncogenesis by IRFs has important implications for understanding the host susceptibility to several Types of cancers, their progression, as well as the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Hideyuki Yanai
- Department of Molecular Immunology; Institute of Industrial Science; The University of Tokyo; Tokyo, Japan ; Core Research for Evolution Science and Technology; Japan Science and Technology Agency; Chiyoda-ku, Tokyo, Japan
| | | | | |
Collapse
|
15
|
Identification of loci associated with susceptibility to bovine paratuberculosis and with the dysregulation of the MECOM, eEF1A2, and U1 spliceosomal RNA expression. Sci Rep 2021; 11:313. [PMID: 33432064 PMCID: PMC7801378 DOI: 10.1038/s41598-020-79619-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Although genome-wide association studies have identified single nucleotide polymorphisms (SNPs) associated with the susceptibility to Mycobacterium avium subsp. paratuberculosis (MAP) infection, only a few functional mutations for bovine paratuberculosis (PTB) have been characterized. Expression quantitative trait loci (eQTLs) are genetic variants typically located in gene regulatory regions that alter gene expression in an allele-specific manner. eQTLs can be considered as functional links between genomic variants, gene expression, and ultimately phenotype. In the current study, peripheral blood (PB) and ileocecal valve (ICV) gene expression was quantified by RNA-Seq from fourteen Holstein cattle with no lesions and with PTB-associated histopathological lesions in gut tissues. Genotypes were generated from the Illumina LD EuroG10K BeadChip. The associations between gene expression levels (normalized read counts) and genetic variants were analyzed by a linear regression analysis using R Matrix eQTL 2.2. This approach allowed the identification of 192 and 48 cis-eQTLs associated with the expression of 145 and 43 genes in the PB and ICV samples, respectively. To investigate potential relationships between these cis-eQTLs and MAP infection, a case–control study was performed using the genotypes for all the identified cis-eQTLs and phenotypical data (histopathology, ELISA for MAP-antibodies detection, tissue PCR, and bacteriological culture) of 986 culled cows. Our results suggested that the heterozygous genotype in the cis-eQTL-rs43744169 (T/C) was associated with the up-regulation of the MDS1 and EVI1 complex (MECOM) expression, with positive ELISA, PCR, and bacteriological culture results, and with increased risk of progression to clinical PTB. As supporting evidence, the presence of the minor allele was associated with higher MECOM levels in plasma samples from infected cows and with increased MAP survival in an ex-vivo macrophage killing assay. Moreover, the presence of the two minor alleles in the cis-eQTL-rs110345285 (C/C) was associated with the dysregulation of the eukaryotic elongation factor 1-α2 (eEF1A2) expression and with increased ELISA (OD) values. Finally, the presence of the minor allele in the cis-eQTL rs109859270 (C/T) was associated with the up-regulation of the U1 spliceosomal RNA expression and with an increased risk of progression to clinical PTB. The introduction of these novel functional variants into marker-assisted breeding programs is expected to have a relevant effect on PTB control.
Collapse
|
16
|
Lei K, Zhang L, He Y, Sun H, Tong W, Xu Y, Jin L. Immune-associated biomarkers for early diagnosis of Parkinson's disease based on hematological lncRNA-mRNA co-expression. Biosci Rep 2020; 40:BSR20202921. [PMID: 33245101 PMCID: PMC7753636 DOI: 10.1042/bsr20202921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Early stage diagnosis of Parkinson's disease (PD) is challenging without significant motor symptoms. The identification of effective molecular biomarkers as a hematological indication of PD may help improve the diagnostic timeliness and accuracy. In this paper, we analyzed and compared the blood samples of PD and control (CTR) patients to identify the disease-related changes and determine the putative biomarkers for PD diagnosis. Based on the RNA sequencing analysis, differentially expressed genes (DEGs) were identified, and the co-expression network of DEGs was constructed using the weighted correlation network analysis (WGCNA). The analysis leads to the identification of 87 genes that were exclusively regulated in the PD group, whereas 66 genes were significantly increased and 21 genes were significantly decreased in contrast to the control group. The results indicate that the core lncRNA-mRNA co-expression network greatly changes the immune response in PD patients. Specifically, the results showed that PWAR6, LINC00861, AC83843.1, IRF family, IFIT family and CaMK4 may play important roles in the immune system of PD. Based on the findings from this the present study, future research aims at identify novel therapeutic strategies for PD.
Collapse
Affiliation(s)
- Kecheng Lei
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta 30322, GA, U.S.A
| | - Liwen Zhang
- National Engineering Research Center for Biochip, ShanghaiBiochip Limited Corporation, Shanghai 201203, P.R. China
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Yijing He
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Hui Sun
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Weifang Tong
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yichun Xu
- National Engineering Research Center for Biochip, ShanghaiBiochip Limited Corporation, Shanghai 201203, P.R. China
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Lingjing Jin
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
17
|
Karki R, Sharma BR, Lee E, Banoth B, Malireddi RKS, Samir P, Tuladhar S, Mummareddy H, Burton AR, Vogel P, Kanneganti TD. Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer. JCI Insight 2020; 5:136720. [PMID: 32554929 DOI: 10.1172/jci.insight.136720] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Interferon regulatory factor 1 (IRF1) regulates diverse biological functions, including modulation of cellular responses involved in tumorigenesis. Genetic mutations and altered IRF1 function are associated with several cancers. Although the function of IRF1 in the immunobiology of cancer is emerging, IRF1-specific mechanisms regulating tumorigenesis and tissue homeostasis in vivo are not clear. Here, we found that mice lacking IRF1 were hypersusceptible to colorectal tumorigenesis. IRF1 functions in both the myeloid and epithelial compartments to confer protection against AOM/DSS-induced colorectal tumorigenesis. We further found that IRF1 also prevents tumorigenesis in a spontaneous mouse model of colorectal cancer. The attenuated cell death in the colons of Irf1-/- mice was due to defective pyroptosis, apoptosis, and necroptosis (PANoptosis). IRF1 does not regulate inflammation and the inflammasome in the colon. Overall, our study identified IRF1 as an upstream regulator of PANoptosis to induce cell death during colitis-associated tumorigenesis.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ein Lee
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Balaji Banoth
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shraddha Tuladhar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Harisankeerth Mummareddy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Emory College of Arts and Sciences, Emory University, Atlanta, Georgia, USA
| | - Amanda R Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
18
|
B Cell-Intrinsic Expression of Interferon Regulatory Factor 1 Supports Chronic Murine Gammaherpesvirus 68 Infection. J Virol 2020; 94:JVI.00399-20. [PMID: 32321819 DOI: 10.1128/jvi.00399-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that are associated with cancers, including B cell lymphomas. These viruses are unique in that they infect naive B cells and subsequently drive a robust polyclonal germinal center response in order to amplify the latent reservoir and to establish lifelong infection in memory B cells. The gammaherpesvirus-driven germinal center response in combination with robust infection of germinal center B cells is thought to precipitate lymphomagenesis. Importantly, host and viral factors that selectively affect the gammaherpesvirus-driven germinal center response remain poorly understood. Global deficiency of antiviral tumor-suppressive interferon regulatory factor 1 (IRF-1) selectively promotes the murine gammaherpesvirus 68 (MHV68)-driven germinal center response and expansion of the viral latent reservoir. To determine the extent to which antiviral effects of IRF-1 are B cell intrinsic, we generated mice with conditional IRF-1 deficiency. Surprisingly, B cell-specific IRF-1 deficiency attenuated the establishment of chronic infection and the germinal center response, indicating that MHV68 may, in a B cell-intrinsic manner, usurp IRF-1 to promote the germinal center response and expansion of the latent reservoir. Further, we found that B cell-specific IRF-1 deficiency led to reduced levels of active tyrosine phosphatase SHP1, which plays a B cell-intrinsic proviral function during MHV68 infection. Finally, results of this study indicate that the antiviral functions of IRF-1 unveiled in MHV68-infected mice with global IRF-1 deficiency are mediated via IRF-1 expression by non-B cell populations.IMPORTANCE Gammaherpesviruses establish lifelong infection in over 95% of all adults and are associated with B cell lymphomas. The virus's manipulation of the germinal center response and B cell differentiation to establish lifelong infection is thought to also precipitate malignant transformation, through a mechanism that remains poorly understood. The host transcription factor IRF-1, a well-established tumor suppressor, selectively attenuates MHV68-driven germinal center response, a phenotype that we originally hypothesized to occur in a B cell-intrinsic manner. In contrast, in testing, B cell-intrinsic IRF-1 expression promoted the MHV68-driven germinal center response and the establishment of chronic infection. Our report highlights the underappreciated multifaceted role of IRF-1 in MHV68 infection and pathogenesis.
