1
|
Kyaw TS, Zhang C, Sandy M, Trepka K, Zhang S, Ramirez Hernandez LA, Ramirez L, Goh JJ, Yu K, Dimassa V, Bess EN, Brockert JG, Dumlao DS, Bisanz JE, Turnbaugh PJ. Human gut Actinobacteria boost drug absorption by secreting P-glycoprotein ATPase inhibitors. iScience 2024; 27:110122. [PMID: 38947502 PMCID: PMC11214321 DOI: 10.1016/j.isci.2024.110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
Drug efflux transporters are a major determinant of drug efficacy and toxicity. A canonical example is P-glycoprotein (P-gp), an efflux transporter that controls the intestinal absorption of diverse compounds. Despite a rich literature on the dietary and pharmaceutical compounds that impact P-gp activity, its sensitivity to gut microbial metabolites remains an open question. Surprisingly, we found that the cardiac drug-metabolizing gut Actinobacterium Eggerthella lenta increases drug absorption in mice. Experiments in cell culture revealed that E. lenta produces a soluble factor that post-translationally inhibits P-gp ATPase efflux activity. P-gp inhibition is conserved in the Eggerthellaceae family but absent in other Actinobacteria. Comparative genomics identified genes associated with P-gp inhibition. Finally, activity-guided biochemical fractionation coupled to metabolomics implicated a group of small polar metabolites with P-gp inhibitory activity. These results highlight the importance of considering the broader relevance of the gut microbiome for drug disposition beyond first-pass metabolism.
Collapse
Affiliation(s)
- Than S. Kyaw
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Chen Zhang
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Moriah Sandy
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Quantitative Metabolite Analysis Center, Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kai Trepka
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Shenwei Zhang
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Luis A. Ramirez Hernandez
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Lorenzo Ramirez
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Janice J.N. Goh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kristie Yu
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Vincent Dimassa
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Elizabeth N. Bess
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jacob G. Brockert
- Quantitative Metabolite Analysis Center, Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Darren S. Dumlao
- Quantitative Metabolite Analysis Center, Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jordan E. Bisanz
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Peter J. Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Chan-Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Cotino-Nájera S, Herrera LA, Domínguez-Gómez G, Díaz-Chávez J. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer. Front Pharmacol 2023; 14:1287505. [PMID: 38026933 PMCID: PMC10667487 DOI: 10.3389/fphar.2023.1287505] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
One of the primary diseases that cause death worldwide is cancer. Cancer cells can be intrinsically resistant or acquire resistance to therapies and drugs used for cancer treatment through multiple mechanisms of action that favor cell survival and proliferation, becoming one of the leading causes of treatment failure against cancer. A promising strategy to overcome chemoresistance and radioresistance is the co-administration of anticancer agents and natural compounds with anticancer properties, such as the polyphenolic compound resveratrol (RSV). RSV has been reported to be able to sensitize cancer cells to chemotherapeutic agents and radiotherapy, promoting cancer cell death. This review describes the reported molecular mechanisms by which RSV sensitizes tumor cells to radiotherapy and chemotherapy treatment.
Collapse
Affiliation(s)
- Sandra Cotino-Nájera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Luis A. Herrera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
- Escuela de Medicina y Ciencias de la Salud-Tecnológico de Monterrey, México City, Mexico
| | - Guadalupe Domínguez-Gómez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCAN), Ciudad de México, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
3
|
Xi Q, Ma J. Polypeptide N-Acetylgalactosaminyltransferase 14 (GALNT14) as a Chemosensitivity-Related Biomarker for Osteosarcoma. JOURNAL OF ONCOLOGY 2023; 2023:1083423. [PMID: 38024474 PMCID: PMC10681776 DOI: 10.1155/2023/1083423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/21/2022] [Accepted: 11/24/2022] [Indexed: 12/01/2023]
Abstract
Purpose Osteosarcoma is the most common primary bone tumor. Polypeptide N-acetylgalactosaminyltransferase 14 (GALNT14), a member of the N-acetylgalactosaminyltransferase family, has been considered to be associated with various cancers. However, its role in osteosarcoma remains unknown. Here, we aimed to explore the expression and potential mechanism of GALNT14 in osteosarcoma through bioinformatics analysis and in vitro experiments. Methods We investigated GALNT14 expression in osteosarcoma using GEO, the TIMER database, and clinical samples. Protein-protein interaction (PPI) network analysis on GALNT14 was performed by STRING. TARGET was used to identify differentially expressed genes (DEGs) between high and low GALNT14 expression. The correlation between GALNT14 and cuproptosis-related genes in osteosarcoma was analyzed by R language. The prognostic significance of GALNT14 was examined by Kaplan-Meier survival analysis. Additionally, we inhibited GALNT14 function in an osteosarcoma cell line by transfecting siRNA and subsequently explored the effect on drug sensitivity by CCK-8, clonogenic assay, and flow cytometry. Results GALNT14 was significantly elevated in osteosarcoma tissue, osteosarcoma cell lines, and metastatic osteosarcoma. PPI analysis revealed that GALNT14 was associated with MUC7, MUC13, MUC5AC, C1GALT1, MUC15, MUC16, MUC1, MUC4, MUC21, and MUC17. In the high GALNT14 expression group, we discovered 81 upregulated DEGs and 73 downregulated DEGs. Functional enrichment analysis of DEGs showed significant enrichment in the Wnt, TGF-β, Hippo, PI3K signaling pathways and cell adhesion molecules. Expression of cuproptosis-related genes was closely related in osteosarcoma, and GALNT14 expression was significantly positively correlated with FDX1, a key regulator of cuproptosis. Kaplan-Meier survival showed that GALNT14 was linked to poor overall survival and disease-free survival in osteosarcoma. In vitro experiments suggested that GALNT14 was associated with chemotherapy resistance in osteosarcoma. Conclusion We identified a GALNT family gene, GALNT14, that was highly expressed in osteosarcoma. This gene was closely associated with metastasis, progression, cuproptosis-related genes, and chemosensitivity of osteosarcoma, and showed correlation with poor overall survival and disease-free survival in osteosarcoma.
Collapse
Affiliation(s)
- Qiong Xi
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinqi Ma
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
4
|
Tan G, Xu J, Yu Q, Yang Z, Zhang H. The safety and efficiency of photodynamic therapy for the treatment of osteosarcoma: A systematic review of in vitro experiment and animal model reports. Photodiagnosis Photodyn Ther 2022; 40:103093. [PMID: 36031143 DOI: 10.1016/j.pdpdt.2022.103093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Osteosarcoma (OS) is an aggressive malignant bone tumour with high mortality. A poor prognosis is noted in patients with distal metastases or multidrug resistance. As an emerging antitumor strategy, photodynamic therapy (PDT) mediated by visible and near infrared light has attracted intensive attention given its target selectivity, remote controllability, minimal or non-invasive features. However, PDT also has obvious limitations. Specifically, due to the limited penetration of light, it is mainly used in the clinical treatment of superficial malignant tumours, such as musculoskeletal sarcomas and melanoma, but it has not been applied to the clinical treatment of deep malignant bone tumours except for a very small number of experiments on deep canine OS models. MATERIALS AND METHODS We searched for studies that focused on the effectiveness and safety of PDT for OS based on in vitro experiments and animal models in the last decade. A systematic search was conducted using electronic databases, including PubMed, ClinicalTrials.gov, and the Cochrane Library. INCLUSION CRITERIA (1) original research articles about PDT for OS; (2) articles in English; (3) in vitro or animal model research; and (4) detailed information, including cell name, fluence, irradiation wavelength, time of incubation with PS, duration between PS treatment and irradiation, and duration between irradiation and viability assays. EXCLUSION CRITERIA (1) study was a review/systemic review article, patent, letter, or conference abstract/paper; (2) articles were not published in English; (3) studies containing overlapping or insufficient data. RESULTS We identified 201 publications, and 44 articles met the inclusion criteria and were included in the synthesis. Unfortunately, there are no relevant clinical reports of the use of PDT in the treatment of human OS. In these studies, 8 studies only employed in vivo experiments to evaluate the efficiency of PDT in an OS animal model, 19 studies exclusively performed in vitro viability assays of cells treated with PDT under different conditions, and 17 studies included in vitro cell experiments and in vivo animal OS models to evaluate the effect of PDT on OS in vivo and in vitro. All studies have shown that PDT is cytotoxic to OS cells or can inhibit the growth of OS in heterologous or homologous animal OS models but exhibits minimal cytotoxicity at a certain range of dosages. CONCLUSION Based on this systematic review, PDT can eradicate OS cells in cell culture and there is some evidence for efficacy in animal models. However, the ability for PDT to control human OS is unclear, the animal and human reports do not show evidence of human OS control, they just do show feasibility. The major issues concerning the potential for treatment of osteosarcoma with PDT are that adequate light should be transmitted to tumor loci and if the disease is caught before metastasis and irradiation of tumor sites is feasible, curative potential is there. Otherwise, PDT may be mainly palliative. To determine whether PDT can safely and efficiently be used in the clinical treatment of OS, many preclinical orthotopic animal OS models and OS models of multiple systemic metastases must be performed and interstitial PDT or intraoperative PDT may be a good and potential candidate for human OS treatment. If these problems can be well solved, PDT may be a potentially effective strategy for the treatment of OS patients.
