1
|
Yang F, Li T, Zhang XQ, Gong Y, Su H, Fan J, Wang L, Hu QD, Tan RZ. Screening of active components in Astragalus mongholicus Bunge and Panax notoginseng formula for anti-fibrosis in CKD: nobiletin inhibits Lgals1/PI3K/AKT signaling to improve renal fibrosis. Ren Fail 2024; 46:2375033. [PMID: 38967135 PMCID: PMC11229745 DOI: 10.1080/0886022x.2024.2375033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
The Astragalus mongholicus Bunge and Panax notoginseng formula (A&P) has been clinically shown to effectively slow down the progression of chronic kidney disease (CKD) and has demonstrated significant anti-fibrosis effects in experimental CKD model. However, the specific active ingredients and underlying mechanism are still unclear. The active ingredients of A&P were analyzed by Ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-HR-MS). A mouse model of CKD was constructed by 5/6 nephrectomy. Renal function was assessed by creatinine and urea nitrogen. Real-time PCR and Western Blot were performed to detect the mRNA and protein changes in kidney and cells. An in vitro fibrotic cell model was constructed by TGF-β induction in TCMK-1 cells. The results showed that thirteen active ingredients of A&P were identified by UPLC-HR-MS, nine of which were identified by analysis with standards, among which the relative percentage of NOB was high. We found that NOB treatment significantly improved renal function, pathological damage and reduced the expression level of fibrotic factors in CKD mice. The results also demonstrated that Lgals1 was overexpressed in the interstitial kidney of CKD mice, and NOB treatment significantly reduced its expression level, while inhibiting PI3K and AKT phosphorylation. Interestingly, overexpression of Lgals1 significantly increased fibrosis in TCMK1 cells and upregulated the activity of PI3K and AKT, which were strongly inhibited by NOB treatment. NOB is one of the main active components of A&P. The molecular mechanism by which NOB ameliorates renal fibrosis in CKD may be through the inhibition of Lgals1/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Fang Yang
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Nephrology, Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiao-qian Zhang
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yi Gong
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hongwei Su
- Department of Urology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Junming Fan
- Department of Nephrology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Qiong-dan Hu
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Rui-zhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Chen JL, Liu L, Peng XR, Wang Y, Xiang X, Chen Y, Xu DX, Chen DZ. Role of the GalNAc-galectin pathway in the healing of premature rupture of membranes. Mol Med 2024; 30:138. [PMID: 39232672 PMCID: PMC11375961 DOI: 10.1186/s10020-024-00908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Premature rupture of the membranes (PROM) is a key cause of preterm birth and represents a major cause of neonatal mortality and morbidity. Natural products N-acetyl-d-galactosamine (GalNAc), which are basic building blocks of important polysaccharides in biological cells or tissues, such as chitin, glycoproteins, and glycolipids, may improve possible effects of wound healing. METHODS An in vitro inflammation and oxidative stress model was constructed using tumor necrosis-α (TNF-α) and lipopolysaccharide (LPS) action on WISH cells. Human amniotic epithelial cells (hAECs) were primarily cultured by digestion to construct a wound model. The effects of GalNAc on anti-inflammatory and anti-oxidative stress, migration and proliferation, epithelial-mesenchymal transition (EMT), glycosaminoglycan (GAG)/hyaluronic acid (HA) production, and protein kinase B (Akt) pathway in hAECs and WISH cells were analyzed using the DCFH-DA fluorescent probe, ELISA, CCK-8, scratch, transwell migration, and western blot to determine the mechanism by which GalNAc promotes amniotic wound healing. RESULTS GalNAc decreased IL-6 expression in TNF-α-stimulated WISH cells and ROS expression in LPS-stimulated WISH cells (P < 0.05). GalNAc promoted the expression of Gal-1 and Gal-3 with anti-inflammatory and anti-oxidative stress effects. GalNAc promoted the migration of hAECs (50% vs. 80%) and WISH cells through the Akt signaling pathway, EMT reached the point of promoting fetal membrane healing, and GalNAc did not affect the activity of hAECs and WISH cells (P > 0.05). GalNAc upregulated the expression of sGAG in WISH cells (P < 0.05) but did not affect HA levels (P > 0.05). CONCLUSIONS GalNAc might be a potential target for the prevention and treatment of PROM through the galectin pathway, including (i) inflammation; (ii) epithelial-mesenchymal transition; (iii) proliferation and migration; and (iv) regression, remodeling, and healing.
Collapse
Affiliation(s)
- Jia-Le Chen
- The School of Public Health, Anhui Medical University, Hefei, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Hospital Infection Management Section, Changzhou Wujin Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Lou Liu
- Department of obstetrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Xin-Rui Peng
- The School of Public Health, Anhui Medical University, Hefei, China
| | - Yan Wang
- The School of Public Health, Anhui Medical University, Hefei, China
| | - Xiang Xiang
- The School of Public Health, Anhui Medical University, Hefei, China
| | - Yu Chen
- Wuxi Maternity and Child Health Care Hospital, Wuxi, China.
| | - De-Xiang Xu
- The School of Public Health, Anhui Medical University, Hefei, China.
| | - Dao-Zhen Chen
- The School of Public Health, Anhui Medical University, Hefei, China.
- Wuxi Maternity and Child Health Care Hospital, Wuxi, China.
- Department of Laboratory, Haidong No.2 People's Hospital, Haidong, China.
| |
Collapse
|
3
|
Taeb S, Rostamzadeh D, Amini SM, Rahmati M, Eftekhari M, Safari A, Najafi M. MicroRNAs targeted mTOR as therapeutic agents to improve radiotherapy outcome. Cancer Cell Int 2024; 24:233. [PMID: 38965615 PMCID: PMC11229485 DOI: 10.1186/s12935-024-03420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/22/2024] [Indexed: 07/06/2024] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate genes and are involved in various biological processes, including cancer development. Researchers have been exploring the potential of miRNAs as therapeutic agents in cancer treatment. Specifically, targeting the mammalian target of the rapamycin (mTOR) pathway with miRNAs has shown promise in improving the effectiveness of radiotherapy (RT), a common cancer treatment. This review provides an overview of the current understanding of miRNAs targeting mTOR as therapeutic agents to enhance RT outcomes in cancer patients. It emphasizes the importance of understanding the specific miRNAs that target mTOR and their impact on radiosensitivity for personalized cancer treatment approaches. The review also discusses the role of mTOR in cell homeostasis, cell proliferation, and immune response, as well as its association with oncogenesis. It highlights the different ways in which miRNAs can potentially affect the mTOR pathway and their implications in immune-related diseases. Preclinical findings suggest that combining mTOR modulators with RT can inhibit tumor growth through anti-angiogenic and anti-vascular effects, but further research and clinical trials are needed to validate the efficacy and safety of using miRNAs targeting mTOR as therapeutic agents in combination with RT. Overall, this review provides a comprehensive understanding of the potential of miRNAs targeting mTOR to enhance RT efficacy in cancer treatment and emphasizes the need for further research to translate these findings into improved clinical outcomes.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Eftekhari
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Safari
- Department of Radiology, Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, 71439-14693, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Wang HC, Xia R, Chang WH, Hsu SW, Wu CT, Chen CH, Shih TC. Improving cancer immunotherapy in prostate cancer by modulating T cell function through targeting the galectin-1. Front Immunol 2024; 15:1372956. [PMID: 38953033 PMCID: PMC11215701 DOI: 10.3389/fimmu.2024.1372956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Our study aimed to elucidate the role of Galectin-1 (Gal-1) role in the immunosuppressive tumor microenvironment (TME) of prostate cancer (PCa). Our previous findings demonstrated a correlation between elevated Gal-1 expression and advanced PCa stages. In this study, we also observed that Gal-1 is expressed around the tumor stroma and its expression level is associated with PCa progression. We identified that Gal-1 could be secreted by PCa cells, and secreted Gal-1 has the potential to induce T cell apoptosis. Gal-1 knockdown or inhibition of Gal-1 function by LLS30 suppresses T cell apoptosis resulting in increased intratumoral T cell infiltration. Importantly, LLS30 treatment significantly improved the antitumor efficacy of anti-PD-1 in vivo. Mechanistically, LLS30 binds to the carbohydrate recognition domain (CRD) of Gal-1, disrupting its binding to CD45 leading to the suppression of T cell apoptosis. In addition, RNA-seq analysis revealed a novel mechanism of action for LLS30, linking its tumor-intrinsic oncogenic effects to anti-tumor immunity. These findings suggested that tumor-derived Gal-1 contributes to the immunosuppressive TME in PCa by inducing apoptosis in effector T cells. Targeting Gal-1 with LLS30 may offer a strategy to enhance anti-tumor immunity and improve immunotherapy.
Collapse
Affiliation(s)
- Hsiao-Chi Wang
- Department of Research and Development, Kibio Inc., Houston, TX, United States
| | - Roger Xia
- Department of Biomedical Data Science, Stanford University, Stanford, CA, United States
| | - Wen-Hsin Chang
- Division of Nephrology, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Ssu-Wei Hsu
- Division of Nephrology, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Chun-Te Wu
- Department of Urology, Chang Gung Memorial Hospital, Linko, Taiwan
| | - Ching-Hsien Chen
- Division of Nephrology, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Tsung-Chieh Shih
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
5
|
Leone P, Malerba E, Susca N, Favoino E, Perosa F, Brunori G, Prete M, Racanelli V. Endothelial cells in tumor microenvironment: insights and perspectives. Front Immunol 2024; 15:1367875. [PMID: 38426109 PMCID: PMC10902062 DOI: 10.3389/fimmu.2024.1367875] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
The tumor microenvironment is a highly complex and dynamic mixture of cell types, including tumor, immune and endothelial cells (ECs), soluble factors (cytokines, chemokines, and growth factors), blood vessels and extracellular matrix. Within this complex network, ECs are not only relevant for controlling blood fluidity and permeability, and orchestrating tumor angiogenesis but also for regulating the antitumor immune response. Lining the luminal side of vessels, ECs check the passage of molecules into the tumor compartment, regulate cellular transmigration, and interact with both circulating pathogens and innate and adaptive immune cells. Thus, they represent a first-line defense system that participates in immune responses. Tumor-associated ECs are involved in T cell priming, activation, and proliferation by acting as semi-professional antigen presenting cells. Thus, targeting ECs may assist in improving antitumor immune cell functions. Moreover, tumor-associated ECs contribute to the development at the tumor site of tertiary lymphoid structures, which have recently been associated with enhanced response to immune checkpoint inhibitors (ICI). When compared to normal ECs, tumor-associated ECs are abnormal in terms of phenotype, genetic expression profile, and functions. They are characterized by high proliferative potential and the ability to activate immunosuppressive mechanisms that support tumor progression and metastatic dissemination. A complete phenotypic and functional characterization of tumor-associated ECs could be helpful to clarify their complex role within the tumor microenvironment and to identify EC specific drug targets to improve cancer therapy. The emerging therapeutic strategies based on the combination of anti-angiogenic treatments with immunotherapy strategies, including ICI, CAR T cells and bispecific antibodies aim to impact both ECs and immune cells to block angiogenesis and at the same time to increase recruitment and activation of effector cells within the tumor.
Collapse
Affiliation(s)
- Patrizia Leone
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), Aldo Moro University of Bari, Bari, Italy
| | - Nicola Susca
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Elvira Favoino
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Giuliano Brunori
- Centre for Medical Sciences, University of Trento and Nephrology and Dialysis Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| | - Marcella Prete
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Vito Racanelli
- Centre for Medical Sciences, University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| |
Collapse
|
6
|
Fang J, Wang X, Xie J, Zhang X, Xiao Y, Li J, Luo G. LGALS1 was related to the prognosis of clear cell renal cell carcinoma identified by weighted correlation gene network analysis combined with differential gene expression analysis. Front Genet 2023; 13:1046164. [PMID: 36712844 PMCID: PMC9878452 DOI: 10.3389/fgene.2022.1046164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Understanding the molecular mechanism of clear cell renal cell carcinoma (ccRCC) is essential for predicting the prognosis and developing new targeted therapies. Our study is to identify hub genes related to ccRCC and to further analyze its prognostic significance. The ccRCC gene expression profiles of GSE46699 from the Gene Expression Omnibus (GEO) database and datasets from the Cancer Genome Atlas Database The Cancer Genome Atlas were used for the Weighted Gene Co-expression Network Analysis (WGCNA) and differential gene expression analysis. We screened out 397 overlapping genes from the four sets of results, and then performed Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genome (KEGG) pathways. In addition, the protein-protein interaction (PPI) network of 397 overlapping genes was mapped using the STRING database. We identified ten hub genes (KNG1, TIMP1, ALB, C3, GPC3, VCAN, P4HB, CHGB, LGALS1, EGF) using the CytoHubba plugin of Cytoscape based on the Maximal Clique Centrality (MCC) score. According to Kaplan-Meier survival analysis, higher expression of LGALS1 and TIMP1 was related to poorer overall survival (OS) in patients with ccRCC. Univariate and multivariate Cox proportional hazard analysis showed that the expression of LGALS1 was an independent risk factor for poor prognosis. Moreover, the higher the clinical grade and stage of ccRCC, the higher the expression of LGALS1. LGALS1 may play an important role in developing ccRCC and may be potential a biomarker for prognosis and treatment targets.