Collapse
|
19
|
Du Q, Luo J, Yang MQ, Liu Q, Heres C, Yan YH, Stolz D, Geller DA. iNOS/NO is required for IRF1 activation in response to liver ischemia-reperfusion in mice. Mol Med 2020; 26:56. [PMID: 32517688 PMCID: PMC7285570 DOI: 10.1186/s10020-020-00182-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Background Ischemia and reperfusion (I/R) induces cytokines, and up-regulates inducible nitric oxide synthase (iNOS), interferon regulatory factor-1(IRF1) and p53 up-regulated modulator of apoptosis (PUMA), which contribute to cell death and tissue injury. However, the mechanisms that I/R induces IRF1-PUMA through iNOS/NO is still unknown. Methods Ischemia was induced by occluding structures in the portal triad (hepatic artery, portal vein, and bile duct) to the left and median liver lobes for 60 min, and reperfusion was initiated by removal of the clamp. Induction of iNOS, IRF1 and PUMA in response to I/R were analyzed. I/R induced IRF1 and PUMA expression were compared between iNOS wild-type and iNOS knockout (KO) mice. Human iNOS gene transfected-cells were used to determine iNOS/NO signals targeting IRF1. To test whether HDAC2 was involved in the mediation of iNOS/NO-induced IRF1 transcriptional activities and its target gene (PUMA and p21) expression, NO donors were used in vitro and in vivo. Results IRF1 nuclear translocation and PUMA transcription elevation were markedly induced following I/R in the liver of iNOS wild-type mice compared with that in knock-out mice. Furthermore, I/R induced hepatic HDAC2 expression and activation, and decreased H3AcK9 expression in iNOS wild-type mice, but not in the knock-out mice. Mechanistically, over-expression of human iNOS gene increased IRF1 transcriptional activity and PUMA expression, while iNOS inhibitor L-NIL reversed these effects. Cytokine-induced PUMA through IRF1 was p53 dependent. IRF1 and p53 synergistically up-regulated PUMA expression. iNOS/NO-induced HDAC2 mediated histone H3 deacetylation and promoted IRF1 transcriptional activity. Moreover, treating the cells with romidepsin, an HDAC1/2 inhibitor decreased NO-induced IRF1 and PUMA expression. Conclusions This study demonstrates a novel mechanism that iNOS/NO is required for IRF1/PUMA signaling through a positive-feedback loop between iNOS and IRF1, in which HDAC2-mediated histone modification is involved to up-regulate IRF1 in response to I/R in mice.
Collapse
Affiliation(s)
- Qiang Du
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA
| | - Jing Luo
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA.,Department of Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, Hunan, People's Republic of China, 410011
| | - Mu-Qing Yang
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA.,Department of Surgery, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Quan Liu
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA.,Southern University of Science and Technology, School of Medicine, 1088 Xueyuan Blvd. , Nanshan District, Shenzhen, Guangdong, People's Republic of China, 518055
| | - Caroline Heres
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA
| | - Yi-He Yan
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA
| | - Donna Stolz
- Department of Cellular Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - David A Geller
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
20
|
Sequential Interferon β-Cisplatin Treatment Enhances the Surface Exposure of Calreticulin in Cancer Cells via an Interferon Regulatory Factor 1-Dependent Manner. Biomolecules 2020; 10:biom10040643. [PMID: 32326356 PMCID: PMC7226424 DOI: 10.3390/biom10040643] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022] Open
Abstract
Immunogenic cell death (ICD) refers to a unique form of cell death that activates an adaptive immune response against dead-cell-associated antigens. Accumulating evidence indicates that the efficacy of conventional anticancer agents relies on not only their direct cytostatic/cytotoxic effects but also the activation of antitumor ICD. Common anticancer ICD inducers include certain chemotherapeutic agents (such as anthracyclines, oxaliplatin, and bortezomib), radiotherapy, photodynamic therapy (PDT), and oncolytic virotherapies. However, most chemotherapeutic reagents are inefficient or fail to trigger ICD. Therefore, better understanding on the molecular determinants of chemotherapy-induced ICD will help in the development of more efficient combinational anticancer strategies through converting non- or relatively weak ICD inducers into bona fide ICD inducers. In this study, we found that sequential, but not concurrent, treatment of cancer cells with interferon β (IFNβ), a type I IFN, and cisplatin (an inefficient ICD inducer) can enhance the expression of ICD biomarkers in cancer cells, including surface translocation of an endoplasmic reticulum (ER) chaperone, calreticulin (CRT), and phosphorylation of the eukaryotic translation initiation factor alpha (eIF2α). These results suggest that exogenous IFNβ may activate molecular determinants that convert cisplatin into an ICD inducer. Further bioinformatics and in vitro experimental analyses found that interferon regulatory factor 1 (IRF1) acted as an essential mediator of surface CRT exposure by sequential IFNβ-cisplatin combination. Our findings not only help to design more effective combinational anticancer therapy using IFNβ and cisplatin, but also provide a novel insight into the role of IRF1 in connecting the type I IFN responses and ICD.
Collapse
|
21
|
Dong K, Du Q, Cui X, Wan P, Kaltenmeier C, Luo J, Yan B, Yan Y, Geller DA. MicroRNA-301a (miR-301a) is induced in hepatocellular carcinoma (HCC) and down- regulates the expression of interferon regulatory factor-1. Biochem Biophys Res Commun 2020; 524:273-279. [PMID: 31987500 PMCID: PMC7857543 DOI: 10.1016/j.bbrc.2020.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/05/2020] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) tumors evade death in part by downregulating expression of the tumor suppressor gene Interferon regulatory factor-1 (IRF-1). However, the molecular mechanisms accounting for IRF-1 suppression in HCC have not been well described. In this study, we identified a novel microRNA-301a (miR-301a) binding site in the 3'-untranslated region (3'- UTR) of the human IRF-1 gene and hypothesized a functional role for miR-301a in regulating HCC growth. We show that miR-301a is markedly upregulated in primary HCC tumors and HCC cell lines, while IRF-1 is down-regulated in a post-transcriptional manner. MiR-301a regulates basal and inducible IRF-1 expression in HCC cells with an inverse relationship between miR-301a and IRF-1 expression in HCC cells. Chronic hypoxia induces miR-301a in HCC in vitro and decreases IRF-1 expression. Finally, miR-301a inhibition increases apoptosis and decreases HCC cell proliferation. These findings suggest that targeting of IRF-1 by miR-301a contributes to the molecular basis for IRF-1 downregulation in HCC and provides new insight into the regulation of HCC by miRNAs.
Collapse
Affiliation(s)
- Kun Dong
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qiang Du
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiao Cui
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Peiqi Wan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | | | - Jing Luo
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bing Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yihe Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - David A Geller
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
22
|
Otálora-Otálora BA, Florez M, López-Kleine L, Canas Arboleda A, Grajales Urrego DM, Rojas A. Joint Transcriptomic Analysis of Lung Cancer and Other Lung Diseases. Front Genet 2019; 10:1260. [PMID: 31867044 PMCID: PMC6908522 DOI: 10.3389/fgene.2019.01260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/14/2019] [Indexed: 12/09/2022] Open
Abstract
Background: Epidemiological and clinical evidence points cancer comorbidity with pulmonary chronic disease. The acquisition of some hallmarks of cancer by cells affected with lung pathologies as a cell adaptive mechanism to a shear stress, suggests that could be associated with the establishment of tumoral processes. Objective: To propose a bioinformatic pipeline for the identification of all deregulated genes and the transcriptional regulators (TFs) that are coexpressed during lung cancer establishment, and therefore could be important for the acquisition of the hallmarks of cancer. Methods: Ten microarray datasets (six of lung cancer, four of lung diseases) comparing normal and diseases-related lung tissue were selected to identify hub differentiated expressed genes (DEGs) in common between lung pathologies and lung cancer, along with transcriptional regulators through the utilization of specialized libraries from R language. DAVID bioinformatics tool for gene enrichment analyses was used to identify genes with experimental evidence associated to tumoral processes and signaling pathways. Coexpression networks of DEGs and TFs in lung cancer establishment were created with Coexnet library, and a survival analysis of the main hub genes was made. Results: Two hundred ten DEGs were identified in common between lung cancer and other lung diseases related to the acquisition of tumoral characteristics, which are coexpressed in a lung cancer network with TFs, suggesting that could be related to the establishment of the tumoral pathology in lung. The comparison of the coexpression networks of lung cancer and other lung diseases allowed the identification of common connectivity patterns (CCPs) with DEGs and TFs correlated to important tumoral processes and signaling pathways, that haven´t been studied to experimentally validate their role in the early stages of lung cancer. Some of the TFs identified showed a correlation between its expression levels and the survival of lung cancer patients. Conclusion: Our findings indicate that lung diseases share genes with lung cancer which are coexpressed in lung cancer, and might be able to explain the epidemiological observations that point to direct and inverse comorbid associations between some chronic lung diseases and lung cancer and represent a complex transcriptomic scenario.
