1
|
Shukla AG, Cioffi GA, John SWM, Wang Q, Liebmann JM. American Glaucoma Society-American Academy of Ophthalmology Position Statement on Nicotinamide Use for Glaucoma Neuroprotection. Ophthalmol Glaucoma 2025; 8:112-116. [PMID: 39800263 DOI: 10.1016/j.ogla.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
|
2
|
You Y, Sarkar S, Deiter C, Elliott EC, Nicora CD, Mirmira RG, Sussel L, Nakayasu ES. Reduction of Chemokine CXCL9 Expression by Omega-3 Fatty Acids via ADP-Ribosylhydrolase ARH3 in MIN6 Insulin-Producing Cells. Proteomics 2025; 25:e202400053. [PMID: 39648458 PMCID: PMC11794668 DOI: 10.1002/pmic.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing β cells of the pancreas. Omega-3 fatty acids protect β cells and reduce the incidence of T1D, but the mechanism is poorly understood. We have shown that omega-3 fatty acids reduce pro-inflammatory cytokine-mediated β-cell apoptosis by upregulating the expression of the ADP-ribosylhydrolase ARH3. Here, we further investigate the β-cell protection mechanism of ARH3 by performing siRNA analysis of its gene Adprhl2 in MIN6 insulin-producing cells, subsequent treatment with a cocktail of the pro-inflammatory cytokines IL-1β + IFN-γ + TNF-α, followed by proteomics analysis. ARH3 regulated proteins from several pathways related to the nucleus (splicing, RNA surveillance, and nucleocytoplasmic transport), mitochondria (metabolic pathways), and endoplasmic reticulum (protein folding). ARH3 also regulated the levels of proteins related to antigen processing and presentation, and the chemokine-signaling pathway. We further studied the role of ARH3 in regulating the chemokine CXCL9. We found that ARH3 reduces the cytokine-induced expression of CXCL9, which is dependent on omega-3 fatty acids. In conclusion, we demonstrate that omega-3 fatty acids regulate CXCL9 expression via ARH3, which may have a role in protecting β cells from immune attack thereby preventing T1D development. Significance of the Study: Omega-3 fatty acids have a variety of health benefits. In type 1 diabetes, omega-3 fatty acids reduce the islet autoimmune response and the disease development. Here, we studied the pathways regulated by the adenosine diphosphate (ADP)-ribosylhydrolase ARH3, a protein whose expression is regulated by omega-3 fatty acids. We showed that ARH3 reduces the expression of chemokines in response to omega-3 fatty acids. This represents an anti-inflammatory mechanism of omega-3 fatty acids that might be involved with protection against type 1 diabetes development.
Collapse
Affiliation(s)
- Youngki You
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Soumyadeep Sarkar
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Cailin Deiter
- Barbara Davis Center for DiabetesUniversity of Colorado Anschutz Medical CenterAuroraColoradoUSA
| | - Emily C. Elliott
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Carrie D. Nicora
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center and Department of MedicineThe University of ChicagoChicagoIllinoisUSA
| | - Lori Sussel
- Barbara Davis Center for DiabetesUniversity of Colorado Anschutz Medical CenterAuroraColoradoUSA
| | - Ernesto S. Nakayasu
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| |
Collapse
|
3
|
Sriram S, Macedo T, Mavinkurve‐Groothuis A, van de Wetering M, Looijenga LHJ. Non-alkylating agents-induced gonadotoxicity in pre-pubertal males: Insights on the clinical and pre-clinical front. Clin Transl Sci 2024; 17:e70075. [PMID: 39582284 PMCID: PMC11586508 DOI: 10.1111/cts.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Whilst chemotherapy regimens have proven to be more successful for pediatric cancer patients over the years, their influence on long-term side effects is relatively poorly understood. One of the possible targets is the gonads, with gonadotoxic agents representing those that threaten the patient's ability to have children post surviving the primary disease treatment. Many risk stratification guidelines have categorized these agents based on the severity of their effect on the pre-pubertal testis. While the consensus is that those agents factored with a cyclophosphamide equivalent dosage pose the highest threat to fertility (e.g. alkylating agents), other agents might still contribute to a reduced testis function; especially in the case of combination therapies. Besides, it is important to note that studies deciphering the effect of other non-alkylating agents on the pre-pubertal testis lack standardized conclusions for clinically relevant outcomes. This makes it imperative to ensure the knowledge gap is addressed between the clinic and pre-clinic to understand potential gonadotoxic effects, ultimately leading to improved patient care. Therefore, this review will summarize the key findings in understanding the gonadotoxic effects of the most commonly researched non-alkylating agents: vincristine, etoposide, doxorubicin, and imatinib on the pre-pubertal testis.
Collapse
Affiliation(s)
- Sruthi Sriram
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Tiago Macedo
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | | | - Leendert H. J. Looijenga
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- University Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
4
|
Pöstyéni E, Gábriel R, Kovács-Valasek A. Poly (ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors in Diabetic Retinopathy: An Attractive but Elusive Choice for Drug Development. Pharmaceutics 2024; 16:1320. [PMID: 39458649 PMCID: PMC11510672 DOI: 10.3390/pharmaceutics16101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Owing to its promiscuous roles, poly (ADP-ribose) polymerase-1 (PARP-1) is involved in various neurological disorders including several retinal pathologies. Diabetic retinopathy (DR) is the most common microvascular complication of diabetes mellitus affecting the retina. In the present review, we highlight the importance of PARP-1 participation in pathophysiology of DR and discuss promising potential inhibitors for treatment. A high glucose level enhances PARP-1 expression; PARP inhibitors have gained attention due to their potential therapeutic effects in DR. They target different checkpoints (blocking nuclear transcription factor (NF-κB) activation; oxidative stress protection, influence on vascular endothelial growth factor (VEGF) expression, impacting neovascularization). Nowadays, there are several improved clinical PARP-1 inhibitors with different allosteric effects. Combining PARP-1 inhibitors with other compounds is another promising option in DR treatments. Besides pharmacological inhibition, genetic disruption of the PARP-1 gene is another approach in PARP-1-initiated therapies. In terms of future treatments, the limitations of single-target approaches shift the focus onto combined therapies. We emphasize the importance of multi-targeted therapies, which could be effective not only in DR, but also in other ischemic conditions.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary; (E.P.); (A.K.-V.)
| | - Róbert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary; (E.P.); (A.K.-V.)
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary; (E.P.); (A.K.-V.)
- János Szentágothai Research Centre, Ifjúság útja 20, 7624 Pécs, Hungary
| |
Collapse
|
5
|
Zampieri M, Karpach K, Salerno G, Raguzzini A, Barchetta I, Cimini FA, Dule S, De Matteis G, Zardo G, Borro M, Peluso I, Cavallo MG, Reale A. PAR level mediates the link between ROS and inflammatory response in patients with type 2 diabetes mellitus. Redox Biol 2024; 75:103243. [PMID: 38906011 PMCID: PMC11253151 DOI: 10.1016/j.redox.2024.103243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/15/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is characterized by disrupted glucose homeostasis and metabolic abnormalities, with oxidative stress and inflammation playing pivotal roles in its pathophysiology. Poly(ADP-ribosyl)ation (PARylation) is a post-translational process involving the addition of ADP-ribose polymers (PAR) to target proteins. While preclinical studies have implicated PARylation in the interplay between oxidative stress and inflammation in T2DM, direct clinical evidence in humans remains limited. This study investigates the relationship between oxidative stress, PARylation, and inflammatory response in T2DM patients. METHODS This cross-sectional investigation involved 61 T2DM patients and 48 controls. PAR levels were determined in peripheral blood cells (PBMC) by ELISA-based methodologies. Oxidative stress was assessed in plasma and PBMC. In plasma, we monitored reactive oxygen metabolites (d-ROMs) and ferric-reducing antioxidant power. In PBMC, we measured the expression of antioxidant enzymes SOD1, GPX1 and CAT by qPCR. Further, we evaluated the expression of inflammatory mediators such as IL6, TNF-α, CD68 and MCP1 by qPCR in PBMC. RESULTS T2DM patients exhibited elevated PAR levels in PBMC and increased d-ROMs in plasma. Positive associations were found between PAR levels and d-ROMs, suggesting a link between oxidative stress and altered PAR metabolism. Mediation analysis revealed that d-ROMs mediate the association between HbA1c levels and PAR, indicating oxidative stress as a potential driver of increased PARylation in T2DM. Furthermore, elevated PAR levels were found to be associated with increased expression of pro-inflammatory cytokines IL6 and TNF-α in the PBMC of T2DM patients. CONCLUSIONS This study highlights that hyperactivation of PARylation is associated with poor glycemic control and the resultant oxidative stress in T2DM. The increase of PAR levels is correlated with the upregulation of key mediators of the inflammatory response. Further research is warranted to validate these findings and explore their clinical implications.
Collapse
Affiliation(s)
- Michele Zampieri
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Katsiaryna Karpach
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Gerardo Salerno
- Department of Neurosciences, Mental Health and Sense Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189, Rome, Italy.
| | - Anna Raguzzini
- CREA- Research Centre for Food and Nutrition, 00178, Rome, Italy.
| | - Ilaria Barchetta
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Sara Dule
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Giovanna De Matteis
- CREA-Research Centre for Animal Production and Aquaculture, 00015, Monterotondo, Italy.
| | - Giuseppe Zardo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Marina Borro
- Department of Neurosciences, Mental Health and Sense Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189, Rome, Italy.
| | - Ilaria Peluso
- CREA- Research Centre for Food and Nutrition, 00178, Rome, Italy.