Collapse
Affiliation(s)
- Gang Tan
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Xu
- Operating Room, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qin Yu
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zeyu Yang
- Rotex Tech.Ltd.Co. Room 1104, floor 11, building 6, No. 599, Shijicheng South Road, high tech Zone, Chengdu, Sichuan, China.
| | - Hui Zhang
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Sun YF, Wang Y, Li XD, Wang H. SNHG15, a p53-regulated lncRNA, suppresses cisplatin-induced apoptosis and ROS accumulation through the miR-335-3p/ZNF32 axis. Am J Cancer Res 2022; 12:816-828. [PMID: 35261804 PMCID: PMC8899989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023] Open
Abstract
Small nucleolar RNA host gene 15 (SNHG15) is upregulated in many malignancies and mediates the development of multiple cancers, including osteosarcoma (OS). However, data on the regulatory mechanisms and role of SNHG15 in the chemoresistance of OS remain scarce. Here, we show that p53 binds to the SNHG15 promoter, leading to decreased SNHG15 expression. Decreased SNHG15 expression promotes cisplatin-induced apoptosis and reactive oxygen species (ROS) accumulation in OS cells. Furthermore, SNHG15 sponges and inhibits the activity of endogenous miR-335-3p, leading to the upregulation of zinc finger protein 32 (ZNF32). Taken together, these findings reveal that p53 downregulates SNHG15 expression in OS. In addition, SNHG15 suppresses cisplatin-induced apoptosis and ROS accumulation through the miR-335-3p/ZNF32 pathway.
Collapse
Affiliation(s)
- Yue-Feng Sun
- Department of Spine Surgery, First Affiliated Hospital & Institute of Cancer Stem Cell Dalian Medical UniversityDalian 116011, Liaoning, China
| | - Yuan Wang
- The Second Affiliated Hospital, Dalian Medical UniversityDalian 116044, Liaoning, China
| | - Xiao-Dong Li
- Department of Spine Surgery, First Affiliated Hospital & Institute of Cancer Stem Cell Dalian Medical UniversityDalian 116011, Liaoning, China
| | - Hong Wang
- Department of Spine Surgery, Dalian Municipal Central HospitalDalian 116022, Liaoning, China
| |
Collapse
|
6
|
Wang G, Cao L, Jiang Y, Zhang T, Wang H, Wang Z, Xu J, Mao M, Hua Y, Cai Z, Ma X, Hu S, Zhou C. Anlotinib Reverses Multidrug Resistance (MDR) in Osteosarcoma by Inhibiting P-Glycoprotein (PGP1) Function In Vitro and In Vivo. Front Pharmacol 2022; 12:798837. [PMID: 35111065 PMCID: PMC8801797 DOI: 10.3389/fphar.2021.798837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/28/2021] [Indexed: 12/26/2022] Open
Abstract
Overexpression of the multidrug resistance (MDR)-related protein P-glycoprotein (PGP1), which actively extrudes chemotherapeutic agents from cells and significantly decreases the efficacy of chemotherapy, is viewed as a major obstacle in osteosarcoma chemotherapy. Anlotinib, a novel tyrosine kinase inhibitor (TKI), has good anti-tumor effects in a variety of solid tumors. However, there are few studies on the mechanism of anlotinib reversing chemotherapy resistance in osteosarcoma. In this study, cellular assays were performed in vitro and in vivo to evaluate the MDR reversal effects of anlotinib on multidrug-resistant osteosarcoma cell lines. Drug efflux and intracellular drug accumulation were measured by flow cytometry. The vanadate-sensitive ATPase activity of PGP1 was measured in the presence of a range of anlotinib concentrations. The protein expression level of ABCB1 was detected by Western blotting and immunofluorescence analysis. Our results showed that anlotinib significantly increased the sensitivity of KHOSR2 and U2OSR2 cells (which overexpress PGP1) to chemotherapeutic agents in vitro and in a KHOSR2 xenograft nude mouse model in vivo. Mechanistically, anlotinib increases the intracellular accumulation of PGP1 substrates by inhibiting the efflux function of PGP1 in multidrug-resistant cell lines. Furthermore, anlotinib stimulated the ATPase activity of PGP1 but affected neither the protein expression level nor the localization of PGP1. In animal studies, anlotinib in combination with doxorubicin (DOX) significantly decreased the tumor growth rate and the tumor size in the KHOSR2 xenograft nude mouse model. Overall, our findings suggest that anlotinib may be useful for circumventing MDR to other conventional antineoplastic drugs.
Collapse
Affiliation(s)
- Gangyang Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Lingling Cao
- Department of Rehabilitation, Shanghai Fifth Rehabilitation Hospital, Shanghai, China
| | - Yafei Jiang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Tao Zhang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Hongsheng Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Jing Xu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Min Mao
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Xiaojun Ma
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Shuo Hu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Chenghao Zhou
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| |
Collapse
|
7
|
Serra M, Hattinger CM, Pasello M, Casotti C, Fantoni L, Riganti C, Manara MC. Impact of ABC Transporters in Osteosarcoma and Ewing's Sarcoma: Which Are Involved in Chemoresistance and Which Are Not? Cells 2021; 10:cells10092461. [PMID: 34572110 PMCID: PMC8467338 DOI: 10.3390/cells10092461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily consists of several proteins with a wide repertoire of functions. Under physiological conditions, ABC transporters are involved in cellular trafficking of hormones, lipids, ions, xenobiotics, and several other molecules, including a broad spectrum of chemical substrates and chemotherapeutic drugs. In cancers, ABC transporters have been intensely studied over the past decades, mostly for their involvement in the multidrug resistance (MDR) phenotype. This review provides an overview of ABC transporters, both related and unrelated to MDR, which have been studied in osteosarcoma and Ewing's sarcoma. Since different backbone drugs used in first-line or rescue chemotherapy for these two rare bone sarcomas are substrates of ABC transporters, this review particularly focused on studies that have provided findings that have been either translated to clinical practice or have indicated new candidate therapeutic targets; however, findings obtained from ABC transporters that were not directly involved in drug resistance were also discussed, in order to provide a more complete overview of the biological impacts of these molecules in osteosarcoma and Ewing's sarcoma. Finally, therapeutic strategies and agents aimed to circumvent ABC-mediated chemoresistance were discussed to provide future perspectives about possible treatment improvements of these neoplasms.
Collapse
Affiliation(s)
- Massimo Serra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
- Correspondence: ; Tel.: +39-051-6366762
| | - Claudia Maria Hattinger
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| | - Michela Pasello
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| | - Chiara Casotti
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| | - Leonardo Fantoni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| | - Chiara Riganti
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy;
| | - Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| |
Collapse
|
8
|
Fojtů M, Balvan J, Vičar T, Polanská HH, Peltanová B, Matějková S, Raudenská M, Šturala J, Mayorga-Burrezo P, Masařík M, Pumera M. Silicane Derivative Increases Doxorubicin Efficacy in an Ovarian Carcinoma Mouse Model: Fighting Drug Resistance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31355-31370. [PMID: 34218662 DOI: 10.1021/acsami.0c20458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of cancer resistance continues to represent a bottleneck of cancer therapy. It is one of the leading factors preventing drugs to exhibit their full therapeutic potential. Consequently, it reduces the efficacy of anticancer therapy and causes the survival rate of therapy-resistant patients to be far from satisfactory. Here, an emerging strategy for overcoming drug resistance is proposed employing a novel two-dimensional (2D) nanomaterial polysiloxane (PSX). We have reported on the synthesis of PSX nanosheets (PSX NSs) and proved that they have favorable properties for biomedical applications. PSX NSs evinced unprecedented cytocompatibility up to the concentration of 300 μg/mL, while inducing very low level of red blood cell hemolysis and were found to be highly effective for anticancer drug binding. PSX NSs enhanced the efficacy of the anticancer drug doxorubicin (DOX) by around 27.8-43.4% on average and, interestingly, were found to be especially effective in the therapy of drug-resistant tumors, improving the effectiveness of up to 52%. Fluorescence microscopy revealed improved retention of DOX within the drug-resistant cells when bound on PSX NSs. DOX bound on the surface of PSX NSs, i.e., PSX@DOX, improved, in general, the DOX cytotoxicity in vitro. More importantly, PSX@DOX reduced the growth of DOX-resistant tumors in vivo with 3.5 times better average efficiency than the free drug. Altogether, this paper represents an introduction of a new 2D nanomaterial derived from silicane and pioneers its biomedical application. As advances in the field of material synthesis are rapidly progressing, novel 2D nanomaterials with improved properties are being synthesized and await thorough exploration. Our findings further provide a better understanding of the mechanisms involved in the cancer resistance and can promote the development of a precise cancer therapy.