Collapse
Affiliation(s)
| | - Mauro Florez
- Departamento de Estadística, Grupo de Investigación en Bioinformática y Biología de sistemas – GiBBS, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Liliana López-Kleine
- Departamento de Estadística, Grupo de Investigación en Bioinformática y Biología de sistemas – GiBBS, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | - Adriana Rojas
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
23
|
The mechanism of cancer drug addiction in ALK-positive T-Cell lymphoma. Oncogene 2019; 39:2103-2117. [PMID: 31804622 PMCID: PMC7060126 DOI: 10.1038/s41388-019-1136-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 11/12/2022]
Abstract
Rational new strategies are needed to treat tumors resistant to kinase inhibitors. Mechanistic studies of resistance provide fertile ground for development of new approaches. Cancer drug addiction is a paradoxical resistance phenomenon, well-described in MEK-ERK-driven solid tumors, in which drug-target overexpression promotes resistance but a toxic overdose of signaling if inhibitor is withdrawn. This can permit prolonged control of tumors through intermittent dosing. We and others showed previously that cancer drug addiction arises also in the hematologic malignancy ALK-positive anaplastic large-cell lymphoma (ALCL) resistant to ALK-specific tyrosine kinase inhibitors (TKIs). This is driven by overexpression of the fusion kinase NPM1-ALK, but the mechanism by which ALK overactivity drives toxicity upon TKI withdrawal remained obscure. Here we reveal the mechanism of ALK-TKI addiction in ALCL. We interrogated the well-described mechanism of MEK/ERK pathway inhibitor addiction in solid tumors and found it does not apply to ALCL. Instead, phosphoproteomics and confirmatory functional studies revealed STAT1 overactivation is the key mechanism of ALK-TKI addiction in ALCL. Withdrawal of TKI from addicted tumors in vitro and in vivo leads to overwhelming phospho-STAT1 activation, turning on its tumor-suppressive gene-expression program and turning off STAT3’s oncogenic program. Moreover, a novel NPM1-ALK-positive ALCL PDX model showed significant survival benefit from intermittent compared to continuous TKI dosing. In sum, we reveal for the first time the mechanism of cancer-drug addiction in ALK-positive ALCL and the benefit of scheduled intermittent dosing in high-risk patient-derived tumors in vivo.
Collapse
|
24
|
Garvin AJ, Khalaf AHA, Rettino A, Xicluna J, Butler L, Morris JR, Heery DM, Clarke NM. GSK3β-SCFFBXW7α mediated phosphorylation and ubiquitination of IRF1 are required for its transcription-dependent turnover. Nucleic Acids Res 2019; 47:4476-4494. [PMID: 30854564 PMCID: PMC6511875 DOI: 10.1093/nar/gkz163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 01/03/2023] Open
Abstract
IRF1 (Interferon Regulatory Factor-1) is the prototype of the IRF family of DNA binding transcription factors. IRF1 protein expression is regulated by transient up-regulation in response to external stimuli followed by rapid degradation via the ubiquitin-proteasome system. Here we report that DNA bound IRF1 turnover is promoted by GSK3β (Glycogen Synthase Kinase 3β) via phosphorylation of the T181 residue which generates a phosphodegron for the SCF (Skp-Cul-Fbox) ubiquitin E3-ligase receptor protein Fbxw7α (F-box/WD40 7). This regulated turnover is essential for IRF1 activity, as mutation of T181 results in an improperly stabilized protein that accumulates at target promoters but fails to induce RNA-Pol-II elongation and subsequent transcription of target genes. Consequently, the anti-proliferative activity of IRF1 is lost in cell lines expressing T181A mutant. Further, cell lines with dysfunctional Fbxw7 are less sensitive to IRF1 overexpression, suggesting an important co-activator function for this ligase complex. As T181 phosphorylation requires both DNA binding and RNA-Pol-II elongation, we propose that this event acts to clear ‘spent’ molecules of IRF1 from transcriptionally engaged target promoters.
Collapse
Affiliation(s)
- Alexander J Garvin
- School of Pharmacy, University of Nottingham, University Park, Nottingham, UK.,Institute of Cancer & Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Ahmed H A Khalaf
- School of Pharmacy, University of Nottingham, University Park, Nottingham, UK
| | - Alessandro Rettino
- School of Pharmacy, University of Nottingham, University Park, Nottingham, UK
| | - Jerome Xicluna
- School of Pharmacy, University of Nottingham, University Park, Nottingham, UK
| | - Laura Butler
- Institute of Cancer & Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Joanna R Morris
- Institute of Cancer & Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - David M Heery
- School of Pharmacy, University of Nottingham, University Park, Nottingham, UK
| | - Nicole M Clarke
- School of Pharmacy, University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
25
|
Inkpen SM, Solbakken MH, Jentoft S, Eslamloo K, Rise ML. Full characterization and transcript expression profiling of the interferon regulatory factor (IRF) gene family in Atlantic cod (Gadus morhua). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:166-180. [PMID: 30928323 DOI: 10.1016/j.dci.2019.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Atlantic cod (Gadus morhua) represents a unique immune system among teleost fish, making it a species of interest for immunological studies, and especially for investigating the evolutionary history of immune gene families. The interferon regulatory factor (IRF) gene family encodes transcription factors which function in the interferon pathway, but also in areas including leukocyte differentiation, cell growth, autoimmunity, and development. We previously characterized several IRF family members in Atlantic cod (Irf4a, Irf4b, Irf7, Irf8, and two Irf10 splice variants) at the cDNA and putative amino acid levels, and in the current study we took advantage of the new and improved Atlantic cod genome assembly in combination with rapid amplification of cDNA ends (RACE) to characterize the remaining family members (i.e. Irf3, Irf5, Irf6, Irf9, and two Irf2 splice variants). Real-time quantitative PCR (QPCR) was used to investigate constitutive expression of all IRF transcripts during embryonic development, suggesting several putative maternal transcripts, and potential stage-specific roles. QPCR studies also showed 11 of 13 transcripts were responsive to stimulation with poly(I:C), while 6 of 13 transcripts were responsive to lipopolysaccharide (LPS) in Atlantic cod head kidney macrophages, indicating roles for cod IRF family members in both antiviral and antibacterial responses. This study is the first to investigate expression of the complete IRF family in Atlantic cod, and suggests potential novel roles for several of these transcription factors within immunity as well as in early development of this species.
Collapse
Affiliation(s)
- Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada.
| | - Monica H Solbakken
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada.
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada.
| |
Collapse
|
26
|
Manu KA, Cao PHA, Chai TF, Casey PJ, Wang M. p21cip1/waf1 Coordinate Autophagy, Proliferation and Apoptosis in Response to Metabolic Stress. Cancers (Basel) 2019; 11:cancers11081112. [PMID: 31382612 PMCID: PMC6721591 DOI: 10.3390/cancers11081112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cells possess metabolic properties that are different from benign cells. These unique characteristics have become attractive targets that are being actively investigated for cancer therapy. p21cip1/waf1, also known as Cyclin-Dependent Kinase inhibitor 1A, is encoded by the CDKN1A gene. It is a major p53 target gene involved in cell cycle progression that has been extensively evaluated. To date, p21 has been reported to regulate various cell functions, both dependent and independent of p53. Besides regulating the cell cycle, p21 also modulates apoptosis, induces senescence, and maintains cellular quiescence in response to various stimuli. p21 transcription is induced in response to stresses, including those from oxidative and chemotherapeutic treatment. A recent study has shown that in response to metabolic stresses such as nutrient and energy depletion, p21 expression is induced to regulate various cell functions. Despite the biological significance, the mechanism of p21 regulation in cancer adaptation to metabolic stress is underexplored and thus represents an exciting field. This review focuses on the recent development of p21 regulation in response to metabolic stress and its impact in inducing cell cycle arrest and death in cancer cells.