Collapse
Affiliation(s)
- Jiang Fang
- Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xinjun Wang
- Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China,The school of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Jun Xie
- Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xi Zhang
- Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yiming Xiao
- Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - JinKun Li
- Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guangcheng Luo
- Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China,The school of Clinical Medicine, Fujian Medical University, Fuzhou, China,*Correspondence: Guangcheng Luo,
| |
Collapse
|
7
|
de Sousa GF, Lund RG, da Silva Pinto L. The Role of Plant Lectins in the Cellular and Molecular Processes of Skin Wound Repair: An Overview. Curr Pharm Des 2023; 29:2618-2625. [PMID: 37933218 DOI: 10.2174/0113816128264103231030093124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/22/2023] [Indexed: 11/08/2023]
Abstract
There is increasing pressure for innovative methods to treat compromised and difficult-to-heal wounds. Consequently, new strategies are needed for faster healing, reducing infection, hydrating the wound, stimulating healing mechanisms, accelerating wound closure, and reducing scar formation. In this scenario, lectins present as good candidates for healing agents. Lectins are a structurally heterogeneous group of glycosylated or non-glycosylated proteins of non-immune origin, which can recognize at least one specific monosaccharide or oligosaccharide specific for the reversible binding site. Cell surfaces are rich in glycoproteins (glycosidic receptors) that potentially interact with lectins through the number of carbohydrates reached. This lectin-cell interaction is the molecular basis for triggering various changes in biological organisms, including healing mechanisms. In this context, this review aimed to (i) provide a comprehensive overview of relevant research on the potential of vegetable lectins for wound healing and tissue regeneration processes and (ii) discuss future perspectives.
Collapse
Affiliation(s)
- Guilherme Feijó de Sousa
- Bioinformatics and Proteomics Laboratory (BioPro Lab), Technological Development Center, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Rafael Guerra Lund
- School of Dentistry, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Luciano da Silva Pinto
- Bioinformatics and Proteomics Laboratory (BioPro Lab), Technological Development Center, Federal University of Pelotas, Capão do Leão, RS, Brazil
| |
Collapse
|
8
|
Kim SS, Harford JB, Moghe M, Doherty C, Chang EH. A Novel P53 Nanomedicine Reduces Immunosuppression and Augments Anti-PD-1 Therapy for Non-Small Cell Lung Cancer in Syngeneic Mouse Models. Cells 2022; 11:3434. [PMID: 36359830 PMCID: PMC9654894 DOI: 10.3390/cells11213434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 09/26/2023] Open
Abstract
Lung cancer is among the most common and lethal cancers and warrants novel therapeutic approaches to improving patient outcomes. Although immune checkpoint inhibitors (ICIs) have demonstrated substantial clinical benefits, most patients remain unresponsive to currently approved ICIs or develop resistance after initial response. Many ongoing clinical studies are investigating combination therapies to address the limited efficacy of ICIs. Here, we have assessed whether p53 gene therapy via a tumor-targeting nanomedicine (termed SGT-53) can augment anti-programmed cell death-1 (PD-1) immunotherapy to expand its use in non-responding patients. Using syngeneic mouse models of lung cancers that are resistant to anti-PD-1, we demonstrate that restoration of normal p53 function potentiates anti-PD-1 to inhibit tumor growth and prolong survival of tumor-bearing animals. Our data indicate that SGT-53 can restore effective immune responses against lung cancer cells by reducing immuno-suppressive cells (M2 macrophages and regulatory T cells) and by downregulating immunosuppressive molecules (e.g., galectin-1, a negative regulator of T cell activation and survival) while increasing activity of cytotoxic T cells. These results suggest that combining SGT-53 with anti-PD-1 immunotherapy could increase the fraction of lung cancer patients that responds to anti-PD-1 therapy and support evaluation of this combination particularly in patients with ICI-resistant lung cancers.
Collapse
Affiliation(s)
- Sang-Soo Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- SynerGene Therapeutics, Inc., Potomac, MD 20854, USA
| | | | - Manish Moghe
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Caroline Doherty
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- College of Medicine and Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Esther H. Chang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
9
|
Guerrero-Juarez CF, Lee GH, Liu Y, Wang S, Karikomi M, Sha Y, Chow RY, Nguyen TTL, Iglesias VS, Aasi S, Drummond ML, Nie Q, Sarin K, Atwood SX. Single-cell analysis of human basal cell carcinoma reveals novel regulators of tumor growth and the tumor microenvironment. SCIENCE ADVANCES 2022; 8:eabm7981. [PMID: 35687691 PMCID: PMC9187229 DOI: 10.1126/sciadv.abm7981] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/27/2022] [Indexed: 05/27/2023]
Abstract
How basal cell carcinoma (BCC) interacts with its tumor microenvironment to promote growth is unclear. We use singe-cell RNA sequencing to define the human BCC ecosystem and discriminate between normal and malignant epithelial cells. We identify spatial biomarkers of tumors and their surrounding stroma that reinforce the heterogeneity of each tissue type. Combining pseudotime, RNA velocity-PAGA, cellular entropy, and regulon analysis in stromal cells reveals a cancer-specific rewiring of fibroblasts, where STAT1, TGF-β, and inflammatory signals induce a noncanonical WNT5A program that maintains the stromal inflammatory state. Cell-cell communication modeling suggests that tumors respond to the sudden burst of fibroblast-specific inflammatory signaling pathways by producing heat shock proteins, whose expression we validated in situ. Last, dose-dependent treatment with an HSP70 inhibitor suppresses in vitro vismodegib-resistant BCC cell growth, Hedgehog signaling, and in vivo tumor growth in a BCC mouse model, validating HSP70's essential role in tumor growth and reinforcing the critical nature of tumor microenvironment cross-talk in BCC progression.
Collapse
Affiliation(s)
- Christian F. Guerrero-Juarez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Gun Ho Lee
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yingzi Liu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Shuxiong Wang
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Matthew Karikomi
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
| | - Yutong Sha
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
| | - Rachel Y. Chow
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Tuyen T. L. Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Venus Sosa Iglesias
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Sumaira Aasi
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael L. Drummond
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Qing Nie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Kavita Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Scott X. Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
- Department of Dermatology, University of California, Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
10
|
Hermenean A, Oatis D, Herman H, Ciceu A, D’Amico G, Trotta MC. Galectin 1-A Key Player between Tissue Repair and Fibrosis. Int J Mol Sci 2022; 23:ijms23105548. [PMID: 35628357 PMCID: PMC9142121 DOI: 10.3390/ijms23105548] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022] Open
Abstract
Galectins are ten family members of carbohydrate-binding proteins with a high affinity for β galactose-containing oligosaccharides. Galectin-1 (Gal-1) is the first protein discovered in the family, expressed in many sites under normal and pathological conditions. In the first part of the review article, we described recent advances in the Gal-1 modulatory role on wound healing, by focusing on the different phases triggered by Gal-1, such as inflammation, proliferation, tissue repair and re-epithelialization. On the contrary, Gal-1 persistent over-expression enhances angiogenesis and extracellular matrix (ECM) production via PI3K/Akt pathway activation and leads to keloid tissue. Therefore, the targeted Gal-1 modulation should be considered a method of choice to treat wound healing and avoid keloid formation. In the second part of the review article, we discuss studies clarifying the role of Gal-1 in the pathogenesis of proliferative diabetic retinopathy, liver, renal, pancreatic and pulmonary fibrosis. This evidence suggests that Gal-1 may become a biomarker for the diagnosis and prognosis of tissue fibrosis and a promising molecular target for the development of new and original therapeutic tools to treat fibrosis in different chronic diseases.
Collapse
Affiliation(s)
- Anca Hermenean
- Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (A.C.); (G.D.)
- Correspondence:
| | - Daniela Oatis
- Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (A.C.); (G.D.)
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (A.C.); (G.D.)
| | - Giovanbattista D’Amico
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (A.C.); (G.D.)
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
11
|
Tsoi H, You CP, Leung MH, Man EPS, Khoo US. Targeting Ribosome Biogenesis to Combat Tamoxifen Resistance in ER+ve Breast Cancer. Cancers (Basel) 2022; 14:1251. [PMID: 35267559 PMCID: PMC8909264 DOI: 10.3390/cancers14051251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a heterogeneous disease. Around 70% of breast cancers are estrogen receptor-positive (ER+ve), with tamoxifen being most commonly used as an adjuvant treatment to prevent recurrence and metastasis. However, half of the patients will eventually develop tamoxifen resistance. The overexpression of c-MYC can drive the development of ER+ve breast cancer and confer tamoxifen resistance through multiple pathways. One key mechanism is to enhance ribosome biogenesis, synthesising mature ribosomes. The over-production of ribosomes sustains the demand for proteins necessary to maintain a high cell proliferation rate and combat apoptosis induced by therapeutic agents. c-MYC overexpression can induce the expression of eIF4E that favours the translation of structured mRNA to produce oncogenic factors that promote cell proliferation and confer tamoxifen resistance. Either non-phosphorylated or phosphorylated eIF4E can mediate such an effect. Since ribosomes play an essential role in c-MYC-mediated cancer development, suppressing ribosome biogenesis may help reduce aggressiveness and reverse tamoxifen resistance in breast cancer. CX-5461, CX-3543 and haemanthamine have been shown to repress ribosome biogenesis. Using these chemicals might help reverse tamoxifen resistance in ER+ve breast cancer, provided that c-MYC-mediated ribosome biogenesis is the crucial factor for tamoxifen resistance. To employ these ribosome biogenesis inhibitors to combat tamoxifen resistance in the future, identification of predictive markers will be necessary.
Collapse
Affiliation(s)
| | | | | | | | - Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (C.-P.Y.); (M.-H.L.); (E.P.S.M.)
| |
Collapse
|
12
|
Dong Y, Ma WM, Yang W, Hao L, Zhang SQ, Fang K, Hu CH, Zhang QJ, Shi ZD, Zhang WD, Fan T, Xia T, Han CH. Identification of C3 and FN1 as potential biomarkers associated with progression and prognosis for clear cell renal cell carcinoma. BMC Cancer 2021; 21:1135. [PMID: 34688260 PMCID: PMC8539775 DOI: 10.1186/s12885-021-08818-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is one of the most lethal urological malignancies, but the pathogenesis and prognosis of ccRCC remain obscure, which need to be better understand. Methods Differentially expressed genes were identified and function enrichment analyses were performed using three publicly available ccRCC gene expression profiles downloaded from the Gene Expression Omnibus database. The protein-protein interaction and the competing endogenous RNA (ceRNA) networks were visualized by Cytoscape. Multivariate Cox analysis was used to predict an optimal risk mode, and the survival analysis was performed with the Kaplan-Meier curve and log-rank test. Protein expression data were downloaded from Clinical Proteomic Tumor Analysis Consortium database and Human Protein Atlas database, and the clinical information as well as the corresponding lncRNA and miRNA expression data were obtained via The Cancer Genome Atlas database. The co-expressed genes and potential function of candidate genes were explored using data exacted from the Cancer Cell Line Encyclopedia database. Results Of the 1044 differentially expressed genes shared across the three datasets, 461 were upregulated, and 583 were downregulated, which significantly enriched in multiple immunoregulatory-related biological process and tumor-associated pathways, such as HIF-1, PI3K-AKT, P53 and Rap1 signaling pathways. In the most significant module, 36 hub genes were identified and were predominantly enriched in inflammatory response and immune and biotic stimulus pathways. Survival analysis and validation of the hub genes at the mRNA and protein expression levels suggested that these genes, particularly complement component 3 (C3) and fibronectin 1 (FN1), were primarily responsible for ccRCC tumorigenesis and progression. Increased expression of C3 or FN1 was also associated with advanced clinical stage, high pathological grade, and poor survival in patients with ccRCC. Univariate and multivariate Cox regression analysis qualified the expression levels of the two genes as candidate biomarkers for predicting poor survival. FN1 was potentially regulated by miR-429, miR-216b and miR-217, and constructed a bridge to C3 and C3AR1 in the ceRNA network, indicating a critical position of FN1. Conclusions The biomarkers C3 and FN1 could provide theoretical support for the development of a novel prognostic tool to advance ccRCC diagnosis and targeted therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08818-0.
