1
|
Popli P, Meduri RT, Sharma T, Challa RR, Vallamkonda B, Satti PR, Singh TG, Swami R. Polymeric and lipidic nanoparticles in transforming anti-HIV combinational therapy: can they turn the tide? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04169-w. [PMID: 40266304 DOI: 10.1007/s00210-025-04169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
The HIV-1 pandemic presents a multifaceted challenge across the globe, standing as the foremost public health crisis today. Global data on HIV-related morbidity and mortality are alarming. Effective HIV management hinges on minimizing transmission through highly active antiretroviral therapy (HAART), which relies on a combination of HAART and has been a cornerstone in HIV management. However, challenges such as low patient adherence, suboptimal drug pharmacokinetics, and side effects, potentially undermine the efficacy of existing treatment. Emerging nanotherapeutics, particularly lipidic and polymeric nanoparticles, have exhibited immense promise in addressing these concerns. These nanocarriers enhance targeted drug delivery, facilitate controlled release, and reduce toxicity. Notably, co-delivery strategies using nanoparticles enable the simultaneous transport of multiple drugs involved in HAART. But the question arises whether the exploration is enough to turn the tide. Hence, through this review, the authors have tried to explore and discuss the obstacles faced by the lipid and polymeric nanoparticles such as stability and encapsulation efficiency, and translating these innovations to clinical practice in detail and discussed the future potential of AI-driven nanomedicine.
Collapse
Affiliation(s)
- Pankaj Popli
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Teenu Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | | | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Guntur, India
| | | | | | - Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
2
|
Silva LC, Leite AA, Borgato GB, Wagner VP, Martins MD, Loureiro FJA, Lopes MA, Santos-Silva AR, Sperandio M, de Castro Junior G, Kowalski LP, Squarize CH, Castilho RM, Vargas PA. Oral squamous cell carcinoma cancer stem cells have different drug sensitive to pharmacological NFκB and histone deacetylation inhibition. Am J Cancer Res 2023; 13:6038-6050. [PMID: 38187064 PMCID: PMC10767341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/06/2023] [Indexed: 01/09/2024] Open
Abstract
Despite many progresses in the development of new systemic therapies for oral squamous cell carcinoma (OSCC), the five-year survival rate of OSCC is low. The traditional chemotherapies approach (cisplatin - CDDP) shows some limitations like drug toxicity, limited efficacy, and drug resistance. Promising studies suggested OSCC cancer stem cells (CSC) presented resistance to CDDP. We have previously studied many targets, and we extensively showed the efficacy of the NFκB signaling and the role of histones acetylation, on different malignant tumors, including adenoid cystic carcinoma and mucoepidermoid carcinoma, but until then the effects of the NFkB inhibitor and histone deacetylase (HDAC) inhibitor on the biology of OSCC were not evaluated. Here we assessed the pharmacological inhibitor of NFκB emetine and HDAC inhibitor SAHA on the behavior of CSC derived from OSCC. Our data suggested that CDDP administration resulted in reduced viability of bulk OSCC cells and increased CSC. A single and isolated shot of emetine and SAHA were able to disrupt CSC by inhibiting the NFκB pathway and increasing the histone acetylation levels, respectively. Further, the combined administration of emetine and SAHA presented the same CSC disruption as seen in emetine alone.
Collapse
Affiliation(s)
- Luan César Silva
- Department of Oral Diagnosis, Piracicaba Dental School, University of CampinasPiracicaba, SP, Brazil
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of DentistryAnn Arbor, MI, USA
| | - Amanda Almeida Leite
- Department of Oral Diagnosis, Piracicaba Dental School, University of CampinasPiracicaba, SP, Brazil
| | | | - Vivian Petersen Wagner
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical Dentistry, University of SheffieldSheffield, SY, UK
| | - Manoela Domingues Martins
- Department of Oral Diagnosis, Piracicaba Dental School, University of CampinasPiracicaba, SP, Brazil
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | | | - Márcio Ajudarte Lopes
- Department of Oral Diagnosis, Piracicaba Dental School, University of CampinasPiracicaba, SP, Brazil
| | - Alan Roger Santos-Silva
- Department of Oral Diagnosis, Piracicaba Dental School, University of CampinasPiracicaba, SP, Brazil
| | - Marcelo Sperandio
- Department of Oral Pathology & Medicine, Sao Leopoldo Mandic Dental Institute and Research CenterCampinas, SP, Brazil
| | - Gilberto de Castro Junior
- Serviço de Oncologia Clínica, Instituto do Câncer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São PauloSão Paulo, SP, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery, University of Sao Paulo Medical School and Head and Neck Surgery and Otorhinolaryngology Department, AC Camargo Cancer CenterSão Paulo, SP, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of DentistryAnn Arbor, MI, USA
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of DentistryAnn Arbor, MI, USA
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of CampinasPiracicaba, SP, Brazil
| |
Collapse
|
3
|
Park J, Newton PK. Stochastic competitive release and adaptive chemotherapy. Phys Rev E 2023; 108:034407. [PMID: 37849192 DOI: 10.1103/physreve.108.034407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/10/2023] [Indexed: 10/19/2023]
Abstract
We develop a finite-cell model of tumor natural selection dynamics to investigate the stochastic fluctuations associated with multiple rounds of adaptive chemotherapy. The adaptive cycles are designed to avoid chemoresistance in the tumor by managing the ecological mechanism of competitive release of a resistant subpopulation. Our model is based on a three-component evolutionary game played among healthy (H), sensitive (S), and resistant (R) populations of N cells, with a chemotherapy control parameter, C(t), which we use to dynamically impose selection pressure on the sensitive subpopulation to slow tumor growth and manage competitive release of the resistant population. The adaptive chemoschedule is designed based on the deterministic (N→∞) adjusted replicator dynamical system, then implemented using the finite-cell stochastic frequency dependent Moran process model (N=10K-50K) to ascertain the cumulative effect of the stochastic fluctuations on the efficacy of the adaptive schedules over multiple rounds. We quantify the stochastic fixation probability regions of the R and S populations in the HSR trilinear phase plane as a function of the control parameter C∈[0,1], showing that the size of the R region increases with increasing C. We then implement an adaptive time-dependent schedule C(t) for the stochastic model and quantify the variances (using principal component coordinates) associated with the evolutionary cycles over multiple rounds of adaptive therapy. The variances increase subquadratically through several rounds before the evolutionary cycle begins to break down. Despite this, we show the stochastic adaptive schedules are more effective at delaying resistance than standard maximum tolerated dose and low-dose metronomic schedules. The simplified low-dimensional model provides some insights on how well multiple rounds of adaptive therapies are likely to perform over a range of tumor sizes (i.e., different values of N) if the goal is to maintain a sustained balance among competing subpopulations of cells to avoid chemoresistance via competitive release in a stochastic environment.
Collapse
Affiliation(s)
- J Park
- Department of Mathematics, University of Southern California, Los Angeles, California 90089-1191, USA
| | - P K Newton
- Department of Aerospace & Mechanical Engineering, Department of Mathematics, and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089-1191, USA
| |
Collapse
|
4
|
Okuno K, Xu C, Pascual-Sabater S, Tokunaga M, Takayama T, Han H, Fillat C, Kinugasa Y, Goel A. Andrographis Reverses Gemcitabine Resistance through Regulation of ERBB3 and Calcium Signaling Pathway in Pancreatic Ductal Adenocarcinoma. Biomedicines 2023; 11:119. [PMID: 36672630 PMCID: PMC9855441 DOI: 10.3390/biomedicines11010119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, primarily due to intrinsic or acquired resistance to chemotherapy, such as Gemcitabine (Gem). Naturally occurring botanicals, including Andrographis (Andro), can help enhance the anti-tumorigenic therapeutic efficacy of conventional chemotherapy through time-tested safety and cost-effectiveness. Accordingly, we hypothesized that Andro might reverse Gem resistance in PDAC. The critical regulatory pathways associated with Gem resistance in PDAC were identified by analyzing publicly available transcriptomic profiling and PDAC tissue specimens. A series of systematic in vitro experiments were performed using Gem-resistant (Gem-R) PDAC cells and patient-derived 3D-organoids to evaluate the Andro-mediated reversal of Gem resistance in PDAC. Transcriptomic profiling identified the calcium signaling pathway as a critical regulator of Gem-resistance (Fold enrichment: 2.8, p = 0.002). Within this pathway, high ERBB3 expression was significantly associated with poor prognosis in PDAC patients. The combination of Andro and Gem exhibited superior anti-cancer potential in Gem-R PDAC cells through potentiating cellular apoptosis. The combined treatment down-regulated ERBB3 and decreased intracellular calcium concentration in Gem-R PDAC cells. Finally, these findings were successfully interrogated in patient-derived 3D-organoids. In conclusion, we demonstrate novel evidence for Andro-mediated reversal of chemoresistance to Gem in PDAC cells through the regulation of ERBB3 and calcium signaling.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116004, China
| | - Silvia Pascual-Sabater
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Haiyong Han
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Okuno K, Xu C, Pascual-Sabater S, Tokunaga M, Han H, Fillat C, Kinugasa Y, Goel A. Berberine Overcomes Gemcitabine-Associated Chemoresistance through Regulation of Rap1/PI3K-Akt Signaling in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals (Basel) 2022; 15:1199. [PMID: 36297310 PMCID: PMC9611392 DOI: 10.3390/ph15101199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Gemcitabine (Gem)-based chemotherapy is one of the first-line treatments for pancreatic ductal adenocarcinoma (PDAC). However, its clinical effect is limited due to development of chemoresistance. Various naturally occurring compounds, including Berberine (BBR), provide an anti-cancer efficacy with time-tested safety, individually and in combination with chemotherapeutic drugs. Accordingly, we hypothesized that BBR might enhance the chemosensitivity to Gem in PDAC. In this study, cell culture studies using MIA PaCa-2 and BxPC-3 cells, followed by analysis in patient-derived organoids were performed to evaluate the anti-cancer effects of BBR in PDAC. Considering that cancer is a significant manifestation of increased chronic inflammatory stress, systems biology approaches are prudent for the identification of molecular pathways and networks responsible for phytochemical-induced anti-cancer activity, we used these approaches for BBR-mediated chemosensitization to Gem. Firstly, Gem-resistant (Gem-R) PDAC cells were established, and the combination of BBR and Gem revealed superior anti-cancer efficacy in Gem-R cells. Furthermore, the combination treatment induced cell cycle arrest and apoptosis in Gem-R PDAC cells. Transcriptomic profiling investigated the Rap1 and PI3K-Akt signaling pathway as a key regulator of Gem-resistance and was a key mediator for BBR-mediated chemosensitization in PDAC cells. All cell culture-based findings were successfully validated in patient-derived organoids. In conclusion, we demonstrate that BBR-mediated reversal of chemoresistance to Gem manifests through Rap1/PI3K-Akt signaling in PDAC.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116004, China
| | - Silvia Pascual-Sabater
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Haiyong Han
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Baaz M, Cardilin T, Lignet F, Jirstrand M. Optimized scaling of translational factors in oncology: from xenografts to RECIST. Cancer Chemother Pharmacol 2022; 90:239-250. [PMID: 35922568 PMCID: PMC9402719 DOI: 10.1007/s00280-022-04458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/10/2022] [Indexed: 12/01/2022]
Abstract
Purpose Tumor growth inhibition (TGI) models are regularly used to quantify the PK–PD relationship between drug concentration and in vivo efficacy in oncology. These models are typically calibrated with data from xenograft mice and before being used for clinical predictions, translational methods have to be applied. Currently, such methods are commonly based on replacing model components or scaling of model parameters. However, difficulties remain in how to accurately account for inter-species differences. Therefore, more research must be done before xenograft data can fully be utilized to predict clinical response. Method To contribute to this research, we have calibrated TGI models to xenograft data for three drug combinations using the nonlinear mixed effects framework. The models were translated by replacing mice exposure with human exposure and used to make predictions of clinical response. Furthermore, in search of a better way of translating these models, we estimated an optimal way of scaling model parameters given the available clinical data. Results The predictions were compared with clinical data and we found that clinical efficacy was overestimated. The estimated optimal scaling factors were similar to a standard allometric scaling exponent of − 0.25. Conclusions We believe that given more data, our methodology could contribute to increasing the translational capabilities of TGI models. More specifically, an appropriate translational method could be developed for drugs with the same mechanism of action, which would allow for all preclinical data to be leveraged for new drugs of the same class. This would ensure that fewer clinically inefficacious drugs are tested in clinical trials. Supplementary Information The online version contains supplementary material available at 10.1007/s00280-022-04458-8.
