1
|
Fan L, Lin Y, Fu Y, Wang J. Small cell lung cancer with liver metastases: from underlying mechanisms to treatment strategies. Cancer Metastasis Rev 2024; 44:5. [PMID: 39585433 DOI: 10.1007/s10555-024-10220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024]
Abstract
Small cell lung cancer (SCLC) represents an aggressive neuroendocrine (NE) tumor within the pulmonary region, characterized by very poor prognoses. Druggable targets for SCLC remain limited, thereby constraining treatment options available to patients. Immuno-chemotherapy has emerged as a pivotal therapeutic strategy for extensive-stage SCLC (ES-SCLC), yet it fails to confer significant efficacy in cases involving liver metastases (LMs) originating from SCLC. Therefore, our attention is directed towards the challenging subset of SCLC patients with LMs. Disease progression of LM-SCLC patients is affected by various factors in the tumor microenvironment (TME), including immune cells, blood vessels, inflammatory mediators, metabolites, and NE substances. Beyond standard immuno-chemotherapy, ongoing efforts to manage LMs in SCLC encompass anti-angiogenic therapy, radiotherapy, microwave ablation (MWA) / radiofrequency ablation (RFA), trans-arterial chemoembolization (TACE), and systemic therapies in conjunction with local interventions. Prospective experimental and clinical investigations into SCLC should prioritize precise and individualized approaches to enhance the prognosis across distinct patient cohorts.
Collapse
Affiliation(s)
- Linjie Fan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiwen Lin
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yunjie Fu
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Peng M, Deng J, Li X. Clinical advances and challenges in targeting FGF/FGFR signaling in lung cancer. Mol Cancer 2024; 23:256. [PMID: 39543657 PMCID: PMC11566285 DOI: 10.1186/s12943-024-02167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors regulate numerous cellular processes, such as metabolism and signal transduction, but can also drive tumorigenesis. Specifically, in lung cancer, the overexpression of FGFs, as well as the amplification, mutation and fusion of FGFR genes, are closely linked to the initiation, progression and resistance of the disease, suggesting that targeting FGF/FGFR is an attractive therapeutic strategy for lung cancer treatment. Nintedanib, a multitarget tyrosine kinase inhibitor (TKI) used in combination with docetaxel, has shown some success as a second-line therapy for lung cancer. However, clinical trials evaluating other FGFR inhibitors have yielded mixed results, indicating substantial complexity in targeting aberrant FGF/FGFR signaling. In this review, we describe the aberrations in FGF/FGFR signaling in lung cancer and summarize the clinical efficacy of FGFR inhibitors, such as multitarget TKIs, selective FGFR-TKIs and biological agents. We also discuss various challenges associated with FGFR targeting in lung cancer, including precision patient selection, toxicity and resistance. Finally, we provide perspectives on future directions, namely, developing novel FGFR-targeting drugs, such as FGFR degraders and more specific FGFR-TKIs, adopting combination therapy and targeting FGFs.
Collapse
Affiliation(s)
- Mei Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China.
| | - Jun Deng
- Department of Pharmacy, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410000, P. R. China
| | - Xiangping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China.
| |
Collapse
|
3
|
Wang W, Wu G, Luo W, Lin L, Zhou C, Yao G, Chen M, Wu X, Chen Z, Ye J, Yang H, Lv D. Anlotinib plus oral fluoropyrimidine S-1 in refractory or relapsed small-cell lung cancer (SALTER TRIAL): a multicenter, single-arm, phase II trial. BMC Cancer 2024; 24:1182. [PMID: 39333988 PMCID: PMC11437909 DOI: 10.1186/s12885-024-12954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Patients with small-cell lung cancer (SCLC) have few treatment options and dismal overall survival (OS) after failed platinum-based chemotherapy. METHODS The eligibility criteria of this phase II clinical trial included patients with measurable disease, age of 18 to 75 years, a confirmed diagnosis of disease progression or recurrence after prior platinum-based chemotherapy with a pathologically proven diagnosis of SCLC. Patients were treated with anlotinib at a dosage of 12 mg once daily (QD) and S-1 at 60 mg twice daily (BID) for 2 weeks, followed by a 1-week treatment-free interval. After six cycles of the above treatment, patients continued the maintenance therapy using S-1 monotherapy at 60 mg/ BID for 2 weeks, followed by a 1-week treatment-free interval until disease progression. RESULTS From March 2019 to June 2020, a total of 71 patients were initially assessed for eligibility in this study. Out of these, 52 patients who met the inclusion criteria were enrolled, and 48 patients received at least two doses of the study drug. The median follow-up time was 25.1 months. The ORR was seen in 21 patients (43.8%). The median PFS was 4.5 months (95% CI, 3.5-5.5 months), and the median OS was 5.9 months (95% CI, 4.6-7.3 months). The most common grade 3-4 treatment-related adverse events were thrombocytopenia (16.7%), anemia (14.6%), neutropenia (14.6%), and hypertension (10.4%). No treatment-related death occurred. CONCLUSIONS The combination of anlotinib with oral fluoropyrimidine S-1 demonstrated notable activity in relapsed or refractory SCLC, showing a favorable ORR and an acceptable, manageable safety profile. TRIAL REGISTRATION This trial was registered with ClinicalTrial.gov (NCT03823118) on 3 January 2019.
Collapse
Affiliation(s)
- Wei Wang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, 317000, China
- Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, 317000, China
| | - Guixian Wu
- Department of Respiratory and Critical Care Medicine, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, 318050, China
| | - Wujun Luo
- Department of Respiratory and Critical Care Medicine, Sanmen People Hospital, Taizhou, Zhejiang Province, 317100, China
| | - Ling Lin
- Department of Respiratory and Critical Care Medicine, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, 318050, China
| | - Chao Zhou
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, 317000, China
| | - Guifei Yao
- Department of Respiratory and Critical Care Medicine, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang Province, 317000, China
| | - Meifang Chen
- Department of Respiratory and Critical Care Medicine, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang Province, 317000, China
| | - Xiaomai Wu
- Department of Respiratory and Critical Care Medicine, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, 318050, China
| | - Ziran Chen
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, 317000, China
| | - Junhui Ye
- Department of Respiratory and Critical Care Medicine, Sanmen People Hospital, Taizhou, Zhejiang Province, 317100, China.
- Department of Pulmonary Medicine, Sanmen People Hospital, Taizhou, Zhejiang Province, 317100, China.
| | - Haihua Yang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, 317000, China.
- Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, 317000, China.
| | - Dongqing Lv
- Department of Respiratory and Critical Care Medicine, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, 318050, China.
| |
Collapse
|
4
|
Ying Q, Fan R, Shen Y, Chen B, Zhang J, Li Q, Shi X. Small Cell Lung Cancer-An Update on Chemotherapy Resistance. Curr Treat Options Oncol 2024; 25:1112-1123. [PMID: 39066852 DOI: 10.1007/s11864-024-01245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Compared to other types of lung cancer, small cell lung cancer (SCLC) exhibits aggressive characteristics that promote drug resistance. Despite platinum-etoposide chemotherapy combined with immunotherapy being the current standard treatment, the rapid development of drug resistance has led to unsatisfactory clinical outcomes. This review focuses on the mechanisms contributing to the chemotherapy resistance phenotype in SCLC, such as increased intra-tumoral heterogeneity, alterations in the tumor microenvironment, changes in cellular metabolism, and dysregulation of apoptotic pathways. A comprehensive understanding of these drug resistance mechanisms in SCLC is imperative for ushering in a new era in cancer research, which will promise revolutionary advancements in cancer diagnosis and treatment methodologies.
Collapse
Affiliation(s)
- Qian Ying
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
| | - Ruiyun Fan
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
- Department of Respiratory Medicine, Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, Huzhou, People's Republic of China
| | - Yili Shen
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
- Department of Respiratory Medicine, Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, Huzhou, People's Republic of China
| | - Boyi Chen
- Department of Respiratory Medicine, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, People's Republic of China
| | - Jianhui Zhang
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
| | - Qiuhui Li
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China.
- Department of Respiratory Medicine, Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, Huzhou, People's Republic of China.
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China.
- Department of Respiratory Medicine, Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, Huzhou, People's Republic of China.
| |
Collapse
|
5
|
Trillo Aliaga P, Del Signore E, Fuorivia V, Spitaleri G, Asnaghi R, Attili I, Corvaja C, Carnevale Schianca A, Passaro A, de Marinis F. The Evolving Scenario of ES-SCLC Management: From Biology to New Cancer Therapeutics. Genes (Basel) 2024; 15:701. [PMID: 38927637 PMCID: PMC11203015 DOI: 10.3390/genes15060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine carcinoma accounting for 15% of lung cancers with dismal survival outcomes. Minimal changes in therapy and prognosis have occurred in SCLC for the past four decades. Recent progress in the treatment of extensive-stage disease (ES-SCLC) has been marked by incorporating immune checkpoint inhibitors (ICIs) into platinum-based chemotherapy, leading to modest improvements. Moreover, few second-line-and-beyond treatment options are currently available. The main limitation for the molecular study of SCLC has been the scarcity of samples, because only very early diseases are treated with surgery and biopsies are not performed when the disease progresses. Despite all these difficulties, in recent years we have come to understand that SCLC is not a homogeneous disease. At the molecular level, in addition to the universal loss of retinoblastoma (RB) and TP53 genes, a recent large molecular study has identified other mutations that could serve as targets for therapy development or patient selection. In recent years, there has also been the identification of new genetic subtypes which have shown us how intertumor heterogeneity exists. Moreover, SCLC can also develop intratumoral heterogeneity linked mainly to the concept of cellular plasticity, mostly due to the development of resistance to therapies. The aim of this review is to quickly present the current standard of care of ES-SCLC, to focus on the molecular landscapes and subtypes of SCLC, subsequently present the most promising therapeutic strategies under investigation, and finally recap the future directions of ongoing clinical trials for this aggressive disease which still remains a challenge.
Collapse
Affiliation(s)
- Pamela Trillo Aliaga
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Ester Del Signore
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Valeria Fuorivia
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Gianluca Spitaleri
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Riccardo Asnaghi
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Ilaria Attili
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Carla Corvaja
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Ambra Carnevale Schianca
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| |
Collapse
|
6
|
Canova S, Trevisan B, Abbate MI, Colonese F, Sala L, Baggi A, Bianchi SP, D'Agostino A, Cortinovis DL. Novel Therapeutic Options for Small Cell Lung Cancer. Curr Oncol Rep 2023; 25:1277-1294. [PMID: 37870696 PMCID: PMC10640463 DOI: 10.1007/s11912-023-01465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to focus on the recent advances in the molecular knowledge of small cell lung cancer (SCLC) and potential promising new treatment strategies, like targeting the DNA damage pathway, epigenetics, angiogenesis, and oncogenic drivers. RECENT FINDINGS In the last few years, the addition of immunotherapy to chemotherapy has led to significant improvements in clinical outcomes in this complex neoplasia. Nevertheless, the prognosis remains dismal. Recently, numerous genomic alterations have been identified, and they may be useful to classify SCLC into different molecular subtypes (SCLC-A, SCLC-I, SCLC-Y, SCLC-P). SCLC accounts for 10-20% of all lung cancers, most patients have an extensive disease at the diagnosis, and it is characterized by poor prognosis. Despite the progresses in the knowledge of the disease, efficacious targeted treatments are still lacking. In the near future, the molecular characterisation of SCLC will be fundamental to find more effective treatment strategies.
Collapse
Affiliation(s)
- Stefania Canova
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Benedetta Trevisan
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Department of Medical-Surgical Specialties, University of Brescia, Radiological Sciences and Public Health, Brescia, Italy
| | - Maria Ida Abbate
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Francesca Colonese
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Luca Sala
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Alice Baggi
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Department of Medical-Surgical Specialties, University of Brescia, Radiological Sciences and Public Health, Brescia, Italy
| | - Sofia Paola Bianchi
- Radiation Oncology Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Anna D'Agostino
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Diego Luigi Cortinovis
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy.
- Medicine and Surgery Department, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
7
|
McNamee N, da Silva IP, Nagrial A, Gao B. Small-Cell Lung Cancer-An Update on Targeted and Immunotherapies. Int J Mol Sci 2023; 24:8129. [PMID: 37175833 PMCID: PMC10179261 DOI: 10.3390/ijms24098129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Small-cell lung cancer (SCLC) is an aggressive disease with distinct biological and clinical features. The clinical course of SCLC is generally characterised by initial sensitivity to DNA-damaging therapies, followed by early relapse and broad cross resistance to second line agents. Whilst there has been an enormous expansion of effective targeted and immune-based therapeutic options for non-small cell lung cancer (NSCLC) in the last decade, little improvement has been achieved in SCLC treatment and survival due, at least in part, to underappreciated inter- and intra-tumoral heterogeneity. Here we review the current treatment paradigm of SCLC including recent advances made in utilizing immunotherapy and the challenges of identifying a predictive biomarker for immunotherapy response. We examine emerging new targeted therapies, combination immunotherapy and future directions of SCLC treatment research.