Collapse
Affiliation(s)
- Yang Dong
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Wei-Ming Ma
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Wen Yang
- Department of Nephrology, The First Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Shao-Qi Zhang
- Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Kun Fang
- Department of Nephrology, The First Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China.,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Chun-Hui Hu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qian-Jin Zhang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Wen-da Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Tao Fan
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Tian Xia
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Cong-Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China. .,Department of Nephrology, The First Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China. .,Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
13
|
Naito T, Jingushi K, Ueda K, Tsujikawa K. Azurocidin is loaded into small extracellular vesicles via its N-linked glycosylation and promotes intravasation of renal cell carcinoma cells. FEBS Lett 2021; 595:2522-2532. [PMID: 34418081 DOI: 10.1002/1873-3468.14183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023]
Abstract
Azurocidin (AZU1) is an antimicrobial protein secreted by neutrophils that acts as a chemoattractant for monocytes and macrophages and a permeabilizer of vascular endothelial cells. We previously identified AZU1 to be specifically present in extracellular vesicles (EVs) obtained from renal cell carcinoma (RCC) tissues. Here, we examined the relationship between N-linked glycosylation and AZU1 loading into small EVs (SEVs). Inhibition of N-linked glycosylation by introducing mutations in three glycosylation sites inhibited AZU1 loading into SEVs. Furthermore, SEVs released from AZU1-wild-type cells increased the Ca2+ concentration in endothelial cells and the endothelial permeability, whereas SEVs released from AZU1-mutant cells had no significant effect. Anti-AZU1 antibodies diminished the effect of SEVs on endothelial cell sheets. Collectively, we found that N-linked glycosylation of AZU1 directs its loading into SEVs, thereby enabling AZU1-positive SEVs to function as potent permeabilizers of endothelial cells and leading to enhanced transendothelial migration of RCC cells.
Collapse
Affiliation(s)
- Takuya Naito
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Koji Ueda
- Project for Personalized Cancer Medicine, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
14
|
Immunosuppressive Roles of Galectin-1 in the Tumor Microenvironment. Biomolecules 2021; 11:biom11101398. [PMID: 34680031 PMCID: PMC8533562 DOI: 10.3390/biom11101398] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022] Open
Abstract
Evasion of immune surveillance is an accepted hallmark of tumor progression. The production of immune suppressive mediators by tumor cells is one of the major mechanisms of tumor immune escape. Galectin-1 (Gal-1), a pivotal immunosuppressive molecule, is expressed by many types of cancer. Tumor-secreted Gal-1 can bind to glycosylated receptors on immune cells and trigger the suppression of immune cell function in the tumor microenvironment, contributing to the immune evasion of tumors. The aim of this review is to summarize the current literature on the expression and function of Gal-1 in the human tumor microenvironment, as well as therapeutics targeting Gal-1.
Collapse
|
15
|
Galectin-1 Expression Is Associated with the Response and Survival Following Preoperative Chemoradiotherapy in Locally Advanced Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13133147. [PMID: 34201887 PMCID: PMC8268777 DOI: 10.3390/cancers13133147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary Galectin-1 has been found to be involved in therapeutic resistance in a variety of cancers. However, the prognostic significance of galectin-1 expression in patients with locally advanced esophageal squamous cell carcinoma (ESCC) treated with chemoradiotherapy remains unknown. Immunohistochemically, we observed that galectin-1 overexpression in pretreatment biopsied specimens was significantly associated with a lower pathological complete response rate, worse overall survival and disease-free survival in 93 patients with locally advanced ESCC receiving preoperative chemoradiotherapy. Our findings suggest that galectin-1 may be a potential therapeutic target for patients with ESCC treated with preoperative chemoradiotherapy. Abstract The galectin-1 has been found to be involved in poor outcomes after treatment of a variety of cancers. To the best of our knowledge, however, the significance of galectin-1 expression in the sensitivity to chemoradiotherapy (CCRT) of patients with locally advanced esophageal squamous cell carcinoma (ESCC) remains unclear. Expression levels of galectin-1 were evaluated by immunohistochemistry and correlated with the treatment outcome in 93 patients with locally advanced ESCC who received preoperative CCRT between 1999 and 2012. Galectin-1 expression was significantly associated with the pathological complete response (pCR). The pCR rates were 36.1% and 13.0% (p = 0.01) in patients with low and high galectin-1 expression, respectively. Univariate analyses revealed that galectin-1 overexpression, clinical 7th American Joint Committee on Cancer (AJCC) stage III and a positive surgical margin were significant factors of worse overall survival and disease-free survival. In multivariate analyses, galectin-1 overexpression and a positive surgical margin represented the independent adverse prognosticators. Therefore, galectin-1 expression both affects the pCR and survival in patients with locally advanced ESCC receiving preoperative CCRT. Our results suggest that galectin-1 may be a potentially therapeutic target for patients with ESCC treated with preoperative CCRT.
Collapse
|
16
|
Lange C, Machado Weber A, Schmidt R, Schroeder C, Strowitzki T, Germeyer A. Changes in protein expression due to metformin treatment and hyperinsulinemia in a human endometrial cancer cell line. PLoS One 2021; 16:e0248103. [PMID: 33690729 PMCID: PMC7943011 DOI: 10.1371/journal.pone.0248103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/21/2021] [Indexed: 12/18/2022] Open
Abstract
The incidence of endometrial cancer (EC) has increased over the past years and mainly affects women above the age of 45 years. Metabolic diseases such as obesity and type II diabetes mellitus as well as associated conditions like polycystic ovary syndrome (PCOS), insulin resistance and hyperinsulinemia lead to elevated levels of circulating estrogens. Increased estrogen concentrations, in turn, further trigger the proliferation of endometrial cells and thus promote EC development and progression, especially in the absence of progesterone as seen in postmenopausal women. Elevated blood glucose levels in diabetic patients further contribute to the risk of EC development. Metformin is an insulin-sensitizing biguanide drug, commonly used in the treatment of type II diabetes mellitus, especially in obese patients. Besides its effects on glucose metabolism, metformin displayed anti-cancer effects in various cancer types, including EC. Direct anti-cancer effects of metformin target signaling pathways that are involved in cellular growth and proliferation, e.g. the AKT/PKB/mTOR pathway. Further proteins and pathways have been suggested as potential targets, but the underlying mechanism of action of metformin's anti-cancer activity is still not completely understood. In the present study, the effects of metformin on protein expression were investigated in the human EC cell line HEC-1A using an affinity proteomic approach. Cells were treated with 0.5 mmol/L metformin over a period of 7 days and changes in the expression pattern of 1,300 different proteins were compared to the expression in untreated control cells as well as insulin-treated cells. Insulin treatment (100 ng/mL) was incorporated into the study in order to implement a model for insulin resistance and associated hyperinsulinemia, conditions that are often observed in obese and diabetic patients. Furthermore, the culture medium was supplemented with 10 nmol/L ß-estradiol (E2) during treatments to mimic increased estrogen levels, a common risk factor for EC development. Based on the most prominent and significant changes in expression, a set of 80 proteins was selected and subjected to a more detailed analysis. The data revealed that metformin and insulin targeted similar pathways in the present study and mostly acted on proteins related to proliferation, migration and tumor immune response. These pathways may be affected in a tumor-promoting as well as a tumor-suppressing way by either metformin treatment or insulin supplementation. The consequences for the cells resulting from the detected expression changes were discussed in detail for several proteins. The presented data helps identify potential targets affected by metformin treatment in EC and allows for a better understanding of the mechanism of action of the biguanide drug's anti-cancer activity. However, further investigations are necessary to confirm the observations and conclusions drawn from the presented data after metformin administration, especially for proteins that were regulated in a favorable way, i.e. AKT3, CCND2, CD63, CD81, GFAP, IL5, IL17A, IRF4, PI3, and VTCN1. Further proteins might be of interest, where metformin counteracted unfavorable effects that have been induced by hyperinsulinemia.
Collapse
Affiliation(s)
- Carsten Lange
- Department of Gynecologic Endocrinology and Fertility Disorders, Women’s Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Amanda Machado Weber
- Department of Gynecologic Endocrinology and Fertility Disorders, Women’s Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | | | | | - Thomas Strowitzki
- Department of Gynecologic Endocrinology and Fertility Disorders, Women’s Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Ariane Germeyer
- Department of Gynecologic Endocrinology and Fertility Disorders, Women’s Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Kim JE, Han D, Jeong JS, Moon JJ, Moon HK, Lee S, Kim YC, Yoo KD, Lee JW, Kim DK, Kwon YJ, Kim YS, Yang SH. Multisample Mass Spectrometry-Based Approach for Discovering Injury Markers in Chronic Kidney Disease. Mol Cell Proteomics 2021; 20:100037. [PMID: 33453410 PMCID: PMC7950200 DOI: 10.1074/mcp.ra120.002159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/15/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
Urinary proteomics studies have primarily focused on identifying markers of chronic kidney disease (CKD) progression. Here, we aimed to determine urinary markers of CKD renal parenchymal injury through proteomics analysis in animal kidney tissues and cells and in the urine of patients with CKD. Label-free quantitative proteomics analysis based on liquid chromatography-tandem mass spectrometry was performed on urine samples obtained from 6 normal controls and 9, 11, and 10 patients with CKD stages 1, 3, and 5, respectively, and on kidney tissue samples from a rat CKD model by 5/6 nephrectomy. Tandem mass tag-based quantitative proteomics analysis was performed for glomerular endothelial cells (GECs) and proximal tubular epithelial cells (PTECs) before and after inducing 24-h hypoxia injury. Upon hierarchical clustering, out of 858 differentially expressed proteins (DEPs) in the urine of CKD patients, the levels of 416 decreased and 403 increased sequentially according to the disease stage, respectively. Among 2965 DEPs across 5/6 nephrectomized and sham-operated rat kidney tissues, 86 DEPs showed same expression patterns in the urine and kidney tissue. After cross-validation with two external animal proteome data sets, 38 DEPs were organized; only ten DEPs, including serotransferrin, gelsolin, poly ADP-ribose polymerase 1, neuroblast differentiation-associated protein AHNAK, microtubule-associated protein 4, galectin-1, protein S, thymosin beta-4, myristoylated alanine-rich C-kinase substrate, and vimentin, were finalized by screening human GECs and PTECs data. Among these ten potential candidates for universal CKD marker, validation analyses for protein S and galectin-1 were conducted. Galectin-1 was observed to have a significant inverse correlation with renal function as well as higher expression in glomerulus with chronic injury than protein S. This constitutes the first multisample proteomics study for identifying key renal-expressed proteins associated with CKD progression. The discovered proteins represent potential markers of chronic renal cell and tissue damage and candidate contributors to CKD pathophysiology.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Dohyun Han
- Proteomics Core Facility, Seoul National University Hospital, Seoul, Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jin Seon Jeong
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Jong Joo Moon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyun Kyung Moon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sunhwa Lee
- Department of Internal Medicine, Kangwon National University Hospital, Gangwon-Do, Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyung Don Yoo
- Department of Internal Medicine, Ulsan University Hospital, Ulsan, Korea
| | - Jae Wook Lee
- Nephrology Clinic, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Young Joo Kwon
- Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Hee Yang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea; Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
18
|
Kirkpatrick LD, Shupp JW, Smith RD, Alkhalil A, Moffatt LT, Carney BC. Galectin-1 production is elevated in hypertrophic scar. Wound Repair Regen 2020; 29:117-128. [PMID: 33073427 DOI: 10.1111/wrr.12869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/23/2022]
Abstract
Upon healing, burn wounds often leave hypertrophic scars (HTSs) marked by excess collagen deposition, dermal and epidermal thickening, hypervascularity, and an increased density of fibroblasts. The Galectins, a family of lectins with a conserved carbohydrate recognition domain, function intracellularly and extracellularly to mediate a multitude of biological processes including inflammatory responses, angiogenesis, cell migration and differentiation, and cell-ECM adhesion. Galectin-1 (Gal-1) has been associated with several fibrotic diseases and can induce keratinocyte and fibroblast proliferation, migration, and differentiation into fibroproliferative myofibroblasts. In this study, Gal-1 expression was assessed in human and porcine HTS. In a microarray, galectins 1, 4, and 12 were upregulated in pig HTS compared to normal skin (fold change = +3.58, +6.11, and +3.03, FDR <0.01). Confirmatory qRT-PCR demonstrated significant upregulation of Galectin-1 (LGALS1) transcription in HTS in both human and porcine tissues (fold change = +7.78 and +7.90, P <.05). In pig HTS, this upregulation was maintained throughout scar development and remodeling. Immunofluorescent staining of Gal-1 in human and porcine HTS showed significantly increased fluorescence (202.5 ± 58.2 vs 35.2 ± 21.0, P <.05 and 276.1 ± 12.7 vs 69.7 ± 25.9, P <.01) compared to normal skin and co-localization with smooth muscle actin-expressing myofibroblasts. A strong positive correlation (R = .948) was observed between LGALS1 and Collagen type 1 alpha 1 mRNA expression. Gal-1 is overexpressed in HTS at the mRNA and protein levels and may have a role in the development of scar phenotypes due to fibroblast over-proliferation, collagen secretion, and dermal thickening. The role of galectins shows promise for future study and may lead to the development of a pharmacotherapy for treatment of HTS.
