1
|
da Silva MMR, Bilezikian JP, de Paula FJA. Phosphate metabolism: its impact on disorders of mineral metabolism. Endocrine 2025; 88:1-13. [PMID: 39527339 DOI: 10.1007/s12020-024-04092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Regulatory molecules typically work cooperatively to ensure the efficient functioning of hormonal systems. Examples include LH and FSH in reproductive biology, insulin and glucagon in glucose metabolism. Similarly, calcium and phosphorus are important regulators of skeletal homeostasis. In the circulation, these molecules are under the control of PTH, 1,25(OHD), and FGF23. In turn, these hormones depend upon a mutual and complex interplay among themselves. For example, alterations in calcium metabolism influence phosphorus homeostasis, as occurs in primary hyperparathyroidism (PHPT). Not as well recognized is the influence that abnormalities in phosphorus metabolism can have on calcium homeostasis. In this review, we call attention to the impact that abnormalities in phosphorus can have on calcium metabolism.
Collapse
Affiliation(s)
- Maisa Monseff Rodrigues da Silva
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, SP, Brazil
| | - John P Bilezikian
- Department of Medicine, Division of Endocrinology, Vagelos College of Physicians and Surgeons. Columbia University, New York, NY, USA
| | - Francisco J A de Paula
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
Buss DJ, Deering J, Reznikov N, McKee MD. Understanding the structural biology of osteomalacia through multiscale 3D X-ray and electron tomographic imaging: a review of X-linked hypophosphatemia, the Hyp mouse model, and imaging methods. JBMR Plus 2025; 9:ziae176. [PMID: 39896117 PMCID: PMC11783288 DOI: 10.1093/jbmrpl/ziae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/10/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025] Open
Abstract
Biomineralization in bones and teeth is a highly regulated extracellular event. In the skeleton, mineralization at the tissue level is controlled within the collagenous extracellular matrix by both circulating and local factors. While systemic regulation of mineral ion homeostasis has been well-studied over many decades, much less is known about the regulation of mineralization at the local level directly within the extracellular matrix. Some local regulators have been identified, such as tissue-nonspecific alkaline phosphatase (TNAP), phosphate-regulating endopeptidase homolog X-linked (PHEX), pyrophosphate, and osteopontin, and others are currently under investigation. Dysregulation of the actions of enzyme-inhibitor substrate pairs engaged in mineralization (as we describe by the Stenciling Principle for extracellular matrix mineralization) leads to osteomalacic "soft bone" diseases, such as hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH). This review addresses how advances in 3D imaging tools and software now allow contextual and correlative viewing and interpretation of mineralized tissue structure across most length scales. Contextualized and integrated 3D multiscale data obtained from these imaging modalities have afforded an unprecedented structural biology view of bone from the macroscale to the nanoscale. Such correlated volume imaging data is highly quantitative, providing not only an integrated view of the skeleton in health, but also a means to observe alterations that occur in disease. In the context of the many hierarchical levels of skeletal organization, here we summarize structural features of bone over multiple length scales, with a focus on nano- and microscale features as viewed by X-ray and electron tomography imaging methods (submicron μCT and FIB-SEM). We additionally summarize structural changes observed after dysregulation of the mineralization pathway, focusing here on the Hyp mouse model for XLH. More specifically, we summarize how mineral patterns/packs at the microscale (3D crossfibrillar mineral tessellation), and how this is defective in Hyp mouse bone and Hyp enthesis fibrocartilage.