Collapse
Affiliation(s)
- Kanjoormana Aryan Manu
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Pham Hong Anh Cao
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Tin Fan Chai
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Patrick J Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore.
| |
Collapse
|
27
|
Shao L, Hou W, Scharping NE, Vendetti FP, Srivastava R, Roy CN, Menk AV, Wang Y, Chauvin JM, Karukonda P, Thorne SH, Hornung V, Zarour HM, Bakkenist CJ, Delgoffe GM, Sarkar SN. IRF1 Inhibits Antitumor Immunity through the Upregulation of PD-L1 in the Tumor Cell. Cancer Immunol Res 2019; 7:1258-1266. [PMID: 31239318 DOI: 10.1158/2326-6066.cir-18-0711] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/29/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022]
Abstract
Multiple studies have associated the transcription factor IRF1 with tumor-suppressive activities. Here, we report an opposite tumor cell-intrinsic function of IRF1 in promoting tumor growth. IRF1-deficient tumor cells showed reduced tumor growth in MC38 and CT26 colon carcinoma and B16 melanoma mouse models. This reduction in tumor growth was dependent on host CD8+ T cells. Detailed profiling of tumor-infiltrating leukocytes did not show changes in the various T-cell and myeloid cell populations. However, CD8+ T cells that had infiltrated IRF1-deficieint tumors in vivo exhibited enhanced cytotoxicity. IRF1-deficient tumor cells lost the ability to upregulate PD-L1 expression in vitro and in vivo and were more susceptible to T-cell-mediated killing. Induced expression of PD-L1 in IRF1-deficient tumor cells restored tumor growth. These results indicate differential activity of IRF1 in tumor escape.
Collapse
Affiliation(s)
- Lulu Shao
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Weizhou Hou
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Nicole E Scharping
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Frank P Vendetti
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rashmi Srivastava
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Chandra Nath Roy
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ashley V Menk
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yiyang Wang
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joe-Marc Chauvin
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pooja Karukonda
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stephen H Thorne
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Veit Hornung
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hassane M Zarour
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Christopher J Bakkenist
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Greg M Delgoffe
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Saumendra N Sarkar
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
Furumai R, Tamada K, Liu X, Takumi T. UBE3A regulates the transcription of IRF, an antiviral immunity. Hum Mol Genet 2019; 28:1947-1958. [PMID: 30690483 PMCID: PMC6548221 DOI: 10.1093/hmg/ddz019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
UBE3A is a gene responsible for the pathogenesis of Angelman syndrome (AS), a neurodevelopmental disorder characterized by symptoms such as intellectual disability, delayed development and severe speech impairment. UBE3A encodes an E3 ubiquitin ligase, for which several targets have been identified, including synaptic molecules. Although proteolysis mainly occurs in the cytoplasm, UBE3A is localized to the cytoplasm and the nucleus. In fact, UBE3A is also known as a transcriptional regulator of the family of nuclear receptors. However, the function of UBE3A in the nucleus remains unclear. Therefore, we examined the involvement of UBE3A in transcription in the nuclei of neurons. Genome-wide transcriptome analysis revealed an enrichment of genes downstream of interferon regulatory factor (IRF) in a UBE3A-deficient AS mouse model. In vitro biochemical analyses further demonstrated that UBE3A interacted with IRF and, more importantly, that UBE3A enhanced IRF-dependent transcription. These results suggest a function for UBE3A as a transcriptional regulator of the immune system in the brain. These findings also provide informative molecular insights into the function of UBE3A in the brain and in AS pathogenesis.
Collapse
Affiliation(s)
- Ryohei Furumai
- RIKEN Brain Science Institute, Wako, Saitama, Japan
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama, Japan
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Xiaoxi Liu
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, Japan
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| |
Collapse
|
29
|
Stoltz KP, Jondle CN, Pulakanti K, Sylvester PA, Urrutia R, Rao S, Tarakanova VL. Tumor suppressor Interferon Regulatory Factor 1 selectively blocks expression of endogenous retrovirus. Virology 2019; 526:52-60. [PMID: 30342302 PMCID: PMC6875439 DOI: 10.1016/j.virol.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 01/23/2023]
Abstract
Endogenous retroviruses (ERVs) comprise 10% of the genome, with many of these transcriptionally silenced post early embryogenesis. Several stimuli, including exogenous virus infection and cellular transformation can reactivate ERV expression via a poorly understood mechanism. We identified Interferon Regulatory Factor 1 (IRF-1), a tumor suppressor and an antiviral host factor, as a suppressor of ERV expression. IRF-1 decreased expression of a specific mouse ERV in vitro and in vivo. IRF-3, but not IRF-7, also decreased expression of distinct ERV families, suggesting that suppression of ERVs is a relevant biological function of the IRF family. Given the emerging appreciation of the physiological relevance of ERV expression in cancer, IRF-1-mediated suppression of specific ERVs may contribute to the overall tumor suppressor activity of this host factor.
Collapse
Affiliation(s)
- K P Stoltz
- Microbiology and Immunology Department, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - C N Jondle
- Microbiology and Immunology Department, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - K Pulakanti
- Blood Research Institute, BloodCenter of Wisconsin, a Part of Versiti, 8727 West Watertown Plank Road, Milwaukee, WI 53226, United States
| | - P A Sylvester
- Microbiology and Immunology Department, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - R Urrutia
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States; Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - S Rao
- Blood Research Institute, BloodCenter of Wisconsin, a Part of Versiti, 8727 West Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - V L Tarakanova
- Microbiology and Immunology Department, Medical College of Wisconsin, Milwaukee, Wisconsin, United States; Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States.
| |
Collapse
|
30
|
Ghosh S, Jawed JJ, Halder K, Banerjee S, Chowdhury BP, Saha A, Juin SK, Majumdar SB, Bose A, Baral R, Majumdar S. TNFα mediated ceramide generation triggers cisplatin induced apoptosis in B16F10 melanoma in a PKCδ independent manner. Oncotarget 2018; 9:37627-37646. [PMID: 30701020 PMCID: PMC6340868 DOI: 10.18632/oncotarget.26478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022] Open
Abstract
Ceramide is one of the important cellular components involved in cancer regulation and exerts its pleiotropic role in the protective immune response without exhibiting any adverse effects during malignant neoplasm. Although, the PKCδ-ceramide axis in cancer cells has been an effective target in reduction of cancer, involvement of PKCδ in inducing nephrotoxicity have become a major questionnaire. In the present study, we have elucidated the mechanism by which cisplatin exploits the ceramide to render cancer cell apoptosis leading to the abrogation of malignancy in a PKCδ independent pathway with lesser toxicity. Our study revealed that cisplatin treatment in PKCδ silenced melanoma cells induces ceramide mediated apoptosis. Moreover, cisplatin induced upregulation of the transcription factor IRF1 leading to the induction of the transcriptional activity of the TNFα promoter was evident from the pharmacological inhibition and RNA interference studies. Increased cellular expression of TNFα resulted in an elevated ceramide generation by stimulating acid-sphingomyelinase and cPLA2. Furthermore, reciprocity in the regulation of sphingosine kinase 1 (Sphk1) and sphingosine kinase 2 (Sphk2) during PKCδ independent ceramide generation was also observed during cisplatin treatment. PKCδ inhibited murine melanoma model showed reduction in nephrotoxicity along with tumor regression by ceramide generation. Altogether, the current study emphasized the unexplored signaling cascade of ceramide generation by cisplatin during PKCδ silenced condition, which is associated with increased TNFα generation. Our findings enlightened the detailed mechanistic insight of ceramide mediated signaling by chemotherapeutic drugs in cancer therapy exploring a new range of targets for cancer treatment strategies.