Collapse
Affiliation(s)
- Liam D Kirkpatrick
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, District of Columbia, USA.,The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, District of Columbia, USA.,Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Robert D Smith
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
| | - Abdulnaser Alkhalil
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
19
|
Zhang Y, Zhu X, Qiao X, Sun L, Tian Y, Yang Y, Zhao Y, Liu C. FSIP2 can serve as a predictive biomarker for Clear Cell Renal Cell Carcinoma prognosis. Int J Med Sci 2020; 17:2819-2825. [PMID: 33162809 PMCID: PMC7645329 DOI: 10.7150/ijms.48971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose: To characterize the role of fibrous sheath interacting protein 2 (FSIP2) in the survival outcomes and prognosis of clear cell renal cell carcinoma (ccRCC) patients, which is currently not well understood. Methods: The Oncomine and CCLE databases were used to investigate the differential expression of FSIP2 in ccRCC versus other cancer types. Levels of FSIP2 in 85 ccRCC patients were assessed by immunohistochemical analysis; clinicopathological features related to FSIP2 expression were examined in these patients finally, disease-free survival and overall survival were estimated by survival analysis to elucidate the impact of FSIP2 expression in ccRCC patients. Results: Analysis using the Oncomine database revealed significant upregulation of the FSIP2 gene in papillary RCC, compared to that in normal tissues. Additionally, FSIP2 expression was found to be significantly associated with abnormal platelet count, positive distant metastasis, and death as the incidence of distant metastasis and death were higher in patients with FSIP2 expression compared to those without FSIP2 expression. Survival analysis revealed that FSIP2 expression was significantly related to shorter disease-free survival and overall survival. Meanwhile, patients with FSIP2 expression had worse prognosis than those without FSIP2 expression. Conclusions: FSIP2 expression is associated with poor survival outcomes and poor prognosis in ccRCC patients. FSIP2 may therefore serve as a potential predictive biomarker of ccRCC prognosis.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Axonemal Dyneins/analysis
- Axonemal Dyneins/genetics
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/mortality
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/surgery
- Cell Line, Tumor
- Disease-Free Survival
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Kidney/pathology
- Kidney/surgery
- Kidney Neoplasms/genetics
- Kidney Neoplasms/mortality
- Kidney Neoplasms/pathology
- Kidney Neoplasms/surgery
- Male
- Middle Aged
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Staging
- Nephrectomy
- Prognosis
- Retrospective Studies
- Seminal Plasma Proteins/analysis
- Seminal Plasma Proteins/genetics
- Young Adult
Collapse
Affiliation(s)
- Yixiao Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Xudong Zhu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Xinbo Qiao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Lisha Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Ye Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning Province, 110169, China
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning Province, 116023, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| |
Collapse
|
20
|
Nagl L, Horvath L, Pircher A, Wolf D. Tumor Endothelial Cells (TECs) as Potential Immune Directors of the Tumor Microenvironment - New Findings and Future Perspectives. Front Cell Dev Biol 2020; 8:766. [PMID: 32974337 PMCID: PMC7466447 DOI: 10.3389/fcell.2020.00766] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
The tumor microenvironment (TME) plays a central role in cancer development and progression. It represents a complex network of cancer cell (sub-)clones and a variety of stromal cell types. Recently, new technology platforms shed light on the cellular composition of the TME at very high resolution and identified a complex landscape of multi-lineage immune cells (e.g., T and B lymphocytes, myeloid cells, and dendritic cells), cancer associated fibroblasts (CAF) and tumor endothelial cells (TECs). A growing body of evidence suggests that metabolically, genetically and on their transcriptomic profile TECs exhibit unique phenotypic and functional characteristics when compared to normal endothelial cells (NECs). Furthermore, the functional role of TECs is multifaceted as they are not only relevant for promoting tumor angiogenesis but have also evolved as key mediators of immune regulation in the TME. Regulatory mechanisms are complex and profoundly impact peripheral immune cell trafficking into the tumor compartment by acting as major gatekeepers of cellular transmigration. Moreover, TECs are associated with T cell priming, activation and proliferation by acting as antigen-presenting cells themselves. TECs are also essential for the formation of tertiary lymphoid structures (TLS) within the tumor, which have recently been associated with treatment response to checkpoint antibody therapy. Further essential characteristics of TECs compared to NECs are their high proliferative potential as well as greatly altered gene expression profile (e.g., upregulation of pro-angiogenic, extracellular matrix remodeling, and stemness genes), which results in enhanced secretion of immunomodulatory cytokines and altered cell-surface receptors [e.g., major histocompatibility complex (MHC) and immune checkpoints]. The TEC phenotype may be rooted in an aggressive tumor micro-milieu based on cellular stress via hypoxia and reactive oxygen species (ROS). Vice versa TECs might modulate TME immunogenicity thereby fostering cancer-associated immune suppression. This review aims to elucidate the currently emergent pathophysiological aspects of TECs with a particular focus on their potential role as regulators of immune cell function in the TME. It is a main future challenge to deeply characterize the phenotypic and functional profile of TECs to illuminate their complex role within the TME. The ultimate goal is the identification of TEC-specific drug targets to improve cancer (immuno-)therapy.
Collapse
Affiliation(s)
- Laurenz Nagl
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Lena Horvath
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Pircher
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria.,Department of Oncology, Hematology, Rheumatology and Immunoncology, University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
21
|
Shih TC, Fan Y, Kiss S, Li X, Deng XN, Liu R, Chen XJ, Carney R, Chen A, Ghosh PM, Lam KS. Galectin-1 inhibition induces cell apoptosis through dual suppression of CXCR4 and Ras pathways in human malignant peripheral nerve sheath tumors. Neuro Oncol 2020; 21:1389-1400. [PMID: 31127849 DOI: 10.1093/neuonc/noz093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The Ras signaling pathway is commonly dysregulated in human malignant peripheral nerve sheath tumors (MPNSTs). It is well known that galectin-1 (Gal-1) is essential to stabilize membrane Ras and thereby induce the activation of Ras. However, the role of Gal-1 in MPNST progression remains unknown. The aim of this study was to examine whether Gal-1 knockdown could have an effect on the Ras signaling pathway. METHODS Cell viability, apoptosis assay, and colony formation were performed to examine the effects of inhibition of Gal-1 in MPNST cells. We used a human MPNST xenograft model to assess growth and metastasis inhibitory effects of Gal-1 inhibitor LLS2. RESULTS Gal-1 was upregulated in MPNST patients and was highly expressed in MPNST cells. Knockdown of Gal-1 by small interfering (si)RNA in Gal-1 expressing MPNST cells significantly reduces cell proliferation through the suppression of C-X-C chemokine receptor type 4 (CXCR4) and the rat sarcoma viral oncogene homolog (RAS)/extracellular signal-regulated kinase (ERK) pathway, which are important oncogenic signaling in MPNST development. Moreover, Gal-1 knockdown induces apoptosis and inhibits colony formation. LLS2, a novel Gal-1 allosteric small molecule inhibitor, is cytotoxic against MPNST cells and was able to induce apoptosis and suppress colony formation in MPNST cells. LLS2 treatment and Gal-1 knockdown exhibited similar effects on the suppression of CXCR4 and RAS/ERK pathways. More importantly, inhibition of Gal-1 expression or function by treatment with either siRNA or LLS2 resulted in significant tumor responses in an MPNST xenograft model. CONCLUSION Our results identified an oncogenic role of Gal-1 in MPNST and that its inhibitor, LLS2, is a potential therapeutic agent, applied topically or systemically, against MPNST.
Collapse
Affiliation(s)
- Tsung-Chieh Shih
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P R China
| | - Sophie Kiss
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Xiaojun Nicole Deng
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Xiao-Jia Chen
- Institute of Biomedicine & Cell Biology Department, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, and Guangdong Provincial Engineering Research Center of Biotechnological Medicine, Guangdong, Guangzhou, China
| | - Randy Carney
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Amanda Chen
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Paramita M Ghosh
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA.,Department of Urology, University of California Davis, Sacramento, California, USA.,VA Northern California Health Care System, Sacramento, California, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA.,UC Davis NCI Designated Comprehensive Cancer Center, University of California Davis, Sacramento, California, USA
| |
Collapse
|
22
|
Leung Z, Ko FCF, Tey SK, Kwong EML, Mao X, Liu BHM, Ma APY, Fung YME, Che CM, Wong DKH, Lai CL, Ng IOL, Yam JWP. Galectin-1 promotes hepatocellular carcinoma and the combined therapeutic effect of OTX008 galectin-1 inhibitor and sorafenib in tumor cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:423. [PMID: 31640796 PMCID: PMC6805403 DOI: 10.1186/s13046-019-1402-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022]
Abstract
Background Galectins are beta-galactose specific binding proteins. In human cancers, including hepatocellular carcinoma (HCC), galectin-1 (Gal-1) is often found to be overexpressed. In order to combat the dismal diagnosis and death rates of HCC, gene silencing and targeted inhibition of Gal-1 was investigated for its improved therapeutic potential. Methods Cellular and secretory Gal-1 levels were analyzed using HCC clinical samples. The study of Gal-1 was carried by both knockdown and overexpression approaches. The stable clones were tested by in vitro assays and in vivo experiments. Mass spectrometry was used to identify downstream targets of Gal-1. The upstream regulator of Gal-1, microRNA-22 (miR-22) was characterized by functional assays. The therapeutic effect of inhibiting Gal-1 was also analyzed. Results Gal-1 overexpression was observed in HCC and correlated with aggressive clinicopathological features and poorer survival. The loss of Gal-1 resulted in hindered cell migration, invasion and anchorage independent growth. This was also observed in the animal models, in that when Gal-1 was knocked down, there were fewer lung metastases. Proteomic profiling of control and Gal-1 knockdown cells identified that the level of retention in endoplasmic reticulum 1 (RER1) was suppressed when Gal-1 level was reduced. The cell motility of Gal-1 knockdown cells was enhanced upon the rescue of RER1 expression. In HCC tissues, Gal-1 and RER1 expressions displayed a significant positive correlation. The upstream regulator of Gal-1, miR-22 was observed to be underexpressed in HCC tissues and negatively correlated with Gal-1. Silencing of miR-22 resulted in the upregulation of Gal-1 and enhanced cell growth, migration and invasion. However, such enhancement was abolished in cells treated with OTX008, an inhibitor of Gal-1. Combinational treatment of OTX008 and sorafenib significantly reduced tumor growth and size. Conclusions Gal-1 overexpression was detected in HCC and this played a role in promoting tumorigenic processes and metastasis. The function of Gal-1 was found to be mediated through RER1. The correlations between miR-22, Gal-1 and RER1 expressions demonstrated the importance of miR-22 regulation on Gal-1/RER1 oncogenic activity. Lastly, the combinational treatment of OTX008 and sorafenib proved to be an improved therapeutic option compared to when administering sorafenib alone. Electronic supplementary material The online version of this article (10.1186/s13046-019-1402-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zoe Leung
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | | | - Sze Keong Tey
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | | | - Xiaowen Mao
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | | | - Angel Po Yee Ma
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Yi Man Eva Fung
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Chi-Ming Che
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Danny Ka Ho Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China
| | - Ching Lung Lai
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China
| | - Judy Wai Ping Yam
- Department of Pathology, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China. .,Department of Pathology, Block T, Queen Mary Hospital, Hong Kong, China.
| |
Collapse
|
23
|
Xie L, Wang Q, Dang Y, Ge L, Sun X, Li N, Han Y, Yan Z, Zhang L, Li Y, Zhang H, Guo X. OSkirc: a web tool for identifying prognostic biomarkers in kidney renal clear cell carcinoma. Future Oncol 2019; 15:3103-3110. [PMID: 31368353 DOI: 10.2217/fon-2019-0296] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To develop a free and quick analysis online tool that allows users to easily investigate the prognostic potencies of interesting genes in kidney renal clear cell carcinoma (KIRC). Patients & methods: A total of 629 KIRC cases with gene expression profiling data and clinical follow-up information are collected from public Gene Expression Omnibus and The Cancer Genome Atlas databases. Results: One web application called Online consensus Survival analysis for KIRC (OSkirc) that can be used for exploring the prognostic implications of interesting genes in KIRC was constructed. By OSkirc, users could simply input the gene symbol to receive the Kaplan-Meier survival plot with hazard ratio and log-rank p-value. Conclusion: OSkirc is extremely valuable for basic and translational researchers to screen and validate the prognostic potencies of genes for KIRC, publicly accessible at http://bioinfo.henu.edu.cn/KIRC/KIRCList.jsp.