Collapse
Affiliation(s)
- Daniel J Buss
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Joseph Deering
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Natalie Reznikov
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Marc D McKee
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
3
|
Hua R, Truong VA, Fajardo RJ, Guda T, Gu S, Jiang JX. Connexin hemichannels drive lactation-induced osteocyte acidification and perilacunar-canalicular remodeling. Cell Rep 2024; 43:114363. [PMID: 38935505 PMCID: PMC11318086 DOI: 10.1016/j.celrep.2024.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
The maternal skeleton experiences significant bone loss during lactation, followed by rapid restoration post weaning. Parathyroid-related protein (PTHrP)-induced acidification of the perilacunar matrix by osteocytes is crucial in this process, yet its mechanism remains unclear. Here, we identify Cx43 hemichannels (HCs) as key mediators of osteocyte acidification and perilacunar-canalicular remodeling (PLR). Utilizing transgenic mouse models expressing dominant-negative Cx43 mutants, we show that mice with impaired Cx43 HCs exhibit attenuated lactation-induced responses compared to wild-type and only gap junction-impaired groups, including lacunar enlargement, upregulation of PLR genes, and bone loss with compromised mechanical properties. Furthermore, inhibition of HCs by a Cx43 antibody blunts PTHrP-induced calcium influx and protein kinase A activation, followed by impaired osteocyte acidification. Additionally, impeded HCs suppress bone recovery during the post-lactation period. Our findings highlight the pivotal role of Cx43 HCs in orchestrating dynamic bone changes during lactation and recovery by regulating acidification and remodeling enzyme expression.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Vu A Truong
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Roberto J Fajardo
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
4
|
Shimonty A, Pin F, Prideaux M, Peng G, Huot J, Kim H, Rosen CJ, Spiegelman BM, Bonewald LF. Deletion of FNDC5/irisin modifies murine osteocyte function in a sex-specific manner. eLife 2024; 12:RP92263. [PMID: 38661340 PMCID: PMC11045224 DOI: 10.7554/elife.92263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Irisin, released from exercised muscle, has been shown to have beneficial effects on numerous tissues but its effects on bone are unclear. We found significant sex and genotype differences in bone from wildtype (WT) mice compared to mice lacking Fndc5 (knockout [KO]), with and without calcium deficiency. Despite their bone being indistinguishable from WT females, KO female mice were partially protected from osteocytic osteolysis and osteoclastic bone resorption when allowed to lactate or when placed on a low-calcium diet. Male KO mice have more but weaker bone compared to WT males, and when challenged with a low-calcium diet lost more bone than WT males. To begin to understand responsible molecular mechanisms, osteocyte transcriptomics was performed. Osteocytes from WT females had greater expression of genes associated with osteocytic osteolysis and osteoclastic bone resorption compared to WT males which had greater expression of genes associated with steroid and fatty acid metabolism. Few differences were observed between female KO and WT osteocytes, but with a low-calcium diet, the KO females had lower expression of genes responsible for osteocytic osteolysis and osteoclastic resorption than the WT females. Male KO osteocytes had lower expression of genes associated with steroid and fatty acid metabolism, but higher expression of genes associated with bone resorption compared to male WT. In conclusion, irisin plays a critical role in the development of the male but not the female skeleton and protects male but not female bone from calcium deficiency. We propose irisin ensures the survival of offspring by targeting the osteocyte to provide calcium in lactating females, a novel function for this myokine.
Collapse
Affiliation(s)
| | | | | | - Gang Peng
- Indiana UniversityIndianapolisUnited States
| | | | - Hyeonwoo Kim
- Korea Advanced Institute of Science and TechnologyDaejonRepublic of Korea
| | | | | | - Lynda F Bonewald
- Indiana UniversityIndianapolisUnited States
- Indiana Center for Musculoskeletal HealthIndianapolisUnited States
| |
Collapse
|
5
|
Shimonty A, Pin F, Prideaux M, Peng G, Huot JR, Kim H, Rosen CJ, Spiegelman BM, Bonewald LF. Deletion of FNDC5/Irisin modifies murine osteocyte function in a sex-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565774. [PMID: 37986762 PMCID: PMC10659274 DOI: 10.1101/2023.11.06.565774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Irisin, released from exercised muscle, has been shown to have beneficial effects on numerous tissues but its effects on bone are unclear. We found significant sex and genotype differences in bone from wildtype (WT) mice compared to mice lacking Fndc5 (KO), with and without calcium deficiency. Despite their bone being indistinguishable from WT females, KO female mice were partially protected from osteocytic osteolysis and osteoclastic bone resorption when allowed to lactate or when placed on a low-calcium diet. Male KO mice have more but weaker bone compared to WT males, and when challenged with a low-calcium diet lost more bone than WT males. To begin to understand responsible molecular mechanisms, osteocyte transcriptomics was performed. Osteocytes from WT females had greater expression of genes associated with osteocytic osteolysis and osteoclastic bone resorption compared to WT males which had greater expression of genes associated with steroid and fatty acid metabolism. Few differences were observed between female KO and WT osteocytes, but with a low calcium diet, the KO females had lower expression of genes responsible for osteocytic osteolysis and osteoclastic resorption than the WT females. Male KO osteocytes had lower expression of genes associated with steroid and fatty acid metabolism, but higher expression of genes associated with bone resorption compared to male WT. In conclusion, irisin plays a critical role in the development of the male but not the female skeleton and protects male but not female bone from calcium deficiency. We propose irisin ensures the survival of offspring by targeting the osteocyte to provide calcium in lactating females, a novel function for this myokine.