Collapse
Affiliation(s)
| | - Ines Pires da Silva
- Blacktown and Westmead Hospitals, Sydney, NSW 2145, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Adnan Nagrial
- Blacktown and Westmead Hospitals, Sydney, NSW 2145, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Bo Gao
- Blacktown and Westmead Hospitals, Sydney, NSW 2145, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW 2145, Australia
| |
Collapse
|
8
|
Bernabé-Caro R, Chen Y, Dowlati A, Eason P. Current and Emerging Treatment Options for Patients With Relapsed Small-cell Lung Carcinoma: A Systematic Literature Review. Clin Lung Cancer 2023; 24:185-208. [PMID: 36907793 DOI: 10.1016/j.cllc.2023.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/10/2023]
Abstract
Second-line treatment options are limited for patients with small-cell lung cancer (SCLC). We conducted a PRISMA-standard systematic literature review to evaluate the treatment landscape for patients with relapsed SCLC (PROSPERO number: CRD42022299759). Systematic searches of MEDLINE, Embase, and Cochrane Library were performed (October 2022) to identify publications (prior 5 years) from prospective studies of therapies for relapsed SCLC. Publications were screened against predetermined eligibility criteria; data were extracted to standardized fields. Publication quality was assessed using GRADE. The data were analyzed descriptively, grouped by drug class. Overall, 77 publications involving 6349 patients were included. Studies of tyrosine kinase inhibitors (TKIs) with established cancer indications accounted for 24 publications; topoisomerase I inhibitors for 15; checkpoint inhibitors (CPIs) for 11, and alkylating agents for 9 publications. The remaining 18 publications featured chemotherapies, small-molecule inhibitors, investigational TKIs and monoclonal antibodies, and a cancer vaccine. According to GRADE assessment, 69% of the publications reported low-/very-low-quality evidence; quality limitations included lack of randomization and small sample sizes. Only 6 publications/6 trials reported phase 3 data; 5 publications/2 trials reported phase 2/3 results. Overall, the clinical potential of alkylating agents and CPIs remained unclear; investigations of combination approaches and biomarker-directed usage are warranted. Phase 2 data from TKI trials were consistently promising; no phase 3 data were available. Phase 2 data for a liposomal formulation of irinotecan were promising. We confirmed an absence of promising investigational drug/regimens in late-stage development; thus, relapsed SCLC remains an area of high unmet need.
Collapse
Affiliation(s)
| | - Yuanbin Chen
- Cancer & Hematology Centers of Western Michigan, Grand Rapids, MI
| | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH; University Hospitals Seidman Cancer Center, Cleveland, OH
| | | |
Collapse
|
9
|
Wang H, Wang X, Jiang S, Zhu J, Liu J, Zhou C, Zhu Y, Han Y. Personalized treatment of extensive stage small cell lung cancer: A case report and literature review. Front Oncol 2022; 12:956372. [PMID: 36033514 PMCID: PMC9410564 DOI: 10.3389/fonc.2022.956372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022] Open
Abstract
A 50-year-old female patient presented with post-exercise dyspnea in September 2016, and was subsequently diagnosed with SCLC with multiple brain and spinal metastases. The first-line treatment was etoposide combined with cisplatin and synchronously performed radiotherapy for the brain and spinal cord metastases. She was treated with anlotinib after disease progression in December 2018 and continued to have clinical benefit for nearly 25 months. Unexpectedly, the patient can still benefit from further combination treatment with durvalumab after another disease progression in February 2021. Thus, it may be a potential option to use anlotinib along with immunotherapy after the anlotinib resistance in SCLC, but more clinical data are still needed to confirm it. Moreover, ctDNA dynamic monitoring was performed and reflected the outcome of the process of treatment.
Collapse
|
10
|
Li Y, Chen C, Liu HL, Li CG, Zhang ZF, Wang CL. Pazopanib restricts small cell lung cancer proliferation via reactive oxygen species-mediated endoplasmic reticulum stress. Thorac Cancer 2022; 13:2421-2428. [PMID: 35866204 PMCID: PMC9436657 DOI: 10.1111/1759-7714.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background Pazopanib is an approved multitarget anticancer agent for soft tissue sarcoma (STS) and renal cell carcinoma (RCC), which is also under clinical investigation for other malignancies, including small cell lung cancer (SCLC). However, the potential anti‐SCLC mechanisms of pazopanib remain unclear. Methods Cell viability was evaluated by CCK‐8, apoptotic cell detection was conducted using annexin V/PI staining followed by flow cytometry, and Western blot analysis was used to detect the apoptotic‐related molecules and ER‐stress pathway effectors. The intracellular reactive oxygen species (ROS) level was determined by DCFH‐HA staining followed by flow cytometry. An NCI‐H446 xenograft model was established to evaluate pazopanib on tumor suppression in vivo. Immunohistochemistry (IHC) was used to assess the proliferative activity of xenograft in NCI‐H446 cell‐bearing NOD‐SCID mice. Results Pazopanib dose‐ and time‐dependently inhibited SCLC cell proliferation induced significant apoptosis in SCLC cell lines, increased cleaved‐caspase3 and Bax, and decreased Bcl‐2. Moreover, the PERK‐related ER‐stress pathway was potently activated by pazopanib treatment, inhibiting ER‐stress by salubrinal significantly reversing pazopanib‐mediated apoptosis in SCLC cell lines. Furthermore, pazopanib‐induced intracellular ROS levels increased, while inhibiting ROS by NAC significantly reversed pazopanib‐induced apoptosis in SCLC cells. In addition, pazopanib significantly suppressed NCI‐H446 xenograft growth and decreased Ki67 positive cells in the tumor. Conclusion Our findings indicate that pazopanib induces SCLC cell apoptosis through the ER‐stress process via upregulation of ROS levels. Further investigation of relevant biomarkers to accurately select patients for benefit from pazopanib should be further investigated.
Collapse
Affiliation(s)
- Yue Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chen Chen
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Hai-Lin Liu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chen-Guang Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Zhen-Fa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chang-Li Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| |
Collapse
|
11
|
Liu C, Liao J, Wu X, Zhao X, Sun S, Wang H, Hu Z, Zhang Y, Yu H, Wang J. A phase II study of anlotinib combined with etoposide and platinum-based regimens in the first-line treatment of extensive-stage small cell lung cancer. Thorac Cancer 2022; 13:1463-1470. [PMID: 35388976 PMCID: PMC9108065 DOI: 10.1111/1759-7714.14414] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The aim of this prospective, pilot, single-arm phase II trial was to evaluate the safety and efficacy of anlotinib combined with etoposide and platinum-based regimens in the first-line treatment of extensive-stage small cell lung cancer (ES-SCLC). METHODS This phase II study was conducted at Fudan University Shanghai Cancer Center between December 2018 and December 2020. All patients received standard chemotherapy (etoposide plus cisplatin/carboplatin) consisting of four courses and anlotinib at 12 mg once per day for 2 weeks followed by a one-week rest. Anlotinib administration was continued until disease progression, intolerable adverse events (AEs) or patient withdrawal from the study. The primary outcome measure was progression-free survival (PFS). The secondary outcome measures were overall survival (OS), objective control rate (ORR), disease control rate (DCR) and AEs. RESULTS Thirty-seven patients were included in this study, and 30 patients were eligible for efficacy analysis. ORR and DCR were 90.0% and 96.7%, respectively. The estimated PFS and OS were 6.0 months (95% CI: 1.1-11.9 months) and 14.0 months (95% CI: 8.6-19.4 months), respectively. No unexpected adverse effects were reported. Hypertension (20/37, 54.1%), anemia (16/37, 43.2%), alopecia (15/37, 40.5%), elevated transaminases (9/37, 24.3%) and alkaline phosphatase (9/37, 24.3%) were the most commonly reported AEs. Thirteen patients (35.1%) reported grade 3-5 AEs. No treatment-related deaths occurred during this study. CONCLUSION The addition of anlotinib to standard etoposide/platinum chemotherapy achieved encouraging PFS and OS in previously untreated ES-SCLC patients, with an acceptable tolerability profile and no new safety signals observed.