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Anna Reale
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
6
|
Lin Y, Du W, Fu X, Huang L, Hong Y, Tan H, Xiao L, Ren X, Wang Y, Chen D. Hyperglycemia-independent neonatal streptozotocin-induced retinopathy (NSIR) in rats. Front Pharmacol 2024; 15:1395887. [PMID: 39108749 PMCID: PMC11300211 DOI: 10.3389/fphar.2024.1395887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/01/2024] [Indexed: 03/17/2025] Open
Abstract
Introduction: Chemicals, such as MNU (N-methyl-N-nitrosourea) and NaIO3 (sodium iodate), are widely used to induce retinal degeneration in rodents. Streptozotocin (STZ) is an analog of N-acetyl glucosamine in which an MNU moiety is linked to a hexose and has a special toxic effect on insulin-producing pancreatic β-cells. It is commonly used to induce hyperglycemia to model diabetes. While intracerebroventricular injection of STZ can produce Alzheimer's disease independent of hyperglycemia, most retinal studies using STZ focus on the effects of hyperglycemia on the retina, but whether STZ has any impact on retinal cells independent of hyperglycemia is unknown. We aimed to investigate the role of cytotoxicity of STZ in rat retina. Methods: Intravitreal or subcutaneous injection of STZ was performed on newborn rats. Electroretinogram (ERG) and H&E staining investigated retinal function and morphological changes. Retinal cell types, cell death, proliferation, inflammation, and angiogenesis were studied by immunostaining. RNA sequencing was performed to examine the transcriptome changes of retinal cells after intravitreal injection of STZ. Results: Intravitreal (5 μg or 10 μg) or subcutaneous (30 mg/kg) injection of STZ at the early stage of newborn rats couldn't induce hyperglycemia but caused NSIR (Neonatal STZ-induced retinopathy), including reduced ERG amplitudes, retinal rosettes and apoptosis, cell cycle arrest, microglial activation, and delayed retinal angiogenesis. STZ did not affect the early-born retinal cell types but significantly reduced the late-born ones. Short-term and long-term hyperglycemia had no significant effects on the NSIR phenotypes. RNA sequencing revealed that STZ induces oxidative stress and activates the p53 pathway of retinal cells. Locally or systemically, STZ injection after P8 couldn't induce SINR when all retinal progenitors exit the cell cycle. Conclusion: NSIR in rats is independent of hyperglycemia but due to STZ's direct cytotoxic effects on retinal progenitor cells. NSIR is a typical reaction to STZ-induced retinal oxidative stress and DNA damage. This significant finding suggests that NSIR may be a valuable model for studying retinal progenitor DNA damage-related diseases, potentially leading to new insights and treatments.
Collapse
Affiliation(s)
- Yu Lin
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyu Du
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangyu Fu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Huang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yiwen Hong
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haishan Tan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yujiao Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Danian Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Sarkar S, Deiter C, Kyle JE, Guney MA, Sarbaugh D, Yin R, Li X, Cui Y, Ramos-Rodriguez M, Nicora CD, Syed F, Juan-Mateu J, Muralidharan C, Pasquali L, Evans-Molina C, Eizirik DL, Webb-Robertson BJM, Burnum-Johnson K, Orr G, Laskin J, Metz TO, Mirmira RG, Sussel L, Ansong C, Nakayasu ES. Regulation of β-cell death by ADP-ribosylhydrolase ARH3 via lipid signaling in insulitis. Cell Commun Signal 2024; 22:141. [PMID: 38383396 PMCID: PMC10880366 DOI: 10.1186/s12964-023-01437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/12/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Lipids are regulators of insulitis and β-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate β-cell death. METHODS We performed lipidomics using three models of insulitis: human islets and EndoC-βH1 β cells treated with the pro-inflammatory cytokines interlukine-1β and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced β-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS Our data provide insights into the change of lipidomics landscape in β cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Cailin Deiter
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Michelle A Guney
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Dylan Sarbaugh
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Ruichuan Yin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Xiangtang Li
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Yi Cui
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- NanoString Technologies, Seattle, WA, 98109, USA
| | - Mireia Ramos-Rodriguez
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Farooq Syed
- Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jonas Juan-Mateu
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Charanya Muralidharan
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Lorenzo Pasquali
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Bobbie-Jo M Webb-Robertson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Kristin Burnum-Johnson
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Galya Orr
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Raghavendra G Mirmira
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
8
|
You Y, Sarkar S, Deiter C, Elliott EC, Nicora CD, Mirmira RG, Sussel L, Nakayasu ES. Reduction of chemokine CXCL9 expression by omega-3 fatty acids via ADP-ribosylhydrolase ARH3 in MIN6 insulin-producing cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578079. [PMID: 38352306 PMCID: PMC10862892 DOI: 10.1101/2024.01.30.578079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Type 1 diabetes (T1D) results from the autoimmune destruction of the insulin producing β cells of the pancreas. Omega-3 fatty acids protect β cells and reduce the incident of T1D. However, how omega-3 fatty acids act on β cells is not well understood. We have shown that omega-3 fatty acids reduce pro-inflammatory cytokine-mediated β-cell apoptosis by upregulating the expression of the ADP-ribosylhydrolase ARH3. Here, we further investigate the β-cell protection mechanism by ARH3 by performing siRNA of its gene Adprhl2 in MIN6 insulin-producing cells followed by treatment with a cocktail of the pro-inflammatory cytokines IL-1β + IFN-γ + TNF-α, and proteomics analysis. ARH3 regulated proteins from several pathways related to the nucleus (splicing, RNA surveillance and nucleocytoplasmic transport), mitochondria (metabolic pathways) and endoplasmic reticulum (protein folding). ARH3 also regulated the levels of cytokine-signaling proteins related to the antigen processing and presentation, and chemokine-signaling pathway. We further studied the role of ARH in regulating the chemokine CXCL9. We confirmed that ARH3 reduces the cytokine-induced expression of CXCL9 by ELISA. We also found that CXCL9 expression is regulated by omega-3 fatty acids. In conclusion, we showed that omega-3 fatty acids regulate CXCL9 expression via ARH3, which might have a role in protecting β cells from immune attack and preventing T1D development.
Collapse
|
9
|
Kamaletdinova T, Zong W, Urbánek P, Wang S, Sannai M, Grigaravičius P, Sun W, Fanaei-Kahrani Z, Mangerich A, Hottiger MO, Li T, Wang ZQ. Poly(ADP-Ribose) Polymerase-1 Lacking Enzymatic Activity Is Not Compatible with Mouse Development. Cells 2023; 12:2078. [PMID: 37626888 PMCID: PMC10453916 DOI: 10.3390/cells12162078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) binds DNA lesions to catalyse poly(ADP-ribosyl)ation (PARylation) using NAD+ as a substrate. PARP1 plays multiple roles in cellular activities, including DNA repair, transcription, cell death, and chromatin remodelling. However, whether these functions are governed by the enzymatic activity or scaffolding function of PARP1 remains elusive. In this study, we inactivated in mice the enzymatic activity of PARP1 by truncating its C-terminus that is essential for ART catalysis (PARP1ΔC/ΔC, designated as PARP1-ΔC). The mutation caused embryonic lethality between embryonic day E8.5 and E13.5, in stark contrast to PARP1 complete knockout (PARP1-/-) mice, which are viable. Embryonic stem (ES) cell lines can be derived from PARP1ΔC/ΔC blastocysts, and these mutant ES cells can differentiate into all three germ layers, yet, with a high degree of cystic structures, indicating defects in epithelial cells. Intriguingly, PARP1-ΔC protein is expressed at very low levels compared to its full-length counterpart, suggesting a selective advantage for cell survival. Noticeably, PARP2 is particularly elevated and permanently present at the chromatin in PARP1-ΔC cells, indicating an engagement of PARP2 by non-enzymatic PARP1 protein at the chromatin. Surprisingly, the introduction of PARP1-ΔC mutation in adult mice did not impair their viability; yet, these mutant mice are hypersensitive to alkylating agents, similar to PARP1-/- mutant mice. Our study demonstrates that the catalytically inactive mutant of PARP1 causes the developmental block, plausibly involving PARP2 trapping.
Collapse
Affiliation(s)
- Tatiana Kamaletdinova
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (W.Z.); (S.W.); (W.S.); (T.L.)
| | - Pavel Urbánek
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
| | - Sijia Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (W.Z.); (S.W.); (W.S.); (T.L.)
| | - Mara Sannai
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
| | - Paulius Grigaravičius
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
| | - Wenli Sun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (W.Z.); (S.W.); (W.S.); (T.L.)
| | - Zahra Fanaei-Kahrani
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
| | - Aswin Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany;
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease, University of Zürich, 8057 Zürich, Switzerland;
| | - Tangliang Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (W.Z.); (S.W.); (W.S.); (T.L.)
| | - Zhao-Qi Wang
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (W.Z.); (S.W.); (W.S.); (T.L.)
- Faculty of Biological Sciences, Friedrich Schiller University of Jena, 07743 Jena, Germany
| |
Collapse
|
10
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
11
|
Wang S, Luo Y, Wen C, Zhao S, Zhang L. An autocatalytically-activatable hydrogen peroxide photoacoustic sensor for in situ visualization precise diagnosis and drug intervention tracing in diabetes syndrome. Biosens Bioelectron 2023; 222:114964. [PMID: 36493721 DOI: 10.1016/j.bios.2022.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
In situ visualization for the diagnosis of diabetic syndrome and visual monitoring the response to drug treatment is a challenge. Herein, we designed and prepared an autocatalytically-activatable hydrogen peroxide photoacoustic (PA) sensor. We first prepared the FeMoOx nanoparticle with catalase activity, then combined it to 2,2'-azino-bis(3-ethylbenzothi-azoline-6-sulfonic acid) (ABTS) and distearoylphos-phoethanola-mine-polyethylene-glycol (DSPE-PEG) to construct a autocatalytically-activatable PA sensor (FeMoOx@ABTS@DSPE-PEG). In its presence, ABTS can be converted into oxidized ABTS·+ by H2O2. ABTS·+ exhibits strong light absorption in the near-infrared region, and can serve as an ideal contrast agent for PA imaging. H2O2 as a biomarker of oxidative stress response is closely related to the occurrence and development of diabetes mellitus and its complications. Therefore, FeMoOx@ABTS@DSPE-PEG was used as a PA sensor of H2O2 for visual monitoring of the progression of diabetes-induced liver injury and metformin-mediated treatment of diabetes. The autocatalytically-activatable PA sensor developed in this study provides a promising platform for in situ visual diagnosis of diabetes and its syndrome and monitoring the response to therapy.