Collapse
Affiliation(s)
- Sweta Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | - Junaid Jibran Jawed
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | - Kuntal Halder
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | - Sayantan Banerjee
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | | | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, West Bengal 700026, India
| | - Subir Kumar Juin
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | | | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, West Bengal 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, West Bengal 700026, India
| | - Subrata Majumdar
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| |
Collapse
|
31
|
Santosh KM, Nitish K, Gautam K, Tara K, Krishna P. Recombinant human interferon regulatory factor-1 (IRF-1) protein expression and solubilisation study in Escherichia coli. Mol Biol Rep 2018; 45:1367-1374. [DOI: 10.1007/s11033-018-4298-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
|
32
|
Matveeva OV, Kochneva GV, Zainutdinov SS, Ilyinskaya GV, Chumakov PM. Oncolytic Paramyxoviruses: Mechanism of Action, Preclinical and Clinical Studies. Mol Biol 2018. [DOI: 10.1134/s002689331803010x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Interferon regulatory factor 1 inactivation in human cancer. Biosci Rep 2018; 38:BSR20171672. [PMID: 29599126 PMCID: PMC5938431 DOI: 10.1042/bsr20171672] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/18/2018] [Accepted: 03/28/2018] [Indexed: 11/28/2022] Open
Abstract
Interferon regulatory factors (IRFs) are a group of closely related proteins collectively referred to as the IRF family. Members of this family were originally recognized for their roles in inflammatory responses; however, recent research has suggested that they are also involved in tumor biology. This review focusses on current knowledge of the roles of IRF-1 and IRF-2 in human cancer, with particular attention paid to the impact of IRF-1 inactivation. The different mechanisms underlying IRF-1 inactivation and their implications for human cancers and the potential importance of IRF-1 in immunotherapy are also summarized.
Collapse
|
34
|
Chishti AA, Baumstark-Khan C, Koch K, Kolanus W, Feles S, Konda B, Azhar A, Spitta LF, Henschenmacher B, Diegeler S, Schmitz C, Hellweg CE. Linear Energy Transfer Modulates Radiation-Induced NF-kappa B Activation and Expression of its Downstream Target Genes. Radiat Res 2018; 189:354-370. [PMID: 29369006 DOI: 10.1667/rr14905.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Nuclear factor kappaB (NF-κB) is a central transcription factor in the immune system and modulates cell survival in response to radiotherapy. Activation of NF-κB was shown to be an early step in the cellular response to ultraviolet A (UVA) and ionizing radiation exposure in human cells. NF-κB activation by the genotoxic stress-dependent sub-pathway after exposure to different radiation qualities had been evaluated to a very limited extent. In addition, the resulting gene expression profile, which shapes the cellular and tissue response, is unknown. Therefore, in this study the activation of NF-κB after exposure to low- and high-linear energy transfer (LET) radiation and the expression of its target genes were analyzed in human embryonic kidney (HEK) cells. The activation of NF-κB via canonical and genotoxic stress-induced pathways was visualized by the cell line HEK-pNF-κB-d2EGFP/Neo L2 carrying the destabilized enhanced green fluorescent protein (d2EGFP) as reporter. The NF-κB-dependent d2EGFP expression after irradiation with X rays and heavy ions was evaluated by flow cytometry. Because of differences in the extent of NF-κB activation after irradiation with X rays (significant NF-κB activation for doses >4 Gy) and heavy ions (significant NF-κB activation at doses as low as 1 Gy), it was expected that radiation quality (LET) played an important role in the cellular radiation response. In addition, the relative biological effectiveness (RBE) of NF-κB activation and reduction of cellular survival were compared for heavy ions having a broad LET range (∼0.3-9,674 keV/μm). Furthermore, the effect of LET on NF-κB target gene expression was analyzed by real-time reverse transcriptase quantitative PCR (RT-qPCR). The maximal RBE for NF-κB activation and cell killing occurred at an LET value of 80 and 175 keV/μm, respectively. There was a dose-dependent increase in expression of NF-κB target genes NF-κB1A and CXCL8. A qPCR array of 84 NF-κB target genes revealed that TNF and a set of CXCL genes (CXCL1, CXCL2, CXCL8, CXCL10), CCL2, VCAM1, CD83, NF-κB1, NF-κB2 and NF-κBIA were strongly upregulated after exposure to X rays and neon ions (LET 92 keV/μm). After heavy-ion irradiations, it was noted that the expression of NF-κB target genes such as chemokines and CD83 was highest at an LET value that coincided with the LET resulting in maximal NF-κB activation, whereas expression of the NF-κB inhibitory gene NFKBIA was induced transiently by all radiation qualities investigated. Taken together, these findings clearly demonstrate that NF-κB activation and NF-κB-dependent gene expression by heavy ions are highest in the LET range of ∼50-200 keV/μm. The upregulated chemokines and cytokines (CXCL1, CXCL2, CXCL10, CXCL8/IL-8 and TNF) could be important for cell-cell communication among hit as well as nonhit cells (bystander effect).
Collapse
Affiliation(s)
- Arif Ali Chishti
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Christa Baumstark-Khan
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Kristina Koch
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Waldemar Kolanus
- b Life and Medical Sciences (LIMES) Institute, University of Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
| | - Sebastian Feles
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Bikash Konda
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Abid Azhar
- c The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi-75270, Pakistan
| | - Luis F Spitta
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Bernd Henschenmacher
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Sebastian Diegeler
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Claudia Schmitz
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Christine E Hellweg
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| |
Collapse
|
35
|
Sprague L, Lee JM, Hutzen BJ, Wang PY, Chen CY, Conner J, Braidwood L, Cassady KA, Cripe TP. High Mobility Group Box 1 Influences HSV1716 Spread and Acts as an Adjuvant to Chemotherapy. Viruses 2018; 10:v10030132. [PMID: 29543735 PMCID: PMC5869525 DOI: 10.3390/v10030132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 01/07/2023] Open
Abstract
High Mobility Group Box 1 (HMGB1) is a multifunctional protein that plays various roles in the processes of inflammation, cancer, and other diseases. Many reports document abundant HMGB1 release following infection with oncolytic viruses (OVs). Further, other groups including previous reports from our laboratory highlight the synergistic effects of OVs with chemotherapy drugs. Here, we show that virus-free supernatants have varying cytotoxic potential, and HMGB1 is actively secreted by two established fibroblast cell lines (NIH 3T3 and 3T6-Swiss albino) following HSV1716 infection in vitro. Further, pharmacologic inhibition or genetic knock-down of HMGB1 reveals a role for HMGB1 in viral restriction, the ability to modulate bystander cell proliferation, and drug sensitivity in 3T6 cells. These data further support the multifactorial role of HMGB1, and suggest it could be a target for modulating the efficacy of oncolytic virus therapies alone or in combination with other frontline cancer treatments.
Collapse
Affiliation(s)
- Leslee Sprague
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA.
| | - Joel M Lee
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA.
| | - Brian J Hutzen
- Nationwide Children's Hospital, Division of Hematology/Oncology/BMT and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| | - Pin-Yi Wang
- Nationwide Children's Hospital, Division of Hematology/Oncology/BMT and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| | - Chun-Yu Chen
- Nationwide Children's Hospital, Division of Hematology/Oncology/BMT and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| | - Joe Conner
- Virttu Biologics, BioCity Glasgow, Newhouse ML1 5UH, UK.
| | | | - Kevin A Cassady
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA.
- Nationwide Children's Hospital, Division of Infectious Diseases and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| | - Timothy P Cripe
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA.
- Nationwide Children's Hospital, Division of Hematology/Oncology/BMT and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| |
Collapse
|
36
|
Wan P, Zhang J, Du Q, Geller DA. The clinical significance and biological function of interferon regulatory factor 1 in cholangiocarcinoma. Biomed Pharmacother 2017; 97:771-777. [PMID: 29107934 DOI: 10.1016/j.biopha.2017.10.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 12/19/2022] Open
Abstract
Interferon regulatory factor 1 (IRF1) has been suggested to act as a tumor suppressor in human cancers. However, the clinical significance and biological function of IRF1 in cholangiocarcinoma is poorly understood. In our results, IRF1 mRNA and protein expressions were decreased in cholangiocarcinoma tissues and cell lines compared with paired normal hepatic tissues and intrahepatic bile duct epithelial cell line. IRF1 protein low-expression was associated with tumor stage, tumor size, vascular invasion and metastasis and served as a poor independent prognostic parameter in cholangiocarcinoma patients. Up-regulation of IRF1 expression suppressed cholangiocarcinoma cells proliferation, migration and invasion, and blocked cell cycle progression, but has no effect on apoptosis. In conclusion, IRF1 is low-expressed in cholangiocarcinoma tissues and cell lines, and correlated with malignant status and prognosis in cholangiocarcinoma patients. IRF1 served as tumor suppressor in the regulation of cholangiocarcinoma cells proliferation, cell cycle, migration and invasion.