Collapse
Affiliation(s)
- Marcus Baaz
- Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, 41288, Gothenburg, Sweden. .,Department of Mathematical Sciences, Chalmers University of Technology, University of Gothenburg, Gothenburg, Sweden.
| | - Tim Cardilin
- Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, 41288, Gothenburg, Sweden
| | | | - Mats Jirstrand
- Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, 41288, Gothenburg, Sweden
| |
Collapse
|
7
|
Okuno K, Garg R, Yuan YC, Tokunaga M, Kinugasa Y, Goel A. Berberine and Oligomeric Proanthocyanidins Exhibit Synergistic Efficacy Through Regulation of PI3K-Akt Signaling Pathway in Colorectal Cancer. Front Oncol 2022; 12:855860. [PMID: 35600365 PMCID: PMC9114748 DOI: 10.3389/fonc.2022.855860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Naturally occurring dietary botanicals offer time-tested safety and anti-cancer efficacy, and a combination of certain compounds has shown to overcome the elusive chemotherapeutic resistance, which is of great significance for improving the mortality of patients with colorectal cancer (CRC). Accordingly, herein, we hypothesized that berberine (BBR) and oligomeric proanthocyanidins (OPCs) might regulate synergistically multiple oncogenic pathways to exert a superior anti-cancer activity in CRC. METHODS We performed a series of cell culture studies, followed by their interrogation in patient-derived organoids to evaluate the synergistic effect of BBR and OPCs against CRC. In addition, by performing whole genome transcriptomic profiling we identified the key targeted genes and pathways regulated by the combined treatment. RESULTS We first demonstrated that OPCs facilitated enhanced cellular uptake of BBR in CRC cells by measuring the fluorescent signal of BBR in cells treated individually or their combination. The synergism between BBR and OPCs were investigated in terms of their anti-tumorigenic effect on cell viability, clonogenicity, migration, and invasion. Furthermore, the combination treatment potentiated the cellular apoptosis in an Annexin V binding assay. Transcriptomic profiling identified oncogene MYB in PI3K-AKT signaling pathway might be critically involved in the anti-tumorigenic properties of the combined treatment. Finally, we successfully validated these findings in patient-derived CRC tumor organoids. CONCLUSIONS Collectively, we for the first time demonstrate that a combined treatment of BBR and OPCs synergistically promote the anti-tumorigenic properties in CRC possibly through the regulation of cellular apoptosis and oncogene MYB in the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, United States
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rachana Garg
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, United States
| | - Yate-Ching Yuan
- Translational Bioinformatics, Center for Informatics, City of Hope, Duarte, CA, United States
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, United States
- City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| |
Collapse
|
8
|
Salehipour A, Bagheri M, Sabahi M, Dolatshahi M, Boche D. Combination Therapy in Alzheimer’s Disease: Is It Time? J Alzheimers Dis 2022; 87:1433-1449. [DOI: 10.3233/jad-215680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia globally. There is increasing evidence showing AD has no single pathogenic mechanism, and thus treatment approaches focusing only on one mechanism are unlikely to be meaningfully effective. With only one potentially disease modifying treatment approved, targeting amyloid-β (Aβ), AD is underserved regarding effective drug treatments. Combining multiple drugs or designing treatments that target multiple pathways could be an effective therapeutic approach. Considering the distinction between added and combination therapies, one can conclude that most trials fall under the category of added therapies. For combination therapy to have an actual impact on the course of AD, it is likely necessary to target multiple mechanisms including but not limited to Aβ and tau pathology. Several challenges have to be addressed regarding combination therapy, including choosing the correct agents, the best time and stage of AD to intervene, designing and providing proper protocols for clinical trials. This can be achieved by a cooperation between the pharmaceutical industry, academia, private research centers, philanthropic institutions, and the regulatory bodies. Based on all the available information, the success of combination therapy to tackle complicated disorders such as cancer, and the blueprint already laid out on how to implement combination therapy and overcome its challenges, an argument can be made that the field has to move cautiously but quickly toward designing new clinical trials, further exploring the pathological mechanisms of AD, and re-examining the previous studies with combination therapies so that effective treatments for AD may be finally found.
Collapse
Affiliation(s)
- Arash Salehipour
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Motahareh Bagheri
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammadmahdi Sabahi
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Dolatshahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom
| |
Collapse
|
9
|
Shyu YM, Liu LYM, Chuang YJ. Synergistic Effect of Simultaneous versus Sequential Combined Treatment of Histone Deacetylase Inhibitor Valproic Acid with Etoposide on Melanoma Cells. Int J Mol Sci 2021; 22:ijms221810029. [PMID: 34576202 PMCID: PMC8467070 DOI: 10.3390/ijms221810029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Melanoma is the most lethal form of skin cancer, which is intrinsically resistant to conventional chemotherapy. Combination therapy has been developed to overcome this challenge and show synergistic anticancer effects on melanoma. Notably, the histone deacetylase inhibitor, valproic acid (VPA), has been indicated as a potential sensitizer of chemotherapy drugs on various metastatic cancers, including advanced melanoma. In this study, we explored whether VPA could serve as an effective sensitizer of chemotherapy drug etoposide (ETO) on B16-F10 and SK-MEL-2-Luc melanoma cell lines in response to drug-induced DNA damages. Our results demonstrated that the VPA-ETO simultaneous combined treatment and ETO pretreated sequential combined treatment generated higher inhibitory effectivities than the individual treatment of each drug. We found the VPA-ETO simultaneous combined treatment contributed to the synergistic inhibitory effect by the augmented DNA double-strand breaks, accompanied by a compromised homologous recombination activity. In comparison, the ETO pretreated sequential combined treatment led to synergistic inhibitory effect via enhanced apoptosis. Surprisingly, the enhanced homologous recombination activity and G2/M phase arrest resulted in the antagonistic effect in both cells under VPA pretreated sequential combined treatment. In summary, our findings suggested that sequential order and effective dose of drug administration in VPA-ETO combination therapy could induce different cellular responses in melanoma cells. Such understanding might help potentiate the effectiveness of melanoma treatment and highlight the importance of sequential order and effective dose in combination therapy.
Collapse
Affiliation(s)
- Yueh-Ming Shyu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Internal Medicine, Division of Cardiology, Hsinchu MacKay Memorial Hospital, Hsinchu 30071, Taiwan
| | - Lawrence Yu-Min Liu
- Department of Internal Medicine, Division of Cardiology, Hsinchu MacKay Memorial Hospital, Hsinchu 30071, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- Correspondence: (L.Y.-M.L.); (Y.-J.C.); Tel.: +88-6-3611-9595 (L.Y.-M.L.); +88-6-3574-2764 (Y.-J.C.); Fax: +88-6-3611-1175 (L.Y.-M.L.); +88-6-3571-5934 (Y.-J.C.)
| | - Yung-Jen Chuang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: (L.Y.-M.L.); (Y.-J.C.); Tel.: +88-6-3611-9595 (L.Y.-M.L.); +88-6-3574-2764 (Y.-J.C.); Fax: +88-6-3611-1175 (L.Y.-M.L.); +88-6-3571-5934 (Y.-J.C.)
| |
Collapse
|
10
|
Galiardi-Campoy AEB, Machado FC, Carvalho T, Tedesco AC, Rahal P, Calmon MF. Effects of photodynamic therapy mediated by emodin in cervical carcinoma cells. Photodiagnosis Photodyn Ther 2021; 35:102394. [PMID: 34119706 DOI: 10.1016/j.pdpdt.2021.102394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/10/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
Cervical cancer is a worldwide public health problem, and improved selective therapies and anticancer drugs are urgently needed. In recent years, emodin has attracted considerable attention due to its anti-inflammatory, antineoplastic, and proapoptotic effects. Furthermore, emodin may be used as a photosensitizing agent in photodynamic therapy. Interest in photodynamic therapy for cancer treatment has increased due to its efficiency in causing tumor cell death. This study aimed to analyze the effect of emodin combined with photodynamic therapy in cervical carcinoma cell lines. At first, emodin presented cytotoxicity in concentration and time-dependent manners in all the specific cell lines analyzed. SiHa, CaSki, and HaCaT cancer cells presented more than 80% cell viability in concentrations below 30 µmol/L. Fluorescence microscopy images showed efficient cellular uptake of emodin in all analyzed cell lines. A significant decrease in cell viability was observed in SiHa, CaSki, and HaCaT cell lines after treatment of emodin combined with photodynamic therapy. These decreases were accompanied by increased ROS production, caspase-3 activity, and fluorescence intensity of autophagic vacuoles. This suggests increased ROS production led to cell death by apoptosis and autophagy. Additionally, after the combination of emodin and photodynamic therapy in SiHa cells, we observed the overexpression of 22 target genes and downregulation of two target genes of anti-cancer drugs. These results show the promising potential for applications that combine emodin with photodynamic therapy for cervical cancer treatment.
Collapse
Affiliation(s)
- Ana Emília Brumatti Galiardi-Campoy
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo Street, 2265, Zip/Postal Code: 15054-010, São José do Rio Preto, SP, Brazil
| | - Francielly Cristina Machado
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo Street, 2265, Zip/Postal Code: 15054-010, São José do Rio Preto, SP, Brazil
| | - Tamara Carvalho
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo Street, 2265, Zip/Postal Code: 15054-010, São José do Rio Preto, SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Paula Rahal
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo Street, 2265, Zip/Postal Code: 15054-010, São José do Rio Preto, SP, Brazil
| | - Marilia Freitas Calmon
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo Street, 2265, Zip/Postal Code: 15054-010, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
11
|
Angiogenesis and chemotherapy resistance: optimizing chemotherapy scheduling using mathematical modeling. J Cancer Res Clin Oncol 2021; 147:2281-2299. [PMID: 34050795 PMCID: PMC8236485 DOI: 10.1007/s00432-021-03657-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Chemotherapy remains a widely used cancer treatment. Acquired drug resistance may greatly reduce the efficacy of treatment and means to overcome it are a topic of active discussion among researchers. One of the proposed solutions is to shift the therapeutic paradigm from complete eradication of cancer to maintenance, i.e., to treat it as a chronic disease. A concept of metronomic therapy (low chemotherapy doses applied continuously) emerged in early 2000s and was henceforth shown to offer a number of benefits, including targeting endothelial cells and reducing acquired drug resistance. Using mathematical modeling and optimal control techniques, we investigate the hypothesis that lower doses of chemotherapy are beneficial for patients. Our analysis of a mathematical model of tumor growth under angiogenic signaling proposed by Hahnfeldt et al. adapted to heterogeneous tumors treated by combined anti-angiogenic agent and chemotherapy offers insights into the effects of metronomic therapy. Firstly, assuming constant long-term drug delivery, the model suggests that the longest survival time is achieved for intermediate drug doses. Secondly, by formalizing the notion of the therapeutic target being maintenance rather than eradication, we show that in the short term, optimal chemotherapy scheduling consists mainly of a drug applied at a low dose. In conclusion, we suggest that metronomic therapy is an attractive alternative to maximum tolerated dose therapies to be investigated in experimental settings and clinical trials.