Collapse
Affiliation(s)
- Shulong Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yanni Luo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Changchun Wen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
12
|
Mázala-de-Oliveira T, Jannini de Sá YAP, Carvalho VDF. Impact of gut-peripheral nervous system axis on the development of diabetic neuropathy. Mem Inst Oswaldo Cruz 2023; 118:e220197. [PMID: 36946851 PMCID: PMC10027071 DOI: 10.1590/0074-02760220197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/14/2023] [Indexed: 03/22/2023] Open
Abstract
Diabetes is a chronic metabolic disease caused by a reduction in the production and/or action of insulin, with consequent development of hyperglycemia. Diabetic patients, especially those who develop neuropathy, presented dysbiosis, with an increase in the proportion of pathogenic bacteria and a decrease in the butyrate-producing bacteria. Due to this dysbiosis, diabetic patients presented a weakness of the intestinal permeability barrier and high bacterial product translocation to the bloodstream, in parallel to a high circulating levels of pro-inflammatory cytokines such as TNF-α. In this context, we propose here that dysbiosis-induced increased systemic levels of bacterial products, like lipopolysaccharide (LPS), leads to an increase in the production of pro-inflammatory cytokines, including TNF-α, by Schwann cells and spinal cord of diabetics, being crucial for the development of neuropathy.
Collapse
Affiliation(s)
| | | | - Vinicius de Frias Carvalho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Rio de Janeiro, RJ, Brasil
- + Corresponding author:
| |
Collapse
|
13
|
Role of poly(ADP-ribose) polymerase-1 in regulating human islet cell differentiation. Sci Rep 2022; 12:21496. [PMID: 36513699 PMCID: PMC9747708 DOI: 10.1038/s41598-022-25405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1), a fundamental DNA repair enzyme, is known to regulate β cell death, replication, and insulin secretion. PARP1 knockout (KO) mice are resistant to diabetes, while PARP1 overactivation contributes to β cell death. Additionally, PARP1 inhibition (PARPi) improves diabetes complications in patients with type-2 diabetes. Despite these beneficial effects, the use of PARP1 modulating agents in diabetes treatment is largely neglected, primarily due to the poorly studied mechanistic action of PARP1 catalytic function in human β cell development. In the present study, we evaluated PARP1 regulatory action in human β cell differentiation using the human pancreatic progenitor cell line, PANC-1. We surveyed islet census and histology from PARP1 wild-type versus KO mice pancreas in a head-to-head comparison with PARP1 regulatory action for in-vitro β cell differentiation following either PARP1 depletion or its pharmacological inhibition in PANC-1-differentiated islet cells. shRNA mediated PARP1 depleted (SiP) and shRNA control (U6) PANC-1 cells were differentiated into islet-like clusters using established protocols. We observed complete abrogation of new β cell formation with absolute PARP1 depletion while its inhibition using the potent inhibitor, PJ34, promoted the endocrine β cell differentiation and maturation. Immunohistochemistry and immunoblotting for key endocrine differentiation players along with β cell maturation markers highlighted the potential regulatory action of PARP1 and augmented β cell differentiation due to direct interaction of unmodified PARP1 protein elicited p38 MAPK phosphorylation and Neurogenin-3 (Ngn3) re-activation. In summary, our study suggests that PARP1 is required for the proper development and differentiation of human islets. Selective inhibition with PARPi can be an advantage in pushing more insulin-producing cells under pathological conditions and delivers a potential for pilot clinical testing for β cell replacement cell therapies for diabetes.
Collapse
|
14
|
Uhlemeyer C, Müller N, Rieck M, Kuboth J, Schlegel C, Grieß K, Dorweiler TF, Heiduschka S, Eckel J, Roden M, Lammert E, Stoffel M, Belgardt BF. Selective ablation of P53 in pancreatic beta cells fails to ameliorate glucose metabolism in genetic, dietary and pharmacological models of diabetes mellitus. Mol Metab 2022; 67:101650. [PMID: 36470401 PMCID: PMC9791454 DOI: 10.1016/j.molmet.2022.101650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Beta cell dysfunction and death are critical steps in the development of both type 1 and type 2 diabetes (T1D and T2D), but the underlying mechanisms are incompletely understood. Activation of the essential tumor suppressor and transcription factor P53 (also known as TP53 and Trp53 in mice) was linked to beta cell death in vitro and has been reported in several diabetes mouse models and beta cells of humans with T2D. In this article, we set out to determine the beta cell specific role of P53 in beta cell dysfunction, cell death and development of diabetes in vivo. METHODS We generated beta cell specific P53 knockout (P53BKO) mice and used complementary genetic, dietary and pharmacological models of glucose intolerance, beta cell dysfunction and diabetes development to evaluate the functional role of P53 selectively in beta cells. We further analyzed the effect of P53 ablation on beta cell survival in isolated pancreatic islets exposed to diabetogenic stress inducers ex vivo by flow cytometry. RESULTS Beta cell specific ablation of P53/Trp53 failed to ameliorate glucose tolerance, insulin secretion or to increase beta cell numbers in genetic, dietary and pharmacological models of diabetes. Additionally, loss of P53 in beta cells did not protect against streptozotocin (STZ) induced hyperglycemia and beta cell death, although STZ-induced activation of classical pro-apoptotic P53 target genes was significantly reduced in P53BKO mice. In contrast, Olaparib mediated PARP1 inhibition protected against acute ex vivo STZ-induced beta cell death and islet destruction. CONCLUSIONS Our study reveals that ablation of P53 specifically in beta cells is unexpectedly unable to attenuate beta cell failure and death in vivo and ex vivo. While during development and progression of diabetes, P53 and P53-regulated pathways are activated, our study suggests that P53 signaling is not essential for loss of beta cells or beta cell dysfunction. P53 in other cell types and organs may predominantly regulate systemic glucose homeostasis.
Collapse
Affiliation(s)
- Celina Uhlemeyer
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| | - Nadine Müller
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Michael Rieck
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Jennifer Kuboth
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Caroline Schlegel
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Kerstin Grieß
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Tim Florian Dorweiler
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Sonja Heiduschka
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Jürgen Eckel
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes, Düsseldorf, Germany,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Eckhard Lammert
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany,Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Markus Stoffel
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Zürich, Switzerland; Competence Center Personalized Medicine, ETH Zürich, Zürich, Switzerland; Medical Faculty, University of Zürich, Zürich, Switzerland
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| |
Collapse
|
15
|
Yang Y, Chen Z, Zhao X, Xie H, Du L, Gao H, Xie C. Mechanisms of Kaempferol in the treatment of diabetes: A comprehensive and latest review. Front Endocrinol (Lausanne) 2022; 13:990299. [PMID: 36157449 PMCID: PMC9490412 DOI: 10.3389/fendo.2022.990299] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023] Open
Abstract
Obesity-insulin resistance-β-cells apoptosis" is an important trilogy of the pathogenesis of type 2 diabetes. With the global pandemic of obesity and diabetes, continuous research and development of new drugs focuses on the prevention of the pathological progress of these diseases. According to a recent study, the natural product kaempferol has excellent antidiabetic effects. Therefore, this review comprehensively summarized the frontier studies and pharmacological mechanisms of kaempferol in the treatment of diabetes. The successful research and development of kaempferol may yield a significant leap in the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Yan Yang
- Hospital of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Zhengtao Chen
- Hospital of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyan Zhao
- Hospital of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Xie
- Hospital of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Lian Du
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Hong Gao, ; Chunguang Xie,
| | - Chunguang Xie
- Hospital of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Hong Gao, ; Chunguang Xie,
| |
Collapse
|
16
|
van Doorn CLR, Steenbergen SAM, Walburg KV, Ottenhoff THM. Pharmacological Poly (ADP-Ribose) Polymerase Inhibitors Decrease Mycobacterium tuberculosis Survival in Human Macrophages. Front Immunol 2021; 12:712021. [PMID: 34899683 PMCID: PMC8662539 DOI: 10.3389/fimmu.2021.712021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/12/2021] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellites (DM) is correlated with increased susceptibility to and disease progression of tuberculosis (TB), and strongly impairs effective global TB control measures. To better control the TB-DM co-epidemic, unravelling the bidirectional interactivity between DM-associated molecular processes and immune responses to Mycobacterium tuberculosis (Mtb) is urgently required. Since poly (ADP-ribose) polymerase (PARP) activation has been associated with DM and with Mtb infection in mouse models, we have investigated whether PARP inhibition by pharmacological compounds can interfere with host protection against Mtb in human macrophage subsets, the predominant target cell of Mtb. Pharmacological inhibition of PARP decreased intracellular Mtb and MDR-Mtb levels in human macrophages, identifying PARP as a potential target for host-directed therapy against Mtb. PARP inhibition was associated with modified chemokine secretion and upregulation of cell surface activation markers by human macrophages. Targeting LDH, a secondary target of the PARP inhibitor rucaparib, resulted in decreased intracellular Mtb, suggesting a metabolic role in rucaparib-induced control of Mtb. We conclude that pharmacological inhibition of PARP is a potential novel strategy in developing innovative host-directed therapies against intracellular bacterial infections.