Collapse
Affiliation(s)
- Chang Liu
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Jiatao Liao
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Xianghua Wu
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Xinmin Zhao
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Si Sun
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Huijie Wang
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Zhihuang Hu
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yao Zhang
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Hui Yu
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Jialei Wang
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| |
Collapse
|
12
|
Teng F, Xing P, Yang K, Gao L, Tian Z, Li J. Apatinib as maintenance therapy following standard first-line chemotherapy in extensive disease small cell lung cancer: A phase II single-arm trial. Thorac Cancer 2022; 13:557-562. [PMID: 35029038 PMCID: PMC8841707 DOI: 10.1111/1759-7714.14298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND There is a need for the development of therapies to delay cancer progression and prolong survival after initial chemotherapy for the treatment of small cell lung cancer (SCLC). Since apatinib has been found to exert promising effects on cancer patients after standard first-line chemotherapy, this study aimed to investigate apatinib as a maintenance treatment following first-line chemotherapy in extensive disease (ED)-SCLC. METHODS The primary endpoints were overall survival (OS) and progression-free survival (PFS). The secondary endpoints included toxicity and safety. Apatinib (250 mg/day) was administered during the chemotherapy interval and as maintenance therapy after 4-6 cycles until the patient's disease progressed, the patient died, or became intolerant to the drug's toxicity. RESULTS The patients who received apatinib maintenance treatment had a median PFS of 3.7 months (95% CI: 1.3-6.2 months). The median OS was 16.3 months (95% CI: 9.7-22.8 months). The objective response rate and disease control rate were 50.0% and 66.7%, respectively. Two patients required dose reduction due to adverse effects (AEs). The most common AEs included hypertension (n = 4, 33.3%) and hand-foot-skin reaction (n = 2, 16.7%). One patient developed diarrhea, while another patient developed hemoptysis. The most serious AE was intestinal obstruction. CONCLUSIONS Apatinib maintenance therapy showed promising efficacy and safety to extend the OS/PFS of patients with ED-SCLC, thus making it a potent therapeutic option in future clinical practice. Given the small sample size of this study, further studies with large sample sizes are needed to validate the findings of the present study.
Collapse
Affiliation(s)
- Fei Teng
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Puyuan Xing
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ke Yang
- Department of Medical OncologyCancer Hospital of Huanxing ChaoYang District BeijingBeijingChina
| | - Lizhen Gao
- Department of Medical OncologyCancer Hospital of Huanxing ChaoYang District BeijingBeijingChina
| | - Zhongqiu Tian
- Department of Medical OncologyCancer Hospital of Huanxing ChaoYang District BeijingBeijingChina
| | - Junling Li
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
13
|
Menezes TM, Neto AMDS, Gubert P, Neves JL. Effects of human serum albumin glycation on the interaction with the tyrosine kinase inhibitor pazopanib unveiled by multi-spectroscopic and bioinformatic tools. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Hiddinga BI, Raskin J, Janssens A, Pauwels P, Van Meerbeeck JP. Recent developments in the treatment of small cell lung cancer. Eur Respir Rev 2021; 30:210079. [PMID: 34261744 PMCID: PMC9488550 DOI: 10.1183/16000617.0079-2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/27/2021] [Indexed: 12/19/2022] Open
Abstract
Small cell lung cancer (SCLC) comprises about 15% of all lung cancers. It is an aggressive disease, with early metastasis and a poor prognosis. Until recently, SCLC treatment remained relatively unchanged, with chemotherapy remaining the cornerstone of treatment. In this overview we will highlight the recent advances in the field of staging, surgery, radiotherapy and systemic treatment. Nevertheless, the prognosis remains dismal and there is a pressing need for new treatment options. We describe the progress that has been made in systemic treatment by repurposing existing drugs and the addition of targeted treatment. In recent years, immunotherapy entered the clinic with high expectations of its role in the treatment of SCLC. Unravelling of the genomic sequence revealed new possible targets that may act as biomarkers in future treatment of patients with SCLC. Hopefully, in the near future, we will be able to identify patients who may benefit from targeted therapy or immunotherapy to improve prognoses.
Collapse
Affiliation(s)
- Birgitta I Hiddinga
- Dept of Pulmonary Medicine and Tuberculosis, University Medical Centre Groningen, Groningen, The Netherlands
- Both authors contributed equally
| | - Jo Raskin
- Dept of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
- Both authors contributed equally
| | - Annelies Janssens
- Dept of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Patrick Pauwels
- University of Antwerp, Antwerp, Belgium
- Dept of Pathology, Antwerp University Hospital, Edegem, Belgium
- European Reference Network for rare and low prevalent lung diseases (ERN-LUNG), Frankfurt am Main, Germany
| | - Jan P Van Meerbeeck
- Dept of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
- University of Antwerp, Antwerp, Belgium
- European Reference Network for rare and low prevalent lung diseases (ERN-LUNG), Frankfurt am Main, Germany
| |
Collapse
|
15
|
Cheng Y, Wang Q, Li K, Shi J, Liu Y, Wu L, Han B, Chen G, He J, Wang J, Lou D, Yu H, Wang S, Qin H, Li X. Anlotinib vs placebo as third- or further-line treatment for patients with small cell lung cancer: a randomised, double-blind, placebo-controlled Phase 2 study. Br J Cancer 2021; 125:366-371. [PMID: 34006926 PMCID: PMC8329046 DOI: 10.1038/s41416-021-01356-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/19/2021] [Accepted: 03/11/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the efficacy and safety of anlotinib as a third-line and subsequent treatment for patients with small cell lung cancer (SCLC). METHODS We conducted this Phase 2 trial at 11 institutions in China. Patients with pathologically confirmed SCLC who failed at least two lines of chemotherapy were enrolled. Subjects were randomly assigned in a 2:1 ratio to receive either anlotinib 12 mg orally once daily for 14 days every 3 weeks or placebo. The primary endpoint was progression-free survival (PFS). RESULTS Between March 30, 2017 and June 8, 2018, a total of 82 and 38 patients were randomly assigned to receive anlotinib and placebo. The median PFS was significantly longer in the anlotinib group compared with the placebo group (4.1 months [95% confidence interval (CI), 2.8-4.2] vs 0.7 months [95% CI, 0.7-0.8]; hazard ratio (HR) 0.19 [95% CI, 0.12-0.32], p < 0.0001). Overall survival (OS) was significantly longer with anlotinib than placebo (7.3 months [95% CI, 6.1-10.3] vs 4.9 months [95% CI, 2.7-6.0]; HR 0.53 [95% CI, 0.34-0.81], p = 0.0029). CONCLUSIONS Anlotinib as a third-line or subsequent treatment for Chinese patients with SCLC showed improved PFS and OS than placebo with favourable safety profile. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, number NCT03059797.