Collapse
|
12
|
Sharma P, Shimura T, Banwait JK, Goel A. Andrographis-mediated chemosensitization through activation of ferroptosis and suppression of β-catenin/Wnt-signaling pathways in colorectal cancer. Carcinogenesis 2020; 41:1385-1394. [PMID: 32835374 PMCID: PMC7566354 DOI: 10.1093/carcin/bgaa090] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/25/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality in the USA. As much as 50-60% of CRC patients develop resistance to 5-fluorouracil (5FU)-based chemotherapeutic regimens, attributing the increased overall morbidity and mortality. In view of the growing evidence that active principles in various naturally occurring botanicals can facilitate chemosensitization in cancer cells, herein, we undertook a comprehensive effort in interrogating the activity of one such botanical-andrographis-by analyzing its activity in CRC cell lines [both sensitive and 5FU resistant (5FUR)], a xenograft animal model and patient-derived tumor organoids. We observed that combined treatment with andrographis was synergistic and resulted in a significant and dose-dependent increase in the efficacy of 5FU in HCT116 and SW480 5FUR cells (P < 0.05), reduced clonogenic formation (P < 0.01) and increased rates of caspase-9-mediated apoptosis (P < 0.05). The genomewide expression analysis in cell lines led us to uncover that activation of ferroptosis and suppression of β-catenin/Wnt-signaling pathways were the key mediators for the anti-cancer and chemosensitizing effects of andrographis. Subsequently, we validated our findings in a xenograft animal model, as well as two independent CRC patient-derived organoids-which confirmed that combined treatment with andrographis was significantly more effective than 5FU and andrographis alone and that these effects were in part orchestrated through dysregulated expression of key genes (including HMOX1, GCLC, GCLM and TCF7L2) within the ferroptosis and Wnt-signaling pathways. Collectively, our data highlight that andrographis might offer a safe and inexpensive adjunctive therapeutic option in the management of CRC patients.
Collapse
Affiliation(s)
- Priyanka Sharma
- Center for Gastrointestinal Research, Baylor Scott and White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
- Department of Molecular Diagnostics and Experimental Therapeutics and Biotech Innovations, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Tadanobu Shimura
- Center for Gastrointestinal Research, Baylor Scott and White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Jasjit K Banwait
- Center for Gastrointestinal Research, Baylor Scott and White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Ajay Goel
- Center for Gastrointestinal Research, Baylor Scott and White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
- Department of Molecular Diagnostics and Experimental Therapeutics and Biotech Innovations, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
13
|
Khan F, Pham DTN, Oloketuyi SF, Kim YM. Antibiotics Application Strategies to Control Biofilm Formation in Pathogenic Bacteria. Curr Pharm Biotechnol 2020; 21:270-286. [PMID: 31721708 DOI: 10.2174/1389201020666191112155905] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/09/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The establishment of a biofilm by most pathogenic bacteria has been known as one of the resistance mechanisms against antibiotics. A biofilm is a structural component where the bacterial community adheres to the biotic or abiotic surfaces by the help of Extracellular Polymeric Substances (EPS) produced by bacterial cells. The biofilm matrix possesses the ability to resist several adverse environmental factors, including the effect of antibiotics. Therefore, the resistance of bacterial biofilm-forming cells could be increased up to 1000 times than the planktonic cells, hence requiring a significantly high concentration of antibiotics for treatment. METHODS Up to the present, several methodologies employing antibiotics as an anti-biofilm, antivirulence or quorum quenching agent have been developed for biofilm inhibition and eradication of a pre-formed mature biofilm. RESULTS Among the anti-biofilm strategies being tested, the sub-minimal inhibitory concentration of several antibiotics either alone or in combination has been shown to inhibit biofilm formation and down-regulate the production of virulence factors. The combinatorial strategies include (1) combination of multiple antibiotics, (2) combination of antibiotics with non-antibiotic agents and (3) loading of antibiotics onto a carrier. CONCLUSION The present review paper describes the role of several antibiotics as biofilm inhibitors and also the alternative strategies adopted for applications in eradicating and inhibiting the formation of biofilm by pathogenic bacteria.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.,Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P., India
| | - Dung T N Pham
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Sandra F Oloketuyi
- Laboratory for Environmental and Life Sciences, University of Nova Gorica 5000, Nova Gorica, Slovenia
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
14
|
Campillo-Artero C, Puig-Junoy J, Segú-Tolsa JL, Trapero-Bertran M. Price Models for Multi-indication Drugs: A Systematic Review. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2020; 18:47-56. [PMID: 31523756 DOI: 10.1007/s40258-019-00517-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND Marketing of new and existing drugs with new indications used alone or in combination is increasing. OBJECTIVE To identify the advantages and disadvantages of indication-based pricing (IBP) systems for such drugs from the standpoint of economic theory, practical applications and international experiences. METHODS We conducted a systematic review of published articles and reports using six bibliographic databases: PubMed, ASCO, Scopus, DARE, HTA and NHS EED. We also conducted a search of gray literature in Google Scholar. The same search terms were used as in Towse et al. (The debate on indication-based pricing in the U.S. and five major European countries. OHE Consulting Report, London, 2018). Articles and reports published from 1 January 2000 to 30 September 2018 were included. RESULTS A total of 26 studies met the inclusion criteria. There are three main types of IBP: different brands with different prices for each indication, an averaged single price for all indications and a single price with differential discounts. The studies indicate that IBP systems are premised on the idea that charging a different price for different indications reflects the differences in their value and in social willingness to pay for each one and for the investment in R&D based on the indication's incremental clinical benefit. Some argue that a uniform price reduces access and increases the price for lower-value indications, while others contend that if IBP sets prices at the maximum threshold of social willingness to pay for each indication, all surplus is transferred to the producer and consumer surplus is reduced to zero. No practical applications of pure IBP were found. Single pricing for drugs is the most prevalent approach. The system that most closely approximates an IBP model consists of agreements that are generally confidential and linked to risk-sharing agreements. CONCLUSIONS There are no applications of pure IBP systems and their practical consequences are therefore unknown. More economic theory-based assessments of the pros and cons of IBP and studies different from reviews are needed to capture their intricacies and specificities.
Collapse
Affiliation(s)
- Carlos Campillo-Artero
- Center for Research in Health and Economics, Barcelona School of Management, Universitat Pompeu Fabra, Barcelona, Spain.
- Balearic Health Service, Palma de Mallorca, Spain.
| | - Jaume Puig-Junoy
- Department of Economics and Business, Barcelona School of Management, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Marta Trapero-Bertran
- Research Institute for Evaluation and Public Policies (IRAPP), Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| |
Collapse
|
15
|
Sailapu SK, Dutta D, Simon AT, Ghosh SS, Chattopadhyay A. Smartphone controlled interactive portable device for theranostics in vitro. Biosens Bioelectron 2019; 146:111745. [PMID: 31606688 DOI: 10.1016/j.bios.2019.111745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/11/2019] [Accepted: 09/28/2019] [Indexed: 10/25/2022]
Abstract
In this work, a smartphone controlled interactive theranostic device has been developed to perform in vitro photodynamic therapy (PDT) and diagnostic assays for treatment assessment on a single platform. Further, silver nanorod (Ag NR) was identified as a photosensitizer and its effect was studied in three different cell lines. PDT was achieved with Ag NRs using low irradiation (1.4 mW/cm2 at 632 nm) from light emitting diodes (LEDs) in the device. Specifically, PDT in conjugation with widely used chemotherapeutic drug doxorubicin (Dox) proved effective in killing of HeLa cancer cells and multicellular tumor spheroids at a minimum dose of Ag (2.5 μg/mL). The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and LDH (lactate dehydrogenase) assays performed with the device indicated the therapeutic success of the delivered PDT. The device is portable and can be adapted for different wavelength irradiations and radiation doses. Additionally, wireless operation using a custom designed smartphone application makes it convenient to use in complex environments without much of human intervention.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| | - Deepanjalee Dutta
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| | - Anitha T Simon
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India; Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
16
|
Caldera M, Müller F, Kaltenbrunner I, Licciardello MP, Lardeau CH, Kubicek S, Menche J. Mapping the perturbome network of cellular perturbations. Nat Commun 2019; 10:5140. [PMID: 31723137 PMCID: PMC6853941 DOI: 10.1038/s41467-019-13058-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Drug combinations provide effective treatments for diverse diseases, but also represent a major cause of adverse reactions. Currently there is no systematic understanding of how the complex cellular perturbations induced by different drugs influence each other. Here, we introduce a mathematical framework for classifying any interaction between perturbations with high-dimensional effects into 12 interaction types. We apply our framework to a large-scale imaging screen of cell morphology changes induced by diverse drugs and their combination, resulting in a perturbome network of 242 drugs and 1832 interactions. Our analysis of the chemical and biological features of the drugs reveals distinct molecular fingerprints for each interaction type. We find a direct link between drug similarities on the cell morphology level and the distance of their respective protein targets within the cellular interactome of molecular interactions. The interactome distance is also predictive for different types of drug interactions.