Collapse
|
17
|
Szántó M, Gupte R, Kraus WL, Pacher P, Bai P. PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary
| | - Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary; Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Hungary.
| |
Collapse
|
18
|
Zampieri M, Bacalini MG, Barchetta I, Scalea S, Cimini FA, Bertoccini L, Tagliatesta S, De Matteis G, Zardo G, Cavallo MG, Reale A. Increased PARylation impacts the DNA methylation process in type 2 diabetes mellitus. Clin Epigenetics 2021; 13:114. [PMID: 34001206 PMCID: PMC8130175 DOI: 10.1186/s13148-021-01099-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
Background Epigenetic modifications, such as DNA methylation, can influence the genetic susceptibility to type 2 diabetes mellitus (T2DM) and the progression of the disease. Our previous studies demonstrated that the regulation of the DNA methylation pattern involves the poly(ADP-ribosyl)ation (PARylation) process, a post-translational modification of proteins catalysed by the poly(ADP-ribose) polymerase (PARP) enzymes. Experimental data showed that the hyperactivation of PARylation is associated with impaired glucose metabolism and the development of T2DM. Aims of this case–control study were to investigate the association between PARylation and global and site-specific DNA methylation in T2DM and to evaluate metabolic correlates. Results Data were collected from 61 subjects affected by T2DM and 48 healthy individuals, recruited as controls. Global levels of poly(ADP-ribose) (PAR, a surrogate of PARP activity), cytosine methylation (5-methylcytosine, 5mC) and de-methylation intermediates 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) were determined in peripheral blood cells by ELISA-based methodologies. Site-specific DNA methylation profiling of SOCS3, SREBF1 and TXNIP candidate genes was performed by mass spectrometry-based bisulfite sequencing, methyl-sensitive endonucleases digestion and by DNA immuno-precipitation. T2DM subjects presented higher PAR levels than controls. In T2DM individuals, increased PAR levels were significantly associated with higher HbA1c levels and the accumulation of the de-methylation intermediates 5hmC and 5fC in the genome. In addition, T2DM patients with higher PAR levels showed reduced methylation with increased 5hmC and 5fC levels in specific SOCS3 sites, up-regulated SOCS3 expression compared to both T2DM subjects with low PAR levels and controls. Conclusions This study demonstrates the activation of PARylation processes in patients with T2DM, particularly in those with poor glycaemic control. PARylation is linked to dysregulation of DNA methylation pattern via activation of the DNA de-methylation cascade and may be at the basis of the differential gene expression observed in presence of diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01099-1.
Collapse
Affiliation(s)
- Michele Zampieri
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | | | - Ilaria Barchetta
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Stefania Scalea
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Stefano Tagliatesta
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Giovanna De Matteis
- Research Centre for Animal Production and Aquaculture, Consiglio Per La Ricerca in Agricoltura E L'Analisi Dell'Economia Agraria (CREA), 00015, Monterotondo, Italy
| | - Giuseppe Zardo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Anna Reale
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
19
|
Wang WX, Jiang WL, Mao GJ, Tan M, Fei J, Li Y, Li CY. Monitoring the Fluctuation of Hydrogen Peroxide in Diabetes and Its Complications with a Novel Near-Infrared Fluorescent Probe. Anal Chem 2021; 93:3301-3307. [DOI: 10.1021/acs.analchem.0c05364] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Min Tan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Junjie Fei
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
20
|
Ma S, Zhao X, Zhang C, Sun P, Li Y, Lin X, Sun T, Fu Z. Ozone Exposure Induces Metabolic Disorders and NAD+ Depletion Through PARP1 Activation in Spinal Cord Neurons. Front Med (Lausanne) 2021; 7:617321. [PMID: 33425964 PMCID: PMC7789457 DOI: 10.3389/fmed.2020.617321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/03/2022] Open
Abstract
Background and Objective: Ozone therapy has shown therapeutic efficacy in different disorders particularly low back pain (LBP). However, ozone therapy has been associated with toxic effects on the respiratory, endocrine, cardiovascular systems as well as nervous system because of its strong oxidizing capacity. Recent studies have reported possible associations between ozone exposure and metabolic disorders, but the findings are controversial and little is known on the mechanisms of action. This study aims to investigate the cytotoxic effects of ozone exposure and possible mechanism of action in the animal model. Methods: Wistar neonate rats with the age of 24 h after birth were sacrificed by cervical dislocation under general anesthesia, then immersed in 75% alcohol and iodophor for 5 min, respectively. The spinal cord was isolated and cut to samples of ~1 mm3 and prepared for further experiments. The spinal cord neurons (SCNs) were exposed to ozone at different concentrations and then cultured in 96-well plates with glass bottom for 7 days. The cell viability, ATP levels and the NAD+ concentration were determined and compared between the different experimental groups and the control group. Results: Analyses of the data by non-targeted liquid chromatography-mass spectrometry (LC-MS) analysis determined the metabolic disorder in SCNs following the ozone exposure. Moreover, our assessments showed that ozone exposure resulted in DNA damage, poly (ADP)-ribose polymerase-1 (PARP1) excessive activation, nicotinamide adenine dinucleotide (NAD+) depletion and decrease of ATP level in SCNs. The PARP1 inhibitor can inhibit the cytotoxic effect of ozone to SCNs without inhibiting the activation of AMP-activated protein kinase (AMPK). Our findings revealed that the cytotoxic effects of ozone to SCNs might be mediated by excessive PARP1 activation and subsequent NAD+ depletion. Moreover, using PARP1 inhibitor can protect SCNs from cytotoxic effects of ozone by preventing NAD+ depletion during ozone exposure. Conclusion: Ozone exposure seems to induce metabolic disorders and NAD+ depletion through excessive PARP1 activation in SCNs.
Collapse
Affiliation(s)
- Shulin Ma
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xu Zhao
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cong Zhang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Panpan Sun
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Li
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaowen Lin
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Sun
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhijian Fu
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
21
|
Wang WX, Jiang WL, Guo H, Li Y, Li CY. Real-time imaging of alkaline phosphatase activity of diabetes in mice via a near-infrared fluorescent probe. Chem Commun (Camb) 2021; 57:480-483. [DOI: 10.1039/d0cc07292c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel water-soluble near-infrared fluorescent probe named QX-P with simple synthesis is developed for detecting ALP. The probe can not only visualize ALP activity in four cell lines, but also real-time image ALP activity of diabetes in mice.
Collapse
Affiliation(s)
- Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Hong Guo
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan
| |
Collapse
|
22
|
OKAMOTO H, TAKASAWA S. Okamoto model for necrosis and its expansions, CD38-cyclic ADP-ribose signal system for intracellular Ca 2+ mobilization and Reg (Regenerating gene protein)-Reg receptor system for cell regeneration. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:423-461. [PMID: 34629354 PMCID: PMC8553518 DOI: 10.2183/pjab.97.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
In pancreatic islet cell culture models and animal models, we studied the molecular mechanisms involved in the development of insulin-dependent diabetes. The diabetogenic agents, alloxan and streptozotocin, caused DNA strand breaks, which in turn activated poly(ADP-ribose) polymerase/synthetase (PARP) to deplete NAD+, thereby inhibiting islet β-cell functions such as proinsulin synthesis and ultimately leading to β-cell necrosis. Radical scavengers protected against the formation of DNA strand breaks and inhibition of proinsulin synthesis. Inhibitors of PARP prevented the NAD+ depletion, inhibition of proinsulin synthesis and β-cell death. These findings led to the proposed unifying concept for β-cell damage and its prevention (the Okamoto model). The model met one proof with PARP knockout animals and was further extended by the discovery of cyclic ADP-ribose as the second messenger for Ca2+ mobilization in glucose-induced insulin secretion and by the identification of Reg (Regenerating gene) for β-cell regeneration. Physiological and pathological events found in pancreatic β-cells have been observed in other cells and tissues.
Collapse
Affiliation(s)
- Hiroshi OKAMOTO
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Shin TAKASAWA
- Department of Biochemistry, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
23
|
Li Y, Li J, Zhao C, Yang L, Qi X, Wang X, Zhou Q, Shi W. Hyperglycemia-reduced NAD + biosynthesis impairs corneal epithelial wound healing in diabetic mice. Metabolism 2021; 114:154402. [PMID: 33053398 DOI: 10.1016/j.metabol.2020.154402] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/14/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Nicotinamide adenine dinucleotide (NAD) is an essential molecule participating in multiple physiological and pathophysiological processes. In diabetic cornea, the NAD+-consuming enzyme SIRT1 was down-regulated and contributed to the delayed wound healing. However, the impact of hyperglycemia on corneal NAD+ biosynthesis remained elusive. This study was to investigate the relationship of NAD+ biosynthesis and the delayed corneal wound healing in diabetic mice. METHODS Type 1 diabetes mellitus (DM) mice were induced by streptozotocin and corneal epithelial wound healing models were constructed by epithelial scraping. The NAD+ contents of corneal epithelium were measured using the NAD/NADH quantification kit. Expression of key enzymes involved in the NAD+ biosynthesis in type 1 DM mice and type 2 DM patients were analyzed. The nicotinamide phosphoribosyltransferase (NAMPT)-specific siRNA and the selective inhibitor FK866 were used to achieve the blockade of NAMPT, whereas exogenous NAD+ and its precursors were replenished to the corneal epithelial cells and DM mice. RESULTS Hyperglycemia attenuated NAD+ content and NAMPT expression in the corneal epithelium of both type 1 DM mice and type 2 DM patients. Local knockdown of NAMPT by siRNA or FK866 consistently recapitulated the delayed corneal epithelial wound healing in normal mice. Moreover, NAD+ replenishment recovered the impaired proliferation and migration capacity by either FK866 or high glucose treatment in cultured corneal epithelial cells. Furthermore, in DM mice, NAD+ and its precursors nicotinamide mononucleotide and nicotinamide riboside also facilitated corneal epithelial and nerve regeneration, accompanied with the recovered expression of SIRT1 and phosphorylated EGFR, AKT, and ERK1/2 in epithelium and corneal sensitivity. CONCLUSION Hyperglycemia-reduced NAD+ biosynthesis and contributed to the impaired epithelial wound healing in DM mice. The replenishment of NAD+ and its precursors facilitated diabetic corneal wound healing and nerve regeneration, which may provide a novel therapeutic strategy for the treatment of diabetic corneal complications.