Collapse
Affiliation(s)
- Peiqi Wan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of infectious diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, PR China.
| | - Junhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Qiang Du
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A Geller
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
37
|
Souza TM, van den Beucken T, Kleinjans JCS, Jennen DGJ. Inferring transcription factor activity from microarray data reveals novel targets for toxicological investigations. Toxicology 2017; 389:101-107. [PMID: 28743512 DOI: 10.1016/j.tox.2017.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 01/09/2023]
Abstract
Transcription factors (TFs) are important modulators of the inducible portion of the transcriptome, and therefore relevant in the context of exposure to exogenous compounds. Current approaches to predict the activity of TFs in biological systems are usually restricted to a few entities at a time due to low-throughput techniques targeting a limited fraction of annotated human TFs. Therefore, high-throughput alternatives may help to identify new targets of mechanistic and predictive value in toxicological investigations. In this study, we inferred the activity multiple TFs using publicly available microarray data from primary human hepatocytes exposed to hundreds of chemicals and evaluated these molecular profiles using multiple correspondence analysis. Our results demonstrate that the lowest dose and latest exposure time (24h) in a subset of chemicals generates a signature indicative of carcinogenicity possibly due to DNA-damaging properties. Furthermore, profiles from the earliest exposure time (2h) and highest dose creates clusters of chemicals implicated in the development of diverse forms of drug-induced liver injury (DILI). Both approaches yielded a number of TFs with similar activity across groups of chemicals, including TFs known in toxicological responses such as AhR, NFE2L2 (Nrf2), NF-κB and PPARG. FOXM1, IRF1 and E2F4 were some of the TFs identified that may be relevant in genotoxic carcinogenesis. SMADs (SMAD1, SMAD2, SMAD5) and KLF5 were identified as some of potentially new TFs whose inferred activities were linked to acute and progressive outcomes in DILI. In conclusion this study offers a novel mechanistic approach targeting TF activity during chemical exposure.
Collapse
Affiliation(s)
- T M Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - T van den Beucken
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - J C S Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - D G J Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
38
|
Interferon regulatory factors: A key to tumour immunity. Int Immunopharmacol 2017; 49:1-5. [DOI: 10.1016/j.intimp.2017.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/08/2017] [Accepted: 05/09/2017] [Indexed: 11/20/2022]
|
39
|
Takeda K, Nakayama M, Hayakawa Y, Kojima Y, Ikeda H, Imai N, Ogasawara K, Okumura K, Thomas DM, Smyth MJ. IFN-γ is required for cytotoxic T cell-dependent cancer genome immunoediting. Nat Commun 2017; 8:14607. [PMID: 28233863 PMCID: PMC5333095 DOI: 10.1038/ncomms14607] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/16/2017] [Indexed: 12/18/2022] Open
Abstract
Genetic evolution that occurs during cancer progression enables tumour heterogeneity, thereby fostering tumour adaptation, therapeutic resistance and metastatic potential. Immune responses are known to select (immunoedit) tumour cells displaying immunoevasive properties. Here we address the role of IFN-γ in mediating the immunoediting process. We observe that, in several mouse tumour models such as HA-expressing 4T1 mammary carcinoma cells, OVA-expressing EG7 lymphoma cells and CMS5 MCA-induced fibrosarcoma cells naturally expressing mutated extracellular signal-regulated kinase (ERK) antigen, the action of antigen-specific cytotoxic T cell (CTL) in vivo results in the emergence of resistant cancer cell clones only in the presence of IFN-γ within the tumour microenvironment. Moreover, we show that exposure of tumours to IFN-γ-producing antigen-specific CTLs in vivo results in copy-number alterations (CNAs) associated with DNA damage response and modulation of DNA editing/repair gene expression. These results suggest that enhanced genetic instability might be one of the mechanisms by which CTLs and IFN-γ immunoedits tumours, altering their immune resistance as a result of genetic evolution.
Collapse
Affiliation(s)
- Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Biofunctional Micribiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, 3002 Victoria, Australia
| | - Masafumi Nakayama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
- Department of Immunobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Yoshihiro Hayakawa
- Cancer Immunology Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, 3002 Victoria, Australia
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Yuko Kojima
- Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hiroaki Ikeda
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
- Department of Oncology, Nagasaki University Graduate School of Biomedical Science, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Naoko Imai
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
- Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, New York 10029, USA
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Ko Okumura
- Department of Biofunctional Micribiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Atopy (Allergy) Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - David M. Thomas
- Cancer Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Mark J. Smyth
- Cancer Immunology Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, 3002 Victoria, Australia
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006 Queensland, Australia
- School of Medicine, University of Queensland, Herston, 4006 Queensland, Australia
| |
Collapse
|
40
|
Gasser S, Zhang WYL, Tan NYJ, Tripathi S, Suter MA, Chew ZH, Khatoo M, Ngeow J, Cheung FSG. Sensing of dangerous DNA. Mech Ageing Dev 2016; 165:33-46. [PMID: 27614000 DOI: 10.1016/j.mad.2016.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022]
Abstract
The presence of damaged and microbial DNA can pose a threat to the survival of organisms. Cells express various sensors that recognize specific aspects of such potentially dangerous DNA. Recognition of damaged or microbial DNA by sensors induces cellular processes that are important for DNA repair and inflammation. Here, we review recent evidence that the cellular response to DNA damage and microbial DNA are tightly intertwined. We also discuss insights into the parameters that enable DNA sensors to distinguish damaged and microbial DNA from DNA present in healthy cells.
Collapse
Affiliation(s)
- Stephan Gasser
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117597 Singapore.
| | - Wendy Y L Zhang
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Nikki Yi Jie Tan
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Shubhita Tripathi
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Manuel A Suter
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Zhi Huan Chew
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117597 Singapore
| | - Muznah Khatoo
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Joanne Ngeow
- Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore; Divsion of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, 169610, Singapore; Oncology Academic Clinical Program, Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore
| | - Florence S G Cheung
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore.
| |
Collapse
|
41
|
Yan Y, Liang Z, Du Q, Yang M, Geller DA. MicroRNA-23a downregulates the expression of interferon regulatory factor-1 in hepatocellular carcinoma cells. Oncol Rep 2016; 36:633-40. [PMID: 27279136 PMCID: PMC4933546 DOI: 10.3892/or.2016.4864] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022] Open
Abstract
Interferon regulatory factor-1 (IRF-1) is a tumor-suppressor gene induced by interferon-γ (IFNγ) and plays an important role in the cell death of hepatocellular carcinoma (HCC). HCC tumors evade death in part by downregulating IRF-1 expression, yet the molecular mechanisms accounting for IRF-1 suppression in HCC have not yet been characterized. Previous studies have shown that microRNA-23a (miR-23a) can suppress apoptosis by targeting IRF-1. Therefore, we hypothesized that miR-23a promotes HCC growth by downregulating IRF-1. For the in vivo studies, 7 cases of resected HCC and adjacent liver samples were analyzed. For the in vitro studies, IRF-1 mRNA and protein were examined in HepG2 and Huh-7 HCC cells after IFNγ stimulation by real-time PCR and western blotting, respectively. To determine the role of miR-23a in regulating IRF-1, HepG2 cells were transfected with an miR-23a mimic or inhibitor, and IRF-1 expression was examined. Binding of miR-23a was assessed by cloning the 528-bp human IRF-1 3'-untranslated region (3'UTR) into luciferase reporter plasmid pMIR-IRF-1-3'UTR. The results showed that IRF-1 mRNA expression was downregulated in the human HCC tumor tissues compared to that in the adjacent background liver tissues. IFNγ-induced IRF-1 protein was less in the HepG2 tumor cells compared to that in the primary human hepatocytes. miR-23a expression was inversely correlated with IRF-1, and addition of the miR-23a inhibitor increased basal IRF-1 mRNA and protein. Likewise, the miR-23a mimic downregulated IFNγ-induced IRF-1 protein expression, while the miR-23a inhibitor increased IRF-1. Furthermore, the miR-23a mimic repressed IRF-1-3'UTR reporter activity, while the miR-23a inhibitor increased the reporter activity. These results demonstrated that IRF-1 expression is downregulated in human HCC tumors compared to that noted in the background liver. miR-23a downregulates the expression of IRF-1 in HCC cells, and the IRF-1 3'UTR has an miR‑23a binding site that binds miR-23a and decreases reporter activity. These findings suggest that the targeting of IRF-1 by miR-23a may be the molecular basis for IRF-1 downregulation in HCC and provide new insight into the regulation of HCC by miRNAs.