Collapse
Affiliation(s)
- Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Qiang Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Yifang Dang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Linna Ge
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Xiaoxiao Sun
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Ning Li
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Yali Han
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Zhongyi Yan
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Lu Zhang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Yongqiang Li
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Haiyu Zhang
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| |
Collapse
|
24
|
Orang AV, Petersen J, McKinnon RA, Michael MZ. Micromanaging aerobic respiration and glycolysis in cancer cells. Mol Metab 2019; 23:98-126. [PMID: 30837197 PMCID: PMC6479761 DOI: 10.1016/j.molmet.2019.01.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cancer cells possess a common metabolic phenotype, rewiring their metabolic pathways from mitochondrial oxidative phosphorylation to aerobic glycolysis and anabolic circuits, to support the energetic and biosynthetic requirements of continuous proliferation and migration. While, over the past decade, molecular and cellular studies have clearly highlighted the association of oncogenes and tumor suppressors with cancer-associated glycolysis, more recent attention has focused on the role of microRNAs (miRNAs) in mediating this metabolic shift. Accumulating studies have connected aberrant expression of miRNAs with direct and indirect regulation of aerobic glycolysis and associated pathways. SCOPE OF REVIEW This review discusses the underlying mechanisms of metabolic reprogramming in cancer cells and provides arguments that the earlier paradigm of cancer glycolysis needs to be updated to a broader concept, which involves interconnecting biological pathways that include miRNA-mediated regulation of metabolism. For these reasons and in light of recent knowledge, we illustrate the relationships between metabolic pathways in cancer cells. We further summarize our current understanding of the interplay between miRNAs and these metabolic pathways. This review aims to highlight important metabolism-associated molecular components in the hunt for selective preventive and therapeutic treatments. MAJOR CONCLUSIONS Metabolism in cancer cells is influenced by driver mutations but is also regulated by posttranscriptional gene silencing. Understanding the nuanced regulation of gene expression in these cells and distinguishing rapid cellular responses from chronic adaptive mechanisms provides a basis for rational drug design and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ayla V Orang
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Ross A McKinnon
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| |
Collapse
|
25
|
Huang MY, He JP, Zhang WQ, Liu JL. Pooling analysis reveals that galectin-1 is a reliable prognostic biomarker in various cancers. J Cell Physiol 2019; 234:13788-13798. [PMID: 30618160 DOI: 10.1002/jcp.28059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/07/2018] [Indexed: 12/15/2022]
Abstract
Galectin-1 is reported to be upregulated in various human cancers. However, the relationship between galectin-1 expression and cancer prognosis has not been systematically assessed. In this study, we searched PubMed, Web of Science, and Embase to collect all relevant studies and a meta-analysis was performed. We found that increased galectin-1 expression was associated with tumor size (odds ratio [OR] = 1.75; 95% confidence interval [CI]: 1.06-2.89; p = 0.029), clinical stage (OR = 3.89; 95% CI: 2.40-6.31; p < 0.001), and poorer differentiation (OR = 1.39; 95% CI: 1.14-1.69; p = 0.001), but not with age (OR = 1.07; 95% CI: 0.82-1.39; p = 0.597), sex (OR = 0.89; 95% CI: 0.74-1.07; p = 0.202), or lymph node metastasis (OR = 2.57; 95% CI: 0.98-6.78; p = 0.056). In addition, we found that high galectin-1 expression levels were associated with poor overall survival (HR = 2.12; 95% CI: 1.71-2.64; p < 0.001). The results were further validated using The Cancer Genome Atlas data set. Moreover, high galectin-1 expression was significantly associated with disease-free survival (hazard ratio [HR] = 1.60; 95% CI: 1.17-2.19; p = 0.003), progression-free survival (HR = 1.93; 95% CI: 1.65-2.25; p < 0.001), and cancer-specific survival (HR = 1.82; 95% CI: 1.30-2.55; p < 0.001). Our meta-analysis demonstrated that galectin-1 might be a useful common biomarker for predicting prognosis in patients with cancer.
Collapse
Affiliation(s)
- Ming-Yu Huang
- Department of Anatomy and Histology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jia-Peng He
- Department of Anatomy and Histology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen-Qian Zhang
- Department of Anatomy and Histology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ji-Long Liu
- Department of Anatomy and Histology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
26
|
Mathia S, Rudigier LJ, Kasim M, Kirschner KM, Persson PB, Eckardt KU, Rosenberger C, Fähling M. A dual role of miR-22 in rhabdomyolysis-induced acute kidney injury. Acta Physiol (Oxf) 2018; 224:e13102. [PMID: 29791781 DOI: 10.1111/apha.13102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022]
Abstract
AIM In acute kidney injury (AKI), regions of the kidney are hypoxic. However, for reasons yet unknown, adaptation to hypoxia through hypoxia-inducible factor (HIF) is limited. Here, we studied miR-22, a potential HIF repressor, in normal kidneys, as well as in rhabdomyolysis-induced AKI, a condition where miR-22 is up-regulated. METHODS AKI in mice was provoked by IM injection of glycerol. Tissue homogenates were processed to determine the levels of candidate RNAs and proteins, as well as global gene expression profiles. Reporter assays quantified in vitro miR-22 activity and its modulation by mimic or inhibitor molecules, under normoxia or hypoxia (1% O2 ) respectively. In vivo, anti-miR-22 molecules were applied to normal mice or prior to induction of AKI. Renal outcome was assessed by measuring plasma creatinine, plasma urea and the levels of the injury markers Kim-1 and Ngal. RESULTS Renal miR-22 is inducible by hypoxia and represses hypoxia-inducible factor (HIF). Specific inhibition of miR-22 regulates 1913 gene transcripts in kidneys controls and 3386 in AKI, many of which are involved in development or carcinogenesis. Specific inhibition of miR-22 up-regulates tissue protective HIF target genes, yet renal function and injury markers are unchanged or worsened. CONCLUSIONS miR-22 is a HIF repressor constitutively expressed in the adult kidney and up-regulated in AKI. Specific inhibition of miR-22 is efficient in vivo and profoundly affects renal gene expression in health and disease, including up-regulation of HIF. However, the net effect on rhabdomyolysis-induced AKI outcome is neutral or even negative.
Collapse
Affiliation(s)
- S. Mathia
- Department of Vegetative Physiology; Charité - Universitätsmedizin Berlin; Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Germany
- Department of Nephrology and Medical Intensive Care; Charité - Universitätsmedizin Berlin; Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Germany
| | - L. J. Rudigier
- Department of Biology; Humboldt-Universität zu Berlin; Berlin Germany
| | - M. Kasim
- Department of Vegetative Physiology; Charité - Universitätsmedizin Berlin; Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Germany
| | - K. M. Kirschner
- Department of Vegetative Physiology; Charité - Universitätsmedizin Berlin; Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Germany
| | - P. B. Persson
- Department of Vegetative Physiology; Charité - Universitätsmedizin Berlin; Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Germany
| | - K.-U. Eckardt
- Department of Nephrology and Medical Intensive Care; Charité - Universitätsmedizin Berlin; Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Germany
| | - C. Rosenberger
- Department of Nephrology and Medical Intensive Care; Charité - Universitätsmedizin Berlin; Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Germany
| | - M. Fähling
- Department of Vegetative Physiology; Charité - Universitätsmedizin Berlin; Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Germany
| |
Collapse
|
27
|
Shih TC, Liu R, Wu CT, Li X, Xiao W, Deng X, Kiss S, Wang T, Chen XJ, Carney R, Kung HJ, Duan Y, Ghosh PM, Lam KS. Targeting Galectin-1 Impairs Castration-Resistant Prostate Cancer Progression and Invasion. Clin Cancer Res 2018; 24:4319-4331. [PMID: 29666302 PMCID: PMC6125207 DOI: 10.1158/1078-0432.ccr-18-0157] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Abstract
Purpose: The majority of patients with prostate cancer who are treated with androgen-deprivation therapy (ADT) will eventually develop fatal metastatic castration-resistant prostate cancer (mCRPC). Currently, there are no effective durable therapies for patients with mCRPC. High expression of galectin-1 (Gal-1) is associated with prostate cancer progression and poor clinical outcome. The role of Gal-1 in tumor progression is largely unknown. Here, we characterized Gal-1 functions and evaluated the therapeutic effects of a newly developed Gal-1 inhibitor, LLS30, in mCRPC.Experimental Design: Cell viability, colony formation, migration, and invasion assays were performed to examine the effects of inhibition of Gal-1 in CRPC cells. We used two human CRPC xenograft models to assess growth-inhibitory effects of LLS30. Genome-wide gene expression analysis was conducted to elucidate the effects of LLS30 on metastatic PC3 cells.Results: Gal-1 was highly expressed in CRPC cells, but not in androgen-sensitive cells. Gal-1 knockdown significantly inhibited CRPC cells' growth, anchorage-independent growth, migration, and invasion through the suppression of androgen receptor (AR) and Akt signaling. LLS30 targets Gal-1 as an allosteric inhibitor and decreases Gal-1-binding affinity to its binding partners. LLS30 showed in vivo efficacy in both AR-positive and AR-negative xenograft models. LLS30 not only can potentiate the antitumor effect of docetaxel to cause complete regression of tumors, but can also effectively inhibit the invasion and metastasis of prostate cancer cells in vivoConclusions: Our study provides evidence that Gal-1 is an important target for mCRPC therapy, and LLS30 is a promising small-molecule compound that can potentially overcome mCRPC. Clin Cancer Res; 24(17); 4319-31. ©2018 AACR.
Collapse
Affiliation(s)
- Tsung-Chieh Shih
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California.
| | - Chun-Te Wu
- Department of Urology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Xiaojun Deng
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Sophie Kiss
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Ting Wang
- Genome Center, University of California, Davis, Davis, California
| | - Xiao-Jia Chen
- Institute of Biomedicine & Cell Biology Department, Jinan University, Guangzhou, China
- National Engineering Research Center of Genetic Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
- Guangdong Provincial Engineering Research Center of Biotechnological Medicine, Guangdong, Guangzhou, China
| | - Randy Carney
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Hsing-Jien Kung
- The Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Yong Duan
- Genome Center, University of California, Davis, Davis, California
| | - Paramita M Ghosh
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
- Department of Urology, School of Medicine, University of California, Davis, Sacramento, California
- Veterans Affairs Northern California Health Care System-Mather, Mather, California
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California.
- UC Davis NCI-designated Comprehensive Cancer Center, University of California, Davis, Sacramento, California
| |
Collapse
|
28
|
Sandberg TP, Oosting J, van Pelt GW, Mesker WE, Tollenaar RAEM, Morreau H. Molecular profiling of colorectal tumors stratified by the histological tumor-stroma ratio - Increased expression of galectin-1 in tumors with high stromal content. Oncotarget 2018; 9:31502-31515. [PMID: 30140386 PMCID: PMC6101138 DOI: 10.18632/oncotarget.25845] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is a dominant determinant of cancer cell behavior. Reactive tumor stroma is associated with poor outcome perspective. The tumor-stroma ratio (TSR) is a strong independent prognostic factor in colorectal cancer and is easily assessed using conventional hematoxylin and eosin (H&E) stained paraffin sections at the invasive margin of the tumor. We aim to understand the biology of the tumor stroma in colorectal cancer by investigating the transcriptomic profiles of tumors classified by the TSR method. The TSR was assessed in a cohort of 71 colorectal cancer patients undergoing surgery without (neo)adjuvant therapy. In the cohort, stroma-high tumors were distinguished from stroma-low tumors at gene expression level in the upregulation of biological pathways related to extracellular matrix (ECM) remodeling and myogenesis. The activated microenvironment in stroma-high tumors overexpressed different types of collagen genes, THBS2 and 4 as well as INHBA, COX71A and LGALS1/galectin-1. The upregulation of THBS2, COX7A1 and LGALS1/galectin-1. The upregulation of THBS2, COX7A1 and LGALS1/galectin-1 in stroma-high tumors was validated in The Cancer Genome Atlas. In conclusion, the gene expression data reflects the high stromal content of tumors assessed based on the histological method, the TSR. The composition of the microenvironment suggests an altered proteolysis resulting in ECM remodeling and invasive capacity of tumor cells.