Collapse
Affiliation(s)
- Ya Li
- Medical College, Qingdao University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Jing Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Can Zhao
- Medical College, Qingdao University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaochuan Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
24
|
Zhang W, Zhang H, Wang M, Li P, Ding C, Zhang W, Wang H, Tang B. Copolymer-Based Fluorescence Nanosensor for In Situ Imaging of Homocysteine in the Liver and Kidney of Diabetic Mice. Anal Chem 2020; 92:16221-16228. [PMID: 33210902 DOI: 10.1021/acs.analchem.0c04068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Homocysteine (Hcy) is one of the important biomarkers of clinical diagnosis, which is closely related to the occurrence and development of many diseases. Current analysis methods have difficulties in detecting Hcy in cells and living organisms. As a powerful technique, fluorescence methods combined the laser confocal imaging technology can achieve real-time visual tracking in cells and in vivo. Herein, we establish a conjugated copolymer-based fluorescence nanosensor (DPA-PFNP-Cu(II)) using the connected 2,7-dibromofluorene and 4,7-bis (2-bromothiophen-5-yl)-2-1-3-benzothiadiazole as the main chain. The competitive coordination between Hcy and Cu(II) allows the fluorescence of the polymer off to on. Finally, the nanosensor is applied for in situ imaging of Hcy levels in the kidney and liver of diabetic mice and is found that Hcy levels were positively correlated with the degree of diabetes. Notably, the depth of tissue penetration of the nanosensor enables Hcy detection of the liver and kidney through in vivo imaging without damage. Two-photon imaging and in vivo imaging achieve consistent results, which correct each other, improving the accuracy of the test result. The present works provide a new imaging technique for studying the occurrence and development of diabetes and screening of new drugs for treatment at the living level.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Hui Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Mengqi Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Caifeng Ding
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
25
|
Good Cop, Bad Cop: The Opposing Effects of Macrophage Activation State on Maintaining or Damaging Functional β-Cell Mass. Metabolites 2020; 10:metabo10120485. [PMID: 33256225 PMCID: PMC7761161 DOI: 10.3390/metabo10120485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Loss of functional β-cell mass is a hallmark of Type 1 and Type 2 Diabetes. Macrophages play an integral role in the maintenance or destruction of pancreatic β-cells. The effect of the macrophage β-cell interaction is dependent on the activation state of the macrophage. Macrophages can be activated across a spectrum, from pro-inflammatory to anti-inflammatory and tissue remodeling. The factors secreted by these differentially activated macrophages and their effect on β-cells define the effect on functional β-cell mass. In this review, the spectrum of macrophage activation is discussed, as are the positive and negative effects on β-cell survival, expansion, and function as well as the defined factors released from macrophages that impinge on functional β-cell mass.
Collapse
|
26
|
Zhang T, Zheng H, Fan K, Xia N, Li J, Yang C, Gao H, Yang Y. NMR-based metabolomics characterizes metabolic changes in different brain regions of streptozotocin-induced diabetic mice with cognitive decline. Metab Brain Dis 2020; 35:1165-1173. [PMID: 32643092 DOI: 10.1007/s11011-020-00598-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Diabetes at advanced age increases rise of cognitive impairment, but its potential mechanisms are still far from being fully understood. In this study, we analyzed the metabolic alterations in six different brain regions between streptozotocin (STZ)-induced diabetic mice with cognitive decline (DM) and age-matched controls (CON) using a 1H NMR-based metabolomics approach, to explore potential metabolic mechanisms underlying diabetes-induced cognitive decline. The results show that DM mice had a peculiar metabolic phenotype in all brain regions, mainly involving increased lactate level, decreased choline and energy metabolism as well as disrupted astrocyte-neuron metabolism. Furthermore, these metabolic changes exhibited a brain region-specific pattern. Collectively, our results suggest that brain region-specific metabolic disorders may be responsible for diabetes-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Kai Fan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Nengzhi Xia
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiance Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Changwei Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
27
|
Malko P, Jiang LH. TRPM2 channel-mediated cell death: An important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol 2020; 37:101755. [PMID: 33130440 PMCID: PMC7600390 DOI: 10.1016/j.redox.2020.101755] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress resulting from the accumulation of high levels of reactive oxygen species is a salient feature of, and a well-recognised pathological factor for, diverse pathologies. One common mechanism for oxidative stress damage is via the disruption of intracellular ion homeostasis to induce cell death. TRPM2 is a non-selective Ca2+-permeable cation channel with a wide distribution throughout the body and is highly sensitive to activation by oxidative stress. Recent studies have collected abundant evidence to show its important role in mediating cell death induced by miscellaneous oxidative stress-inducing pathological factors, both endogenous and exogenous, including ischemia/reperfusion and the neurotoxicants amyloid-β peptides and MPTP/MPP+ that cause neuronal demise in the brain, myocardial ischemia/reperfusion, proinflammatory mediators that disrupt endothelial function, diabetogenic agent streptozotocin and diabetes risk factor free fatty acids that induce loss of pancreatic β-cells, bile acids that damage pancreatic acinar cells, renal ischemia/reperfusion and albuminuria that are detrimental to kidney cells, acetaminophen that triggers hepatocyte death, and nanoparticles that injure pericytes. Studies have also shed light on the signalling mechanisms by which these pathological factors activate the TRPM2 channel to alter intracellular ion homeostasis leading to aberrant initiation of various cell death pathways. TRPM2-mediated cell death thus emerges as an important mechanism in the pathogenesis of conditions including ischemic stroke, neurodegenerative diseases, cardiovascular diseases, diabetes, pancreatitis, chronic kidney disease, liver damage and neurovascular injury. These findings raise the exciting perspective of targeting the TRPM2 channel as a novel therapeutic strategy to treat such oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Philippa Malko
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province and Department of Physiology and Pathophysiology, Xinxiang Medical University, PR China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK.
| |
Collapse
|
28
|
Uhlemeyer C, Müller N, Grieß K, Wessel C, Schlegel C, Kuboth J, Belgardt BF. ATM and P53 differentially regulate pancreatic beta cell survival in Ins1E cells. PLoS One 2020; 15:e0237669. [PMID: 32810137 PMCID: PMC7437460 DOI: 10.1371/journal.pone.0237669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/30/2020] [Indexed: 01/09/2023] Open
Abstract
Pancreatic beta cell death is a hallmark of type 1 and 2 diabetes (T1D/T2D), but the underlying molecular mechanisms are incompletely understood. Key proteins of the DNA damage response (DDR), including tumor protein P53 (P53, also known as TP53 or TRP53 in rodents) and Ataxia Telangiectasia Mutated (ATM), a kinase known to act upstream of P53, have been associated with T2D. Here we test and compare the effect of ATM and P53 ablation on beta cell survival in the rat beta cell line Ins1E. We demonstrate that ATM and P53 differentially regulate beta cell apoptosis induced upon fundamentally different types of diabetogenic beta cell stress, including DNA damage, inflammation, lipotoxicity and endoplasmic reticulum (ER) stress. DNA damage induced apoptosis by treatment with the commonly used diabetogenic agent streptozotocin (STZ) is regulated by both ATM and P53. We show that ATM is a key STZ induced activator of P53 and that amelioration of STZ induced cell death by inhibition of ATM mainly depends on P53. While both P53 and ATM control lipotoxic beta cell apoptosis, ATM but not P53 fails to alter inflammatory beta cell death. In contrast, tunicamycin induced (ER stress associated) apoptosis is further increased by ATM knockdown or inhibition, but not by P53 knockdown. Our results reveal differential roles for P53 and ATM in beta cell survival in vitro in the context of four key pathophysiological types of diabetogenic beta cell stress, and indicate that ATM can use P53 independent signaling pathways to modify beta cell survival, dependent on the cellular insult.
Collapse
Affiliation(s)
- Celina Uhlemeyer
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Nadine Müller
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Kerstin Grieß
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Corinna Wessel
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Caroline Schlegel
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Jennifer Kuboth
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
29
|
Gerazova-Efremova K, Kjovkarovska SD, Domazetovska S, Miova B. Nicotinamide and heat preconditioning - Effects on hepatic HSP70, carbohydrate and oxidative disturbances in STZ-induced diabetic rats. J Therm Biol 2020; 91:102645. [PMID: 32716886 DOI: 10.1016/j.jtherbio.2020.102645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Nicotinamide (NA) is known to have antioxidant potential and partially to protect insulin-secreting cells against diabetogenic agent STZ (streptozotocin). In a combination to heat stress (HS), NA is also known to induce heat-shock proteins (HSPs) production. Heat preconditioning (HP) and HSPs have cytoprotective effects against development of cellular injury caused by application of subsequent stressor. We aimed to determine if pretreatment with NA and HP (as HSP70 -inducers) can affect STZ-induced diabetic disturbances in rats. METHODS NA-pretreatment (250 mg/kg b.w., 7 days) and heat preconditioning (41 ± 1 °C, 45 min) of diabetic rats was performed. The changes in hepatic carbohydrate- and antioxidative-related enzymes and substrates were investigated. RESULTS NA-pretreatment, alone or in combination with HS, resulted in significant increase of HSP70 concentration in the liver of control and diabetic rats. Compared to diabetic controls, pretreatment with NA, in combination with HP, resulted in decrease of blood and liver glucose, increase of glycogen and glucose-6-phosphate level, increase of glycogenolytic/glycolytic enzymes, decrease of gluconeogenic enzymes, as well as an increase of glutathione content and glutathione peroxidase, decrease of glutathione reductase and catalase activities. CONCLUSIONS NA is a potent HSP70 coinducer, alone or in a combination with HS in the liver of both control and diabetic rats. Pretreatment with NA, accompanied by HP, has a pronounced corrective effect on STZ-induced diabetes disturbances in the key hepatic carbohydrate- and antioxidative-related parameters. It seems that this corrective effect is based on the increased production of hepatic HSP70.