Collapse
Affiliation(s)
- Ying Cheng
- grid.440230.1Department of Thoracic Medical Oncology, Jilin Cancer Hospital, Changchun, China
| | - Qiming Wang
- grid.414008.90000 0004 1799 4638Department of Respiratory Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China ,grid.414008.90000 0004 1799 4638Department of Respiratory Medicine, Henan Cancer Hospital, Zhengzhou, China
| | - Kai Li
- grid.411918.40000 0004 1798 6427Department of Pulmonary Oncology, Tianjin Medical University Cancer Hospital, Tianjin, China
| | - Jianhua Shi
- Department of Medical Oncology, Linyi Cancer Hospital, Linyi, China
| | - Ying Liu
- grid.440230.1Department of Thoracic Medical Oncology, Jilin Cancer Hospital, Changchun, China
| | - Lin Wu
- grid.410622.30000 0004 1758 2377Department of Thoracic Medical Oncology, Hunan Cancer Hospital, Changsha, China
| | - Baohui Han
- grid.16821.3c0000 0004 0368 8293Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Gongyan Chen
- grid.412651.50000 0004 1808 3502Department of Respiratory Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianxing He
- grid.470124.4Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Wang
- grid.459409.50000 0004 0632 3230Department of Thoracic Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Donghua Lou
- grid.89957.3a0000 0000 9255 8984Department of Biostatistics, School of Public Health Nanjing Medical University, Nanjing, China
| | - Hao Yu
- grid.89957.3a0000 0000 9255 8984Department of Biostatistics, School of Public Health Nanjing Medical University, Nanjing, China
| | - Shanchun Wang
- Chia-tai Tianqing Pharmaceutical Group Co., Ltd, Nanjing, China
| | - Haifeng Qin
- grid.414252.40000 0004 1761 8894Department of Pulmonary Oncology, The Fifth Medical Centre of Chinese PLA General hospital, Beijing, China
| | - Xiaoling Li
- grid.459742.90000 0004 1798 5889Department of Medical Oncology, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
16
|
Pizzutilo EG, Pedrani M, Amatu A, Ruggieri L, Lauricella C, Veronese SM, Signorelli D, Cerea G, Giannetta L, Siena S, Sartore-Bianchi A. Liquid Biopsy for Small Cell Lung Cancer either De Novo or Transformed: Systematic Review of Different Applications and Meta-Analysis. Cancers (Basel) 2021; 13:2265. [PMID: 34066817 PMCID: PMC8125928 DOI: 10.3390/cancers13092265] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The potential added value of liquid biopsy (LB) is not well determined in the case of small cell lung cancer (SCLC), an aggressive tumor that can occur either de novo or from the histologic transformation of non-small cell lung cancer (NSCLC). METHODS A systematic review of studies adopting LB in patients with SCLC have been performed to assess the clinical utility of circulating tumor DNA (ctDNA) or circulating tumor cells (CTCs). RESULTS After a screening of 728 records, 62 studies (32 evaluating CTCs, 27 ctDNA, and 3 both) met predetermined eligibility criteria. Only four studies evaluated LB in the diagnostic setting for SCLC, while its prognostic significance was evaluated in 38 studies and prominently supported by both ctDNA and CTCs. A meta-analysis of 11 studies as for CTCs enumeration showed an HR for overall survival of 2.63 (1.71-4.05), with a potential publication bias. The feasibility of tumor genomic profiling and the predictive role of LB in terms of response/resistance to chemotherapy was assessed in 11 and 24 studies, respectively, with greater consistency for those regarding ctDNA. Intriguingly, several case reports suggest that LB can indirectly capture the transition to SCLC in NSCLC treated with EGFR tyrosine kinase inhibitors. CONCLUSIONS While dedicated trials are needed, LB holds potential clinical roles in both de novo and transformed SCLC. CtDNA analysis appears the most valuable and practicable tool for both disease monitoring and genomic profiling.
Collapse
Affiliation(s)
- Elio Gregory Pizzutilo
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Martino Pedrani
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
| | - Lorenzo Ruggieri
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Calogero Lauricella
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
| | - Silvio Marco Veronese
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
| | - Diego Signorelli
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
| | - Giulio Cerea
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
| | - Laura Giannetta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.G.P.); (M.P.); (A.A.); (L.R.); (C.L.); (S.M.V.); (D.S.); (G.C.); (L.G.); (S.S.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
17
|
Deep and Durable Response to Nivolumab and Temozolomide in Small-Cell Lung Cancer Associated With an Early Decrease in Myeloid-Derived Suppressor Cells. Clin Lung Cancer 2020; 22:e487-e497. [PMID: 33234490 DOI: 10.1016/j.cllc.2020.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 11/20/2022]
|
18
|
Wakuda K. Treatment strategy for patients with relapsed small-cell lung cancer: past, present and future. Transl Lung Cancer Res 2020; 9:172-179. [PMID: 32420056 PMCID: PMC7225150 DOI: 10.21037/tlcr.2020.03.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Kazushige Wakuda
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho, Suntou-gun, Shizuoka, Japan
| |
Collapse
|
19
|
Luo H, Zhang L, Yang B, Feng Y, Xiong Y, Zhang S, Li X, Qian C, Dong W, Dai N. A randomized phase 2 trial of apatinib vs observation as maintenance treatment following first-line induction chemotherapy in extensive- stage small cell lung cancer. Invest New Drugs 2020; 38:148-159. [PMID: 31399906 PMCID: PMC6985106 DOI: 10.1007/s10637-019-00828-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022]
Abstract
Background The 5-year survival rate for extensive-disease small-cell lung carcinoma (ED-SCLC) is only 1%. Recently, apatinib exerted promising effects on cancer patients after failure of first-line chemotherapy. Methods This study enrolled 24 ED-SCLC patients to study the efficacy and toxicity of apatinib in combination with chemotherapy and maintenance therapy. The primary endpoints were overall survival (OS) and progression-free survival (PFS). The secondary endpoints included toxicity and safety. Apatinib was given 250 mg/day during the chemotherapy interval, and as maintenance therapy after 4-6 cycles until the patient progressed, died, or was intolerant to drug toxicity. The study further evaluated the cytotoxicity, cell-cycle arrest and apoptotic induction of apatinib in A549 and H446 cells. Results There was no difference in short-term efficacy between combined and chemotherapy groups. Long-term efficacy showed that the median PFS was 7.8 months and 4.9 months in combination and chemotherapy groups, respectively [p = 0.002, HR(95%CI): 0.18(0.06-0.60)]. The median OS was 12.1 months and 8.2 months in combination and chemotherapy groups, respectively [p = 0.023, HR(95%CI): 0.38 (0.16-0.90)]. Multivariate Cox regression analysis showed that apatinib combined with chemotherapy was an independent prognostic factor for OS and PFS. The ECOG score was an independent prognostic factor affecting OS. In vitro analysis showed that apatinib inhibited cell proliferation and caused cell-cycle arrest and apoptosis. Conclusion Apatinib combination/maintenance therapy showed promising efficacy and safety to extend OS/PFS in ED-SCLC and will be a potent therapeutic option in future practice. Although the scale of this study is small, further research on large sample sizes is needed.