Collapse
Affiliation(s)
- Tessa P Sandberg
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jan Oosting
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gabi W van Pelt
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Wilma E Mesker
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
29
|
Aboulhagag NA, El-Deek HEM, Sherif MF. Expression of galectin-1 and galectin-3 in renal cell carcinoma; immunohistochemical study. Ann Diagn Pathol 2018; 36:31-37. [PMID: 30055522 DOI: 10.1016/j.anndiagpath.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/18/2018] [Accepted: 06/20/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND AIMS Galectins comprise a large family of calcium independent lectins. Galectin-1 and galectin-3 contribute to neoplastic transformation, angiogenesis, and tumor metastasis in some cancers. This study aimed at studying the immunohistochemical expression of both galectin-1 and galectin-3 in renal cell carcinoma (RCC) variants and detecting the possible association of galectins with various clinicopathological parameters. MATERIALS AND METHODS Sections from 67 formalin-fixed paraffin-embedded tissue blocks of RCC variants were stained with galectin-1 and galectin-3. Expression was assessed in tumor tissue and adjacent renal parenchyma and was correlated with clinicopathological criteria. RESULTS In apparently normal renal parenchyma adjacent to tumor tissue, galectin-1 was expressed in 27 (40.2%) of specimens in renal tubules and glomeruli, while 34 (50.7%) of specimens showed galectin-3 expression in renal tubules sparing glomeruli. In tumor tissue, galectin-1 showed high expression in 47 (70.1%) and low expression in 20 (29.9%) of specimens. Galectin-3 had high expression in 15 (22.4%) and low expression in 52 (77.6%) of specimens. Significant association was detected between expression of galectin-1 and galectin-3 and the type of RCC (P = 0.032) and (P = 0.006), respectively. Significant inverse association was detected between the expression of galectin-3 and the presence of tumor haemorrhage and necrosis (P = 0.014) and (P = 0.039), respectively. CONCLUSION Galectin-1 and galectin-3 are overexpressed in RCC with different percentage in different subtypes. Galactin-1expression is more in tumor tissue than surrounding renal parenchyma suggesting that it has a carcinogenic role. Galectin-1 and galectin-3 overexpression in chromophobe RCC suggests that they may have diagnostic role.
Collapse
Affiliation(s)
- Noha A Aboulhagag
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Heba E M El-Deek
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud F Sherif
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
30
|
Wang X, Zhang J, Wang Y, Tu M, Wang Y, Shi G. Upregulated VEGFA and DLL4 act as potential prognostic genes for clear cell renal cell carcinoma. Onco Targets Ther 2018; 11:1697-1706. [PMID: 29618931 PMCID: PMC5875410 DOI: 10.2147/ott.s150565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose As a typical hypervascular tumor, clear cell renal cell carcinoma (ccRCC) is the most common type of RCC. This study was aimed to explore the prognostic genes for ccRCC, focusing on the roles of vascular endothelial growth factor A (VEGFA) and Delta-like ligand 4 (DLL4) in the disease. Materials and methods The mRNA-sequencing data of kidney renal clear cell carcinoma (KIRC) were obtained from The Cancer Genome Atlas (TCGA) database, including 469 tumor samples and 68 adjacent normal samples. Using limma package, differentially expressed genes (DEGs) were analyzed by differential expression and subgroup analyses and confirmed using validation dataset GSE53757. Followed by enrichment analysis, protein–protein interaction (PPI) network analysis and protein subcellular localization were performed using multifaceted analysis tool for human transcriptome tool, and Cytoscape software and InnateDB database, respectively. Moreover, survival analysis was conducted to identify key prognosis-associated genes. In addition, VEGFA and DLL4 levels were detected using real-time quantitative PCR (qRT-PCR). Results A total of 1,984 DEGs were screened in the KIRC tumor samples. VEGFA was located in extracellular space and could interact with placental growth factor (PGF) and angiopoietin 2 (ANGPT2) in the PPI network. Subgroup analysis suggested that VEGFA was significantly upregulated in stages I, II, and III ccRCC tumor samples. Survival analysis showed that TIMP1 was among the top four prognosis-associated genes. qRT-PCR analysis confirmed that the expression levels of DLL4 and VEGFA were significantly upregulated in tumor samples. Conclusion VEGFA and DLL4 might be prognostic genes for ccRCC. Besides, PGF, ANGPT2, and TIMP1 might also be related to the prognosis of ccRCC patients.
Collapse
Affiliation(s)
- Xilong Wang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yangyun Wang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Minqi Tu
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Ying Wang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Guowei Shi
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Su Y, Wang W, Xu Y, Liangjun W, Wang Y, Li C, Teng L. Clinicopathological significance of galectin-1 expression and percentage of galectin-1-expressing T cells in clear-cell renal cell carcinoma. Can Urol Assoc J 2018; 12:E243-E249. [PMID: 29629865 DOI: 10.5489/cuaj.4573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION This study investigates the clinical significance of galectin-1 expression in carcinoma tissues, plasma, and lymphocytes of patients with clear-cell renal cell carcinoma (RCC). METHODS Galectin-1 expression was investigated, using immunohistochemistry, in 91 clear-cell RCC tissue sections, five angioleiolipomas tissue sections, and three oncocytomas tissue sections. As controls, normal tissue sections adjacent to each tumour and six benign renal tumour sections were examined. Plasma galectin-1 levels as measured by ELISA were compared in 39 patients. Proportions of galectin-1 expressing CD4+ and galectin-1 expressing CD8+ T lymphocytes in peripheral blood of these patients were detected by flow cytometry. RESULTS The positive expression rate of galetin-1 in 91 clear-cell RCC tissues sections by immunohistochemistry was 87 (95.6%), with weak expression rate of 35.2 (32/91), moderate expression rate of 51.6% (47/91), and strong expression rate of 13.2% (12/91); whereas 25% (2/8) of renal benign tumour sections showed weak galectin-1 expression, 91.2% (83/91) of non-tumor tissues adjacent to carcinomas had negative expression of galectin-1, and another six (75%) renal benign tumour sections had negative galectin-1 expression. Plasma galectin-1 levels between patients with clear-cell RCC and with benign tumours were not significantly difference (p>0.05). In patients with clear-cell RCC, we found a significantly higher proportion of galectin-1-expressing CD4+ lymphocytes (p<0.05) and galectin-1-expressing CD8+ lymphocytes (p<0.05) than in patients with benign tumours. Moreover, the level of galectin-1 expression was positively associated with stage and Fuhrman grade of clear-cell RCC. CONCLUSIONS Our results suggest that high level of galectin-1 expression in clear-cell RCC tissues may be a useful marker for clear-cell RCC. Our findings also reveal a new clinical significance of galectin-1 - that high proportions of galectin-1-expressing CD4+ and CD8+ lymphocytes were positively associated with poor clinicopathological features.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Laboratory; Harbin Medical University Cancer Hospital, Harbin City, China
| | - Wentao Wang
- Department of Urology; Harbin Medical University Cancer Hospital, Harbin City, China
| | - Yongpeng Xu
- Department of Urology; Harbin Medical University Cancer Hospital, Harbin City, China
| | - Wei Liangjun
- Department of Urology; Harbin Medical University Cancer Hospital, Harbin City, China
| | - Yanjie Wang
- Department of Urology; Harbin Medical University Cancer Hospital, Harbin City, China
| | - Changfu Li
- Department of Urology; Harbin Medical University Cancer Hospital, Harbin City, China
| | - Lichen Teng
- Department of Urology; Harbin Medical University Cancer Hospital, Harbin City, China
| |
Collapse
|
32
|
Elola MT, Ferragut F, Méndez-Huergo SP, Croci DO, Bracalente C, Rabinovich GA. Galectins: Multitask signaling molecules linking fibroblast, endothelial and immune cell programs in the tumor microenvironment. Cell Immunol 2018; 333:34-45. [PMID: 29602445 DOI: 10.1016/j.cellimm.2018.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Tumor cells corrupt surrounding normal cells instructing them to support proliferative, pro-angiogenic and immunosuppressive networks that favor tumorigenesis and metastasis. This dynamic cross-talk is sustained by a range of intracellular signals and extracellular mediators produced by both tumoral and non-tumoral cells. Galectins -whether secreted or intracellularly expressed- play central roles in the tumorigenic process by delivering regulatory signals that contribute to reprogram fibroblasts, endothelial and immune cell programs. Through glycosylation-dependent or independent mechanisms, these endogenous lectins control a variety of cellular events leading to tumor cell proliferation, survival, migration, inflammation, angiogenesis and immune escape. Here we discuss the role of galectin-driven pathways, particularly those activated in non-tumoral stromal cells, in modulating tumor progression.
Collapse
Affiliation(s)
- María T Elola
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113 Ciudad de Buenos Aires, Argentina.
| | - Fátima Ferragut
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113 Ciudad de Buenos Aires, Argentina
| | - Santiago P Méndez-Huergo
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Diego O Croci
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428 Ciudad de Buenos Aires, Argentina; Laboratorio de Inmunopatología. Instituto de Histología y Embriología "Dr. Marío H. Burgos" (IHEM), Universidad Nacional de Cuyo, CONICET, Facultad de Exactas y Naturales, C5500 Mendoza, Argentina
| | - Candelaria Bracalente
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113 Ciudad de Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428 Ciudad de Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, C1428 Ciudad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
33
|
You Y, Tan JX, Dai HS, Chen HW, Xu XJ, Yang AG, Zhang YJ, Bai LH, Bie P. MiRNA-22 inhibits oncogene galectin-1 in hepatocellular carcinoma. Oncotarget 2018; 7:57099-57116. [PMID: 27494859 PMCID: PMC5302976 DOI: 10.18632/oncotarget.10981] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/10/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatic stellate cells (HSCs) induce immune privilege and promote hepatocellular carcinoma (HCC) by suppressing the immune system. On the other hand, galectin-1 and miRNA-22 (miR-22) are dysregulated in HCC and serve as prognostic indicators for patients. In this study, therefore, we measured galectin-1 and miR-22 expression in HSCs isolated from HCC tissues (Ca-HSCs), and in normal liver tissues (N-HSCs) as a control. We also investigated the apoptosis rate among T cells and the production of cytokines (IFN-η and IL-10) in HSCs co-cultured with T cells. And we used immunohistochemical staining to tested for correlation between galectin-1 expression, CD3 expression and clinicopathological features in 162 HCC patients. Our results showed that galectin-1 expression was much higher in Ca-HSCs than in N-HSCs. Overexpression of galectin-1 promoted HSC-induced T cell apoptosis and cytokine production (IFN-η and IL-10), while miR-22 expression inhibited it. Galectin-1 expression correlated negatively with miR-22 expression in HSCs. High galectin-1 and low CD3 expression levels were associated with poor prognosis in HCC patients. These results suggest that the immunosuppressive microenvironment promoted by HSC-derived galectin-1 in HCC can be inhibited by miR-22. Galectin-1 and miR-22 could potentially serve as prognostic markers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Yu You
- Department of Hepatobiliary Surgery Institute, South Western Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jia-Xin Tan
- Department of Hepatobiliary Surgery Institute, South Western Hospital, Third Military Medical University, Chongqing 400038, China
| | - Hai-Su Dai
- Department of Hepatobiliary Surgery Institute, South Western Hospital, Third Military Medical University, Chongqing 400038, China
| | - Hao-Wei Chen
- Department of Hepatobiliary Surgery Institute, South Western Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xue-Jun Xu
- Department of Hepatobiliary Surgery Institute, South Western Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ai-Gang Yang
- Department of Hepatobiliary Surgery Institute, South Western Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yu-Jun Zhang
- Department of Hepatobiliary Surgery Institute, South Western Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lian-Hua Bai
- Department of Hepatobiliary Surgery Institute, South Western Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ping Bie
- Department of Hepatobiliary Surgery Institute, South Western Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
34
|
Wang J, Liu Y, Yang Y, Xu Z, Zhang G, Liu Z, Fu H, Wang Z, Liu H, Xu J. High expression of galectin-7 associates with poor overall survival in patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget 2018; 7:41986-41995. [PMID: 27259255 PMCID: PMC5173110 DOI: 10.18632/oncotarget.9749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/23/2016] [Indexed: 12/29/2022] Open
Abstract
Background Galectin-7, has a controversial role in tumor progression, can either suppress tumor growth or induce chemoresistance depends on different tumor histology types. The aim was to appraise Galectin-7 expression on the overall survival (OS) of patients with non-metastatic clear cell renal cell carcinoma (ccRCC) following surgery. Results High galectin-7 expression was specifically correlated with necrosis (P = 0.015). Multivariate analysis confirmed galectin-7 as an independent prognosticator for OS (P = 0.005). High galectin-7 expression suggested poor OS (P < 0.001), particularly with UISS intermediate and high score groups. Notably, the predictive accuracy of the traditional prognostic scores was improved when combined with galectin-7 expression. Materials and Methods We retrospectively enrolled 416 patients who underwent nephrectomy at a single institute between 2008 and 2009 and detected their intratumor galectin-7 expression by immunohistochemistry. Kaplan-Meier method was conducted to plot survival curves and multivariate cox regression analysis for potential independent prognostic factors on OS. A nomogram was constructed with concordance index (C-index) and Akaike's Information Criteria (AIC) to appraise prognostic accuracy of different models. Conclusions High galectin-7 expression is an independent adverse predictor for survival. Evaluation of galectin-7 could help guide postsurgical management for non-metastatic ccRCC patients.