Collapse
Affiliation(s)
- Michael Caldera
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090, Vienna, Austria
| | - Felix Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090, Vienna, Austria
| | - Isabel Kaltenbrunner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090, Vienna, Austria
| | - Marco P Licciardello
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090, Vienna, Austria
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Charles-Hugues Lardeau
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090, Vienna, Austria
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, Macclesfield, UK
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090, Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090, Vienna, Austria.
| |
Collapse
|
17
|
Hossein G, Halvaei S, Heidarian Y, Dehghani‐Ghobadi Z, Hassani M, Hosseini H, Naderi N, Sheikh Hassani S. Pectasol-C Modified Citrus Pectin targets Galectin-3-induced STAT3 activation and synergize paclitaxel cytotoxic effect on ovarian cancer spheroids. Cancer Med 2019; 8:4315-4329. [PMID: 31197964 PMCID: PMC6675724 DOI: 10.1002/cam4.2334] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/28/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Here we sought to determine the relationship between STAT3 activity and Galectin-3 (Gal-3) and to investigate the cytotoxic effect of PectaSol-C Modified Citrus Pectin (Pect-MCP) as a specific competitive inhibitor of Galectin-3 (Gal-3) in combination with Paclitaxel (PTX) to kill the ovarian cancer cell SKOV-3 multicellular tumor spheroid (MCTS). To this order, SKOV-3 cells in 2D and 3D cultures were treated with exogenous Gal-3 for the assessment of STAT3 activity. Two-way ANOVA main effect and IC50 of each drug Paclitaxel (PTX) and Pect-MCP or in combination were obtained from MTT assay results. The phosphorylated STAT3 levels, migration, invasion, integrin mRNA and p-AKTser473 levels were assessed in the absence or presence of each drug alone or in combination. Gal-3 expression levels were assessed in human serous ovarian cancer (SOC) specimens and its correlation with different integrin mRNA levels was further assessed. Our results showed that Gal-3 expression level was significantly increased in MCTS compared to monolayer SKOV-3 cells which triggered STAT3 phosphorylation. Moreover, Pect-MCP synergized with PTX to kill SKOV3 MCTS through abrogation of STAT3 activity and reduced expression of its downstream target HIF-1α, reduced integrin mRNA levels, and subsequently decreased AKT activity. There were higher expression levels of Gal-3 in human high-grade SOC specimens compared to the normal ovary and borderline SOC which positively and significantly correlated with α5, β2 and β6 integrin mRNA levels. Together, these results revealed for the first time that Pect-MCP could be considered as a potential drug to enhance the PTX effect on ovarian cancer cells MCTS through inhibition of STAT3 activity.
Collapse
Affiliation(s)
- Ghamartaj Hossein
- Department of Animal Biology, Developmental Biology Laboratory, College of ScienceUniversity of TehranTehranIran
| | - Sina Halvaei
- Department of Animal Biology, Developmental Biology Laboratory, College of ScienceUniversity of TehranTehranIran
| | - Yassaman Heidarian
- Department of Animal Biology, Developmental Biology Laboratory, College of ScienceUniversity of TehranTehranIran
- Department of Cell and Molecular Biology, Kish International CampusUniversity of TehranKishIran
| | - Zeinab Dehghani‐Ghobadi
- Department of Animal Biology, Developmental Biology Laboratory, College of ScienceUniversity of TehranTehranIran
| | - Mina Hassani
- Department of Animal Biology, Developmental Biology Laboratory, College of ScienceUniversity of TehranTehranIran
| | - Homa Hosseini
- Department of Animal Biology, Developmental Biology Laboratory, College of ScienceUniversity of TehranTehranIran
| | - Nima Naderi
- Neuroscience Research CenterShahid Beheshti University (Medical Sciences)TehranIran
| | - Shahrzad Sheikh Hassani
- Department of Gynecology Oncology ValiasrImam Khomeini Hospital, Tehran University of Medical ScienceTehranIran
| |
Collapse
|
18
|
Nøhr‐Nielsen A, De Bruin ML, Thomsen M, Pipper CB, Lange T, Bjerrum OJ, Lund TM. Body of evidence and approaches applied in the clinical development programme of fixed-dose combinations in the European Union from 2010 to 2016. Br J Clin Pharmacol 2019; 85:1829-1840. [PMID: 31077427 PMCID: PMC6624404 DOI: 10.1111/bcp.13986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
AIMS To provide insights into the clinical development pathway for fixed-dose combinations (FDCs), to consider strategies, and to elucidate the path to approval by assessing the body of evidence, as summarized in the European Public Assessment Reports. METHODS The main resource was the European Public Assessment Reports for 36 FDCs, which included 239 clinical trials with 157 514 patients. The analyses focused on how prior knowledge of the active substances or combination, use of pharmacokinetic-pharmacodynamic modelling, and clinical trial design choice impact the size and strategy of the clinical development programme. RESULTS FDC products primarily comprised 2 previously approved components (21/36, 71%) and had only 1 approved combination (21/36, 71%). Utilizing previously approved active substances resulted in fewer clinical trials, arms and patients, but FDC doses studied in the clinical development programme. Furthermore, dose-finding trials were performed for less than half of FDCs consisting of 2 previously approved active substances. The standard approach to demonstrate contribution of active substances was through a factorial or single combination study. Finally, the use of pharmacokinetic modelling showed a significant decrease in the number of FDC doses studied. CONCLUSIONS The field of FDCs seems to be on the rise, utilizing new molecular entities, prior knowledge and re-profiling drugs. However, a way to move FDC development forward might be through new regulatory and scientific paradigms, in which it is encouraged to utilize model-based approaches to develop FDCs with multiple dose levels and dose ratios for exposure-based treatment that will enable personalization.
Collapse
Affiliation(s)
- Asbjørn Nøhr‐Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Copenhagen Centre for Regulatory ScienceUniversity of CopenhagenCopenhagenDenmark
| | | | | | | | - Theis Lange
- Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - Ole Jannik Bjerrum
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Trine Meldgaard Lund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
19
|
Abstract
Introduction: Prodrugs have been used to improve the selectivity and efficacy of cancer therapy by targeting unique abnormal markers that are overexpressed by cancer cells and are absent in normal tissues. In this context, different strategies have been exploited and new ones are being developed each year. Areas covered: In this review, an integrated view of the potential use of prodrugs in targeted cancer therapy is provided. Passive and active strategies are discussed in light of the advantages of each one and some successful examples are provided, as well as the clinical status of several prodrugs. Among them, antibody-drug conjugates (ADCs) are the most commonly used. However, several drawbacks, including limited prodrug uptake, poor pharmacokinetics, immunogenicity problems, difficulties in selective targeting and gene expression, and optimized bystander effects limit their clinical applications. Expert opinion: Despite the efforts of different companies and research groups, several drawbacks, such as the lack of relevant in vivo models, complexity of the human metabolism, and economic limitations, have hampered the development of new prodrugs for targeted cancer therapy. As a result, we believe that the combination of prodrugs with cancer nanotechnology and other newly developed approaches, such as aptamer-conjugated nanomaterials, are efficient strategies.
Collapse
Affiliation(s)
- Carla Souza
- a Center of Nanotechnology and Tissue Engineering, Department of Chemistry , School of Philosophy, Sciences and Letters of Ribeirão Preto- USP , Ribeirão Preto , Brazil
| | - Diogo Silva Pellosi
- b Department of Chemistry, Laboratory of Hybrid Materials , Federal University of São Paulo - UNIFESP , Diadema , Brazil
| | - Antonio Claudio Tedesco
- a Center of Nanotechnology and Tissue Engineering, Department of Chemistry , School of Philosophy, Sciences and Letters of Ribeirão Preto- USP , Ribeirão Preto , Brazil
| |
Collapse
|
20
|
Devassy G, Ramachandran R, Jeena K, Junnuthula VR, Gopinatha VK, Manju C, Manohar M, Nair SV, Raghavan SC, Koyakutty M. Simultaneous release of two drugs from polymer nano-implant inhibits recurrence in glioblastoma spheroids. PRECISION NANOMEDICINE 2019. [DOI: 10.33218/prnano2(1).181122.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Local implant-based delivery of rationally selected combination of chemotherapeutics has some major advantages for the treatment of glioblastoma such as: (a) 100 % bio-availability locally in brain can be achieved at the tumor site (b) avoid systemic leakage and associated toxicity, and (c) simultaneous inhibition of multiple, mutually exclusive cancer mechanisms is possible. Here, we report a polymeric brain implant capable of delivering two different drugs in recur-rent glioma cells. We have selected a combination of clinically used DNA alkylating agent, Te-mozolomide, and a DNA mismatch repair protein (Ligase IV) inhibitor, SCR-7, and delivered simultaneously into tumor spheroids formed by rat glioma cells, C6. The dual-drug loaded polymeric wafer, prepared by lyophilization method, could deliver both the drugs in a controlled fashion. To test the efficacy of this system, we have optimized an in vitro recurrent model of glioma spheroids wherein, the implant released both the drugs in a sustained fashion, thereby continuously exposing the cells to DNA methylation while inhibiting the DNA repair pathways. This leads to synergistic toxicity and inhibition of tumor recurrence for extended duration compared to free drug combination.
Collapse
|
21
|
Ramachandra Kurup Sasikala A, Unnithan AR, Thomas RG, Batgerel T, Jeong YY, Park CH, Kim CS. Hexa-functional tumour-seeking nano voyagers and annihilators for synergistic cancer theranostic applications. NANOSCALE 2018; 10:19568-19578. [PMID: 30324948 DOI: 10.1039/c8nr06116e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In order to meet the unmet medical needs for effective cancer treatment, multifunctional nanocarriers based on iron oxide nanoparticles hold tremendous promise. Here we report a superparamagnetic iron oxide nanoparticles based hexa-functional nanosystem for synergistic cancer theranostic applications by offering active tumour targeting, accumulation and complementary imaging capability by combining magnetic resonance imaging as well as near-infrared fluorescence, magnetophotothermia and chemotherapy. The uniquely designed nanosystem exhibited a paramount increase in the antitumour efficacy through the simultaneous application of multiple thermal effects called magnetophotothermia, which outweighed the therapeutic efficacy of the current thermo-chemo therapies or stand-alone therapies. The active tumour-seeking property with prolonged tumour accumulation and complementary imaging capability with improved sensitivity and resolution also augments the therapeutic efficacy of the proposed nanosystem. Additionally, the work proposes a deep-learning-based tumour cell nuclei detection technique from H&E stained images in anticipation of providing much inspiration for the future of precision histology.
Collapse
|
22
|
Walvekar P, Gannimani R, Govender T. Combination drug therapy via nanocarriers against infectious diseases. Eur J Pharm Sci 2018; 127:121-141. [PMID: 30342173 DOI: 10.1016/j.ejps.2018.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/16/2018] [Accepted: 10/16/2018] [Indexed: 11/18/2022]
Abstract
Current drug therapy against infections is threatening to become obsolete due to the poor physical, chemical, biological and pharmacokinetic properties of drugs, followed by high risk of acquiring resistance. Taking into account the significant benefits of nanotechnology, nano-based delivery of anti-infectious agents is emerging as a potential approach to combat several lethal infections. Co-delivery of multiple anti-infectious agents in a single nano-based system is beginning to show significant advantages over mono-therapy, such as synergism, enhanced anti-microbial activity, broad anti-microbial spectrum, reduced resistance development, and improved and cost-effective treatment. The current review provides a detailed update on the status of various lipid and polymer based nano-systems used to co-deliver multiple anti-infectious agents against bacterial, HIV and malarial infections. It also identifies current key challenges and suggests strategies to overcome them, thus guiding formulation scientists to further optimize nano-based co-drug delivery as an approach to fight infections effectively.