Collapse
Affiliation(s)
- Hao Luo
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Liang Zhang
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Bo Yang
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Yan Feng
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Yanli Xiong
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Shiheng Zhang
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Xuemei Li
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Chengyuan Qian
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Wang Dong
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Nan Dai
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
20
|
Russo A, Ron DA, Rasschaert M, Prenen H, Mehra R, Scilla K, Pauwels P, Rolfo C. Is There Room for Personalized Medicine in Small-Cell Lung Cancer (SCLC)? Remarkable Activity of Pazopanib in Refractory FGFR1-Amplified ED-SCLC. JCO Precis Oncol 2019; 3:1-8. [DOI: 10.1200/po.19.00243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Alessandro Russo
- University of Maryland Medical Center Greenebaum Comprehensive Cancer Center, Baltimore, MD
- A.O. Papardo and University of Messina, Messina, Italy
| | - David Arias Ron
- University Hospital Antwerp, Antwerp University, Antwerp, Belgium
| | | | - Hans Prenen
- University Hospital Antwerp, Antwerp University, Antwerp, Belgium
| | - Ranee Mehra
- University of Maryland Medical Center Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Katherine Scilla
- University of Maryland Medical Center Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Patrick Pauwels
- University Hospital Antwerp, Antwerp University, Antwerp, Belgium
| | - Christian Rolfo
- University of Maryland Medical Center Greenebaum Comprehensive Cancer Center, Baltimore, MD
- University Hospital Antwerp, Antwerp University, Antwerp, Belgium
| |
Collapse
|
21
|
Shang X, Lin J, Li Z, Wang H. Radiotherapy may improve survival of ES-SCLC with distant metastasis only for patients with one metastatic site: A population-based study. Oncol Lett 2019; 19:139-146. [PMID: 31897124 PMCID: PMC6923894 DOI: 10.3892/ol.2019.11092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to investigate the prognostic impact of RT on patients with extensive stage small cell lung cancer (ES-SCLC) and distant metastasis. Using the Surveillance Epidemiology and End Results (SEER) database, 8,595 patients with ES-SCLC exhibiting distant metastasis treated between 2010 and 2013 were identified. Patient baseline characteristics were compared using the χ2 test. The Kaplan-Meier test was used to analyze subgroup cancer-specific survival (CSS) rate, and differences were compared using a log-rank test. Univariate and multivariate Cox regression models were used to analyze the prognostic variables on CSS. RT was determined to be an independent prognostic factor for patient CSS (P<0.001). In addition, RT could improve the CSS of patients with ES-SCLC with one metastatic lesion (hazard ratio, 0.63; 95% confidence interval, 0.59-0.68; P<0.001), including the bone, brain, liver and lung metastatic sites. However, for patients with two metastatic sites, RT did not improve CSS regardless of metastasis pattern (all P>0.05). To conclude, RT may improve the survival rate of patients with ES-SCLC with distant metastasis, particularly in those with only one metastatic site.
Collapse
Affiliation(s)
- Xiaoling Shang
- Department of Clinical Laboratory, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jiamao Lin
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhenxiang Li
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
22
|
Hao D, Li Y, Zhao G, Zhang M. Soluble fms-like tyrosine kinase-1-enriched exosomes suppress the growth of small cell lung cancer by inhibiting endothelial cell migration. Thorac Cancer 2019; 10:1962-1972. [PMID: 31441580 PMCID: PMC6775022 DOI: 10.1111/1759-7714.13175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 01/07/2023] Open
Abstract
Background Previous studies have reported that soluble fms‐like tyrosine kinase‐1 (sFlt‐1) possesses anti‐tumor effects by inhibiting angiogenesis in many cancers. Exosomes can be engineered as delivery vehicles for transferring functional biomolecules, such as proteins, lipids, and nucleic acids (DNA, mRNA, and miRNA) to target cells to affect inflammation, apoptosis, and angiogenesis. The purpose of this study was to investigate whether exosomes can function as efficient carriers of sFlt‐1 in vitro and in vivo, to play a role in SCLC therapy. Methods We adopted three different methods: TEM, NTA and western blot analysis to characterize the cell‐derived exosomes from NCI‐H69 SCLC cell line and normal bronchial epithelial BEAS‐2B cell line. we next explored the effects of these exosomes on HUVE cell proliferation and migration in vitro.To verify sFlt‐1‐loaded exosomes suppress the tumor growth in vivo,we established subcutaneous xenografts in nude mice using the NCI‐H69 cell line. Results We observed that NCI‐H69‐exo significantly increased human umbilical vein endothelial cells (HUVEC) migration compared to BEAS‐2B‐exo in vitro and in vivo. sFlt‐1 protein expression was statistically higher in BEAS‐2B‐exo than NCI‐H69‐exo. sFlt‐1 protein or sFlt‐1‐enriched exosomes can inhibit the migration of HUVECs. Furthermore, sFlt‐1‐enriched exosomes exhibited higher inhibition efficacy on pro‐angiogenesis of NCI‐H69‐exo in comparison with the same concentration of sFlt‐1 protein. Intriguingly, sFlt‐1‐loaded exosomes showed marked anti‐tumor activity by inhibiting the growth of NCI‐H69 tumor xenografts. CD31 staining revealed that sFlt‐1‐loaded exosomes significantly reduced the vascular density of experimental mice. sFlt‐1‐loaded exosomes markedly induced tumor apoptosis and inhibited tumor cell proliferation in mice. Conclusion Exosomes from a SCLC cell line contain low levels of sFlt‐1 and significantly increased the migration of HUVECs. SFlt‐1‐enriched exosomes can inhibit NCI‐H69‐exo‐induced HUVEC migration. Exosomes enriched in sFlt‐1 have the potential to be effective therapeutic agents for SCLC.