Collapse
Affiliation(s)
| | - Suzana Dinevska- Kjovkarovska
- Department of Experimental Physiology and Biochemistry, Institute of Biology Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, R. North Macedonia.
| | - Saska Domazetovska
- PHI University Clinic of Clinical Biochemistry, Clinical Center Mother Theresa Skopje, R. North Macedonia.
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, R. North Macedonia.
| |
Collapse
|
30
|
Hurtado-Bagès S, Knobloch G, Ladurner AG, Buschbeck M. The taming of PARP1 and its impact on NAD + metabolism. Mol Metab 2020; 38:100950. [PMID: 32199820 PMCID: PMC7300387 DOI: 10.1016/j.molmet.2020.01.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022] Open
Abstract
Background Poly-ADP-ribose polymerases (PARPs) are key mediators of cellular stress response. They are intimately linked to cellular metabolism through the consumption of NAD+. PARP1/ARTD1 in the nucleus is the major NAD+ consuming activity and plays a key role in maintaining genomic integrity. Scope of review In this review, we discuss how different organelles are linked through NAD+ metabolism and how PARP1 activation in the nucleus can impact the function of distant organelles. We discuss how differentiated cells tame PARP1 function by upregulating an endogenous inhibitor, the histone variant macroH2A1.1. Major conclusions The presence of macroH2A1.1, particularly in differentiated cells, raises the threshold for the activation of PARP1 with consequences for DNA repair, gene transcription, and NAD+ homeostasis. Beyond DNA repair, PARP1 is essential for metabolic homeostasis. Epigenetic mechanisms prevent metabolic disorders through PARP1 taming. Beyond cancer, the development of PARP1 inhibitors offers diverse clinical potential.
Collapse
Affiliation(s)
- Sarah Hurtado-Bagès
- Josep Carreras Leukemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gunnar Knobloch
- Biomedical Center Munich, Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Andreas G Ladurner
- Biomedical Center Munich, Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany; Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, 81377, Munich, Germany.
| | - Marcus Buschbeck
- Josep Carreras Leukemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain; Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), 08916, Badalona, Spain.
| |
Collapse
|
31
|
Simon MC, Reinbeck AL, Wessel C, Heindirk J, Jelenik T, Kaul K, Arreguin-Cano J, Strom A, Blaut M, Bäckhed F, Burkart V, Roden M. Distinct alterations of gut morphology and microbiota characterize accelerated diabetes onset in nonobese diabetic mice. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49908-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
32
|
The Enigmatic Function of PARP1: From PARylation Activity to PAR Readers. Cells 2019; 8:cells8121625. [PMID: 31842403 PMCID: PMC6953017 DOI: 10.3390/cells8121625] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is catalysed by poly(ADP-ribose) polymerases (PARPs, also known as ARTDs) and then rapidly removed by degrading enzymes. Poly(ADP-ribose) (PAR) is produced from PARylation and provides a delicate and spatiotemporal interaction scaffold for numerous target proteins. The PARylation system, consisting of PAR synthesizers and erasers and PAR itself and readers, plays diverse roles in the DNA damage response (DDR), DNA repair, transcription, replication, chromatin remodeling, metabolism, and cell death. Despite great efforts by scientists in biochemistry, cell and molecular biology, genetics, and pharmacology over the last five decades, the biology of PARPs and PARylation remains enigmatic. In this review, we summarize the current understanding of the biological function of PARP1 (ARTD1), the founding member of the PARP family, focusing on the inter-dependent or -independent nature of different functional domains of the PARP1 protein. We also discuss the readers of PAR, whose function may transduce signals and coordinate the cellular processes, which has recently emerged as a new research avenue for PARP biology. We aim to provide some perspective on how future research might disentangle the biology of PARylation by dissecting the structural and functional relationship of PARP1, a major effector of the PARPs family.
Collapse
|
33
|
Simon MC, Reinbeck AL, Wessel C, Heindirk J, Jelenik T, Kaul K, Arreguin-Cano J, Strom A, Blaut M, Bäckhed F, Burkart V, Roden M. Distinct alterations of gut morphology and microbiota characterize accelerated diabetes onset in nonobese diabetic mice. J Biol Chem 2019; 295:969-980. [PMID: 31822562 DOI: 10.1074/jbc.ra119.010816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
The rising prevalence of type 1 diabetes (T1D) over the past decades has been linked to lifestyle changes, but the underlying mechanisms are largely unknown. Recent findings point to gut-associated mechanisms in the control of T1D pathogenesis. In nonobese diabetic (NOD) mice, a model of T1D, diabetes development accelerates after deletion of the Toll-like receptor 4 (TLR4). We hypothesized that altered intestinal functions contribute to metabolic alterations, which favor accelerated diabetes development in TLR4-deficient (TLR4-/-) NOD mice. In 70-90-day-old normoglycemic (prediabetic) female NOD TLR4+/+ and NOD TLR4-/- mice, gut morphology and microbiome composition were analyzed. Parameters of lipid metabolism, glucose homeostasis, and mitochondrial respiratory activity were measured in vivo and ex vivo Compared with NOD TLR4+/+ mice, NOD TLR4-/- animals showed lower muscle mass of the small intestine, higher abundance of Bacteroidetes, and lower Firmicutes in the large intestine, along with lower levels of circulating short-chain fatty acids (SCFA). These changes are associated with higher body weight, hyperlipidemia, and severe insulin and glucose intolerance, all occurring before the onset of diabetes. These mice also exhibited insulin resistance-related abnormalities of energy metabolism, such as lower total respiratory exchange rates and higher hepatic oxidative capacity. Distinct alterations of gut morphology and microbiota composition associated with reduction of circulating SCFA may contribute to metabolic disorders promoting the progression of insulin-deficient diabetes/T1D development.
Collapse
Affiliation(s)
- Marie-Christine Simon
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany.,Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, S-41348 Gothenburg, Sweden
| | - Anna Lena Reinbeck
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Corinna Wessel
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Julia Heindirk
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Kirti Kaul
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Juan Arreguin-Cano
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition, D-14558 Potsdam-Rehbrücke, Germany
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, S-41348 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany .,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
34
|
Wang C, Mbalaviele G. Role of APD-Ribosylation in Bone Health and Disease. Cells 2019; 8:cells8101201. [PMID: 31590342 PMCID: PMC6829334 DOI: 10.3390/cells8101201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
The transfer of adenosine diphosphate (ADP)-ribose unit(s) from nicotinamide adenine dinucleotide (NAD+) to acceptor proteins is known as ADP-ribosylation. This post-translational modification (PTM) unavoidably alters protein functions and signaling networks, thereby impacting cell behaviors and tissue outcomes. As a ubiquitous mechanism, ADP-ribosylation affects multiple tissues, including bones, as abnormal ADP-ribosylation compromises bone development and remodeling. In this review, we describe the effects of ADP-ribosylation in bone development and maintenance, and highlight the underlying mechanisms.
Collapse
Affiliation(s)
- Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
35
|
Doxorubicin-induced testicular damage is related to PARP-1 signaling molecules in mice. Pharmacol Rep 2019; 71:591-602. [DOI: 10.1016/j.pharep.2019.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 12/31/2022]
|
36
|
Keuss MJ, Hjerpe R, Hsia O, Gourlay R, Burchmore R, Trost M, Kurz T. Unanchored tri-NEDD8 inhibits PARP-1 to protect from oxidative stress-induced cell death. EMBO J 2019; 38:embj.2018100024. [PMID: 30804002 PMCID: PMC6418418 DOI: 10.15252/embj.2018100024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
NEDD8 is a ubiquitin‐like protein that activates cullin‐RING E3 ubiquitin ligases (CRLs). Here, we identify a novel role for NEDD8 in regulating the activity of poly(ADP‐ribose) polymerase 1 (PARP‐1) in response to oxidative stress. We show that treatment of cells with H2O2 results in the accumulation of NEDD8 chains, likely by directly inhibiting the deneddylase NEDP1. One chain type, an unanchored NEDD8 trimer, specifically bound to the second zinc finger domain of PARP‐1 and attenuated its activation. In cells in which Nedp1 is deleted, large amounts of tri‐NEDD8 constitutively form, resulting in inhibition of PARP‐1 and protection from PARP‐1‐dependent cell death. Surprisingly, these NEDD8 trimers are additionally acetylated, as shown by mass spectrometry analysis, and their binding to PARP‐1 is reduced by the overexpression of histone de‐acetylases, which rescues PARP‐1 activation. Our data suggest that trimeric, acetylated NEDD8 attenuates PARP‐1 activation after oxidative stress, likely to delay the initiation of PARP‐1‐dependent cell death.
Collapse
Affiliation(s)
- Matthew J Keuss
- Henry Wellcome Lab of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Roland Hjerpe
- Henry Wellcome Lab of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Oliver Hsia
- Henry Wellcome Lab of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Robert Gourlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, UK
| | - Richard Burchmore
- Glasgow Polyomics, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Matthias Trost
- The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, UK.,Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Thimo Kurz
- Henry Wellcome Lab of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| |
Collapse
|
37
|
Zhang M, Ying W. NAD + Deficiency Is a Common Central Pathological Factor of a Number of Diseases and Aging: Mechanisms and Therapeutic Implications. Antioxid Redox Signal 2019; 30:890-905. [PMID: 29295624 DOI: 10.1089/ars.2017.7445] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing evidence has indicated critical roles of nicotinamide adenine dinucleotide, oxidized form (NAD+) in various biological functions. NAD+ deficiency has been found in models of a number of diseases such as cerebral ischemia, myocardial ischemia, and diabetes, and in models of aging. Applications of NAD+ or other approaches that can restore NAD+ levels are highly protective in these models of diseases and aging. NAD+ produces its beneficial effects by targeting at multiple pathological pathways, including attenuating mitochondrial alterations, DNA damage, and oxidative stress, by modulating such enzymes as sirtuins, glyceraldehyde-3-phosphate dehydrogenase, and AP endonuclease. These findings have suggested great therapeutic and nutritional potential of NAD+ for diseases and senescence. Recent Advances: Approaches that can restore NAD+ levels are highly protective in the models of such diseases as glaucoma. The NAD+ deficiency in the diseases and aging results from not only poly(ADP-ribose) polymerase-1 (PARP-1) activation but also decreased nicotinamide phosphoribosyltransferase (Nampt) activity and increased CD38 activity. Significant biological effects of extracellular NAD+ have been found. Increasing evidence has suggested that NAD+ deficiency is a common central pathological factor in a number of diseases and aging. Critical Issues and Future Directions: Future studies are required for solidly establishing the concept that "NAD+ deficiency is a common central pathological factor in a number of disease and aging." It is also necessary to further investigate the mechanisms underlying the NAD+ deficiency in the diseases and aging. Preclinical and clinical studies should be conducted to determine the therapeutic potential of NAD+ for the diseases and aging.