Collapse
Affiliation(s)
- Yihe Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of General Surgery
| | - Zhihai Liang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiang Du
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Muqing Yang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A. Geller
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
42
|
Jha HC, Banerjee S, Robertson ES. The Role of Gammaherpesviruses in Cancer Pathogenesis. Pathogens 2016; 5:pathogens5010018. [PMID: 26861404 PMCID: PMC4810139 DOI: 10.3390/pathogens5010018] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Worldwide, one fifth of cancers in the population are associated with viral infections. Among them, gammaherpesvirus, specifically HHV4 (EBV) and HHV8 (KSHV), are two oncogenic viral agents associated with a large number of human malignancies. In this review, we summarize the current understanding of the molecular mechanisms related to EBV and KSHV infection and their ability to induce cellular transformation. We describe their strategies for manipulating major cellular systems through the utilization of cell cycle, apoptosis, immune modulation, epigenetic modification, and altered signal transduction pathways, including NF-kB, Notch, Wnt, MAPK, TLR, etc. We also discuss the important EBV latent antigens, namely EBNA1, EBNA2, EBNA3’s and LMP’s, which are important for targeting these major cellular pathways. KSHV infection progresses through the engagement of the activities of the major latent proteins LANA, v-FLIP and v-Cyclin, and the lytic replication and transcription activator (RTA). This review is a current, comprehensive approach that describes an in-depth understanding of gammaherpes viral encoded gene manipulation of the host system through targeting important biological processes in viral-associated cancers.
Collapse
Affiliation(s)
- Hem Chandra Jha
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Shuvomoy Banerjee
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Erle S Robertson
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Tumor Suppressor Interferon-Regulatory Factor 1 Counteracts the Germinal Center Reaction Driven by a Cancer-Associated Gammaherpesvirus. J Virol 2015; 90:2818-29. [PMID: 26719266 DOI: 10.1128/jvi.02774-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Gammaherpesviruses are ubiquitous pathogens that are associated with the development of B cell lymphomas. Gammaherpesviruses employ multiple mechanisms to transiently stimulate a broad, polyclonal germinal center reaction, an inherently mutagenic stage of B cell differentiation that is thought to be the primary target of malignant transformation in virus-driven lymphomagenesis. We found that this gammaherpesvirus-driven germinal center expansion was exaggerated and lost its transient nature in the absence of interferon-regulatory factor 1 (IRF-1), a transcription factor with antiviral and tumor suppressor functions. Uncontrolled and persistent expansion of germinal center B cells led to pathological changes in the spleens of chronically infected IRF-1-deficient animals. Additionally, we found decreased IRF-1 expression in cases of human posttransplant lymphoproliferative disorder, a malignant condition associated with gammaherpesvirus infection. The results of our study define an unappreciated role for IRF-1 in B cell biology and provide insight into the potential mechanism of gammaherpesvirus-driven lymphomagenesis. IMPORTANCE Gammaherpesviruses establish lifelong infection in most adults and are associated with B cell lymphomas. While the infection is asymptomatic in many hosts, it is critical to identify individuals who may be at an increased risk of virus-induced cancer. Such identification is currently impossible, as the host risk factors that predispose individuals toward viral lymphomagenesis are poorly understood. The current study identifies interferon-regulatory factor 1 (IRF-1) to be one of such candidate host factors. Specifically, we found that IRF-1 enforces long-term suppression of an inherently mutagenic stage of B cell differentiation that gammaherpesviruses are thought to target for transformation. Correspondingly, in the absence of IRF-1, chronic gammaherpesvirus infection induced pathological changes in the spleens of infected animals. Further, we found decreased IRF-1 expression in human gammaherpesvirus-induced B cell malignancies.
Collapse
|
44
|
Oncolysis by paramyxoviruses: preclinical and clinical studies. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30019-5. [PMID: 26640815 PMCID: PMC4667943 DOI: 10.1038/mto.2015.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preclinical studies demonstrate that a broad spectrum of human malignant cells can be killed by oncolytic paramyxoviruses, which include cells of ecto-, endo-, and mesodermal origin. In clinical trials, significant reduction in size or even complete elimination of primary tumors and established metastases are reported. Different routes of viral administration (intratumoral, intravenous, intradermal, intraperitoneal, or intrapleural), and single- versus multiple-dose administration schemes have been explored. The reported side effects are grade 1 and 2, with the most common among them being mild fever. Some advantages in using paramyxoviruses as oncolytic agents versus representatives of other viral families exist. The cytoplasmic replication results in a lack of host genome integration and recombination, which makes paramyxoviruses safer and more attractive candidates for widely used therapeutic oncolysis in comparison with retroviruses or some DNA viruses. The list of oncolytic paramyxovirus representatives includes attenuated measles virus (MV), mumps virus (MuV), low pathogenic Newcastle disease (NDV), and Sendai (SeV) viruses. Metastatic cancer cells frequently overexpress on their surface some molecules that can serve as receptors for MV, MuV, NDV, and SeV. This promotes specific viral attachment to the malignant cell, which is frequently followed by specific viral replication. The paramyxoviruses are capable of inducing efficient syncytium-mediated lyses of cancer cells and elicit strong immunomodulatory effects that dramatically enforce anticancer immune surveillance. In general, preclinical studies and phase 1–3 clinical trials yield very encouraging results and warrant continued research of oncolytic paramyxoviruses as a particularly valuable addition to the existing panel of cancer-fighting approaches.
Collapse
|
45
|
AbuSara N, Razavi S, Derwish L, Komatsu Y, Licursi M, Hirasawa K. Restoration of IRF1-dependent anticancer effects by MEK inhibition in human cancer cells. Cancer Lett 2014; 357:575-81. [PMID: 25497010 DOI: 10.1016/j.canlet.2014.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 02/09/2023]
Abstract
Interferon regulatory factor (IRF1) is a potent antiviral, antitumor and immune regulatory protein. Recently, we found that activated Ras/MEK inhibits antiviral response by downregulating IRF1 expression and renders cancer cells susceptible to oncolytic viruses. In this study, we sought to determine whether IRF1 downregulation underlies oncogenesis induced by Ras/MEK activation in human cancer cells. Treatment of the MEK inhibitor U0126 promoted IRF1 expression in 7 of 11 cancer cell lines we tested. IRF1 promotion was also observed in human cancer cell lines treated with different MEK inhibitors or with RNAi oligonucleotides against extracellular signal-regulated kinases (ERKs). Restoration of the expression of antitumor genes, p27 and p53 upregulated modulator of apoptosis (PUMA), by MEK inhibition was less in IRF1 shRNA knockdown cancer cells than in vector control cancer cells, suggesting that Ras/MEK targets IRF1 for the downregulation of the antitumor genes. Moreover, apoptosis induction by U0126 was significantly reduced in IRF1 shRNA knockdown cells than vector control cells. This study demonstrates that IRF1 expression is suppressed by activated Ras/MEK in human cancer cells and that IRF1 plays essential roles in apoptosis induced by Ras/MEK inhibition.