Collapse
Affiliation(s)
- Anika Shimonty
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, IN, 46202, Indianapolis
| | - Fabrizio Pin
- Indiana Center for Musculoskeletal Health, Department of Anatomy, School of Medicine, Indiana University, IN, 46202, Indianapolis
| | - Matt Prideaux
- Indiana Center for Musculoskeletal Health, Department of Anatomy, School of Medicine, Indiana University, IN, 46202, Indianapolis
| | - Gang Peng
- Indiana Center for Musculoskeletal Health, Department of Medicine and Molecular Genetics, School of Medicine, Indiana University, IN, 46202, Indianapolis
| | - Joshua R Huot
- Indiana Center for Musculoskeletal Health, Department of Anatomy, School of Medicine, Indiana University, IN, 46202, Indianapolis
| | - Hyeonwoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Clifford J Rosen
- Maine Medical Center Research Institute, ME, 04074, Scarborough, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana Farber Cancer Institute and Department of Cell Biology, Harvard University Medical School, MA, 02115, Boston, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology and Physiology, Orthopaedic Surgery, School of Medicine, Indiana Center for Musculoskeletal Health, Indiana Center for Musculoskeletal Health, Indiana University, IN, 46202, Indianapolis
| |
Collapse
|
6
|
Šromová V, Sobola D, Kaspar P. A Brief Review of Bone Cell Function and Importance. Cells 2023; 12:2576. [PMID: 37947654 PMCID: PMC10648520 DOI: 10.3390/cells12212576] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
This review focuses on understanding the macroscopic and microscopic characteristics of bone tissue and reviews current knowledge of its physiology. It explores how these features intricately collaborate to maintain the balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, which plays a pivotal role in shaping not only our physical framework but also overall health. In this work, a comprehensive exploration of microscopic and macroscopic features of bone tissue is presented.
Collapse
Affiliation(s)
- Veronika Šromová
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, 601 90 Brno, Czech Republic
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 601 90 Brno, Czech Republic;
| | - Dinara Sobola
- Academy of Sciences of the Czech Republic, Institute of Physics of Materials, Žižkova 22, 616 62 Brno, Czech Republic
| | - Pavel Kaspar
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 601 90 Brno, Czech Republic;
| |
Collapse
|
7
|
Rashid U, Becker SK, Sponder G, Trappe S, Sandhu MA, Aschenbach JR. Low Magnesium Concentration Enforces Bone Calcium Deposition Irrespective of 1,25-Dihydroxyvitamin D 3 Concentration. Int J Mol Sci 2023; 24:ijms24108679. [PMID: 37240030 DOI: 10.3390/ijms24108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Efficient coordination between Mg2+ and vitamin D maintains adequate Ca2+ levels during lactation. This study explored the possible interaction between Mg2+ (0.3, 0.8, and 3 mM) and 1,25-dihydroxyvitamin D3 (1,25D; 0.05 and 5 nM) during osteogenesis using bovine mesenchymal stem cells. After 21 days, differentiated osteocytes were subjected to OsteoImage analysis, alkaline phosphatase (ALP) activity measurements, and immunocytochemistry of NT5E, ENG (endoglin), SP7 (osterix), SPP1 (osteopontin), and the BGLAP gene product osteocalcin. The mRNA expression of NT5E, THY1, ENG, SP7, BGLAP, CYP24A1, VDR, SLC41A1, SLC41A2, SLC41A3, TRPM6, TRPM7, and NIPA1 was also assessed. Reducing the Mg2+ concentration in the medium increased the accumulation of mineral hydroxyapatite and ALP activity. There was no change in the immunocytochemical localization of stem cell markers. Expression of CYP24A1 was higher in all groups receiving 5 nM 1,25D. There were tendencies for higher mRNA abundance of THY1, BGLAP, and NIPA1 in cells receiving 0.3 mM Mg2+ and 5 nM 1,25D. In conclusion, low levels of Mg2+ greatly enhanced the deposition of bone hydroxyapatite matrix. The effect of Mg2+ was not modulated by 1,25D, although the expression of certain genes (including BGLAP) tended to be increased by the combination of low Mg2+ and high 1,25D concentrations.