Collapse
Affiliation(s)
- Mingchao Zhang
- 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,2 Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Weihai Ying
- 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,2 Collaborative Innovation Center for Genetics and Development, Shanghai, China
| |
Collapse
|
38
|
Zhang P, Chen H, Huang H, Qiu K, Zhang C, Chao H, Zhang Q. A viscosity-sensitive iridium(iii) probe for lysosomal microviscosity quantification and blood viscosity detection in diabetic mice. Dalton Trans 2019; 48:3990-3997. [DOI: 10.1039/c9dt00054b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel viscosity-sensitive iridium probe enables the detection of cancer and diabetes.
Collapse
Affiliation(s)
- Pingyu Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
| | - Haijie Chen
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
| | - Huaiyi Huang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Kangqiang Qiu
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
- School of Chemistry
| | - Changxuan Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
| | - Hui Chao
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
- School of Chemistry
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
| |
Collapse
|
39
|
Tang Q, Zhang X, Cao H, Chen G, Huang H, Zhang P, Zhang Q. A phosphorescent iridium probe for sensing polarity in the endoplasmic reticulum and in vivo. Dalton Trans 2019; 48:7728-7734. [DOI: 10.1039/c9dt01307e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A phosphorescent iridium complex for in situ tracking endoplasmic reticulum polarity variations during ER stress and in vivo.
Collapse
Affiliation(s)
- Qian Tang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
| | - Xuepeng Zhang
- Lab of Computational and Drug Design
- School of Chemical Biology & Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Huiqun Cao
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
| | - Ge Chen
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
| | - Huaiyi Huang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
| |
Collapse
|
40
|
Dehhaghi M, Tan V, Heng B, Mohammadipanah F, Guillemin GJ. Protective Effects of Myxobacterial Extracts on Hydrogen Peroxide-induced Toxicity on Human Primary Astrocytes. Neuroscience 2018; 399:1-11. [PMID: 30496822 DOI: 10.1016/j.neuroscience.2018.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Astrocytes, the main non-neuronal cells in the brain, have significant roles in the maintenance and survival of neurons. Oxidative stress has been implicated in various neurodegenerative disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Myxobacteria produce a wide range of bioactive metabolites with notable structures and modes of action, which introduce them as potent natural product producers. In the present study, we evaluated the effects of myxobacterial extracts on hydrogen peroxide (H2O2)-mediated toxicity on primary human astrocytes. We showed that myxobacterial extracts could decrease the formation of reactive oxygen species (ROS), nitric oxide (NO) production, and cell death assessed by the release of lactate dehydrogenase (LDH). Myxobacterial extracts were also able to reduce the nitric oxide synthase (NOS) activity. The extracts reduced the oxidative effect of H2O2 on over-activation of poly (ADP-ribose) polymerase (PARP1), therefore preventing the cell death by restoring the NAD+ levels. In addition, myxobacterial extracts ameliorated the oxidative stress by increasing the glutathione level in cells. The overall results showed myxobacterial extracts, especially from the strains Archangium sp. UTMC 4070 and Cystobacter sp. UTMC 4073, were able to protect human primary astrocytes from oxidative stress.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Departmentof Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran; NeuroinflammationGroup, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Vanessa Tan
- NeuroinflammationGroup, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Benjamin Heng
- NeuroinflammationGroup, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Fatemeh Mohammadipanah
- Departmentof Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| | - Gilles J Guillemin
- NeuroinflammationGroup, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia.
| |
Collapse
|
41
|
Oleson BJ, Corbett JA. Dual Role of Nitric Oxide in Regulating the Response of β Cells to DNA Damage. Antioxid Redox Signal 2018; 29:1432-1445. [PMID: 28978225 PMCID: PMC6166691 DOI: 10.1089/ars.2017.7351] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/09/2017] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Cytokines released in and around pancreatic islets during islet inflammation are believed to contribute to impaired β cell function and β cell death during the development of diabetes. Nitric oxide, produced by β cells in response to cytokine exposure, controls many of the responses of β cells during islet inflammation. Recent Advances: Although nitric oxide has been shown to inhibit insulin secretion and oxidative metabolism and induce DNA damage in β cells, it also activates protective pathways that promote recovery of insulin secretion and oxidative metabolism and repair of damaged DNA. Recent studies have identified a novel role for nitric oxide in selectively regulating the DNA damage response in β cells. CRITICAL ISSUES Does nitric oxide mediate cytokine-induced β cell damage, or is nitric oxide produced by β cells in response to cytokines to protect β cells from damage? FUTURE DIRECTIONS β cells appear to be the only islet endocrine cell type capable of responding to proinflammatory cytokines with the production of nitric oxide, and these terminally differentiated cells have a limited capacity to regenerate. It is likely that there is a physiological purpose for this response, and understanding this could open new areas of study regarding the loss of functional β cell mass during diabetes development.
Collapse
Affiliation(s)
- Bryndon J. Oleson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John A. Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
42
|
Hurtado-Bagès S, Guberovic I, Buschbeck M. The MacroH2A1.1 - PARP1 Axis at the Intersection Between Stress Response and Metabolism. Front Genet 2018; 9:417. [PMID: 30356649 PMCID: PMC6189284 DOI: 10.3389/fgene.2018.00417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
The exchange of replication-coupled canonical histones by histone variants endows chromatin with specific features. The replacement of the canonical H2A histone for the histone variant macroH2A is one of the most remarkable epigenetic modifications. The three vertebrate macroH2A proteins have a unique tripartite structure consisting of H2A-like domain, unstructured linker, and macrodomain. Macrodomains are ancient globular folds that are able to bind nicotinamide adenine dinucleotide (NAD+) derived metabolites. Here, we will briefly describe the physiological relevance of the metabolite binding in the context of chromatin. In particular, we will focus on the macroH2A1.1 isoform that binds ADP-ribose and poly-ADP-ribose polymerase 1 (PARP1) enzyme, a cellular stress sensor. We will discuss the impact of this interaction in the context of cancer, senescence, cell stress and energy metabolism.
Collapse
Affiliation(s)
- Sarah Hurtado-Bagès
- Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Ph.D. Program in Biomedicine, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Iva Guberovic
- Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Ph.D. Program in Biomedicine, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Marcus Buschbeck
- Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
| |
Collapse
|
43
|
Tapodi A, Bognar Z, Szabo C, Gallyas F, Sumegi B, Hocsak E. PARP inhibition induces Akt-mediated cytoprotective effects through the formation of a mitochondria-targeted phospho-ATM-NEMO-Akt-mTOR signalosome. Biochem Pharmacol 2018; 162:98-108. [PMID: 30296409 DOI: 10.1016/j.bcp.2018.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE The cytoprotective effect of poly(ADP-ribose) polymerase 1 (PARP1) inhibition is well documented in various cell types subjected to oxidative stress. Previously, we have demonstrated that PARP1 inhibition activates Akt, and showed that this response plays a critical role in the maintenance of mitochondrial integrity and in cell survival. However, it has not yet been defined how nuclear PARP1 signals to cytoplasmic Akt. METHODS WRL 68, HeLa and MCF7 cells were grown in culture. Oxidative stress was induced with hydrogen peroxide. PARP was inhibited with the PARP inhibitor PJ34. ATM, mTOR- and NEMO were silenced using specific siRNAs. Cell viability assays were based on the MTT assay. PARP-ATM pulldown experiments were conducted; each protein was visualized by Western blotting. Immunoprecipitation of ATM, phospho-ATM and NEMO was performed from cytoplasmic and mitochondrial cell fractions and proteins were detected by Western blotting. In some experiments, a continually active Akt construct was introduced. Nuclear to cytoplasmic and mitochondrial translocation of phospho-Akt was visualized by confocal microscopy. RESULTS Here we present evidence for a PARP1 mediated, PARylation-dependent interaction between ATM and NEMO, which is responsible for the cytoplasmic transport of phosphorylated (thus, activated) ATM kinase. In turn, the cytoplasmic p-ATM and NEMO forms complex with mTOR and Akt, yielding the phospho-ATM-NEMO-Akt-mTOR signalosome, which is responsible for the PARP-inhibition induced Akt activation. The phospho-ATM-NEMO-Akt-mTOR signalosome localizes to the mitochondria and is essential for the PARP-inhibition-mediated cytoprotective effects in oxidatively stressed cells. When the formation of the signalosome is prevented, the cytoprotective effects diminish, but cells can be rescued by constantly active Akt1, further confirming the critical role of Akt activation in cytoprotection. CONCLUSIONS Taken together, the data presented in the current paper are consistent with the hypothesis that PARP inhibition suppresses the PARylation of ATM, which, in turn, forms an ATM-NEMO complex, which exits the nucleus, and combines in the cytosol with mTOR and Act, resulting in Act phosphorylation (i.e. activation), which, in turn, produces the cytoprotective action via the induction of Akt-mediated survival pathways. This mechanism can be important in the protective effect of PARP inhibitor in various diseases associated with oxidative stress. Moreover, disruption of the formation or action of the phospho-ATM-NEMO-Akt-mTOR signalosome may offer potential future experimental therapeutic checkpoints.