Collapse
Affiliation(s)
- Pavan Walvekar
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Ramesh Gannimani
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| |
Collapse
|
23
|
Ressa A, Bosdriesz E, de Ligt J, Mainardi S, Maddalo G, Prahallad A, Jager M, de la Fonteijne L, Fitzpatrick M, Groten S, Altelaar AFM, Bernards R, Cuppen E, Wessels L, Heck AJR. A System-wide Approach to Monitor Responses to Synergistic BRAF and EGFR Inhibition in Colorectal Cancer Cells. Mol Cell Proteomics 2018; 17:1892-1908. [PMID: 29970458 PMCID: PMC6166676 DOI: 10.1074/mcp.ra117.000486] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Intrinsic and/or acquired resistance represents one of the great challenges in targeted cancer therapy. A deeper understanding of the molecular biology of cancer has resulted in more efficient strategies, where one or multiple drugs are adopted in novel therapies to tackle resistance. This beneficial effect of using combination treatments has also been observed in colorectal cancer patients harboring the BRAF(V600E) mutation, whereby dual inhibition of BRAF(V600E) and EGFR increases antitumor activity. Notwithstanding this success, it is not clear whether this combination treatment is the only or most effective treatment to block intrinsic resistance to BRAF inhibitors. Here, we investigate molecular responses upon single and multi-target treatments, over time, using BRAF(V600E) mutant colorectal cancer cells as a model system. Through integration of transcriptomic, proteomic and phosphoproteomics data we obtain a comprehensive overview, revealing both known and novel responses. We primarily observe widespread up-regulation of receptor tyrosine kinases and metabolic pathways upon BRAF inhibition. These findings point to mechanisms by which the drug-treated cells switch energy sources and enter a quiescent-like state as a defensive response, while additionally compensating for the MAPK pathway inhibition.
Collapse
Affiliation(s)
- Anna Ressa
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Evert Bosdriesz
- §Division of Molecular Carcinogenesis, Cancer Genomics Centre Netherlands, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Joep de Ligt
- ¶Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Sara Mainardi
- §Division of Molecular Carcinogenesis, Cancer Genomics Centre Netherlands, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Gianluca Maddalo
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Anirudh Prahallad
- §Division of Molecular Carcinogenesis, Cancer Genomics Centre Netherlands, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Myrthe Jager
- ¶Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Lisanne de la Fonteijne
- ¶Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Martin Fitzpatrick
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Stijn Groten
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - A F Maarten Altelaar
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - René Bernards
- §Division of Molecular Carcinogenesis, Cancer Genomics Centre Netherlands, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Edwin Cuppen
- ¶Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Lodewyk Wessels
- §Division of Molecular Carcinogenesis, Cancer Genomics Centre Netherlands, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands;
- ‖Department of EEMCS, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
| | - Albert J R Heck
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| |
Collapse
|
24
|
Ravindranathan P, Pasham D, Balaji U, Cardenas J, Gu J, Toden S, Goel A. A combination of curcumin and oligomeric proanthocyanidins offer superior anti-tumorigenic properties in colorectal cancer. Sci Rep 2018; 8:13869. [PMID: 30218018 PMCID: PMC6138725 DOI: 10.1038/s41598-018-32267-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/31/2018] [Indexed: 01/02/2023] Open
Abstract
Combining anti-cancer agents in cancer therapies is becoming increasingly popular due to improved efficacy, reduced toxicity and decreased emergence of resistance. Here, we test the hypothesis that dietary agents such as oligomeric proanthocyanidins (OPCs) and curcumin cooperatively modulate cancer-associated cellular mechanisms to inhibit carcinogenesis. By a series of in vitro assays in colorectal cancer cell lines, we showed that the anti-tumorigenic properties of the OPCs-curcumin combination were superior to the effects of individual compounds. By RNA-sequencing based gene-expression profiling in six colorectal cancer cell lines, we identified the cooperative modulation of key cancer-associated pathways such as DNA replication and cell cycle pathways. Moreover, several pathways, including protein export, glutathione metabolism and porphyrin metabolism were more effectively modulated by the combination of OPCs and curcumin. We validated genes belonging to these pathways, such as HSPA5, SEC61B, G6PD, HMOX1 and PDE3B to be cooperatively modulated by the OPCs-curcumin combination. We further confirmed that the OPCs-curcumin combination more potently suppresses colorectal carcinogenesis and modulated expression of genes identified by RNA-sequencing in mice xenografts and in colorectal cancer patient-derived organoids. Overall, by delineating the cooperative mechanisms of action of OPCs and curcumin, we make a case for the clinical co-administration of curcumin and OPCs as a treatment therapy for patients with colorectal cancer.
Collapse
Affiliation(s)
- Preethi Ravindranathan
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Divya Pasham
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Uthra Balaji
- Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Jacob Cardenas
- Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Jinghua Gu
- Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Shusuke Toden
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA.
| |
Collapse
|
25
|
Li H, Li T, Quang D, Guan Y. Network Propagation Predicts Drug Synergy in Cancers. Cancer Res 2018; 78:5446-5457. [PMID: 30054332 DOI: 10.1158/0008-5472.can-18-0740] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/27/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022]
Abstract
Combination therapies are commonly used to treat patients with complex diseases that respond poorly to single-agent therapies. In vitro high-throughput drug screening is a standard method for preclinical prioritization of synergistic drug combinations, but it can be impractical for large drug sets. Computational methods are thus being actively explored; however, most published methods were built on a limited size of cancer cell lines or drugs, and it remains a challenge to predict synergism at a large scale where the diversity within the data escalates the difficulty of prediction. Here, we present a state-of-the-field synergy prediction algorithm, which ranked first in all subchallenges in the AstraZeneca-Sanger Drug Combination Prediction DREAM Challenge. The model was built and evaluated using the largest drug combination screening dataset at the time of the competition, consisting of approximately 11,500 experimentally tested synergy scores of 118 drugs in 85 cancer cell lines. We developed a novel feature extraction strategy by integrating the cross-cell and cross-drug information with a novel network propagation method and then assembled the information in monotherapy and simulated molecular data to predict drug synergy. This represents a significant conceptual advancement of synergy prediction, using extracted features in the form of simulated posttreatment molecular profiles when only the pretreatment molecular profile is available. Our cross-tissue synergism prediction algorithm achieves promising accuracy comparable with the correlation between experimental replicates and can be applied to other cancer cell lines and drugs to guide therapeutic choices.Significance: This study presents a novel network propagation-based method that predicts anticancer drug synergy to the accuracy of experimental replicates, which establishes a state-of-the-field method as benchmarked by the pharmacogenomics research community involving models generated by 160 teams. Cancer Res; 78(18); 5446-57. ©2018 AACR.
Collapse
Affiliation(s)
- Hongyang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Tingyang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Daniel Quang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
26
|
Zhou Z, Chan A, Wang Z, Huang X, Yu G, Jacobson O, Wang S, Liu Y, Shan L, Dai Y, Shen Z, Lin L, Chen W, Chen X. Synchronous Chemoradiation Nanovesicles by X-Ray Triggered Cascade of Drug Release. Angew Chem Int Ed Engl 2018; 57:8463-8467. [PMID: 29757483 PMCID: PMC6251710 DOI: 10.1002/anie.201802351] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/04/2018] [Indexed: 12/11/2022]
Abstract
The approach of concurrent-to-synchronous chemoradiation has now been advanced by well-designed nanovesicles that permit X-ray irradiation-triggered instant drug release. The nanovesicles consist of Au nanoparticles tethered with irradiation labile linoleic acid hydroperoxide (LAHP) molecules and oxidation-responsive poly(propylene sulfide)-poly(ethylene glycol) (PPS-PEG) polymers, where DOX were loaded in the inner core of the vesicles (Au-LAHP-vDOX). Upon irradiation, the in situ formation of hydroxyl radicals from LAHP molecules triggers the internal oxidation of PPS from being hydrophobic to hydrophilic, leading to degradation of the vesicles and burst release of cargo drugs. In this manner, synchronous chemoradiation showed impressive anticancer efficacy both in vitro and in a subcutaneous mouse tumor model by one-dose injection and one-time irradiation.
Collapse
Affiliation(s)
- Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexander Chan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaolin Huang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sheng Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingling Shan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yunlu Dai
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
27
|
Co-inhibition as a strategic therapeutic approach to overcome rifampin resistance in tuberculosis therapy: atomistic insights. Future Med Chem 2018; 10:1665-1675. [DOI: 10.4155/fmc-2017-0197] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: Amid the current global challenge of antimicrobial resistance, RNA polymerase remains a paramount therapeutic target for tuberculosis. Dual binding of rifampin (RIF) and a novel compound, DAAP1, demonstrated the suppression of RIF resistance. However, a paucity of data elucidating the structural mechanism of action of this synergistic interaction prevails. Methodology & results: Molecular dynamic simulations unraveled the synergistic inhibitory characteristics of DAAP1 and RIF. Co-binding induced a stable protein, increased the degree of compactness of binding site residues around RIF and subsequently an improved binding affinity toward RIF. Conclusion: Findings established the structural mechanism by which DAAP1 stabilizes Mycobacterium tuberculosis RNA polymerase, thus possibly suppressing RIF resistance. This study will assist toward the design of novel inhibitors combating drug resistance in tuberculosis.
Collapse
|
28
|
Assessment and modelling of antibacterial combination regimens. Clin Microbiol Infect 2018; 24:689-696. [DOI: 10.1016/j.cmi.2017.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/30/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022]
|
29
|
Magherini F, Fiaschi T, Valocchia E, Becatti M, Pratesi A, Marzo T, Massai L, Gabbiani C, Landini I, Nobili S, Mini E, Messori L, Modesti A, Gamberi T. Antiproliferative effects of two gold(I)-N-heterocyclic carbene complexes in A2780 human ovarian cancer cells: a comparative proteomic study. Oncotarget 2018; 9:28042-28068. [PMID: 29963261 PMCID: PMC6021324 DOI: 10.18632/oncotarget.25556] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 05/19/2018] [Indexed: 02/07/2023] Open
Abstract
Au(NHC) and Au(NHC)2, i.e. a monocarbene gold(I) complex and the corresponding bis(carbene) complex, are two structurally related compounds, endowed with cytotoxic properties against several cancer cell lines. Herein, we explore the molecular and cellular mechanisms at the basis of their cytotoxicity in A2780 human ovarian cancer cells. Through a comparative proteomic analysis, we demonstrated that the number of modulated proteins is far larger in Au(NHC)2-treated than in Au(NHC)-treated A2780 cells. Both gold compounds mainly affected proteins belonging to the following functional classes: protein synthesis, metabolism, cytoskeleton and stress response and chaperones. Particularly, Au(NHC)2 gave rise to an evident upregulation of several glycolytic enzymes. Moreover, only Au(NHC)2 triggered a net impairment of respiration and a metabolic shift towards glycolysis, suggesting that mitochondria are relevant cellular targets. We also found that both carbenes, similarly to the gold(I) compound auranofin, caused a strong inhibition of the seleno-enzyme thioredoxin reductase (TrxR). In conclusion, we highlighted that coordination of two carbene ligands to the same gold(I) center greatly enhances the antiproliferative effects of the resulting compound in comparison to the monocarbene derivative. Moreover, TrxR inhibition and metabolic impairment seem to play a major role in the Au(NHC)2 cytotoxicity. Overall, these antiproliferative effects were also confirmed on other two human ovarian cancer cell lines (i.e. SKOV3 and IGROV1).