Collapse
Affiliation(s)
- Michaela Fojtů
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, Prague 16628, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Vičar
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Hana Holcová Polanská
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Barbora Peltanová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Stanislava Matějková
- Institute of Organic Chemistry and Biochemistry ASCR, v.v.i. Flemingovo nam. 2, Prague 166 10 6, Czech Republic
| | - Martina Raudenská
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Šturala
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 16628, Czech Republic
| | - Paula Mayorga-Burrezo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno 61600, Czech Republic
| | - Michal Masařík
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, Prague 16628, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, Prague 16628, Czech Republic
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno 61600, Czech Republic
- Department of Food Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoaemun-gu, Seoul 03722, South Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
9
|
Enhanced Cytotoxic Effect of Doxorubicin Conjugated to Glutathione-Stabilized Gold Nanoparticles in Canine Osteosarcoma-In Vitro Studies. Molecules 2021; 26:molecules26123487. [PMID: 34201296 PMCID: PMC8227216 DOI: 10.3390/molecules26123487] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OSA) is the most common malignant bone neoplasia in humans and dogs. In dogs, treatment consists of surgery in combination with chemotherapy (mostly carboplatin and/or doxorubicin (Dox)). Chemotherapy is often rendered ineffective by multidrug resistance. Previous studies have revealed that Dox conjugated with 4 nm glutathione-stabilized gold nanoparticles (Au-GSH-Dox) enhanced the anti-tumor activity and cytotoxicity of Dox in Dox-resistant feline fibrosarcoma cell lines exhibiting high P-glycoprotein (P-gp) activity. The present study investigated the influence of Au-GSH-Dox on the canine OSA cell line D17 and its relationship with P-gp activity. A human Dox-sensitive OSA cell line, U2OS, served as the negative control. Au-GSH-Dox, compared to free Dox, presented a greater cytotoxic effect on D17 (IC50 values for Au-GSH-Dox and Dox were 7.9 μg/mL and 15.2 μg/mL, respectively) but not on the U2OS cell line. All concentrations of Au-GSH (ranging from 10 to 1000 μg/mL) were non-toxic in both cell lines. Inhibition of the D17 cell line with 100 μM verapamil resulted in an increase in free Dox but not in intracellular Au-GSH-Dox. The results indicate that Au-GSH-Dox may act as an effective drug in canine OSA by bypassing P-gp.
Collapse
|
10
|
Synthesis and Characterization of Some New Quinoxalin-2( 1H)one and 2-Methyl-3 H-quinazolin-4-one Derivatives Targeting the Onset and Progression of CRC with SRA, Molecular Docking, and ADMET Analyses. Molecules 2021; 26:molecules26113121. [PMID: 34071141 PMCID: PMC8197120 DOI: 10.3390/molecules26113121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023] Open
Abstract
The pathogenesis of colorectal cancer is a multifactorial process. Dysbiosis and the overexpression of COX-2 and LDHA are important effectors in the initiation and development of the disease through chromosomal instability, PGE2 biosynthesis, and induction of the Warburg effect, respectively. Herein, we report the in vitro testing of some new quinoxalinone and quinazolinone Schiff’s bases as: antibacterial, COX-2 and LDHA inhibitors, and anticolorectal agents on HCT-116 and LoVo cells. Moreover, molecular docking and SAR analyses were performed to identify the structural features contributing to the biological activities. Among the synthesized molecules, the most active cytotoxic agent, (6d) was also a COX-2 inhibitor. In silico ADMET studies predicted that (6d) would have high Caco-2 permeability, and %HIA (99.58%), with low BBB permeability, zero hepatotoxicity, and zero risk of sudden cardiac arrest, or mutagenicity. Further, (6d) is not a potential P-gp substrate, instead, it is a possible P-gpI and II inhibitor, therefore, it can prevent or reverse the multidrug resistance of the anticancer drugs. Collectively, (6d) can be considered as a promising lead suitable for further optimization to develop anti-CRC agents or glycoproteins inhibitors.
Collapse
|
11
|
Mechanisms of Resistance to Conventional Therapies for Osteosarcoma. Cancers (Basel) 2021; 13:cancers13040683. [PMID: 33567616 PMCID: PMC7915189 DOI: 10.3390/cancers13040683] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor, mainly occurring in children and adolescents. Current standard therapy includes tumor resection associated with multidrug chemotherapy. However, patient survival has not evolved for the past decades. Since the 1970s, the 5-year survival rate is around 75% for patients with localized OS but dramatically drops to 20% for bad responders to chemotherapy or patients with metastases. Resistance is one of the biological processes at the origin of therapeutic failure. Therefore, it is necessary to better understand and decipher molecular mechanisms of resistance to conventional chemotherapy in order to develop new strategies and to adapt treatments for patients, thus improving the survival rate. This review will describe most of the molecular mechanisms involved in OS chemoresistance, such as a decrease in intracellular accumulation of drugs, inactivation of drugs, improved DNA repair, modulations of signaling pathways, resistance linked to autophagy, disruption in genes expression linked to the cell cycle, or even implication of the micro-environment. We will also give an overview of potential therapeutic strategies to circumvent resistance development.
Collapse
|
12
|
Lilienthal I, Herold N. Targeting Molecular Mechanisms Underlying Treatment Efficacy and Resistance in Osteosarcoma: A Review of Current and Future Strategies. Int J Mol Sci 2020; 21:ijms21186885. [PMID: 32961800 PMCID: PMC7555161 DOI: 10.3390/ijms21186885] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumour in children and adolescents. Due to micrometastatic spread, radical surgery alone rarely results in cure. Introduction of combination chemotherapy in the 1970s, however, dramatically increased overall survival rates from 20% to approximately 70%. Unfortunately, large clinical trials aiming to intensify treatment in the past decades have failed to achieve higher cure rates. In this review, we revisit how the heterogenous nature of osteosarcoma as well as acquired and intrinsic resistance to chemotherapy can account for stagnation in therapy improvement. We summarise current osteosarcoma treatment strategies focusing on molecular determinants of treatment susceptibility and resistance. Understanding therapy susceptibility and resistance provides a basis for rational therapy betterment for both identifying patients that might be cured with less toxic interventions and targeting resistance mechanisms to sensitise resistant osteosarcoma to conventional therapies.
Collapse
Affiliation(s)
- Ingrid Lilienthal
- Division of Paediatric Oncology, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- Correspondence: (I.L.); (N.H.); Tel.: +46-(0)8-52483204 (I.L. & N.H.)
| | - Nikolas Herold
- Division of Paediatric Oncology, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- Paediatric Oncology, Astrid Lindgren’s Children Hospital, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Correspondence: (I.L.); (N.H.); Tel.: +46-(0)8-52483204 (I.L. & N.H.)
| |
Collapse
|
13
|
Kadioglu O, Saeed MEM, Munder M, Spuller A, Greten HJ, Efferth T. Effect of ABC transporter expression and mutational status on survival rates of cancer patients. Biomed Pharmacother 2020; 131:110718. [PMID: 32932043 DOI: 10.1016/j.biopha.2020.110718] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
ATP-binding cassette (ABC) transporters mediate multidrug resistance in cancer. In contrast to DNA single nucleotide polymorphisms in normal tissues, the role of mutations in tumors is unknown. Furthermore, the significance of their expression for prediction of chemoresistance and survival prognosis is still under debate. We investigated 18 tumors by RNA-sequencing. The mutation rate varied from 27,507 to 300885. In ABCB1, three hotspots with novel mutations were in transmembrane domains 3, 8, and 9. We also mined the cBioPortal database with 11,814 patients from 23 different tumor entities. We performed Kaplan-Meier survival analyses to investigate the effect of ABC transporter expression on survival rates of cancer patients. Novel mutations were also found in ABCA2, ABCA3, ABCB2, ABCB5, ABCC1-6, and ABCG2. Mining the cBioPortal database with 11,814 patients from 23 different tumor entities validated our results. Missense and in-frame mutations led to altered binding of anticancer drugs in molecular docking approaches. The ABCB1 nonsense mutation Q856* led to a truncated P-glycoprotein, which may sensitize tumors to anticancer drugs. The search for ABC transporter nonsense mutations represents a novel approach for precision medicine.. Low ABCB1 mRNA expression correlated with significantly longer survival in ovarian or kidney cancer and thymoma. In cancers of breast, kidney or lung, ABC transporter expression correlated with different tumor stages and human populations as further parameters to refine strategies for more individualized chemotherapy.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Markus Munder
- Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Henry Johannes Greten
- Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal; Heidelberg School of Chinese Medicine, Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
14
|
Pajaniradje S, Mohankumar K, Radhakrishnan R, Sufi SA, Subramanian S, Anaikutti P, Hulluru SPR, Rajagopalan R. Indole Curcumin Reverses Multidrug Resistance by Reducing the Expression of ABCB1 and COX2 in Induced Multidrug Resistant Human Lung Cancer Cells. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817666200402124503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background:
Drug resistance by the cancer cells towards current chemotherapeutic
approaches poses a great challenge. In the present study, an indole analogue of a well-known plant
derived anticancer molecule, curcumin, was tested for its Multidrug Resistance (MDR) reversing
potential in induced multi drug resistant A549 cell line.
Materials and Methods:
Human lung cancer cell line A549 was made Multidrug Resistant (MDR)
by prolonged treatment with low dosage of Docetaxel, an established anticancer drug. The MDR
induction was confirmed by morphological evidence, Hoechst 33342 staining, MTT assay,
Rhodamine123 staining and RT-PCR of ABCB1 gene. Protein expression studies were carried out
using western blotting technique
Results and Discussions:
The induced MDR A549 cells exhibited significant increase in the gene
expression of ABCB1 gene at the transcriptional level. Retention and efflux studies with Pglycoprotein
(P-gp) substrate Rh123 indicated that indole curcumin inhibited P-gp mediated efflux
of Rhodamine. Furthermore, treatment of MDR A549 cells with indole curcumin showed downregulation
of gene expression of ABCB1 and COX 2. This was also confirmed from the decreased
protein expression of COX 2.