Collapse
Affiliation(s)
- Antal Tapodi
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Szigeti Street 12, 7624 Pécs, Hungary
| | - Zita Bognar
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Szigeti Street 12, 7624 Pécs, Hungary
| | - Csaba Szabo
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Szigeti Street 12, 7624 Pécs, Hungary; Department of Medicine, University of Fribourg, Switzerland
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Szigeti Street 12, 7624 Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Szigeti Street 12, 7624 Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Enikő Hocsak
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Szigeti Street 12, 7624 Pécs, Hungary
| |
Collapse
|
44
|
Vida A, Kardos G, Kovács T, Bodrogi BL, Bai P. Deletion of poly(ADP‑ribose) polymerase-1 changes the composition of the microbiome in the gut. Mol Med Rep 2018; 18:4335-4341. [PMID: 30221733 PMCID: PMC6172391 DOI: 10.3892/mmr.2018.9474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/16/2018] [Indexed: 12/25/2022] Open
Abstract
Poly(adenosine diphosphate-ribose) polymerase (PARP)-1 is the prototypical PARP enzyme well known for its role in DNA repair and as a pro-inflammatory protein. Since PARP1 is an important co-factor of several other pro-inflammatory proteins, in the present study the possible changes in microbial flora of PARP1 knockout mice were investigated. Samples from the duodenum, cecum and feces from wild type and PARP1 knockout C57BL/6J male mice were collected and 16S ribosomal RNA genes were sequenced. Based on the sequencing results, the microbiome and compared samples throughout the lower part of the gastrointestinal system were reconstructed. The present results demonstrated that the lack of PARP1 enzyme only disturbed the microbial flora of the duodenum, where the biodiversity increased in the knockout animals on the species level but decreased on the order level. The most prominent change was the overwhelming abundance of the family Porphyromonadaceae in the duodenum of PARP1−/− animals, which disappeared in the cecum and feces where families were spread out more evenly than in the wild type animals. The findings of the present study may improve current understanding of the role of PARP1 in chronic inflammatory diseases.
Collapse
Affiliation(s)
- András Vida
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H‑4032 Debrecen, Hungary
| | - Gábor Kardos
- Department of Microbiology, Faculty of Medicine, University of Debrecen, H‑4032 Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H‑4032 Debrecen, Hungary
| | - Balázs L Bodrogi
- Department of Urology, Borsod‑Abaúj‑Zemplén County Hospital and University Teaching Hospital, H‑3525 Miskolc, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H‑4032 Debrecen, Hungary
| |
Collapse
|
45
|
Yang M, Fan J, Zhang J, Du J, Peng X. Visualization of methylglyoxal in living cells and diabetic mice model with a 1,8-naphthalimide-based two-photon fluorescent probe. Chem Sci 2018; 9:6758-6764. [PMID: 30310608 PMCID: PMC6115615 DOI: 10.1039/c8sc02578a] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022] Open
Abstract
Methylglyoxal (MGO), a dicarbonyl metabolite, is the most studied precursor of advanced glycation end-products (AGEs) and its elevated levels have also been associated with various pathologies. Hence, the development of effective methods for monitoring MGO in live cells and in vivo is of great importance for ascertaining the onset and progress of related diseases. Herein, we designed and synthesized an endoplasmic reticulum-targeting two-photon fluorescent probe called NI-OPD for the detection of MGO with high selectivity, sensitivity, and hypotoxicity. The probe was successfully applied for monitoring MGO in living cells and a diabetic mice model. The two-photon fluorescence images confirmed that the endogenous MGO in the liver and kidney tissues of diabetic mice is higher than that of normal mice. Furthermore, it revealed that after treatment with metformin, a widely used hypoglycemia drug, the diabetic mice showed a decreased concentration of MGO in liver and kidney tissues. Thus, NI-OPD may serve as a useful tool for the detection of MGO and for studying the relationships between MGO and pathological and biological processes in biosystems.
Collapse
Affiliation(s)
- Mingwang Yang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Junwei Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , P. R. China .
| |
Collapse
|
46
|
Verma DK, Gupta S, Biswas J, Joshi N, Singh A, Gupta P, Tiwari S, Sivarama Raju K, Chaturvedi S, Wahajuddin M, Singh S. New therapeutic activity of metabolic enhancer piracetam in treatment of neurodegenerative disease: Participation of caspase independent death factors, oxidative stress, inflammatory responses and apoptosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2078-2096. [DOI: 10.1016/j.bbadis.2018.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/26/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
|
47
|
Xiao H, Wu C, Li P, Tang B. Simultaneous Fluorescence Visualization of Endoplasmic Reticulum Superoxide Anion and Polarity in Myocardial Cells and Tissue. Anal Chem 2018; 90:6081-6088. [DOI: 10.1021/acs.analchem.7b05440] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Haibin Xiao
- Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Chuanchen Wu
- Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Ping Li
- Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| |
Collapse
|
48
|
Congenic mapping and candidate gene analysis for streptozotocin-induced diabetes susceptibility locus on mouse chromosome 11. Mamm Genome 2018. [PMID: 29523950 DOI: 10.1007/s00335-018-9742-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Streptozotocin (STZ) has been widely used to induce diabetes in rodents. Strain-dependent variation in susceptibility to STZ has been reported; however, the gene(s) responsible for STZ susceptibility has not been identified. Here, we utilized the A/J-11SM consomic strain and a set of chromosome 11 (Chr. 11) congenic strains developed from A/J-11SM to identify a candidate STZ-induced diabetes susceptibility gene. The A/J strain exhibited significantly higher susceptibility to STZ-induced diabetes than the A/J-11SM strain, confirming the existence of a susceptibility locus on Chr. 11. We named this locus Stzds1 (STZ-induced diabetes susceptibility 1). Congenic mapping using the Chr. 11 congenic strains indicated that the Stzds1 locus was located between D11Mit163 (27.72 Mb) and D11Mit51 (36.39 Mb). The Mpg gene, which encodes N-methylpurine DNA glycosylase (MPG), a ubiquitous DNA repair enzyme responsible for the removal of alkylated base lesions in DNA, is located within the Stzds1 region. There is a close relationship between DNA alkylation at an early stage of STZ action and the function of MPG. A Sanger sequence analysis of the Mpg gene revealed five polymorphic sites in the A/J genome. One variant, p.Ala132Ser, was located in a highly conserved region among rodent species and in the minimal region for retained enzyme activity of MPG. It is likely that structural alteration of MPG caused by the p.Ala132Ser mutation elicits increased recognition and excision of alkylated base lesions in DNA by STZ.
Collapse
|
49
|
Yoo YM, Park YC. Streptozotocin-Induced Autophagy Reduces Intracellular Insulin in Insulinoma INS-1E Cells. DNA Cell Biol 2018; 37:160-167. [PMID: 29485914 DOI: 10.1089/dna.2017.3874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Streptozotocin (STZ), a glucose analog, induces diabetes in experimental animals by inducing preferential cytotoxicity in pancreatic beta cells. We investigated whether STZ reduced the production of intracellular insulin through autophagy in insulinoma INS-1E cells. Typically, 2 mM STZ treatment for 24 h significantly decreased cell survival. STZ treatment led to significant decrease in phospho-AMP-activated protein kinase (p-AMPK) level; reduction in levels of phospho-protein kinase R-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme 1α (IRE1α); significant reduction in levels of p85α, p110, phospho-serine and threonine kinase/protein kinase B (p-Akt/PKB) (Ser473), phospho-extracellular-regulated kinase (p-ERK), and phospho-mammalian target of rapamycin (p-mTOR); increase in levels of Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and catalase; decrease in B-cell lymphoma 2 (Bcl-2) expression; increase in Bcl-2-associated X protein (Bax) expression; increase in levels of microtubule-associated protein 1 light chain 3 (LC3) and Beclin 1; and reduction in production of intracellular insulin. These results suggest that insulin synthesis during STZ treatment involves autophagy in INS-1E cells and, subsequently, results in a decrease in intracellular production of insulin.
Collapse
Affiliation(s)
- Yeong-Min Yoo
- 1 Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine , Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yung Chul Park
- 2 Division of Forest Science, Institute of Forest Science, College of Forest and Environmental Sciences , Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
50
|
Siniscalco D, Trotta MC, Brigida AL, Maisto R, Luongo M, Ferraraccio F, D'Amico M, Di Filippo C. Intraperitoneal Administration of Oxygen/Ozone to Rats Reduces the Pancreatic Damage Induced by Streptozotocin. BIOLOGY 2018; 7:biology7010010. [PMID: 29324687 PMCID: PMC5872036 DOI: 10.3390/biology7010010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/27/2022]
Abstract
Background: The rat model of streptozotocin (STZ)-induced pancreatic damage was used to examine whether a systemic oxygen/ozone mixture could be beneficial for the pancreas by reducing the machinery of the local detrimental mediators released by STZ. Results: The results showed that oxygen/ozone administration (150 µg/Kg i.p.) for ten days in STZ rats increased the endogenous glutathione-s-transferase (GST) enzyme and nuclear factor-erythroid 2-related factor 2 (Nrf2) into the pancreatic tissue, together with reduction of 4-hydroxynonenal (4-HNE) and PARP-1 compared to STZ rats receiving O₂ only. Interestingly, these changes resulted in higher levels of serum insulin and leptin, and pancreatic glucagon immunostaining. Consequently, glucose metabolism improved as evidenced by the monitoring of glycemia throughout. Conclusions: This study provides evidence that systemic administration of oxygen/ozone reduces the machinery of detrimental mediators released by STZ into the pancreas with less local damage and better functionality.
Collapse
Affiliation(s)
- Dario Siniscalco
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Anna Lisa Brigida
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Rosa Maisto
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Margherita Luongo
- "Maria Guarino" Foundation-AMOR No Profit Association, 80078 Pozzuoli, Italy.
| | - Franca Ferraraccio
- Department of Physical and Mental Health and Preventive Medicine, University of Campania, 80138 Naples, Italy.
| | - Michele D'Amico
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Clara Di Filippo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| |
Collapse
|