Collapse
Affiliation(s)
- Jieti Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yidong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuanfeng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiying Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Guodong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zheng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hangcheng Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zewei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Haiou Liu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
35
|
Wang P, Liu XM, Ding L, Zhang XJ, Ma ZL. mTOR signaling-related MicroRNAs and Cancer involvement. J Cancer 2018; 9:667-673. [PMID: 29556324 PMCID: PMC5858488 DOI: 10.7150/jca.22119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of single-stranded RNAs, 18-23 nucleotides in length that regulate gene expression at the post-transcriptional level. Dysregulation of miRNAs has been closely associated with the development of cancer. In the process of tumorigenesis, mammalian target of rapamycin (mTOR) plays important roles, and the mTOR signaling pathway is aberrant in various types of human cancers, including non-small cell lung cancer (NSCLC), breast cancer, prostate cancer, as well as others. However, the relationship between miRNAs and the mTOR signaling pathway is indistinct. Herein, we not only summarize the progress of miRNAs and the mTOR signaling pathway in cancers, but also highlight their role in the diagnosis and treatment in the clinic.
Collapse
Affiliation(s)
- Ping Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiao-Min Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China.,School of Environmental Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Lei Ding
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xin-Ju Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhong-Liang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
36
|
Renal Cell Carcinoma: Molecular Aspects. Indian J Clin Biochem 2017; 33:246-254. [PMID: 30072823 DOI: 10.1007/s12291-017-0713-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/06/2017] [Indexed: 12/29/2022]
Abstract
Renal cell carcinoma is the most common form of the kidney cancer accounting for more than 85% of the cases of which clear cell renal cell carcinoma (ccRCC) is the major histological subtype. The central molecular signature for ccRCC pathogenesis is the biallelic inactivation of VHL gene due to the presence of mutations/hyper-methylation/complete gene loss, which results in the downstream HIF activation. These events lead to increased tyrosine kinase receptor signalling pathways (RAS/MEK/ERK pathway, PI3K/AKT/mTOR pathway and NF-κB pathway), which through their downstream effector proteins causes the cell to proliferate and migrate. Recent studies have shown that VHL inactivation alone is not sufficient to induce the tumor. Mutations in numerous other genes that codes for chromatin modifiers (PBRM1, SETD2 and BAP1) and signalling proteins (PTEN and mTOR) have been identified along with activation of alternate signalling pathways like STAT and Sonic Hedgehog (SHH) pathway. It has also been shown that STAT pathway also works cooperatively with HIF to enhance the tumor progression. However, SHH pathway reactivation resulted in tumor regardless of the VHL status, indicating the complex nature of the tumor at the molecular level. Therefore, understanding the complete aetiology of ccRCC is important for future therapeutics.
Collapse
|
37
|
Miranda A, Blanco-Prieto M, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part I: Molecular pathways and novel treatment approaches. Int J Pharm 2017; 531:372-388. [PMID: 28755993 DOI: 10.1016/j.ijpharm.2017.07.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumour, and the most aggressive in nature. The prognosis for patients with GBM remains poor, with a median survival time of only 1-2 years. The treatment failure relies on the development of resistance by tumour cells and the difficulty of ensuring that drugs effectively cross the dual blood brain barrier/blood brain tumour barrier. The advanced molecular and genetic knowledge has allowed to identify the mechanisms responsible for temozolomide resistance, which represents the standard of care in GBM, along with surgical resection and radiotherapy. Such resistance has motivated the researchers to investigate new avenues for GBM treatment intended to improve patient survival. In this review, we provide an overview of major obstacles to effective treatment of GBM, encompassing biological barriers, cancer stem cells, DNA repair mechanisms, deregulated signalling pathways and autophagy. New insights and potential therapy approaches for GBM are also discussed, emphasizing localized chemotherapy delivered directly to the brain, immunotherapy, gene therapy and nanoparticle-mediated brain drug delivery.
Collapse
Affiliation(s)
- Ana Miranda
- Faculty of Pharmacy, University of Coimbra, Portugal; Pharmacometrics Group of the Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Portugal
| | - María Blanco-Prieto
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Spain
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Portugal; Pharmacometrics Group of the Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Portugal; Pharmacometrics Group of the Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Portugal.
| |
Collapse
|
38
|
Glasgow CG, Pacheco-Rodriguez G, Steagall WK, Haughey ME, Julien-Williams PA, Stylianou MP, Gochuico BR, Moss J. CA-125 in Disease Progression and Treatment of Lymphangioleiomyomatosis. Chest 2017; 153:339-348. [PMID: 28576630 DOI: 10.1016/j.chest.2017.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/24/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lymphangioleiomyomatosis (LAM) is a destructive lung disease of women caused by proliferation of neoplastic-like LAM cells, with mutations in the TSC1/2 tumor suppressor genes. Based on case reports, levels of cancer antigen 125 (CA-125), an ovarian cancer biomarker, can be elevated in patients with LAM. We hypothesized that elevated serum CA-125 levels seen in some patients with LAM were due to LAM, not other malignancies, and might respond to sirolimus treatment. METHODS Serum CA-125 levels were measured for 241 patients at each visit. Medical records were reviewed for co-morbidities, disease progression, and response to sirolimus treatment. CA-125 expression in LAM cells was determined by using immunohistochemical analysis. RESULTS Almost 25% of patients with LAM had at least one elevated serum CA-125 measurement. Higher serum CA-125 levels correlated with lower FEV1, premenopausal status, and pleural effusion in a multivariate model (each P < .001). Serum CA-125 levels decreased following sirolimus treatment (P = .002). CA-125 and α-smooth muscle actin were co-expressed in LAM lung nodules. CONCLUSIONS Higher serum CA-125 levels were associated with pleural effusions and reduced pulmonary function and were decreased with sirolimus therapy. LAM cells express CA-125. Some elevated serum CA-125 levels may reflect serosal membrane involvement.
Collapse
Affiliation(s)
- Connie G Glasgow
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Gustavo Pacheco-Rodriguez
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Wendy K Steagall
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mary E Haughey
- Office of the Clinical Director, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Patricia A Julien-Williams
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mario P Stylianou
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
39
|
Shih TC, Liu R, Fung G, Bhardwaj G, Ghosh PM, Lam KS. A Novel Galectin-1 Inhibitor Discovered through One-Bead Two-Compound Library Potentiates the Antitumor Effects of Paclitaxel in vivo. Mol Cancer Ther 2017; 16:1212-1223. [PMID: 28396365 DOI: 10.1158/1535-7163.mct-16-0690] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/16/2016] [Accepted: 04/03/2017] [Indexed: 01/03/2023]
Abstract
Through the one-bead two-compound (OB2C) ultra-high-throughput screening method, we discovered a new small-molecule compound LLS2 that can kill a variety of cancer cells. Pull-down assay and LC/MS-MS indicated that galectin-1 is the target protein of LLS2. Galectin-1 is known to be involved in the regulation of proliferation, apoptosis, cell cycle, and angiogenesis. Binding of LLS2 to galectin-1 decreased membrane-associated H-Ras and K-Ras and contributed to the suppression of pErk pathway. Importantly, combination of LLS2 with paclitaxel (a very important clinical chemotherapeutic agent) was found to exhibit synergistic activity against several human cancer cell lines (ovarian cancer, pancreatic cancer, and breast cancer cells) in vitro Furthermore, in vivo therapeutic study indicated that combination treatment with paclitaxel and LLS2 significantly inhibits the growth of ovarian cancer xenografts in athymic mice. Our results presented here indicate that the OB2C combinatorial technology is a highly efficient drug screening platform, and LLS2 discovered through this method can be further optimized for anticancer drug development. Mol Cancer Ther; 16(7); 1212-23. ©2017 AACR.
Collapse
Affiliation(s)
- Tsung-Chieh Shih
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California.
| | - Gabriel Fung
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California
| | - Gaurav Bhardwaj
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Paramita M Ghosh
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California.,Department of Urology, University of California Davis, Sacramento, California.,VA Northern California Health Care System, Sacramento, California
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California.
| |
Collapse
|
40
|
Hornung Á, Monostori É, Kovács L. Systemic lupus erythematosus in the light of the regulatory effects of galectin-1 on T-cell function. Lupus 2017; 26:339-347. [PMID: 28100106 DOI: 10.1177/0961203316686846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Galectin-1 is an endogenous immunoregulatory lectin-type protein. Its most important effects are the inhibition of the differentiation and cytokine production of Th1 and Th17 cells, and the induction of apoptosis of activated T-cells. Galectin-1 has been identified as a key molecule in antitumor immune surveillance, and data are accumulating about the pathogenic role of its deficiency, and the beneficial effects of its administration in various autoimmune disease models. Initial animal and human studies strongly suggest deficiencies in both galectin-1 production and responsiveness in systemic lupus erythematosus (SLE) T-cells. Since lupus features widespread abnormalities in T-cell activation, differentiation and viability, in this review the authors wished to highlight potential points in T-cell signalling processes that may be influenced by galectin-1. These points include GM-1 ganglioside-mediated lipid raft aggregation, early activation signalling steps involving p56Lck, the exchange of the CD3 ζ-ZAP-70 to the FcRγ-Syk pathway, defective mitogen-activated protein kinase pathway activation, impaired regulatory T-cell function, the failure to suppress the activity of interleukin 17 (IL-17) producing T-cells, and decreased suppression of the PI3K-mTOR pathway by phosphatase and tensin homolog (PTEN). These findings place galectin-1 into the group of potential pathogenic molecules in SLE.
Collapse
Affiliation(s)
- Á Hornung
- 1 Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,2 Department of Rheumatology and Immunology, University of Szeged, Faculty of Medicine, Albert Szent-Györgyi Health Centre, Szeged, Hungary
| | - É Monostori
- 1 Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - L Kovács
- 2 Department of Rheumatology and Immunology, University of Szeged, Faculty of Medicine, Albert Szent-Györgyi Health Centre, Szeged, Hungary
| |
Collapse
|
41
|
Mengke NS, Hu B, Han QP, Deng YY, Fang M, Xie D, Li A, Zeng HK. Rapamycin inhibits lipopolysaccharide-induced neuroinflammation in vitro and in vivo. Mol Med Rep 2016; 14:4957-4966. [PMID: 27779711 PMCID: PMC5355655 DOI: 10.3892/mmr.2016.5883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 07/08/2016] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of progressive neurodegenerative disorder, and is responsible for the most common form of dementia in the elderly. Inflammation occurs in the brains of patients with AD, and is critical for disease progression. In the present study, the effects of rapamycin (RAPA) on neuroinflammation lipopolysaccharide (LPS)-induced were investigated. SH-SY5Y human neuroblastoma cells were treated with 20 µg/ml LPS and 0.1, 1 or 10 nmol/l RAPA, and were analyzed at various time points (6, 12 and 24 h). The mRNA expression levels of interleukin (IL) 1β, IL6 and hypoxia-inducible factor 1α (HIF1α) were determined using reverse transcription-quantitative polymerase chain reaction. The protein expression levels of phosphorylated (p-)S6, p-nuclear factor κB (NFκB), p-inhibitor of NFκB kinase subunit β (IKKβ) and p-tau protein were measured by western blot analysis. p-IKKβ, p-NFκB, p-S6 and p-tau were significantly decreased at 6, 12 and 24 h when cells were treated with ≥0.1 nmol/ml RAPA. In addition, female Sprague Dawley rats were intracranially injected with a single dose of 100 µg/kg LPS in the absence or presence of 1 mg/kg RAPA pretreatment. Brain tissues were subjected to immunohistochemical analysis 6–24 h later, which revealed that the expression levels of HIF1α and p-S6 in rat cerebral cortex were increased following LPS injection; however, this increase was abrogated by RAPA treatment. RAPA may therefore be considered a potential therapeutic agent for the early or emergency treatment of neuroinflammation.