Collapse
Affiliation(s)
- Dexun Hao
- Department of Geriatric Respiratory Ward, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanshuang Li
- Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gaofeng Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Owen DH, Giffin MJ, Bailis JM, Smit MAD, Carbone DP, He K. DLL3: an emerging target in small cell lung cancer. J Hematol Oncol 2019; 12:61. [PMID: 31215500 PMCID: PMC6582566 DOI: 10.1186/s13045-019-0745-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Small cell lung cancer (SCLC) accounts for approximately 15% of all lung cancers. Despite high rates of response to first-line chemotherapy and radiotherapy, patients with extensive-stage disease eventually relapse, and very few patients survive more than 5 years from diagnosis. Treatment options for recurrent or refractory disease are limited, and the treatments that do exist are associated with significant treatment-related toxicities. Delta-like ligand 3 (DLL3) is an inhibitory Notch ligand that is highly expressed in SCLC and other neuroendocrine tumors but minimally expressed in normal tissues. It is therefore being explored as a potential therapeutic target in SCLC. Here, we review the preclinical and clinical evidence for targeting DLL3 in SCLC and discuss several DLL3-specific therapies being developed for the treatment of SCLC: the antibody-drug conjugate rovalpituzumab tesirine, the bispecific T cell engager immuno-oncology therapy AMG 757, and the chimeric antigen receptor T cell therapy AMG 119.
Collapse
Affiliation(s)
- Dwight H Owen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Julie M Bailis
- Oncology Research, Amgen Inc., South San Francisco, CA, USA
| | | | - David P Carbone
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Kai He
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
24
|
Wang YK, Yang XN, Liang WQ, Xiao Y, Zhao Q, Xiao XR, Gonzalez FJ, Li F. A metabolomic perspective of pazopanib-induced acute hepatotoxicity in mice. Xenobiotica 2019; 49:655-670. [PMID: 29897827 PMCID: PMC6628935 DOI: 10.1080/00498254.2018.1489167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
To elucidate the metabolism of pazopanib, a metabolomics approach was performed based on ultra-performance liquid chromatography coupled with electrospray ionization quadrupole mass spectrometry. A total of 22 pazopanib metabolites were identified in vitro and in vivo. Among these metabolites, 17 were novel, including several cysteine adducts and aldehyde derivatives. By screening using recombinant CYPs, CYP3A4 and CYP1A2 were found to be the main forms involved in the pazopanib hydroxylation. Formation of a cysteine conjugate (M3), an aldehyde derivative (M15) and two N-oxide metabolites (M18 and M20) from pazopanib could induce the oxidative stress that may be responsible in part for pazopanib-induced hepatotoxicity. Morphological observation of the liver suggested that pazopanib (300 mg/kg) could cause liver injury. The aspartate transaminase and alanine aminotransferase in serum significantly increased after pazopanib (150, 300 mg/kg) treatment; this liver injury could be partially reversed by the broad-spectrum CYP inhibitor 1-aminobenzotriazole (ABT). Metabolomics analysis revealed that pazopanib could significantly change the levels of L-carnitine, proline and lysophosphatidylcholine 18:1 in liver. Additionally, drug metabolism-related gene expression analysis revealed that hepatic Cyp2d22 and Abcb1a (P-gp) mRNAs were significantly lowered by pazopanib treatment. In conclusion, this study provides a global view of pazopanib metabolism and clues to its influence on hepatic function.
Collapse
Affiliation(s)
- Yi-Kun Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Nan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei-Qing Liang
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Yao Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
25
|
Zhao H, Ren D, Liu H, Chen J. Comparison and discussion of the treatment guidelines for small cell lung cancer. Thorac Cancer 2018; 9:769-774. [PMID: 29770597 PMCID: PMC6026606 DOI: 10.1111/1759-7714.12765] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/15/2018] [Indexed: 11/30/2022] Open
Abstract
Small cell lung cancer (SCLC), which accounts for 15% to 17% of all lung cancers, is one of the leading causes of cancer-related death worldwide. More than 130 000 new diagnoses of SCLC and 100 000 deaths from the disease were estimated to have occurred in China in 2013. The existing guidelines of SCLC therapeutic principles differ by region. In recent years, new immunotherapy and targeted therapy treatments have been lacking. In order to understand the current status of SCLC treatment in more detail, we identified the similarities and differences among the latest National Comprehensive Cancer Network Clinical Practice Guidelines for SCLC, the Chinese Society of Clinical Oncology Lung Cancer Guidelines, and the European Society for Medical Oncology Clinical Practice Guidelines for Metastatic SCLC, and present a reference of treatment strategies that should prove beneficial for the treatment of patients with SCLC.
Collapse
Affiliation(s)
- Honglin Zhao
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Dian Ren
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyu Liu
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
26
|
Zang J, Liang X, Huang Y, Jia Y, Li X, Xu W, Chou CJ, Zhang Y. Discovery of Novel Pazopanib-Based HDAC and VEGFR Dual Inhibitors Targeting Cancer Epigenetics and Angiogenesis Simultaneously. J Med Chem 2018; 61:5304-5322. [PMID: 29787262 DOI: 10.1021/acs.jmedchem.8b00384] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein a novel series of pazopanib hybrids as polypharmacological antitumor agents were developed based on the crosstalk between histone deacetylases (HDACs) and vascular endothelial growth factor (VEGF) pathway. Among them, one ortho-aminoanilide 6d and one hydroxamic acid 13f exhibited considerable total HDACs and VEGFR-2 inhibitory activities. The HDAC inhibitory activities endowed 6d and 13f with potent antiproliferative activities, which was not observed in the approved VEGFR inhibitor pazopanib. Compounds 6d and 13f possessed comparable HDAC isoform selectivity profiles to the clinical class I HDAC inhibitor MS-275 and the approved pan-HDAC inhibitor SAHA, respectively. 6d and 13f also exhibited uncompromised multiple tyrosine kinases inhibitory activities relative to pazopanib. The intracellular dual inhibition to HDAC and VEGFR of 6d and 13f was validated by Western blot analysis. In both HUVECs tube formation assay and rat thoracic aorta rings assay, 6d and 13f showed comparable antiangiogenic potencies to pazopanib. What's more, 6d possessed desirable pharmacokinetic profiles with the oral bioavailability of 72% in SD rats and considerable in vivo antitumor efficacy in a human colorectal adenocarcinoma (HT-29) xenograft model.