Collapse
Affiliation(s)
- Francesca Magherini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tania Fiaschi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisa Valocchia
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Alessandro Pratesi
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Tiziano Marzo
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy.,Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Ida Landini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Nobili
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Enrico Mini
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
30
|
Zhou Z, Chan A, Wang Z, Huang X, Yu G, Jacobson O, Wang S, Liu Y, Shan L, Dai Y, Shen Z, Lin L, Chen W, Chen X. Synchronous Chemoradiation Nanovesicles by X‐Ray Triggered Cascade of Drug Release. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Alexander Chan
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Xiaolin Huang
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Sheng Wang
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Lingling Shan
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Yunlu Dai
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Wei Chen
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| |
Collapse
|
31
|
Wodarz D, Goel A, Boland CR, Komarova NL. Effect of aspirin on tumour cell colony formation and evolution. J R Soc Interface 2018; 14:rsif.2017.0374. [PMID: 28878032 DOI: 10.1098/rsif.2017.0374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022] Open
Abstract
Aspirin is known to reduce the risk of colorectal cancer (CRC) incidence, but the underlying mechanisms are not fully understood. In a previous study, we quantified the in vitro growth kinetics of different CRC tumour cell lines treated with varying doses of aspirin, measuring the rate of cell division and cell death. Here, we use these measured parameters to calculate the chances of successful clonal expansion and to determine the evolutionary potential of the tumour cell lines in the presence and absence of aspirin. The calculations indicate that aspirin increases the probability that a single tumour cell fails to clonally expand. Further, calculations suggest that aspirin increases the evolutionary potential of an expanding tumour cell colony. An aspirin-treated tumour cell population is predicted to result in the accumulation of more mutations (and is thus more virulent and more difficult to treat) than a cell population of the same size that grew without aspirin. This indicates a potential trade-off between delaying the onset of cancer and increasing its evolutionary potential through chemoprevention. Further work needs to investigate to what extent these findings apply to in vivo settings, and to what degree they contribute to the epidemiologically documented aspirin-mediated protection.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92617, USA .,Department of Mathematics, University of California, Rowland Hall, Irvine, CA 92617, USA
| | - Ajay Goel
- Center for Gastroenterological Research, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas TX, USA
| | - C Richard Boland
- University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Natalia L Komarova
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92617, USA.,Department of Mathematics, University of California, Rowland Hall, Irvine, CA 92617, USA
| |
Collapse
|
32
|
Wagner VP, Martins MD, Martins MAT, Almeida LO, Warner KA, Nör JE, Squarize CH, Castilho RM. Targeting histone deacetylase and NFκB signaling as a novel therapy for Mucoepidermoid Carcinomas. Sci Rep 2018; 8:2065. [PMID: 29391537 PMCID: PMC5794736 DOI: 10.1038/s41598-018-20345-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
Malignancies from the salivary glands are rare and represent 11% of all cancers from the oropharyngeal anatomical area. Mucoepidermoid Carcinomas (MEC) is the most common malignancy from the salivary glands. Low survival rates of high-grade Mucoepidermoid Carcinomas (MEC) are particularly associated with the presence of positive lymph nodes, extracapsular lymph node spread, and perineural invasion. Most recently, the presence of cancer stem cells (CSC), and the activation of the NFκB signaling pathway have been suggested as cues for an acquired resistance phenotype. We have previously shown that NFκB signaling is very active in MEC tumors. Herein, we explore the efficacy of NFκB inhibition in combination with class I and II HDAC inhibitor to deplete the population of CSC and to destroy MEC tumor cells. Our finding suggests that disruption of NFκB signaling along with the administration of HDAC inhibitors constitute an effective strategy to manage MEC tumors.
Collapse
Affiliation(s)
- Vivian P Wagner
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109-1078, USA.,Experimental Pathology Unit, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Manoela D Martins
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109-1078, USA.,Experimental Pathology Unit, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Marco A T Martins
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109-1078, USA.,Experimental Pathology Unit, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Luciana O Almeida
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109-1078, USA
| | - Kristy A Warner
- Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Jacques E Nör
- Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109-1078, USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109-1078, USA. .,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
33
|
Thakkar M, S B. Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies. Drug Deliv Transl Res 2017; 6:414-25. [PMID: 27067712 DOI: 10.1007/s13346-016-0290-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite the advancement of science, infectious diseases such as malaria remain an ongoing challenge globally. The main reason this disease still remains a menace in many countries around the world is the development of resistance to many of the currently available anti-malarial drugs. While developing new drugs is rather expensive and the prospect of a potent vaccine is still evading our dream of a malaria-free world, one of the feasible options is to package the older drugs in newer ways. For this, nano-sized drug delivery vehicles have been used and are proving to be promising prospects in the way malaria will be treated in the future. Since, monotherapy has given way to combination therapy in malaria treatment, nanotechnology-based delivery carriers enable to encapsulate various drug moieties in the same package, thus avoiding the complications involved in conjugation chemistry to produce hybrid drug molecules. Further, we envisage that using targeted delivery approaches, we may be able to achieve a much better radical cure and curb the side effects associated with the existing drug molecules. Thus, this review will focus on some of the nanotechnology-based combination and targeted therapies and will discuss the possibilities of better therapies that may be developed in the future.
Collapse
Affiliation(s)
- Miloni Thakkar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Vile Parle (W), Mumbai, 400056, India
| | - Brijesh S
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
34
|
Carr AC, Khaled AS, Bassiouni R, Flores O, Nierenberg D, Bhatti H, Vishnubhotla P, Manuel JP, Santra S, Khaled AR. Targeting chaperonin containing TCP1 (CCT) as a molecular therapeutic for small cell lung cancer. Oncotarget 2017; 8:110273-110288. [PMID: 29299146 PMCID: PMC5746381 DOI: 10.18632/oncotarget.22681] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/05/2017] [Indexed: 12/20/2022] Open
Abstract
Identifying new druggable targets is desired to meet the needs for effective cancer treatments. To this end, we previously reported the efficacy of a therapeutic peptide called CT20p that displays selective cytotoxicity through inhibition of a multi-subunit, protein-folding complex called Chaperonin-Containing TCP-1 (CCT). To investigate the role of CCT in cancer progression, we examined protein levels of CCT subunits in liver, prostate, and lung cancer using human tissue microarrays. We found that these cancers expressed higher levels of CCT2 as compared to normal tissues. Small cell lung cancer (SCLC) stood out as having statistically significant difference in CCT2. Higher levels of CCT2 in tumors from lung cancer patients were also associated with decreased survival. Using SCLC cell lines, we observed detectable amounts of CCT subunits and cells were susceptible to killing by CT20p. Treatment with CT20p, delivered to cells using polymeric nanoparticles, was cytotoxic to all SCLC cell lines, decreasing the levels of CCT client proteins like STAT3. In contrast, treatment with a STAT3 inhibitor was effective in one of the SCLC cell lines. While we found that CCT levels could vary in cell lines, normal tissues had low levels of CCT and minimal toxicity to liver or kidney function was observed in mice treated with CT20p. These results indicate that in SCLC, changes in CCT levels could be used as a biomarker for diagnosis and that targeting CCT for inhibition with CT20p is a promising treatment approach for those cancers such as SCLC that currently lack targeted therapeutics.
Collapse
Affiliation(s)
- Ana C. Carr
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Amr S. Khaled
- Department of Pathology and Laboratory Medicine, Department of Internal Medicine, Orlando VA Medical Center, Orlando, FL 32803, USA
| | - Rania Bassiouni
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Orielyz Flores
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Daniel Nierenberg
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Hammad Bhatti
- Department of Pathology and Laboratory Medicine, Department of Internal Medicine, Orlando VA Medical Center, Orlando, FL 32803, USA
| | - Priya Vishnubhotla
- Department of Pathology and Laboratory Medicine, Department of Internal Medicine, Orlando VA Medical Center, Orlando, FL 32803, USA
| | - J. Perez Manuel
- Biomedical Imaging Research Institute, & Samuel Oschin Comprehensive Cancer Institute, Department of Biomedical Sciences and Department of Neurosurgery, Cedar Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Annette R. Khaled
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
35
|
Bashari O, Redko B, Cohen A, Luboshits G, Gellerman G, Firer MA. Discovery of peptide drug carrier candidates for targeted multi-drug delivery into prostate cancer cells. Cancer Lett 2017; 408:164-173. [PMID: 28888997 DOI: 10.1016/j.canlet.2017.08.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 11/24/2022]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) remains essentially incurable. Targeted Drug Delivery (TDD) systems may overcome the limitations of current mCRPC therapies. We describe the use of strict criteria to isolate novel prostate cancer cell targeting peptides that specifically deliver drugs into target cells. Phage from a libraries displaying 7mer peptides were exposed to PC-3 cells and only internalized phage were recovered. The ability of these phage to internalize into other prostate cancer cells (LNCaP, DU-145) was validated. The displayed peptides of selected phage clones were synthesized and their specificity for target cells was validated in vitro and in vivo. One peptide (P12) which specifically targeted PC-3 tumors in vivo was incorporated into mono-drug (Chlorambucil, Combretastatin or Camptothecin) and dual-drug (Chlorambucil/Combretastatin or Chlorambucil/Camptothecin) PDCs and the cytotoxic efficacy of these conjugates for target cells was tested. Conjugation of P12 into dual-drug PDCs allowed discovery of new drug combinations with synergistic effects. The use of strict selection criteria can lead to discovery of novel peptides for use as drug carriers for TDD. PDCs represent an effective alternative to current modes of free drug chemotherapy for prostate cancer.
Collapse
Affiliation(s)
- O Bashari
- Dept. Chemical Engineering, Ariel University, Ariel, 40700, Israel.
| | - B Redko
- Dept. Chemical Sciences, Ariel University, Ariel, 40700, Israel.
| | - A Cohen
- Dept. Chemical Engineering, Ariel University, Ariel, 40700, Israel.
| | - G Luboshits
- Dept. Chemical Engineering, Ariel University, Ariel, 40700, Israel.
| | - G Gellerman
- Dept. Chemical Sciences, Ariel University, Ariel, 40700, Israel.
| | - M A Firer
- Dept. Chemical Engineering, Ariel University, Ariel, 40700, Israel.
| |
Collapse
|
36
|
Babu A, Munshi A, Ramesh R. Combinatorial therapeutic approaches with RNAi and anticancer drugs using nanodrug delivery systems. Drug Dev Ind Pharm 2017; 43:1391-1401. [PMID: 28523942 PMCID: PMC6101010 DOI: 10.1080/03639045.2017.1313861] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022]
Abstract
RNA interference (RNAi) is emerging as a powerful approach in cancer treatment. siRNA is an important RNAi tool that can be designed to specifically silence the expression of genes involved in drug resistance and chemotherapeutic inactivity. Combining siRNA and other therapeutic agents can overcome the multidrug resistance (MDR) phenomenon by simultaneously silencing genes and enhancing chemotherapeutic activity. Moreover, the therapeutic efficiency of anticancer drugs can be significantly improved by additive or synergistic effects induced by siRNA and combined therapies. Co-delivery of these diverse anticancer agents, however, requires specially designed nanocarriers. This review highlights the recent trends in siRNA/anticancer drug co-delivery systems under the major categories of liposomes/lipid, polymeric and inorganic nanoplatforms. The objective is to discuss the strategies for nanocarrier-based co-delivery systems using siRNA/anticancer drug combinations, emphasizing various siRNA targets that help overcome MDR and enhance therapeutic efficiency.