Collapse
Affiliation(s)
- Nader AbuSara
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Seyd Razavi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Leena Derwish
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Yumiko Komatsu
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Maria Licursi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Kensuke Hirasawa
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| |
Collapse
|
46
|
Arockiaraj J, Sathyamoorthi A, Kumaresan V, Palanisamy R, Chaurasia MK, Bhatt P, Gnanam AJ, Pasupuleti M, Arasu A. A murrel interferon regulatory factor-1: molecular characterization, gene expression and cell protection activity. Mol Biol Rep 2014; 41:5299-5309. [PMID: 24859976 DOI: 10.1007/s11033-014-3401-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/06/2014] [Indexed: 01/27/2023]
Abstract
In this study, we have reported a first murrel interferon regulatory factor-1 (designated as Murrel IRF-1) which is identified from a constructed cDNA library of striped murrel Channa striatus. The identified sequence was obtained by internal sequencing method from the library. The Murrel IRF-1 varies in size of the polypeptide from the earlier reported fish IRF-1. It contains a DNA binding domain along with a tryptophan pentad repeats, a nuclear localization signal and a transactivation domain. The homologous analysis showed that the Murrel IRF-1 had a significant sequence similarity with other known fish IRF-1 groups. The phylogenetic analysis exhibited that the Murrel IRF-1 clustered together with IRF-1 members, but the other members including IRF-2, 3, 4, 5, 6, 7, 8, 9 and 10 were clustered individually. The secondary structure of Murrel IRF-1 contains 27% α-helices (85 aa residues), 5.7% β-sheets (19 aa residues) and 67.19% random coils (210 aa residues). Furthermore, we predicted a tertiary structure of Murrel IRF-1 using I-Tasser program and analyzed the structure on PyMol surface view. The RNA structure of the Murrel IRF-1 along with its minimum free energy (-284.43 kcal/mol) was also predicted. The highest gene expression was observed in spleen and its expression was inducted with pathogenic microbes which cause epizootic ulcerative syndrome in murrels such as fungus, Aphanomyces invadans and bacteria, Aeromonas hydrophila, and poly I:C, a viral RNA analog. The results of cell protection assay suggested that the Murrel IRF-1 regulates the early defense response in C. striatus. Moreover, it showed Murrel IRF-1 as a potential candidate which can be developed as a therapeutic agent to control microbial infections in striped murrel. Overall, these results indicate the immune importance of IRF-1, however, the interferon signaling mechanism in murrels upon infection is yet to be studied at proteomic level.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai, 603 203, Tamil Nadu, India,
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Forero A, Giacobbi NS, McCormick KD, Gjoerup OV, Bakkenist CJ, Pipas JM, Sarkar SN. Simian virus 40 large T antigen induces IFN-stimulated genes through ATR kinase. THE JOURNAL OF IMMUNOLOGY 2014; 192:5933-42. [PMID: 24799566 DOI: 10.4049/jimmunol.1303470] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polyomaviruses encode a large T Ag (LT), a multifunctional protein essential for the regulation of both viral and host cell gene expression and productive viral infection. Previously, we have shown that stable expression of LT protein results in upregulation of genes involved in the IFN induction and signaling pathway. In this study, we focus on the cellular signaling mechanism that leads to the induction of IFN responses by LT. Our results show that ectopic expression of SV40 LT results in the induction of IFN-stimulated genes (ISGs) in human fibroblasts and confers an antiviral state. We describe a LT-initiated DNA damage response (DDR) that activates IFN regulatory factor 1, causing IFN-β production and consequent ISG expression in human cells. This IFN-β and ISG induction is dependent on ataxia-telangiectasia mutated and Rad3-related (ATR) kinase, but independent of ATM. ATR kinase inhibition using a selective kinase inhibitor (ETP-46464) caused a decrease in IFN regulatory factor 1 stabilization and ISG expression. Furthermore, expression of a mutant LT that does not induce DDR also does not induce IFN-β and ISGs. These results show that, in the absence of viral infection, LT-initiated activation of ATR-dependent DDR is sufficient for the induction of an IFN-β-mediated innate immune response in human cells. Thus, we have uncovered a novel and critical role for ATR as a mediator of antiviral responses utilizing LT.
Collapse
Affiliation(s)
- Adriana Forero
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Nicholas S Giacobbi
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15213; and
| | - Kevin D McCormick
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Ole V Gjoerup
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Christopher J Bakkenist
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15213; and
| | - Saumendra N Sarkar
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213;
| |
Collapse
|
48
|
Interferon regulatory factor 1 restricts gammaherpesvirus replication in primary immune cells. J Virol 2014; 88:6993-7004. [PMID: 24719409 DOI: 10.1128/jvi.00638-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Gammaherpesviruses are ubiquitous pathogens that establish a lifelong infection and are associated with cancer. In spite of the high seroprevalence of infection, the risk factors that predispose the host toward gammaherpesvirus-induced malignancies are still poorly understood. Interferon (IFN) regulatory factor 1 (IRF-1) is a tumor suppressor that is also involved in the regulation of innate and adaptive immune responses. On the basis of its biology, IRF-1 represents a plausible host factor to attenuate gammaherpesvirus infection and tumorigenesis. In this study, we show that IRF-1 restricts gammaherpesvirus replication in primary macrophages, a physiologically relevant immune cell type. In spite of the known role of IRF-1 in stimulating type I IFN expression, induction of a global type I IFN response was similar in IRF-1-deficient and -proficient macrophages during gammaherpesvirus infection. However, IRF-1 was required for optimal expression of cholesterol-25-hydroxylase, a host enzyme that restricted gammaherpesvirus replication in primary macrophages and contributed to the antiviral effects of IRF-1. In summary, the current study provides an insight into the mechanism by which IRF-1 attenuates gammaherpesvirus replication in primary immune cells, a mechanism that is likely to contribute to the antiviral effects of IRF-1 in other virus systems. IMPORTANCE Interferon regulatory factor 1 (IRF-1) is a transcription factor that regulates innate and adaptive immune responses and functions as a tumor suppressor. IRF-1 restricts the replication of diverse viruses; however, the mechanisms responsible for the antiviral effects of IRF-1 are still poorly understood. Gammaherpesviruses are ubiquitous pathogens that are associated with the induction of several malignancies. Here we show that IRF-1 expression attenuates gammaherpesvirus replication in primary macrophages, in part by increasing expression of cholesterol-25-hydroxylase (CH25H). CH25H and its product, 25-hydroxycholesterol, restrict replication of diverse virus families. Thus, our findings offer an insight into the mechanism by which IRF-1 attenuates the replication of gammaherpesviruses, a mechanism that is likely to be applicable to other virus systems.
Collapse
|
49
|
IκB kinase ε targets interferon regulatory factor 1 in activated T lymphocytes. Mol Cell Biol 2014; 34:1054-65. [PMID: 24396068 DOI: 10.1128/mcb.01161-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IκB kinase ε (IKK-ε) has an essential role as a regulator of innate immunity, functioning downstream of pattern recognition receptors to modulate NF-κB and interferon (IFN) signaling. In the present study, we investigated IKK-ε activation following T cell receptor (TCR)/CD28 stimulation of primary CD4(+) T cells and its role in the stimulation of a type I IFN response. IKK-ε was activated following TCR/CD28 stimulation of primary CD4(+) T cells; however, in T cells treated with poly(I·C), TCR/CD28 costimulation blocked induction of IFN-β transcription. We demonstrated that IKK-ε phosphorylated the transcription factor IFN regulatory factor 1 (IRF-1) at amino acid (aa) 215/219/221 in primary CD4(+) T cells and blocked its transcriptional activity. At the mechanistic level, IRF-1 phosphorylation impaired the physical interaction between IRF-1 and the NF-κB RelA subunit and interfered with PCAF-mediated acetylation of NF-κB RelA. These results demonstrate that TCR/CD28 stimulation of primary T cells stimulates IKK-ε activation, which in turn contributes to suppression of IFN-β production.
Collapse
|
50
|
Huber R, Pietsch D, Günther J, Welz B, Vogt N, Brand K. Regulation of monocyte differentiation by specific signaling modules and associated transcription factor networks. Cell Mol Life Sci 2014; 71:63-92. [PMID: 23525665 PMCID: PMC11113479 DOI: 10.1007/s00018-013-1322-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 02/12/2013] [Accepted: 03/07/2013] [Indexed: 12/26/2022]
Abstract
Monocyte/macrophages are important players in orchestrating the immune response as well as connecting innate and adaptive immunity. Myelopoiesis and monopoiesis are characterized by the interplay between expansion of stem/progenitor cells and progression towards further developed (myelo)monocytic phenotypes. In response to a variety of differentiation-inducing stimuli, various prominent signaling pathways are activated. Subsequently, specific transcription factors are induced, regulating cell proliferation and maturation. This review article focuses on the integration of signaling modules and transcriptional networks involved in the determination of monocytic differentiation.
Collapse
Affiliation(s)
- René Huber
- Institute of Clinical Chemistry, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany,
| | | | | | | | | | | |
Collapse
|