Collapse
Affiliation(s)
- Usman Rashid
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Sandra K Becker
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Gerhard Sponder
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Susanne Trappe
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Mansur A Sandhu
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
8
|
Histological Assessment of Endochondral Ossification and Bone Mineralization. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Finely tuned cartilage mineralization, endochondral ossification, and normal bone formation are necessary for normal bone growth. Hypertrophic chondrocytes in the epiphyseal cartilage secrete matrix vesicles, which are small extracellular vesicles initiating mineralization, into the intercolumnar septa but not the transverse partitions of the cartilage columns. Bone-specific blood vessels invade the unmineralized transverse septum, exposing the mineralized cartilage cores. Many osteoblast precursors migrate to the cartilage cores, where they synthesize abundant bone matrices, and mineralize them in a process of matrix vesicle-mediated bone mineralization. Matrix vesicle-mediated mineralization concentrates calcium (Ca) and inorganic phosphates (Pi), which are converted into hydroxyapatite crystals. These crystals grow radially and are eventually get out of the vesicles to form spherical mineralized nodules, leading to collagen mineralization. The influx of Ca and Pi into the matrix vesicle is regulated by several enzymes and transporters such as TNAP, ENPP1, PiT1, PHOSPHO1, annexins, and others. Such matrix vesicle-mediated mineralization is regulated by osteoblastic activities, synchronizing the synthesis of organic bone material. However, osteocytes reportedly regulate peripheral mineralization, e.g., osteocytic osteolysis. The interplay between cartilage mineralization and vascular invasion during endochondral ossification, as well as that of osteoblasts and osteocytes for normal mineralization, appears to be crucial for normal bone growth.
Collapse
|
9
|
Heveran CM, Boerckel JD. Osteocyte Remodeling of the Lacunar-Canalicular System: What's in a Name? Curr Osteoporos Rep 2023; 21:11-20. [PMID: 36512204 PMCID: PMC11223162 DOI: 10.1007/s11914-022-00766-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Osteocytes directly modify the bone surrounding the expansive lacunar-canalicular system (LCS) through both resorption and deposition. The existence of this phenomenon is now widely accepted, but is referred to as "osteocyte osteolysis," "LCS remodeling," and "perilacunar remodeling," among other names. The uncertainty in naming this physiological process reflects the many persistent questions about why and how osteocytes interact with local bone matrix. The goal of this review is to examine the purpose and nature of LCS remodeling and its impacts on multiscale bone quality. RECENT FINDINGS While LCS remodeling is clearly important for systemic calcium mobilization, this process may have additional potential drivers and may impact the ability of bone to resist fracture. There is abundant evidence that the osteocyte can resorb and replace bone mineral and does so outside of extreme challenges to mineral homeostasis. The impacts of the osteocyte on organic matrix are less certain, especially regarding whether osteocytes produce osteoid. Though multiple lines of evidence point towards osteocyte production of organic matrix, definitive work is needed. Recent high-resolution imaging studies demonstrate that LCS remodeling influences local material properties. The role of LCS remodeling in the maintenance and deterioration of bone matrix quality in aging and disease are active areas of research. In this review, we highlight current progress in understanding why and how the osteocyte removes and replaces bone tissue and the consequences of these activities to bone quality. We posit that answering these questions is essential for evaluating whether, how, when, and why LCS remodeling may be manipulated for therapeutic benefit in managing bone fragility.
Collapse
Affiliation(s)
- C M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, USA.
| | - J D Boerckel
- Department of Orthopaedic Surgery, Department of Bioengineering, University of Pennsylvania School of Medicine, Philadelphia, USA.