Collapse
Affiliation(s)
- Anish Babu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; USA
- Department of Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; USA
- Department of Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; USA
- Department of Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; USA
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; USA
| |
Collapse
|
37
|
Dash TK, Konkimalla VB. Selection of P-Glycoprotein Inhibitor and Formulation of Combinational Nanoformulation Containing Selected Agent Curcumin and DOX for Reversal of Resistance in K562 Cells. Pharm Res 2017; 34:1741-1750. [PMID: 28536971 DOI: 10.1007/s11095-017-2182-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE To select P-glycoprotein (P-gp) inhibitor from natural source for reversal of DOX resistance in K562 cells and to develop selected one in to nanoformulation in combination with DOX. METHODS DOX resistant K562 (K562R) cells were developed and reversal of resistance by P-gp inhibitor was validated by co-treatment with verapamil. The p-gp inhibitors were evaluated for their potential to inhibit P-gp (calcein assay) and to reverse drug resistance (XTT cell viability assay). The selected agent, curcumin was formulated in to liposome along with DOX and characterized for size, zeta potential, encapsulation efficiency and release rate. Uptake, P-gp inhibition and reversal of acquired drug resistance in K562R cells were performed. RESULTS P-gp inhibitors such as biochanin-A and curcumin were marked suitable for combination with DOX. However, only curcumin could increase the sensitivity of DOX at all dosing levels, therefore used for further studies. Liposomes loaded with curcumin were formulated and characterized where a prolonged release was observed. The uptake of liposomal curcumin was comparable to nanodispersed curcumin but had lower cytotoxicity. DOX and curcumin coloaded liposomes successfully reversed DOX resistance in K562 cells. CONCLUSION The coloaded liposomes increased the safety of curcumin with improved efficacy thus can be employed for reversal of acquired DOX resistance.
Collapse
Affiliation(s)
- Tapan K Dash
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), PO- Bhimpur-Padanpur, Via- Jatni, Khurda, 752050, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), PO- Bhimpur-Padanpur, Via- Jatni, Khurda, 752050, India.
| |
Collapse
|
38
|
Mendes R, Fernandes AR, Baptista PV. Gold Nanoparticle Approach to the Selective Delivery of Gene Silencing in Cancer-The Case for Combined Delivery? Genes (Basel) 2017; 8:E94. [PMID: 28257109 PMCID: PMC5368698 DOI: 10.3390/genes8030094] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/25/2017] [Accepted: 02/23/2017] [Indexed: 01/30/2023] Open
Abstract
Gene therapy arises as a great promise for cancer therapeutics due to its potential to silence genes involved in tumor development. In fact, there are some pivotal gene drivers that suffer critical alterations leading to cell transformation and ultimately to tumor growth. In this vein, gene silencing has been proposed as an active tool to selectively silence these molecular triggers of cancer, thus improving treatment. However, naked nucleic acid (DNA/RNA) sequences are reported to have a short lifetime in the body, promptly degraded by circulating enzymes, which in turn speed up elimination and decrease the therapeutic potential of these drugs. The use of nanoparticles for the effective delivery of these silencers to the specific target locations has allowed researchers to overcome this issue. Particularly, gold nanoparticles (AuNPs) have been used as attractive vehicles for the target-specific delivery of gene-silencing moieties, alone or in combination with other drugs. We shall discuss current trends in AuNP-based delivery of gene-silencing tools, considering the promising road ahead without overlooking existing concerns for their translation to clinics.
Collapse
Affiliation(s)
- Rita Mendes
- UCIBIO, DCV, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Alexandra R Fernandes
- UCIBIO, DCV, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Pedro V Baptista
- UCIBIO, DCV, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
39
|
A Computational Approach for Identifying Synergistic Drug Combinations. PLoS Comput Biol 2017; 13:e1005308. [PMID: 28085880 PMCID: PMC5234777 DOI: 10.1371/journal.pcbi.1005308] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 12/12/2016] [Indexed: 11/19/2022] Open
Abstract
A promising alternative to address the problem of acquired drug resistance is to rely on combination therapies. Identification of the right combinations is often accomplished through trial and error, a labor and resource intensive process whose scale quickly escalates as more drugs can be combined. To address this problem, we present a broad computational approach for predicting synergistic combinations using easily obtainable single drug efficacy, no detailed mechanistic understanding of drug function, and limited drug combination testing. When applied to mutant BRAF melanoma, we found that our approach exhibited significant predictive power. Additionally, we validated previously untested synergy predictions involving anticancer molecules. As additional large combinatorial screens become available, this methodology could prove to be impactful for identification of drug synergy in context of other types of cancers. While targeted therapies have achieved remarkable antitumor responses, resistance to targeted agents frequently develops and renders the targeted drug ineffective. Combination therapies have been successful in delaying resistance and overcoming resistance. Additional goals of combination therapy are to achieve enhanced effectiveness through drug synergy and to reduce the frequency and severity of adverse events through lower individual drug dosage levels. However the identification of synergistic drug combinations is often a labor and resource intensive process. Therefore a systematic method for identifying optimal combinations would be highly impactful. Here we present a computational method for predicting synergistic and effective drug combinations using only single drug efficacy information. We have applied and validated our method on a high-throughput drug screen of 780 combinations involving 40 individual molecules in the context of mutant BRAF melanoma. Additionally we have made predictions and validated 11 previously untested drug combinations with a diverse set of outcomes.
Collapse
|
40
|
Nanocarrier-based co-delivery of small molecules and siRNA/miRNA for treatment of cancer. Ther Deliv 2016; 7:245-55. [PMID: 27010986 DOI: 10.4155/tde-2015-0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aberrant gene expression can trigger several vital molecular events that not only result in carcinogenesis but also cause chemoresistance, metastasis and relapse. Gene-based therapies using siRNA/miRNA have been suggested as new treatment method to improve the current regimen. Although these agents can restore the normal molecular cascade thereby resensitizing the cancer cells, delivering a standard regimen (either subsequently or simultaneously) is necessary to achieve the therapeutic benefit. However, co-delivery using a single carrier could give an additional advantage of similar biodistribution profile of the loaded agents. While much research has been carried out in this field in recent years, challenges involved in designing combination formulations including efficient coloading, stability, appropriate biodistribution and target specificity have hampered their clinical translation. This article highlights current aspects of nano-carriers used for co-delivery of small molecules and genes to treat cancer.
Collapse
|
41
|
Abstract
Corroles are exceptionally promising platforms for the development of agents for simultaneous cancer-targeting imaging and therapy. Depending on the element chelated by the corrole, these theranostic agents may be tuned primarily for diagnostic or therapeutic function. Versatile synthetic methodologies allow for the preparation of amphipolar derivatives, which form stable noncovalent conjugates with targeting biomolecules. These conjugates can be engineered for imaging and targeting as well as therapeutic function within one theranostic assembly. In this review, we begin with a brief outline of corrole chemistry that has been uniquely useful in designing corrole-based anticancer agents. Then we turn attention to the early literature regarding corrole anticancer activity, which commenced one year after the first scalable synthesis was reported (1999-2000). In 2001, a major advance was made with the introduction of negatively charged corroles, as these molecules, being amphipolar, form stable conjugates with many proteins. More recently, both cellular uptake and intracellular trafficking of metallocorroles have been documented in experimental investigations employing advanced optical spectroscopic as well as magnetic resonance imaging techniques. Key results from work on both cellular and animal models are reviewed, with emphasis on those that have shed new light on the mechanisms associated with anticancer activity. In closing, we predict a very bright future for corrole anticancer research, as it is experiencing exponential growth, taking full advantage of recently developed imaging and therapeutic modalities.
Collapse
Affiliation(s)
- Ruijie D Teo
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Jae Youn Hwang
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science & Technology , Daegu, Republic of Korea
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope , 1500 East Duarte Road, Duarte, California 91010, United States
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , Haifa 32000, Israel
| | - Harry B Gray
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
42
|
Pellosi DS, Calori IR, de Paula LB, Hioka N, Quaglia F, Tedesco AC. Multifunctional theranostic Pluronic mixed micelles improve targeted photoactivity of Verteporfin in cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:1-9. [PMID: 27987651 DOI: 10.1016/j.msec.2016.09.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/13/2016] [Accepted: 09/27/2016] [Indexed: 01/04/2023]
Abstract
Nanotechnology development provides new strategies to treat cancer by integration of different treatment modalities in a single multifunctional nanoparticle. In this scenario, we applied the multifunctional Pluronic P123/F127 mixed micelles for Verteporfin-mediated photodynamic therapy in PC3 and MCF-7 cancer cells. Micelles functionalization aimed the targeted delivery by the insertion of biotin moiety on micelle surface and fluorescence image-based through rhodamine-B dye conjugation in the polymer chains. Multifunctional Pluronics formed spherical nanoparticulated micelles that efficiently encapsulated the photosensitizer Verteporfin maintaining its favorable photophysical properties. Lyophilized formulations were stable at least for 6months and readily reconstituted in aqueous media. The multifunctional micelles were stable in protein-rich media due to the dual Pluronic mixed micelles characteristic: high drug loading capacity provided by its micellar core and high kinetic stability due its biocompatible shell. Biotin surface functionalized micelles showed higher internalization rates due biotin-mediated endocytosis, as demonstrated by competitive cellular uptake studies. Rhodamine B-tagged micelles allowed monitoring cellular uptake and intracellular distribution of the formulations. Confocal microscopy studies demonstrated a larger intracellular distribution of the formulation and photosensitizer, which could drive Verteporfin to act on multiple cell sites. Formulations were not toxic in the dark condition, but showed high Verteporfin-induced phototoxicity against both cancer cell lines at low drug and light doses. These results point Verteporfin-loaded multifunctional micelles as a promising tool to further developments in photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Diogo Silva Pellosi
- Laboratory of Phobiology and photomdicine, Department of Chemistry (FFCLRP), University of São Paulo, Av. dos Bandeirantes 3900, 14040-901, Vila Monte Alegre, Ribeirão Preto, Brazil
| | - Italo Rodrigo Calori
- Research Nucleus of Photodynamic Therapy, Department of Chemistry, State University of Maringá, Av. Colombo 5790, 97020-900 Maringá, Brazil
| | - Leonardo Barcelos de Paula
- Laboratory of Phobiology and photomdicine, Department of Chemistry (FFCLRP), University of São Paulo, Av. dos Bandeirantes 3900, 14040-901, Vila Monte Alegre, Ribeirão Preto, Brazil
| | - Noboru Hioka
- Research Nucleus of Photodynamic Therapy, Department of Chemistry, State University of Maringá, Av. Colombo 5790, 97020-900 Maringá, Brazil
| | - Fabiana Quaglia
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesanto 49, 80131 Napoli, Italy
| | - Antonio Claudio Tedesco
- Laboratory of Phobiology and photomdicine, Department of Chemistry (FFCLRP), University of São Paulo, Av. dos Bandeirantes 3900, 14040-901, Vila Monte Alegre, Ribeirão Preto, Brazil.
| |
Collapse
|
43
|
Cardilin T, Almquist J, Jirstrand M, Sostelly A, Amendt C, El Bawab S, Gabrielsson J. Tumor Static Concentration Curves in Combination Therapy. AAPS JOURNAL 2016; 19:456-467. [PMID: 27681102 DOI: 10.1208/s12248-016-9991-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/09/2016] [Indexed: 11/30/2022]
Abstract
Combination therapies are widely accepted as a cornerstone for treatment of different cancer types. A tumor growth inhibition (TGI) model is developed for combinations of cetuximab and cisplatin obtained from xenograft mice. Unlike traditional TGI models, both natural cell growth and cell death are considered explicitly. The growth rate was estimated to 0.006 h-1 and the natural cell death to 0.0039 h-1 resulting in a tumor doubling time of 14 days. The tumor static concentrations (TSC) are predicted for each individual compound. When the compounds are given as single-agents, the required concentrations were computed to be 506 μg · mL-1 and 56 ng · mL-1 for cetuximab and cisplatin, respectively. A TSC curve is constructed for different combinations of the two drugs, which separates concentration combinations into regions of tumor shrinkage and tumor growth. The more concave the TSC curve is, the lower is the total exposure to test compounds necessary to achieve tumor regression. The TSC curve for cetuximab and cisplatin showed weak concavity. TSC values and TSC curves were estimated that predict tumor regression for 95% of the population by taking between-subject variability into account. The TSC concept is further discussed for different concentration-effect relationships and for combinations of three or more compounds.