Conclusion:
The results of the present study indicate that indole curcumin reverses multi drug
resistance by downregulating the expression of ABCB1 and COX 2 genes. Thus, indole curcumin
may act as a potent modulator for ABCB1 and COX 2 mediated MDR in lung cancer.
Collapse
Affiliation(s)
- Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Kumaravel Mohankumar
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Rakesh Radhakrishnan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Shamim Akhtar Sufi
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Srividya Subramanian
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | | | | | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
15
|
Wei X, Xu L, Jeddo SFA, Li K, Li X, Li J. MARK2 enhances cisplatin resistance via PI3K/AKT/NF-κB signaling pathway in osteosarcoma cells. Am J Transl Res 2020; 12:1807-1823. [PMID: 32509178 PMCID: PMC7270034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Osteosarcoma is the most common primary bone malignancy found in children and young adults. Chemotherapy resistance, especially to cisplatin, presents a major clinical challenge in the treatment and prognosis of osteosarcoma. New biomarkers and mechanisms of cisplatin resistance in osteosarcoma are urgently needed due to poor survival outcomes and currently inadequate treatments. In this study, we investigate the role and potential mechanisms of microtubule-affinity regulating kinase2 (MARK2) during osteosarcoma cisplatin resistance. Gene Expression Omnibus dataset analyses indicated that high MARK2 expression was associated with poor prognosis and may positively correlate with chemoresistance. Moreover, we showed that MARK2 was significantly upregulated in osteosarcoma cells compared with normal cells. The overexpression and inhibition of MARK2 promoted and suppressed, respectively, cisplatin resistance in osteosarcoma cells in vitro and in vivo. Mechanistically, MARK2 overexpression enhanced P-glycoprotein expression and decreased cell apoptosis through PI3K/AKT/NF-κB signaling pathway activation, resulting in cisplatin resistance. Our results suggest that high MARK2 expression can enhance cisplatin resistance in osteosarcoma cells, supporting the potential of MARK2 as a new therapeutic target and biomarker for predicting cisplatin resistance in osteosarcoma.
Collapse
Affiliation(s)
- Xianfu Wei
- Department of Orthopedics, Qilu Hospital, Shandong UniversityJinan 250012, Shandong, China
| | - Liang Xu
- Department of Orthopedics, Qilu Hospital, Shandong UniversityJinan 250012, Shandong, China
- Department of Orthopedics, Affiliated Hospital of Shandong Academy of Medical SciencesJinan 250031, Shandong, China
| | - Salim FA Jeddo
- Department of Orthopedics, Qilu Hospital, Shandong UniversityJinan 250012, Shandong, China
| | - Ka Li
- Department of Orthopedics, Qilu Hospital, Shandong UniversityJinan 250012, Shandong, China
| | - Xin Li
- Department of Orthopedics, Qilu Hospital, Shandong UniversityJinan 250012, Shandong, China
| | - Jianmin Li
- Department of Orthopedics, Qilu Hospital, Shandong UniversityJinan 250012, Shandong, China
| |
Collapse
|
16
|
Lenna S, Bellotti C, Duchi S, Martella E, Columbaro M, Dozza B, Ballestri M, Guerrini A, Sotgiu G, Frisoni T, Cevolani L, Varchi G, Ferrari M, Donati DM, Lucarelli E. Mesenchymal stromal cells mediated delivery of photoactive nanoparticles inhibits osteosarcoma growth in vitro and in a murine in vivo ectopic model. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:40. [PMID: 32087737 PMCID: PMC7036176 DOI: 10.1186/s13046-020-01548-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Background Osteosarcoma (OS) is an aggressive malignant neoplasm that still suffers from poor prognosis in the case of distal metastases or occurrence of multi-drug resistance. It is therefore crucial to find novel therapeutic options able to go beyond these limitations and improve patients’ survival. The objective of this study is to exploit the intrinsic properties of mesenchymal stromal cells (MSCs) to migrate and infiltrate the tumor stroma to specifically deliver therapeutic agents directly to cancer cells. In particular, we aimed to test the efficacy of the photoactivation of MSCs loaded with nanoparticles in vitro and in a murine in vivo ectopic osteosarcoma model. Methods AlPcS4@FNPs were produced by adding tetra-sulfonated aluminum phthalocyanine (AlPcS4) to an aqueous solution of positively charged poly-methyl methacrylate core-shell fluorescent nanoparticles (FNPs). The photodynamic therapy (PDT) effect is achieved by activation of the photosensitizer AlPcS4 in the near-infrared light with an LED source. Human MSCs were isolated from the bone marrow of five donors to account for inter-patients variability and used in this study after being evaluated for their clonogenicity, multipotency and immunophenotypic profile. MSC lines were then tested for the ability to internalize and retain the nanoparticles, along with their migratory properties in vitro. Photoactivation effect was evaluated both in a monolayer (2D) co-culture of AlPcS4@FNPs loaded MSCs with human OS cells (SaOS-2) and in tridimensional (3D) multicellular spheroids (AlPcS4@FNPs loaded MSCs with human OS cells, MG-63). Cell death was assessed by AnnexinV/PI and Live&Dead CalceinAM/EthD staining in 2D, while in the 3D co-culture, the cell killing effect was measured through ATP content, CalceinAM/EthD staining and TEM imaging. We also evaluated the effectiveness of AlPcS4@FNPs loaded MSCs as delivery systems and the ability of the photodynamic treatment to kill cancer cells in a subcutaneous mouse model of OS by bioluminescence imaging (BLI) and histology. Results MSCs internalized AlPcS4@FNPs without losing or altering their motility and viability in vitro. Photoactivation of AlPcS4@FNPs loaded MSCs induced high level of OS cells death in the 2D co-culture. Similarly, in the 3D co-culture (MSCs:OS ratios 1:1 or 1:3), a substantial decrease of both MSCs and OS cells viability was observed. Notably, when increasing the MSCs:OS ratio to 1:7, photoactivation still caused more than 40% cells death. When tested in an in vivo ectopic OS model, AlPcS4@FNPs loaded MSCs were able to decrease OS growth by 68% after two cycles of photoactivation. Conclusions Our findings demonstrate that MSCs can deliver functional photosensitizer-decorated nanoparticles in vitro and in vivo and inhibit OS tumor growth. MSCs may be an effective platform for the targeted delivery of therapeutic nanodrugs in a clinical scenario, alone or in combination with other osteosarcoma treatment modalities.
Collapse
Affiliation(s)
- Stefania Lenna
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.,Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Chiara Bellotti
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Serena Duchi
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Elisa Martella
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Marta Columbaro
- Laboratory of Musculoskeletal Cell Biology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
| | - Barbara Dozza
- Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via di Barbiano 1/10, 40123, Bologna, Italy
| | - Marco Ballestri
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Andrea Guerrini
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Giovanna Sotgiu
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Tommaso Frisoni
- Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via di Barbiano 1/10, 40123, Bologna, Italy.,3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Luca Cevolani
- 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA.,Present Address: Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Davide Maria Donati
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.,Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via di Barbiano 1/10, 40123, Bologna, Italy.,3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
| |
Collapse
|
17
|
Huang X, Wu W, Yang W, Qing X, Shao Z. Surface engineering of nanoparticles with ligands for targeted delivery to osteosarcoma. Colloids Surf B Biointerfaces 2020; 190:110891. [PMID: 32114271 DOI: 10.1016/j.colsurfb.2020.110891] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
Osteosarcoma is one of the most common malignant bone tumors which affect adolescents. Neoadjuvant chemotherapy followed by operation has become recommended for osteosarcoma treatment. Whereas, the effects of conventional chemotherapy are unsatisfactory because of multidrug resistance, fast clearance rate, nontargeted delivery, side effects and so on. Accordingly, Nanoparticle-mediated targeted drug delivery system (NTDDS) is recommended to be a novel treatment strategy for osteosarcoma. NTDDS can overcome the above obstacles by enhanced permeability and retention effect and active targeting. The active targeting of the delivery system is mainly based on ligands. In this study, we investigate and summarize the most common ligands used in the latest NTDDS for osteosarcoma. It might provide new insights into nanomedicine for osteosarcoma treatment.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
18
|
Quan X, Du H, Xu J, Hou X, Gong X, Wu Y, Zhou Y, Jiang J, Lu L, Yuan S, Yang X, Shi L, Sun L. Novel Quinoline Compound Derivatives of NSC23925 as Potent Reversal Agents Against P-Glycoprotein-Mediated Multidrug Resistance. Front Chem 2020; 7:820. [PMID: 31921759 PMCID: PMC6931887 DOI: 10.3389/fchem.2019.00820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/12/2019] [Indexed: 12/02/2022] Open
Abstract
Multidrug resistance is a serious problem and a common cause of cancer treatment failure, leading to patient death. Although numerous reversal resistance inhibitors have been evaluated in preclinical or clinical trials, efficient and low-toxicity reversal agents have not been identified. In this study, a series of novel quinoline compound derivatives from NSC23925 were designed to inhibit P-glycoprotein (P-gp). Among them, YS-7a showed a stronger inhibitory effect against P-gp than verapamil, as a positive control, when co-incubated with chemotherapy drugs at minimally cytotoxic concentrations. YS-7a suppressed the P-gp transport function without affecting the expression of P-gp but stimulated the ATPase activity of P-gp in a dose-dependent manner. Next, molecular docking was used to predict the six most probable binding sites, namely, SER270, VAL273, VAL274, ILE354, VAL357, and PHE390. Moreover, YS-7a had no effect on cytochrome P450 3A4 activity and showed little toxicity to normal cells. In addition, combined treatment of YS-7a with vincristine showed a better inhibitory effect than the positive control verapamil in vivo without a negative effect on mouse weight. Overall, our results showed that YS-7a could reverse cancer multidrug resistance through the inhibition of P-gp transport function in vitro and in vivo, suggesting that YS-7a may be a novel therapeutic agent.