Collapse
Affiliation(s)
- Na-Shun Mengke
- Faculty of Graduate Studies, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bei Hu
- Faculty of Graduate Studies, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian-Peng Han
- Faculty of Graduate Studies, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yi-Yu Deng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Ming Fang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Di Xie
- Faculty of Graduate Studies, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ang Li
- Department of Histoembryology, Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hong-Ke Zeng
- Faculty of Graduate Studies, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
42
|
Galectin-1 suppression delineates a new strategy to inhibit myeloma-induced angiogenesis and tumoral growth in vivo. Leukemia 2016; 30:2351-2363. [PMID: 27311934 DOI: 10.1038/leu.2016.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/22/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
Abstract
Galectin-1 (Gal-1) is involved in tumoral angiogenesis, hypoxia and metastases. Actually the Gal-1 expression profile in multiple myeloma (MM) patients and its pathophysiological role in MM-induced angiogenesis and tumoral growth are unknown. In this study, we found that Gal-1 expression by MM cells was upregulated in hypoxic conditions and that stable knockdown of hypoxia inducible factor-1α significantly downregulated its expression. Therefore, we performed Gal-1 inhibition using lentivirus transfection of shRNA anti-Gal-1 in human myeloma cell lines (HMCLs), and showed that its suppression modified transcriptional profiles in both hypoxic and normoxic conditions. Interestingly, Gal-1 inhibition in MM cells downregulated proangiogenic genes, including MMP9 and CCL2, and upregulated the antiangiogenic ones SEMA3A and CXCL10. Consistently, Gal-1 suppression in MM cells significantly decreased their proangiogenic properties in vitro. This was confirmed in vivo, in two different mouse models injected with HMCLs transfected with anti-Gal-1 shRNA or the control vector. Gal-1 suppression in both models significantly reduced tumor burden and microvascular density as compared with the control mice. Moreover, Gal-1 suppression induced smaller lytic lesions on X-ray in the intratibial model. Overall, our data indicate that Gal-1 is a new potential therapeutic target in MM blocking angiogenesis.
Collapse
|
43
|
Zhang PF, Li KS, Shen YH, Gao PT, Dong ZR, Cai JB, Zhang C, Huang XY, Tian MX, Hu ZQ, Gao DM, Fan J, Ke AW, Shi GM. Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling. Cell Death Dis 2016; 7:e2201. [PMID: 27100895 PMCID: PMC4855644 DOI: 10.1038/cddis.2015.324] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022]
Abstract
Galectin-1 (Gal-1) is involved in several pathological activities associated with tumor progression and chemoresistance, however, the role and molecular mechanism of Gal-1 activity in hepatocellular carcinoma (HCC) epithelial-mesenchymal transition (EMT) and sorafenib resistance remain enigmatic. In the present study, forced Gal-1 expression promoted HCC progression and sorafenib resistance. Gal-1 elevated αvβ3-integrin expression, leading to AKT activation. Moreover, Gal-1 overexpression induced HCC cell EMT via PI3K/AKT cascade activation. Clinically, our data revealed that Gal-1 overexpression is correlated with poor HCC survival outcomes and sorafenib response. These data suggest that Gal-1 may be a potential therapeutic target for HCC and a biomarker for predicting response to sorafenib treatment.
Collapse
Affiliation(s)
- P-F Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - K-S Li
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Y-h Shen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - P-T Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Z-R Dong
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - J-B Cai
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - C Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - X-Y Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - M-X Tian
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Z-Q Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - D-M Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - J Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China
| | - A-W Ke
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - G-M Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
44
|
Zheng L, Xu C, Guan Z, Su X, Xu Z, Cao J, Teng L. Galectin-1 mediates TGF-β-induced transformation from normal fibroblasts into carcinoma-associated fibroblasts and promotes tumor progression in gastric cancer. Am J Transl Res 2016; 8:1641-1658. [PMID: 27186290 PMCID: PMC4859895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Rcinoma-associated fibroblasts (CAFs) are a major constituent of the tumor microenvironment. Cancer cells can induce the transformation from normal fibroblasts (NFs) into CAFs, reciprocally, CAFs promote tumor invasion and proliferation. TGF-β has been the mostly accepted factor to fuel NFs transformation into CAFs. Galectin-1 (Gal1) is highly upregulated in CAFs of multiple human cancers, and overexpression of Gal1 in CAFs promotes tumor progression. The effect of Gal1 on TGF-β-induced CAFs activation has not yet been established in gastric cancer (GC). In this study, we show that Gal1 expression in stroma is positively related to TGF-β in epithelial cells by retrospective analysis of GC patient samples. Meanwhile, conditioned media (CMs) from gastric cancer cells induce expression of both Gal1 and the CAFs marker alpha smooth muscle actin (α-SMA) in NFs via TGF-β secretion. Knockdown of Gal1 prevents TGF-β-induced the conversion of NFs to CAFs. CMs from fibroblasts overexpressing Gal1 inhibits cancer cells apoptosis, promotes migration and invasion in vitro. Thus, Gal1 is significantly involved in the development of tumor-promoting microenvironment by enhancing TGF-β signaling in a positive feedback loop. Targeting Gal1 in tumor stroma should be considered as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Lingyan Zheng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Cong Xu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Zhonghai Guan
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Xingyun Su
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Zhenzhen Xu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Jiang Cao
- Clinical Research Center, The Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| |
Collapse
|
45
|
JUENGEL EVA, AFSCHAR MASUD, MAKAREVIĆ JASMINA, RUTZ JOCHEN, TSAUR IGOR, MANI JENS, NELSON KAREN, HAFERKAMP AXEL, BLAHETA ROMANA. Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism. Int J Mol Med 2016; 37:843-50. [DOI: 10.3892/ijmm.2016.2454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/03/2015] [Indexed: 11/06/2022] Open
|
46
|
Timoshenko AV. Towards molecular mechanisms regulating the expression of galectins in cancer cells under microenvironmental stress conditions. Cell Mol Life Sci 2015; 72:4327-40. [PMID: 26245305 PMCID: PMC11113283 DOI: 10.1007/s00018-015-2008-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/12/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023]
Abstract
Galectins, a family of soluble β-galactoside-binding proteins, serve as mediators of fundamental biological processes, such as cell growth, differentiation, adhesion, migration, survival, and death. The purpose of this review is to summarize the current knowledge regarding the ways in which the expression of individual galectins differs in normal and transformed human cells exposed to various stimuli mimicking physiological and pathological microenvironmental stress conditions. A conceptual point is being made and grounded that the modulation of galectin expression profiles is a key aspect of cellular stress responses. Moreover, this modulation might be precisely regulated at transcriptional and post-transcriptional levels in the context of non-overlapping transcription factors and miRNAs specific to galectins.
Collapse
Affiliation(s)
- Alexander V Timoshenko
- Department of Biology, Western University, 1151 Richmond Street, London, ON, N6A 5B7, Canada.
| |
Collapse
|
47
|
Li J, Sun RR, Yu ZJ, Liang H, Shen S, Kan Q. Galectin-1 Modulates the Survival and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Sensitivity in Human Hepatocellular Carcinoma Cells. Cancer Biother Radiopharm 2015; 30:336-41. [PMID: 26348206 DOI: 10.1089/cbr.2015.1857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Juan Li
- Department of Infectious Disease, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Ran-ran Sun
- Department of Infectious Disease, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Zu-jiang Yu
- Department of Infectious Disease, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Hongxia Liang
- Department of Infectious Disease, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Shen Shen
- Department of Infectious Disease, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| |
Collapse
|
48
|
White-Al Habeeb NM, Di Meo A, Scorilas A, Rotondo F, Masui O, Seivwright A, Gabril M, Girgis AHA, Jewett MA, Yousef GM. Alpha-enolase is a potential prognostic marker in clear cell renal cell carcinoma. Clin Exp Metastasis 2015; 32:531-41. [DOI: 10.1007/s10585-015-9725-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/27/2015] [Indexed: 01/20/2023]
|
49
|
Thijssen VL, Heusschen R, Caers J, Griffioen AW. Galectin expression in cancer diagnosis and prognosis: A systematic review. Biochim Biophys Acta Rev Cancer 2015; 1855:235-47. [PMID: 25819524 DOI: 10.1016/j.bbcan.2015.03.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023]
Abstract
Galectins are a family of proteins that bind to specific glycans thereby deciphering the information captured within the glycome. In the last two decades, several galectin family members have emerged as versatile modulators of tumor progression. This has initiated the development and preclinical assessment of galectin-targeting compounds. With the first compounds now entering clinical trials it is pivotal to gain insight in the diagnostic and prognostic value of galectins in cancer as this will allow a more rational selection of the patients that might benefit most from galectin-targeted therapies. Here, we present a systematic review of galectin expression in human cancer patients. Malignant transformation is frequently associated with altered galectin expression, most notably of galectin-1 and galectin-3. In most cancers, increased galectin-1 expression is associated with poor prognosis while elevated galectin-9 expression is emerging as a marker of favorable disease outcome. The prognostic value of galectin-3 appears to be tumor type dependent and the other galectins require further investigation. Regarding the latter, additional studies using larger patient cohorts are essential to fully unravel the diagnostic and prognostic value of galectin expression. Furthermore, to better compare different findings, consensus should be reached on how to assess galectin expression, not only with regard to localization within the tissue and within cellular compartments but also regarding alternative splicing and genomic variations. Finally, linking galectin expression and function to aberrant glycosylation in cancer cells will improve our understanding of how these versatile proteins can be exploited for diagnostic, prognostic and even therapeutic purposes in cancer patients.
Collapse
Affiliation(s)
- Victor L Thijssen
- Angiogenesis Laboratory, Department Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands; Angiogenesis Laboratory, Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands.
| | - Roy Heusschen
- Laboratory of Hematology, GIGA-Research, University of Liege, Liege, Belgium
| | - Jo Caers
- Laboratory of Hematology, GIGA-Research, University of Liege, Liege, Belgium
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Chang CH, Chan PC, Li JR, Chen CJ, Shieh JJ, Fu YC, Chen HC, Wu MJ. Gab1 is essential for membrane translocation, activity and integrity of mTORCs after EGF stimulation in urothelial cell carcinoma. Oncotarget 2015; 6:1478-1489. [PMID: 25596749 PMCID: PMC4359308 DOI: 10.18632/oncotarget.2756] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 11/16/2014] [Indexed: 11/30/2022] Open
Abstract
Urothelial carcinoma is the most common type of malignancy in long-term dialysis patients and kidney transplant recipients in Taiwan. mTORCs (mammalian target of rapamycin complexes) and EGF are important in urothelial carcinoma. To identify the regulation of mTORCs upon EGF stimulation is necessary. mTOR integrates signals from growth factors via mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2). The mechanism of mTORC1 action has been widely studied; however, the regulation of mTORC2 has not been well studied. Here, we demonstrate that Gab1 is an important upstream regulator in EGF-mediated activation of mTORCs. In our study, we confirm that mTORCs translocate from the cytoplasm to the plasma membrane via the PH domain of Gab1 upon EGF stimulation. Moreover, Gab1 associates with mTORCs. This association stabilizes the integrity of mTORCs and induces mTORC activity. Compared to normal bladder tissue, the expression of Gab1 and activity of mTORCs are elevated in urothelial carcinoma. Collectively, our results suggest that Gab1 is an essential regulator of the EGF-mediated mTORC pathways and may potentially be used as a biomarker for urothelial carcinoma to predict diagnosis and drug response.
Collapse
Affiliation(s)
- Chi-Hao Chang
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
| | - Po-Chao Chan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jian-Ri Li
- Department of Surgery, Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Biomedical Science, National Chung Hsing University, Taichung, Taiwan
| | - Jeng-Jer Shieh
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Biomedical Science, National Chung Hsing University, Taichung, Taiwan
| | - Yun-Ching Fu
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hong-Chen Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Institute of Biomedical Science, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Ju Wu
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
- Institute of Biomedical Science, National Chung Hsing University, Taichung, Taiwan
- Department of Medicine, Division of Nephrology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|