Collapse
Affiliation(s)
- Jie Zang
- Department of Medicinal Chemistry, School of Pharmaceutical of Science , Shandong University , Ji'nan , Shandong 250012 , P. R. China
| | - Xuewu Liang
- Department of Medicinal Chemistry, School of Pharmaceutical of Science , Shandong University , Ji'nan , Shandong 250012 , P. R. China
| | - Yongxue Huang
- Weifang Bochuang International Biological Medicinal Institute , Weifang , Shandong 261061 , P. R. China
| | - Yuping Jia
- Shandong Academy of Pharmaceutical Sciences , Ji'nan , Shandong 250101 , P. R. China
| | - Xiaoyang Li
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy , Medical University of South Carolina , Charleston , South Carolina 29425 , United States
| | - Wenfang Xu
- Department of Medicinal Chemistry, School of Pharmaceutical of Science , Shandong University , Ji'nan , Shandong 250012 , P. R. China
| | - C James Chou
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy , Medical University of South Carolina , Charleston , South Carolina 29425 , United States
| | - Yingjie Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical of Science , Shandong University , Ji'nan , Shandong 250012 , P. R. China
| |
Collapse
|
27
|
Abstract
Despite high response rates to initial therapy, relapses are common in patients with small-cell lung cancer (SCLC). Systemic therapy after first-line failure remains important in the treatment paradigm of SCLC. Reinitiation of a previously administered first-line chemotherapy regimen is recommended for relapse > 6 months from completion of initial therapy. For relapse ≤ 6 months of initial therapy, sequential therapy with single agents is recommended. Clinical trial enrollment should be considered at all stages of treatment of SCLC. This review highlights the available treatment options in relapsed SCLC. In particular, we focus on prospective clinical trials demonstrating activity for the most commonly used agents in this setting. We end with a discussion on future directions and emerging targets with potential to improve outcomes in relapsed SCLC.
Collapse
Affiliation(s)
- Jun Gong
- City of Hope National Medical Center, Duarte, CA
| | - Ravi Salgia
- City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
28
|
Rossi A, Tay R, Chiramel J, Prelaj A, Califano R. Current and future therapeutic approaches for the treatment of small cell lung cancer. Expert Rev Anticancer Ther 2018; 18:473-486. [PMID: 29544351 DOI: 10.1080/14737140.2018.1453361] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Small-cell lung cancer (SCLC) is a very aggressive disease characterized by a high response rate to first-line chemotherapy, but most patients relapse within 1 year with disappointing results to second-line treatments. Chemotherapy has reached a plateau of effectiveness and new therapeutic strategies are needed to change the natural history of SCLC. Areas covered: This review will focus on the current results and the future development of the therapeutic approaches for the treatment of SCLC. Expert commentary: Immunotherapy is becoming a new frontier for the management of SCLC with preliminary interesting results. To date, no targeted drugs have been approved for clinical practice but several novel agents are in an advanced stage of clinical development in SCLC.
Collapse
Affiliation(s)
- Antonio Rossi
- a Division of Medical Oncology , Scientific Institute for Research and Health Care (IRCCS) "Casa Sollievo della Sofferenza" , San Giovanni Rotondo , Italy
| | - Rebecca Tay
- b Department of Medical Oncology , The Christie NHS Foundation Trust , Manchester , UK
| | - Jaseela Chiramel
- b Department of Medical Oncology , The Christie NHS Foundation Trust , Manchester , UK
| | - Arsela Prelaj
- b Department of Medical Oncology , The Christie NHS Foundation Trust , Manchester , UK.,c Department of Radiological , Pathological and Oncological Science, Sapienza University of Rome , Italy
| | - Raffaele Califano
- b Department of Medical Oncology , The Christie NHS Foundation Trust , Manchester , UK.,d Department of Medical Oncology , Manchester University NHS Foundation Trust , Manchester , UK.,e Division of Cancer Sciences , University of Manchester , Manchester , UK
| |
Collapse
|
29
|
Messaritakis I, Politaki E, Koinis F, Stoltidis D, Apostolaki S, Plataki M, Dermitzaki EK, Georgoulias V, Kotsakis A. Dynamic changes of phenotypically different circulating tumor cells sub-populations in patients with recurrent/refractory small cell lung cancer treated with pazopanib. Sci Rep 2018; 8:2238. [PMID: 29396560 PMCID: PMC5797076 DOI: 10.1038/s41598-018-20502-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023] Open
Abstract
The aim of the study was to investigate the effect of 2nd-line pazopanib on the different CTCs subpopulations in SCLC patients and evaluate the clinical relevance of their changes. Different CTCs subpopulations were evaluated before pazopanib initiation (n = 56 patients), after one-cycle (n = 35) and on disease progression (n = 45) by CellSearch and double immunofluorescence using anti-CKs and anti-Ki67, anti-M30 or anti-Vimentin antibodies. Before treatment, CTCs were detected in 50% of patients by CellSearch whereas 53.4%, 15.5% and 74.1% patients had CK+/Ki67+, CK+/M30+ and CK+/Vim+ CTCs, respectively. One pazopanib cycle significantly decreased the number of CTCs as detected by CellSearch (p = 0.043) as well as the number of CK+/Ki67+ (p < 0.001), CK+/M30+ (p = 0.015) and CK+/Vim+ (p < 0.001) cells. On disease progression, both the incidence and CTC numbers were significantly increased (CellSearch, p = 0.027; CK+/Ki67+, p < 0.001; CK+/M30+, p = 0.001 and CK+/Vim+, p < 0.001). In multivariate analysis, the detection of CK+/Vim+ CTCs after one treatment cycle (HR: 7.9, 95% CI: 2.9–21.8; p < 0.001) and CTCs number on disease progression, as assessed by CellSearch, (HR: 2.0, 95% CI: 1.0–6.0; p = 0.005) were emerged as independent factors associated with decreased OS. In conclusion, pazopanib can eliminate different CTC subpopulations in patients with relapsed SCLC. The analysis of CTCs could be used as a dynamic biomarker of treatment efficacy.
Collapse
Affiliation(s)
- Ippokratis Messaritakis
- Laboratory of Tumor Cell Biology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Eleni Politaki
- Laboratory of Tumor Cell Biology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Fillipos Koinis
- Laboratory of Tumor Cell Biology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Dimitris Stoltidis
- Department of Medical Oncology, University General Hospital of Heraklion, Crete, Greece
| | - Stella Apostolaki
- Laboratory of Tumor Cell Biology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Maria Plataki
- Laboratory of Tumor Cell Biology, Medical School, University of Crete, Heraklion, Crete, Greece
| | | | - Vassilis Georgoulias
- Laboratory of Tumor Cell Biology, Medical School, University of Crete, Heraklion, Crete, Greece. .,Department of Medical Oncology, University General Hospital of Heraklion, Crete, Greece.
| | - Athanasios Kotsakis
- Laboratory of Tumor Cell Biology, Medical School, University of Crete, Heraklion, Crete, Greece.,Department of Medical Oncology, University General Hospital of Heraklion, Crete, Greece
| |
Collapse
|