Collapse
Affiliation(s)
- Xingping Quan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingjing Xu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Xiaoying Hou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiaofeng Gong
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Yao Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Yuqi Zhou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jingwei Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiangyu Yang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Lei Shi
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Rösner J, Merzendorfer H. Transcriptional plasticity of different ABC transporter genes from Tribolium castaneum contributes to diflubenzuron resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103282. [PMID: 31740345 DOI: 10.1016/j.ibmb.2019.103282] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The development of insecticide resistance challenges the sustainability of pest control and several studies have shown that ABC transporters contribute to this process. ABC transporters are known to transport a large range of chemically diverse molecules across cellular membranes, and therefore the identification of ABC transporters involved in insecticide resistance is difficult. Here, we describe a comprehensive strategy for the identification of whole sets of ABC transporters involved in insecticide resistance using the pest beetle, Tribolium castaneum (Tc) as a model. We analyzed the expression of ABCA to ABCC genes in different tissues and developmental stages using larvae that were sensitive or resistant to diflubenzuron (DFB). The mRNA levels of several ABC genes expressed in excretory or metabolic tissues such as midgut, Malpighian tubules or fat body were markedly upregulated in response to DFB. Next, we monitored mortality in the presence of the ABC inhibitor verapamil, and found that it causes sensitization to DFB. We furthermore established a competitive assay for the elimination of DFB, based on Texas Red (TR) fluorescence. We monitored TR elimination in larvae that were treated with DFB or different ABC inhibitors, and combinations of them. TR elimination was decreased significantly in the presence of DFB, verapamil and the ABCC inhibitor MK-571. The effect was synergized when DFB and verapamil were both present suggesting that the transport of TR and DFB involves overlapping sets of ABC transporters. Finally, we silenced the expression of DFB-responding ABC genes by RNA interference and then followed the survival rates after DFB exposure. Mortality increased particularly when specific ABCA and ABCC genes were silenced. Taken together, we were able to show that different ABC transporters expressed in metabolic and excretory tissues contribute to the elimination of DFB. Up- or down-regulation of gene expression occurs within a few days already at very low DFB concentrations. These results suggests that transcriptional plasticity of several ABC genes allows adaptation of the efflux capacity in different tissues to eliminate insecticides and/or their metabolites.
Collapse
Affiliation(s)
- Janin Rösner
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068, Siegen, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068, Siegen, Germany.
| |
Collapse
|
20
|
Crystallization and characterization of small molecular multidrug resistance inhibitor targeting P-glycoprotein, NSC23925 isomers. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Marques da Costa ME, Marchais A, Gomez-Brouchet A, Job B, Assoun N, Daudigeos-Dubus E, Fromigué O, Santos C, Geoerger B, Gaspar N. In-Vitro and In-Vivo Establishment and Characterization of Bioluminescent Orthotopic Chemotherapy-Resistant Human Osteosarcoma Models in NSG Mice. Cancers (Basel) 2019; 11:cancers11070997. [PMID: 31319571 PMCID: PMC6678535 DOI: 10.3390/cancers11070997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/21/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma, the most common bone malignancy with a peak incidence at adolescence, had no survival improvement since decades. Persistent problems are chemo-resistance and metastatic spread. We developed in-vitro osteosarcoma models resistant to chemotherapy and in-vivo bioluminescent orthotopic cell-derived-xenografts (CDX). Continuous increasing drug concentration cultures in-vitro resulted in five methotrexate (MTX)-resistant and one doxorubicin (DOXO)-resistant cell lines. Resistance persisted after drug removal except for MG-63. Different resistance mechanisms were identified, affecting drug transport and action mechanisms specific to methotrexate (RFC/SCL19A1 decrease, DHFR up-regulation) for MTX-resistant lines, or a multi-drug phenomenon (PgP up-regulation) for HOS-R/DOXO. Differential analysis of copy number abnormalities (aCGH) and gene expression (RNAseq) revealed changes of several chromosomic regions translated at transcriptomic level depending on drug and cell line, as well as different pathways implicated in invasive and metastatic potential (e.g., Fas, Metalloproteinases) and immunity (enrichment in HLA cluster genes in 6p21.3) in HOS-R/DOXO. Resistant-CDX models (HOS-R/MTX, HOS-R/DOXO and Saos-2-B-R/MTX) injected intratibially into NSG mice behaved as their parental counterpart at primary tumor site; however, they exhibited a slower growth rate and lower metastatic spread, although they retained resistance and CGH main characteristics without drug pressure. These models represent valuable tools to explore resistance mechanisms and new therapies in osteosarcoma.
Collapse
Affiliation(s)
- Maria Eugénia Marques da Costa
- National Centre for Scientific Research (CNRS), UMR8203, Gustave Roussy, 94805 Villejuif, France
- University of Paris-Saclay, 91190 Saint-Aubin, France
- University of Paris Sud, 91400 Orsay, France
- Department of Biology, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810 Aveiro, Portugal
| | - Antonin Marchais
- National Centre for Scientific Research (CNRS), UMR8203, Gustave Roussy, 94805 Villejuif, France
- University of Paris-Saclay, 91190 Saint-Aubin, France
- University of Paris Sud, 91400 Orsay, France
| | - Anne Gomez-Brouchet
- IUCT-Oncopole, CHU and University of Toulouse, Pathology department, 31100 Toulouse, France
- National Centre for Scientific Research (CNRS), UMR5089, 31077 Toulouse, France
| | - Bastien Job
- National Institute for Health and Medical Research (INSERM), US23, Gustave Roussy, 94805 Villejuif, France
| | - Noémie Assoun
- National Centre for Scientific Research (CNRS), UMR8203, Gustave Roussy, 94805 Villejuif, France
- University of Paris-Saclay, 91190 Saint-Aubin, France
- University of Paris Sud, 91400 Orsay, France
| | - Estelle Daudigeos-Dubus
- National Centre for Scientific Research (CNRS), UMR8203, Gustave Roussy, 94805 Villejuif, France
- University of Paris-Saclay, 91190 Saint-Aubin, France
- University of Paris Sud, 91400 Orsay, France
| | - Olivia Fromigué
- University of Paris Sud, 91400 Orsay, France
- National Institute for Health and Medical Research (INSERM), UMR981, Gustave Roussy, 94805 Villejuif, France
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, University of Porto, 4000 Porto, Portugal
| | - Birgit Geoerger
- National Centre for Scientific Research (CNRS), UMR8203, Gustave Roussy, 94805 Villejuif, France
- University of Paris-Saclay, 91190 Saint-Aubin, France
- University of Paris Sud, 91400 Orsay, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94805 Villejuif, France
| | - Nathalie Gaspar
- National Centre for Scientific Research (CNRS), UMR8203, Gustave Roussy, 94805 Villejuif, France.
- University of Paris-Saclay, 91190 Saint-Aubin, France.
- University of Paris Sud, 91400 Orsay, France.
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94805 Villejuif, France.
| |
Collapse
|
22
|
Lowrence RC, Subramaniapillai SG, Ulaganathan V, Nagarajan S. Tackling drug resistance with efflux pump inhibitors: from bacteria to cancerous cells. Crit Rev Microbiol 2019; 45:334-353. [PMID: 31248314 DOI: 10.1080/1040841x.2019.1607248] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug resistance is a serious concern in a clinical setting jeopardizing treatment for both infectious agents and cancers alike. The wide-spread emergence of multi-drug resistant (MDR) phenotypes from bacteria to cancerous cells necessitates the need to target resistance mechanisms and prevent the emergence of resistant mutants. Drug efflux seems to be one of the preferred approaches embraced by both microbial and mammalian cells alike, to thwart the action of chemotherapeutic agents thereby leading to a drug resistant phenotype. Relative to microbes, which predominantly employs proton motive force (PMF) powered, Major Facilitator Superfamily (MFS)/Resistance Nodulation and Division (RND) classes of efflux pumps to efflux drugs, cancerous cells preferentially use ATP fuelled ATP binding cassette (ABC) transporters to extrude chemotherapeutic agents. The prevalence, evolutionary characteristics and overlapping functions of ABC transporters have been highlighted in this review. Additionally, we outline the role of ABC pumps in conferring MDR phenotype to both bacteria and cancerous cells and underscore the importance of efflux pump inhibitors (EPI) to mitigate drug resistance. Based on the literature reports and analysis, we reason out feasibility of employing bacteria as a tool to screen for EPI's targeting ABC pumps of cancerous cells.