Collapse
Affiliation(s)
- Tim Cardilin
- Fraunhofer-Chalmers Centre, Chalmers Science Park, Gothenburg, Sweden. .,Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden.
| | - Joachim Almquist
- Fraunhofer-Chalmers Centre, Chalmers Science Park, Gothenburg, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mats Jirstrand
- Fraunhofer-Chalmers Centre, Chalmers Science Park, Gothenburg, Sweden
| | - Alexandre Sostelly
- Global Early Development-Quantitative Pharmacology and Drug Disposition, Quantitative Pharmacology, Merck, Darmstadt, Germany.,Pharmaceutical Research and Early Development, Hoffmann-Le Roche, Basel, Switzerland
| | | | - Samer El Bawab
- Global Early Development-Quantitative Pharmacology and Drug Disposition, Quantitative Pharmacology, Merck, Darmstadt, Germany
| | - Johan Gabrielsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
44
|
Chen G, Gong R, Shi X, Yang D, Zhang G, Lu A, Yue J, Bian Z. Halofuginone and artemisinin synergistically arrest cancer cells at the G1/G0 phase by upregulating p21Cip1 and p27Kip1. Oncotarget 2016; 7:50302-50314. [PMID: 27385212 PMCID: PMC5226584 DOI: 10.18632/oncotarget.10367] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/09/2016] [Indexed: 01/02/2023] Open
Abstract
Combinational drug therapy is one of the most promising strategies in modern anticancer research. Traditional Chinese medicine (TCM) formulas represent a wealth of complex combinations proven successful over centuries of clinical application. One such formula used to treat a variety of diseases, including cancer, contains two herbs, whose main active components are Halofuginone (HF) and Artemisinin (ATS). Here we studied the anticancer synergism of HF and ATS in various cancer cell lines and in a xenograft nude mice model. We found that the HF-ATS combination arrested more cells at the G1/G0 phase than either one alone, with the concomitant increased levels of CDK2 inhibitors, p21Cip1 and p27Kip1. By knocking down p21Cip1 and p27Kip1 separately or simultaneously in HCT116 cells and MCF-7 cells, we found that p21Cip1 was required for HF induced G1/G0 arrest, whereas p21Cip1 and p27Kip1 were both required for ATS or HF-ATS combination-mediated cell cycle arrest. Moreover, HF-ATS combination synergistically inhibited tumor growth in xenograft nude mice, and this was associated with the increased levels of p21Cip1 and p27Kip1. Collectively, these data indicate that the upregulation of p21Cip1 and p27Kip1 contributes to the synergistic anticancer effect of the HF-ATS combination.
Collapse
Affiliation(s)
- Guoqing Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Ruihong Gong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xianli Shi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Dajian Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Ge Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
45
|
Woo SM, Kim AJ, Choi YK, Shin YC, Cho SG, Ko SG. Synergistic Effect of SH003 and Doxorubicin in Triple-negative Breast Cancer. Phytother Res 2016; 30:1817-1823. [DOI: 10.1002/ptr.5687] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/23/2016] [Accepted: 06/29/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Sang-Mi Woo
- Department of Cancer Preventive Material Development, Graduate School; Kyung Hee University; Kyungheedae-ro 26, Dongdaemun-gu Seoul 02447 Korea
| | - Ah Jeong Kim
- Department of Cancer Preventive Material Development, Graduate School; Kyung Hee University; Kyungheedae-ro 26, Dongdaemun-gu Seoul 02447 Korea
| | - Youn Kyung Choi
- Jeju International Marine Science Center for Research and Education; Korea Institute of Ocean Science and Technology (KIOST); Jeju 695-975 Korea
| | - Young Cheol Shin
- Department of Preventive Medicine, College of Korean Medicine; Kyung Hee University; Kyungheedae-ro 26, Dongdaemun-gu Seoul 02447 Korea
| | - Sung-Gook Cho
- Department of Biotechnology; Korea National University of Transportation; 61 University Rd. Jeungpyeong Chungbuk 368-701 Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine; Kyung Hee University; Kyungheedae-ro 26, Dongdaemun-gu Seoul 02447 Korea
| |
Collapse
|
46
|
Hoop M, Mushtaq F, Hurter C, Chen XZ, Nelson BJ, Pané S. A smart multifunctional drug delivery nanoplatform for targeting cancer cells. NANOSCALE 2016; 8:12723-8. [PMID: 27297037 DOI: 10.1039/c6nr02228f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Wirelessly guided magnetic nanomachines are promising vectors for targeted drug delivery, which have the potential to minimize the interaction between anticancer agents and healthy tissues. In this work, we propose a smart multifunctional drug delivery nanomachine for targeted drug delivery that incorporates a stimuli-responsive building block. The nanomachine consists of a magnetic nickel (Ni) nanotube that contains a pH-responsive chitosan hydrogel in its inner cavity. The chitosan inside the nanotube serves as a matrix that can selectively release drugs in acidic environments, such as the extracellular space of most tumors. Approximately a 2.5 times higher drug release from Ni nanotubes at pH = 6 is achieved compared to that at pH = 7.4. The outside of the Ni tube is coated with gold. A fluorescein isothiocyanate (FITC) labeled thiol-ssDNA, a biological marker, was conjugated on its surface by thiol-gold click chemistry, which enables traceability. The Ni nanotube allows the propulsion of the device by means of external magnetic fields. As the proposed nanoarchitecture integrates different functional building blocks, our drug delivery nanoplatform can be employed for carrying molecular drug conjugates and for performing targeted combinatorial therapies, which can provide an alternative and supplementary solution to current drug delivery technologies.
Collapse
Affiliation(s)
- M Hoop
- Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
47
|
Bartolomeu AR, Frión-Herrera Y, da Silva LM, Romagnoli GG, de Oliveira DE, Sforcin JM. Combinatorial effects of geopropolis produced by Melipona fasciculata Smith with anticancer drugs against human laryngeal epidermoid carcinoma (HEp-2) cells. Biomed Pharmacother 2016; 81:48-55. [DOI: 10.1016/j.biopha.2016.03.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 01/13/2023] Open
|
48
|
Brábek J, Rosel D, Fernandes M. Pragmatic medicine in solid cancer: a translational alternative to precision medicine. Onco Targets Ther 2016; 9:1839-55. [PMID: 27103822 PMCID: PMC4827419 DOI: 10.2147/ott.s103832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The precision medicine (PM) initiative is a response to the dismal outlook in solid cancer. Despite heterogeneity, common mechanistic denominators may exist across the spectrum of solid cancer. A shift from conventional research and development (R&D) toward PM will require conceptual and structural change. As individuals and as a society, we welcome innovation, but question change. We ask: In solid cancer, does PM identify and address the causes of prior failures, and, if so, are the proposed solutions feasible? And, when may we expect safer, more effective and affordable drugs in the clinic? Considerations that prompt a pragmatic rethink include a failure analysis of translational R&D in solid cancer suggesting that trials and regulations need to be aligned with the natural history of the disease. In successful therapeutic interventions in chronic, complex disease, surrogate markers and endpoints should be consistent with the Prentice's criteria. In solid cancer, drug induced tumor shrinkage, is a drug effect and not a disease response; tumor shrinkage does not reflect nor predict interruption of the disease. Overall, we support a pragmatic, multidisciplinary, and collaborative R&D, and suggest that direction be set by clinical need and utility, and by questions, not answers. PM will prove worthwhile if it could improve clinical outcomes. The lag in therapeutics relative to diagnostics is a cause for confusion. Overdiagnosis adds to fear and harm, especially in the absence of effective interventions. A revised initiative that prioritizes metastasis research could replicate the successful HIV/AIDS model in solid cancer. A pragmatic approach may further translational efforts toward meaningfully effective, generally available, and affordable solutions.
Collapse
Affiliation(s)
- Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | | |
Collapse
|
49
|
Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy. Future Med Chem 2016; 8:463-89. [PMID: 26976726 PMCID: PMC4896392 DOI: 10.4155/fmc.16.5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The kinesin class of microtubule-associated motor proteins present attractive anti-cancer targets owing to their roles in key functions in dividing cells. Two interpolar mitotic kinesins Eg5 and HSET have opposing motor functions in mitotic spindle assembly with respect to microtubule movement, but both offer opportunities to develop cancer selective therapeutic agents. Here, we summarize the progress to date in developing inhibitors of Eg5 and HSET, with an emphasis on structural biology insights into the binding modes of allosteric inhibitors, compound selectivity and mechanisms of action of different chemical scaffolds. We discuss translation of preclinical studies to clinical experience with Eg5 inhibitors, recent findings on potential resistance mechanisms, and explore the implications for future anticancer drug development against these targets.
Collapse
|
50
|
Bukowska B, Rogalska A, Marczak A. New potential chemotherapy for ovarian cancer - Combined therapy with WP 631 and epothilone B. Life Sci 2016; 151:86-92. [PMID: 26944437 DOI: 10.1016/j.lfs.2016.02.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/27/2022]
Abstract
Despite more modern therapeutics approaches and the use of new drugs for chemotherapy, patients with ovarian cancer still have poor prognosis and therefore, new strategies for its cure are highly needed. One of the promising ways is combined therapy, which has many advantages as minimizing drug resistance, enhancing efficacy of treatment, and reducing toxicity. Combined therapy has rich and successful history in the field of ovarian cancer treatment. Currently use therapy is usually based on platinum-containing agent (carboplatin or cisplatin) and a member of taxanes (paclitaxel or docetaxel). In the mid-2000s this standard regimen has been expanded with bevacizumab, monoclonal antibody directed to Vascular Endothelial Growth Factor (VEGF). Another drug combination with promising perspectives is WP 631 given together with epothilone B (Epo B). WP 631 is a bisanthracycline composed of two molecules of daunorubicin linked with a p-xylenyl linker. Epo B is a 16-membered macrolide manifesting similar mechanism of action to taxanes. Their effectiveness against ovarian cancer as single agents is well established. However, the combination of WP 631 and Epo B appeared to act synergistically, meaning that it is much more potent than the single drugs. The mechanism lying under its efficacy includes disturbing essential cell cycle-regulating proteins leading to mitotic slippage and following apoptosis, as well as affecting EpCAM and HMGB1 expression. In this article, we summarized the current state of knowledge regarding combined therapy based on WP 631 and Epo B as a potential way of ovarian cancer treatment.
Collapse
Affiliation(s)
- Barbara Bukowska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str, 90-236 Lodz, Poland.
| | - Aneta Rogalska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str, 90-236 Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str, 90-236 Lodz, Poland
| |
Collapse
|