Collapse
Affiliation(s)
- Rene Christena Lowrence
- a Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield , UK
| | | | | | - Saisubramanian Nagarajan
- c Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University , Thanjavur , India
| |
Collapse
|
23
|
Mora DPP, Santiago KB, Conti BJ, de Oliveira Cardoso E, Conte FL, Oliveira LPG, de Assis Golim M, Uribe JFC, Gutiérrez RM, Buitrago MR, Popova M, Trusheva B, Bankova V, García OT, Sforcin JM. The chemical composition and events related to the cytotoxic effects of propolis on osteosarcoma cells: A comparative assessment of Colombian samples. Phytother Res 2018; 33:591-601. [DOI: 10.1002/ptr.6246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Karina Basso Santiago
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| | - Bruno José Conti
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| | | | - Fernanda Lopes Conte
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| | | | | | | | | | | | - Milena Popova
- Bulgarian Academy of Sciences; Institute of Organic Chemistry with Centre of Phytochemistry; Sofia Bulgaria
| | - Boryana Trusheva
- Bulgarian Academy of Sciences; Institute of Organic Chemistry with Centre of Phytochemistry; Sofia Bulgaria
| | - Vassya Bankova
- Bulgarian Academy of Sciences; Institute of Organic Chemistry with Centre of Phytochemistry; Sofia Bulgaria
| | | | - José Maurício Sforcin
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| |
Collapse
|
24
|
Liu T, Li Z, Zhang Q, De Amorim Bernstein K, Lozano-Calderon S, Choy E, Hornicek FJ, Duan Z. Targeting ABCB1 (MDR1) in multi-drug resistant osteosarcoma cells using the CRISPR-Cas9 system to reverse drug resistance. Oncotarget 2018; 7:83502-83513. [PMID: 27835872 PMCID: PMC5347784 DOI: 10.18632/oncotarget.13148] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/16/2016] [Indexed: 12/14/2022] Open
Abstract
Background Multi-drug resistance (MDR) remains a significant obstacle to successful chemotherapy treatment for osteosarcoma patients. One of the central causes of MDR is the overexpression of the membrane bound drug transporter protein P-glycoprotein (P-gp), which is the protein product of the MDR gene ABCB1. Though several methods have been reported to reverse MDR in vitro and in vivo when combined with anticancer drugs, they have yet to be proven useful in the clinical setting. Results The meta-analysis demonstrated that a high level of P-gp may predict poor survival in patients with osteosarcoma. The expression of P-gp can be efficiently blocked by the clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas9 system (CRISPR-Cas9). Inhibition of ABCB1 was associated with reversing drug resistance in osteosarcoma MDR cell lines (KHOSR2 and U-2OSR2) to doxorubicin. Materials and Methods We performed a meta-analysis to investigate the relationship between P-gp expression and survival in patients with osteosarcoma. Then we adopted the CRISPR-Cas9, a robust and highly efficient novel genome editing tool, to determine its effect on reversing drug resistance by targeting endogenous ABCB1 gene at the DNA level in osteosarcoma MDR cell lines. Conclusion These results suggest that the CRISPR-Cas9 system is a useful tool for the modification of ABCB1 gene, and may be useful in extending the long-term efficacy of chemotherapy by overcoming P-gp-mediated MDR in the clinical setting.
Collapse
Affiliation(s)
- Tang Liu
- Department of Orthopaedics, The 2nd Xiangya Hospital of Central South University, Changsha, Hunan, 410011, P.R. China.,Sarcoma Biology Laboratory, Department of Orthopaedic surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Zhihong Li
- Department of Orthopaedics, The 2nd Xiangya Hospital of Central South University, Changsha, Hunan, 410011, P.R. China
| | - Qing Zhang
- Department of Orthopaedics, The 2nd Xiangya Hospital of Central South University, Changsha, Hunan, 410011, P.R. China
| | - Karen De Amorim Bernstein
- Sarcoma Biology Laboratory, Department of Orthopaedic surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Santiago Lozano-Calderon
- Sarcoma Biology Laboratory, Department of Orthopaedic surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
25
|
Xia YZ, Yang L, Xue GM, Zhang C, Guo C, Yang YW, Li SS, Zhang LY, Guo QL, Kong LY. Combining GRP78 suppression and MK2206-induced Akt inhibition decreases doxorubicin-induced P-glycoprotein expression and mitigates chemoresistance in human osteosarcoma. Oncotarget 2018; 7:56371-56382. [PMID: 27486760 PMCID: PMC5302920 DOI: 10.18632/oncotarget.10890] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 07/18/2016] [Indexed: 12/16/2022] Open
Abstract
P-glycoprotein (P-gp) overexpression is associated with poor prognosis and drug-resistance in osteosarcoma (OS), but the underlying mechanisms remain incompletely understood. Here, we examined the regulation of P-gp, GRP78, and phospho-Akt in doxorubicin (DOX)-treated OS cells. DOX induced P-gp expression, which was associated with increased GRP78 levels and Akt activation in vitro and in vivo. Functional analysis showed that Akt induces P-gp and GRP78 expression, which contributes to the DOX-induced Akt activation. Examination of the relationship between Akt and GRP78 demonstrated that GRP78 suppression attenuates the Akt activity in OS parental sensitive and resistant cells, indicating that GRP78 is required for full Akt activity. Inhibition of Akt activity using MK2206 decreased GRP78 expression in OS cells, which enhanced the inhibitory effect of MK2206 on P-gp expression. GRP78 knockdown combined with MK2206 suppressed the development of DOX resistance in OS cells and inhibited the in vivo tumor growth in the presence of DOX. These results support the development of novel therapeutic strategies that target GRP78 and Akt to sensitize OS cells for chemotherapy.
Collapse
Affiliation(s)
- Yuan-Zheng Xia
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nan Jing 210009, People's Republic of China
| | - Lei Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nan Jing 210009, People's Republic of China
| | - Gui-Min Xue
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nan Jing 210009, People's Republic of China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nan Jing 210009, People's Republic of China
| | - Chao Guo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nan Jing 210009, People's Republic of China
| | - Yan-Wei Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nan Jing 210009, People's Republic of China
| | - Shan-Shan Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nan Jing 210009, People's Republic of China
| | - Lu-Yong Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nan Jing 210009, People's Republic of China
| | - Qing-Long Guo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nan Jing 210009, People's Republic of China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nan Jing 210009, People's Republic of China
| |
Collapse
|
26
|
Wang J, Wang W, Cai H, Du B, Zhang L, Ma W, Hu Y, Feng S, Miao G. MACC1 facilitates chemoresistance and cancer stem cell‑like properties of colon cancer cells through the PI3K/AKT signaling pathway. Mol Med Rep 2017; 16:8747-8754. [PMID: 28990068 PMCID: PMC5779950 DOI: 10.3892/mmr.2017.7721] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
With regards to colon cancer, resistance to 5-fluorouracil (5-FU)-based chemotherapy and cancer stem cells (CSCs) are considered important factors underlying therapy failure. Metastasis-associated colon cancer 1 (MACC1) has been associated with poor prognosis and the promotion of metastasis within several types of cancer. However, the biological behavior of MACC1 in chemoresistance and CSC-like properties remains unclear. In the present study, various methods including gene knockdown, gene overexpression, western blotting, quantitative polymerase chain reaction and MTT assay, have been adopted. According to the results of the present study, MACC1 was depleted in two colon cancer cell lines resistant to 5-FU; subsequently, CSC-like properties and 5-FU sensitivity were investigated. Within 5-FU-resistant cells, cell death was facilitated by MACC1 knockdown. Furthermore, sphere formation and the expression levels of pluripotent markers, including cluster of differentiation (CD) 44, CD133 and Nanog were reduced due to MACC1 depletion. Additionally, it was indicated that the phosphoinositide 3-kinase/protein kinase B signaling pathway may be associated with 5-FU resistance and CSC-like properties via MACC1.
Collapse
Affiliation(s)
- Jiankai Wang
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Wenjuan Wang
- Department of Physical Examination Center, The Third People's Hospital of Gansu, Lanzhou, Gansu 730050, P.R. China
| | - Hongyi Cai
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Binbin Du
- Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Lijuan Zhang
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Wen Ma
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Yongguo Hu
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Shifang Feng
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Guoying Miao
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
27
|
Wang J, Seebacher N, Shi H, Kan Q, Duan Z. Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget 2017; 8:84559-84571. [PMID: 29137448 PMCID: PMC5663620 DOI: 10.18632/oncotarget.19187] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022] Open
Abstract
The development of multidrug resistance (MDR) is one of the major challenges to the success of traditional chemotherapy treatment in cancer patients. Most studies to date have focused on strategies to reverse MDR following its development. However, agents utilizing this approach have proven to be of limited clinical use, failing to demonstrate an improvement in therapeutic efficacy with almost no significant survival benefits observed in cancer clinical trials. An alternative approach that has been applied is to prevent or delay MDR prior or early in its development. Recent investigations have shown that preventing the emergence of MDR at the onset of chemotherapy treatment, rather than reversing MDR once it has developed, may assist in overcoming drug resistance. In this review, we focus on a number of novel strategies used by small-molecule inhibitors to prevent the development of MDR. These agents hold great promise for prolonging the efficacy of chemotherapy treatment and improving the clinical outcomes of patients with cancers that are susceptible to MDR development.
Collapse
Affiliation(s)
- Jinglu Wang
- Department of Gynecologic Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China.,Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Nicole Seebacher
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Huirong Shi
- Department of Gynecologic Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Quancheng Kan
- Department of Gynecologic Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Zhenfeng Duan
- Department of Gynecologic Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China.,Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
28
|
Mukherjee S, Dash S, Lohitesh K, Chowdhury R. The dynamic role of autophagy and MAPK signaling in determining cell fate under cisplatin stress in osteosarcoma cells. PLoS One 2017; 12:e0179203. [PMID: 28598976 PMCID: PMC5466322 DOI: 10.1371/journal.pone.0179203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/25/2017] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is an aggressive bone malignancy commonly observed in children and adolescents. Sub-optimal therapy for years has irretrievably compromised the chances of OS patient survival; also, lack of extensive research on this rare disease has hindered therapeutic development. Cisplatin, a common anti-tumor drug, is currently an integral part of treatment regime for OS along with methotrexate and doxorubicin. However, toxicity issues associated with combination module impede OS therapy. Also, despite the proven benefits of cisplatin, acquisition of resistance remains a concern with cisplatin-based therapy. This prompted us to investigate the molecular effects of cisplatin exposure and changes associated with acquired resistance in OS cells. Cisplatin shock was found to activate MAPK signaling and autophagy in OS cells. An activation of JNK and autophagy acted as pro-survival strategy, while ERK1/2 triggered apoptotic signals upon cisplatin stress. A crosstalk between JNK and autophagy was observed. Maximal sensitivity to cisplatin was obtained with simultaneous inhibition of both autophagy and JNK pathway. Cisplatin resistant cells were further developed by repetitive drug exposure followed by clonal selection. The resistant cells showed an altered signaling circuitry upon cisplatin exposure. Our results provide valuable cues to possible molecular alterations that can be considered for development of improved therapeutic strategy against osteosarcoma.
Collapse
Affiliation(s)
- Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Subhra Dash
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - K. Lohitesh
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
- * E-mail:
| |
Collapse
|
29
|
Lu Y, Li F, Xu T, Sun J. Tetrandrine prevents multidrug resistance in the osteosarcoma cell line, U-2OS, by preventing Pgp overexpression through the inhibition of NF-κB signaling. Int J Mol Med 2017; 39:993-1000. [DOI: 10.3892/ijmm.2017.2895] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/16/2017] [Indexed: 11/06/2022] Open
|
30
|
Duan Z, Gao Y, Shen J, Choy E, Cote G, Harmon D, Bernstein K, Lozano-Calderon S, Mankin H, Hornicek FJ. miR-15b modulates multidrug resistance in human osteosarcoma in vitro and in vivo. Mol Oncol 2016; 11:151-166. [PMID: 28145098 PMCID: PMC5300234 DOI: 10.1002/1878-0261.12015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/02/2016] [Indexed: 12/17/2022] Open
Abstract
The development of multidrug resistance (MDR) in cancer cells to chemotherapy drugs continues to be a major clinical problem. MicroRNAs (miRNA, miR) play an important role in regulating tumour cell growth and survival; however, the role of miRs in the development of drug resistance in osteosarcoma cells is largely uncharacterized. We sought to identify and characterize human miRs that act as key regulators of MDR in osteosarcoma. We utilized a miR microarray to screen for differentially expressed miRs in osteosarcoma MDR cell lines. We determined the mechanisms of the deregulation of expression of miR-15b in osteosarcoma MDR cell lines, and its association with clinically obtained tumour samples was examined in tissue microarray (TMA). The significance of miR-15b in reversing drug resistance was evaluated in a mouse xenograft model of MDR osteosarcoma. We identified miR-15b as being significantly (P < 0.01) downregulated in KHOSMR and U-2OSMR cell lines as compared with their parental cell lines. We found that Wee1 is a target gene of miR-15b and observed that transfection with miR-15b inhibits Wee1 expression and partially reverses MDR in osteosarcoma cell lines. Systemic in vivo administration of miR-15b mimics sensitizes resistant cells to doxorubicin and induces cell death in MDR models of osteosarcoma. Clinically, reduced miR-15b expression was associated with poor patient survival. Osteosarcoma patients with low miR-15b expression levels had significantly shorter survival times than patients with high expression levels of miR-15b. These results collectively indicate that MDR in osteosarcoma is associated with downregulation of miR-15b, and miR-15b reconstitution can reverse chemotherapy resistance in osteosarcoma.
Collapse
Affiliation(s)
- Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Yan Gao
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Jacson Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Edwin Choy
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory Cote
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - David Harmon
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Karen Bernstein
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Santiago Lozano-Calderon
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Henry Mankin
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
31
|
Li K, Li X, Tian J, Wang H, Pan J, Li J. Downregulation of DNA-PKcs suppresses P-gp expression via inhibition of the Akt/NF-κB pathway in CD133-positive osteosarcoma MG-63 cells. Oncol Rep 2016; 36:1973-80. [DOI: 10.3892/or.2016.4991] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/22/2016] [Indexed: 11/06/2022] Open
|
32
|
Buondonno I, Gazzano E, Jean SR, Audrito V, Kopecka J, Fanelli M, Salaroglio IC, Costamagna C, Roato I, Mungo E, Hattinger CM, Deaglio S, Kelley SO, Serra M, Riganti C. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol Cancer Ther 2016; 15:2640-2652. [PMID: 27466354 DOI: 10.1158/1535-7163.mct-16-0048] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/23/2016] [Indexed: 11/16/2022]
Abstract
Doxorubicin is one of the leading drugs for osteosarcoma standard chemotherapy. A total of 40% to 45% of high-grade osteosarcoma patients are unresponsive, or only partially responsive, to doxorubicin (Dox), due to the overexpression of the drug efflux transporter ABCB1/P-glycoprotein (Pgp). The aim of this work is to improve Dox-based regimens in resistant osteosarcomas. We used a chemically modified mitochondria-targeted Dox (mtDox) against Pgp-overexpressing osteosarcomas with increased resistance to Dox. Unlike Dox, mtDox accumulated at significant levels intracellularly, exerted cytotoxic activity, and induced necrotic and immunogenic cell death in Dox-resistant/Pgp-overexpressing cells, fully reproducing the activities exerted by anthracyclines in drug-sensitive tumors. mtDox reduced tumor growth and cell proliferation, increased apoptosis, primed tumor cells for recognition by the host immune system, and was less cardiotoxic than Dox in preclinical models of drug-resistant osteosarcoma. The increase in Dox resistance was paralleled by a progressive upregulation of mitochondrial metabolism. By widely modulating the expression of mitochondria-related genes, mtDox decreased mitochondrial biogenesis, the import of proteins and metabolites within mitochondria, mitochondrial metabolism, and the synthesis of ATP. These events were paralleled by increased reactive oxygen species production, mitochondrial depolarization, and mitochondria-dependent apoptosis in resistant osteosarcoma cells, where Dox was completely ineffective. We propose mtDox as a new effective agent with a safer toxicity profile compared with Dox that may be effective for the treatment of Dox-resistant/Pgp-positive osteosarcoma patients, who strongly need alternative and innovative treatment strategies. Mol Cancer Ther; 15(11); 2640-52. ©2016 AACR.
Collapse
Affiliation(s)
| | - Elena Gazzano
- Department of Oncology, University of Torino, Torino, Italy
| | - Sae Rin Jean
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Department of Chemistry, Faculty of Arts and Science, University of Toronto, Toronto, Ontario, Canada
| | - Valentina Audrito
- Human Genetics Foundation (HuGeF), Torino, Italy.,Department of Medical Sciences, University of Torino, Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | - Marilù Fanelli
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | | | | | - Ilaria Roato
- Center for Research and Experimental Medicine (Ce.R.M.S.), San Giovanni Battista Hospital, Torino, Italy
| | - Eleonora Mungo
- Department of Oncology, University of Torino, Torino, Italy
| | - Claudia M Hattinger
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Silvia Deaglio
- Human Genetics Foundation (HuGeF), Torino, Italy.,Department of Medical Sciences, University of Torino, Torino, Italy
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Department of Chemistry, Faculty of Arts and Science, University of Toronto, Toronto, Ontario, Canada
| | - Massimo Serra
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy.
| |
Collapse
|
33
|
Pharmacokinetics and tolerability of NSC23925b, a novel P-glycoprotein inhibitor: preclinical study in mice and rats. Sci Rep 2016; 6:25659. [PMID: 27157103 PMCID: PMC4860631 DOI: 10.1038/srep25659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/19/2016] [Indexed: 12/19/2022] Open
Abstract
Overexpression of P-glycoprotein (Pgp) increases multidrug resistance (MDR) in cancer, which greatly impedes satisfactory clinical treatment and outcomes of cancer patients. Due to unknown pharmacokinetics, the use of Pgp inhibitors to overcome MDR in the clinical setting remains elusive despite promising in vitro results. The purpose of our current preclinical study is to investigate the pharmacokinetics and tolerability of NSC23925b, a novel and potent P-glycoprotein inhibitor, in rodents. Plasma pharmacokinetic studies of single-dose NSC23925b alone or in combination with paclitaxel or doxorubicin were conducted in male BALB/c mice and Sprague-Dawley rats. Additionally, inhibition of human cytochrome P450 (CYP450) by NSC23925b was examined in vitro. Finally, the maximum tolerated dose (MTD) of NSC23925b was determined. NSC23925b displayed favorable pharmacokinetic profiles after intraperitoneal/intravenous (I.P./I.V.) injection alone or combined with chemotherapeutic drugs. The plasma pharmacokinetic characteristics of the chemotherapy drugs were not affected when co-administered with NSC23925b. All the animals tolerated the I.P./I.V. administration of NSC23925b. Moreover, the enzymatic activity of human CYP450 was not inhibited by NSC23925b. Our results demonstrated that Pgp inhibitor NSC23925b exhibits encouraging preclinical pharmacokinetic characteristics and limited toxicity in vivo. NSC23925b has the potential to treat cancer patients with MDR in the future.
Collapse
|
34
|
Feng X, Zhu W, Schurig-Briccio LA, Lindert S, Shoen C, Hitchings R, Li J, Wang Y, Baig N, Zhou T, Kim BK, Crick DC, Cynamon M, McCammon JA, Gennis RB, Oldfield E. Antiinfectives targeting enzymes and the proton motive force. Proc Natl Acad Sci U S A 2015; 112:E7073-82. [PMID: 26644565 PMCID: PMC4697371 DOI: 10.1073/pnas.1521988112] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is a growing need for new antibiotics. Compounds that target the proton motive force (PMF), uncouplers, represent one possible class of compounds that might be developed because they are already used to treat parasitic infections, and there is interest in their use for the treatment of other diseases, such as diabetes. Here, we tested a series of compounds, most with known antiinfective activity, for uncoupler activity. Many cationic amphiphiles tested positive, and some targeted isoprenoid biosynthesis or affected lipid bilayer structure. As an example, we found that clomiphene, a recently discovered undecaprenyl diphosphate synthase inhibitor active against Staphylococcus aureus, is an uncoupler. Using in silico screening, we then found that the anti-glioblastoma multiforme drug lead vacquinol is an inhibitor of Mycobacterium tuberculosis tuberculosinyl adenosine synthase, as well as being an uncoupler. Because vacquinol is also an inhibitor of M. tuberculosis cell growth, we used similarity searches based on the vacquinol structure, finding analogs with potent (∼0.5-2 μg/mL) activity against M. tuberculosis and S. aureus. Our results give a logical explanation of the observation that most new tuberculosis drug leads discovered by phenotypic screens and genome sequencing are highly lipophilic (logP ∼5.7) bases with membrane targets because such species are expected to partition into hydrophobic membranes, inhibiting membrane proteins, in addition to collapsing the PMF. This multiple targeting is expected to be of importance in overcoming the development of drug resistance because targeting membrane physical properties is expected to be less susceptible to the development of resistance.
Collapse
Affiliation(s)
- Xinxin Feng
- Department of Chemistry, University of Illinois, Urbana, IL 61801
| | - Wei Zhu
- Department of Chemistry, University of Illinois, Urbana, IL 61801
| | | | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210
| | - Carolyn Shoen
- Central New York Research Corporation, Veterans Affairs Medical Center, Syracuse, NY 13210
| | - Reese Hitchings
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Jikun Li
- Department of Chemistry, University of Illinois, Urbana, IL 61801
| | - Yang Wang
- Department of Chemistry, University of Illinois, Urbana, IL 61801
| | - Noman Baig
- Department of Chemistry, University of Illinois, Urbana, IL 61801
| | - Tianhui Zhou
- Department of Chemistry, University of Illinois, Urbana, IL 61801
| | - Boo Kyung Kim
- Department of Chemistry, University of Illinois, Urbana, IL 61801
| | - Dean C Crick
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Michael Cynamon
- Central New York Research Corporation, Veterans Affairs Medical Center, Syracuse, NY 13210
| | - J Andrew McCammon
- Department of Pharmacology and Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093; Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093; National Biomedical Computation Resource, University of California San Diego, La Jolla, CA 92093;
| | - Robert B Gennis
- Department of Chemistry, University of Illinois, Urbana, IL 61801; Department of Biochemistry, University of Illinois, Urbana, IL 61801; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Eric Oldfield
- Department of Chemistry, University of Illinois, Urbana, IL 61801; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
35
|
Yang X, Shen J, Gao Y, Feng Y, Guan Y, Zhang Z, Mankin H, Hornicek FJ, Duan Z. Nsc23925 prevents the development of paclitaxel resistance by inhibiting the introduction of P-glycoprotein and enhancing apoptosis. Int J Cancer 2015; 137:2029-39. [PMID: 25904021 DOI: 10.1002/ijc.29574] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/13/2015] [Accepted: 04/14/2015] [Indexed: 12/12/2022]
Abstract
Strategies to prevent the emergence of drug resistance will increase the effectiveness of chemotherapy treatment and prolong survival of women with ovarian cancer. The aim of our study is to determine the effects of NSC23925 on preventing the development of paclitaxel resistance in ovarian cancer both in cultured cells in vitro and in mouse xenograft models in vivo, and to further elucidate these underlying mechanisms. We first developed a paclitaxel-resistant ovarian cancer cell line, and demonstrated that NSC23925 could prevent the introduction of paclitaxel resistance by specifically inhibiting the overexpression of P-glycoprotein (Pgp) in vitro. The paclitaxel-resistant ovarian cancer cells were then established in a mouse model by continuous paclitaxel treatment in combination with or without NSC23925 administration in the mice. The majority of mice continuously treated with paclitaxel alone eventually developed paclitaxel resistance with overexpression of Pgp and antiapoptotic proteins, whereas mice remained sensitivity to paclitaxel and displayed lower expression levels of Pgp and antiapoptotic proteins after administered continuously with combination of paclitaxel-NSC23925. Paclitaxel-NSC23925-treated mice experienced significantly longer overall survival time than paclitaxel-treated mice. Furthermore, the combination of paclitaxel and NSC23925 therapy did not induce obvious toxicity as measured by mice body weight changes, blood cell counts and histology of internal organs. Collectively, our observations provide evidence that NSC23925 in combination with paclitaxel may prevent the onset of Pgp or antiapoptotic-mediated paclitaxel resistance, and improve the long-term clinical outcome in patients with ovarian cancer.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jacson Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Yan Gao
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Yong Feng
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Yichun Guan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhan Zhang
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Henry Mankin
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
36
|
Li S, Sun W, Wang H, Zuo D, Hua Y, Cai Z. Research progress on the multidrug resistance mechanisms of osteosarcoma chemotherapy and reversal. Tumour Biol 2015; 36:1329-38. [PMID: 25666750 DOI: 10.1007/s13277-015-3181-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/27/2015] [Indexed: 01/23/2023] Open
Abstract
Osteosarcoma (OS) is the most common and aggressive primary malignant type of bone cancer in children and adolescents. Chemotherapy is one of the most important treatments for OS. Although cancer therapy has improved over the past few decades, survival outcomes for OS patients remain unsatisfactory. One of the primary reasons for the failure of current treatments is that patients with stage IV cancer often develop resistance to anticancer agents. This article will review multidrug resistance (MDR) mechanisms of OS and strategies for overcoming resistance.
Collapse
Affiliation(s)
- Suoyuan Li
- Department of Orthopedics, Shanghai First People's Hospital, Nanjing Medical University, 100 Haining Rd, Shanghai, 200072, China,
| | | | | | | | | | | |
Collapse
|
37
|
Yang X, Feng Y, Gao Y, Shen J, Choy E, Cote G, Harmon D, Zhang Z, Mankin H, Hornicek FJ, Duan Z. NSC23925 prevents the emergence of multidrug resistance in ovarian cancer in vitro and in vivo. Gynecol Oncol 2015; 137:134-42. [PMID: 25677062 DOI: 10.1016/j.ygyno.2015.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/03/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The development of multidrug resistance (MDR) remains the significant clinical challenge in ovarian cancer therapy; however, relatively little is known about how to prevent the emergence of MDR during chemotherapy treatment. NSC23925 previously has been shown to prevent the development of MDR in osteosarcoma cells in vitro. The purpose of this study was to evaluate the effects of NSC23925 on the prevention of MDR in ovarian cancer, especially in vivo. METHODS Human ovarian cancer cells were treated with paclitaxel alone or in combination with NSC23925 in vitro and in vivo. MDR ovarian cancer cells were established both in cultured cells and mouse models. The expression levels of Pgp and MDR1 were evaluated in various selected cell sublines by Western blot and real-time PCR. Pgp activity was also determined. RESULTS Paclitaxel treated cells eventually developed MDR with overexpression of Pgp and MDR1, and with high activity of Pgp, while paclitaxel-NSC23925 co-treated cells remained sensitive to chemotherapeutic agents in both in vitro and in vivo models. There was no observed increase in expression level and activity of Pgp in paclitaxel-NSC23925 co-treated cells. Additionally, there were no changes in the sensitivity to chemotherapeutic agents, nor expression of Pgp, in cells cultured with NSC23925. CONCLUSION Our findings suggest that NSC23925 can prevent the emergence of MDR in ovarian cancer both in vitro and in vivo. The clinical use of NSC2395 at the onset of chemotherapy may prevent the development of MDR and improve the clinical outcome of patients with ovarian cancer.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yong Feng
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yan Gao
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jacson Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Edwin Choy
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Gregory Cote
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - David Harmon
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zhan Zhang
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Henry Mankin
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|