| |
Collapse
|
10
|
Sato M, Shah FA. Contributions of Resin Cast Etching to Visualising the Osteocyte Lacuno-Canalicular Network Architecture in Bone Biology and Tissue Engineering. Calcif Tissue Int 2023; 112:525-542. [PMID: 36611094 PMCID: PMC10106349 DOI: 10.1007/s00223-022-01058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023]
Abstract
Recent years have witnessed an evolution of imaging technologies towards sophisticated approaches for visualising cells within their natural environment(s) and for investigating their interactions with other cells, with adjacent anatomical structures, and with implanted biomaterials. Resin cast etching (RCE) is an uncomplicated technique involving sequential acid etching and alkali digestion of resin embedded bone to observe the osteocyte lacuno-canalicular network using scanning electron microscopy. This review summarises the applicability of RCE to bone and the bone-implant interface. Quantitative parameters such as osteocyte size, osteocyte density, and number of canaliculi per osteocyte, and qualitative metrics including osteocyte shape, disturbances in the arrangement of osteocytes and canaliculi, and physical communication between osteocytes and implant surfaces can be investigated. Ageing, osteoporosis, long-term immobilisation, spinal cord injury, osteoarthritis, irradiation, and chronic kidney disease have been shown to impact osteocyte lacuno-canalicular network morphology. In addition to titanium, calcium phosphates, and bioactive glass, observation of direct connectivity between osteocytes and cobalt chromium provides new insights into the osseointegration potential of materials conventionally viewed as non-osseointegrating. Other applications include in vivo and in vitro testing of polymer-based tissue engineering scaffolds and tissue-engineered ossicles, validation of ectopic osteochondral defect models, ex vivo organ culture of whole bones, and observing the effects of gene dysfunction/deletion on the osteocyte lacuno-canalicular network. Without additional contrast staining, any resin embedded specimen (including clinical biopsies) can be used for RCE. The multitude of applications described here attest to the versatility of RCE for routine use within correlative analytical workflows, particularly in biomaterials science.
Collapse
Affiliation(s)
- Mari Sato
- Oral Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
11
|
Rux CJ, Vahidi G, Darabi A, Cox LM, Heveran CM. Perilacunar bone tissue exhibits sub-micrometer modulus gradation which depends on the recency of osteocyte bone formation in both young adult and early-old-age female C57Bl/6 mice. Bone 2022; 157:116327. [PMID: 35026452 PMCID: PMC8858864 DOI: 10.1016/j.bone.2022.116327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022]
Abstract
Osteocytes resorb and replace bone local to the lacunar-canalicular system (LCS). However, whether osteocyte remodeling impacts bone quality adjacent to the LCS is not understood. Further, while aging is well-established to decrease osteocyte viability and truncate LCS geometry, it is unclear if aging also decreases perilacunar bone quality. To address these questions, we employed atomic force microscopy (AFM) to generate nanoscale-resolution modulus maps for cortical femur osteocyte lacunae from young (5-month) and early-old-age (22-month) female C57Bl/6 mice. AFM-mapped lacunae were also imaged with confocal laser scanning microscopy to determine which osteocytes recently deposited bone as determined by the presence of fluorochrome labels administered 2d and 8d before euthanasia. Modulus gradation with distance from the lacunar wall was compared for labeled (i.e., bone forming) and non-labeled lacunae in both young and aged mice. All mapped lacunae showed sub-microscale modulus gradation, with peak modulus values 200-400 nm from the lacunar wall. Perilacunar modulus gradations depended on the recency of osteocyte bone formation (i.e., the presence of labels). For both ages, 2d-labeled perilacunar bone had lower peak and bulk modulus compared to non-labeled perilacunar bone. Lacunar length reduced with age, but lacunar shape and size were not strong predictors of modulus gradation. Our findings demonstrate for the first time that osteocyte perilacunar remodeling impacts bone tissue modulus, one contributor to bone quality. Given the immense scale of the LCS, differences in perilacunar modulus resulting from osteocyte remodeling activity may affect the quality of a substantial amount of bone tissue.
Collapse
Affiliation(s)
- Caleb J Rux
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America; UC Berkeley-UCSF Graduate Program in Bioengineering, United States of America
| | - Ghazal Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Amir Darabi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Lewis M Cox
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Chelsea M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America.
| |
Collapse
|
12
|
Major Nutritional Metabolic Alterations Influencing the Reproductive System of Postpartum Dairy Cows. Metabolites 2022; 12:metabo12010060. [PMID: 35050182 PMCID: PMC8781654 DOI: 10.3390/metabo12010060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/25/2022] Open
Abstract
Early successful conception of postpartum dairy cows is crucial in determining the optimum reproductive efficiency and profitability in modern dairy farming. Due to the inherent high production potential of modern dairy cows, the extra stress burden of peri-parturient events, and associated endocrine and metabolic changes causes negative energy balance (NEBAL) in postpartum cows. The occurrence of NEBAL is associated with excessive fat mobilization in the form of non-esterified fatty acids (NEFAs). The phenomenon of NEFA mobilization furthers with occurrence of ketosis and fatty liver in postpartum dairy cows. High NEFAs and ketones are negatively associated with health and reproductive processes. An additional burden of hypocalcemia, ruminal acidosis, and high protein metabolism in postpartum cows presents further consequences for health and reproductive performance of postpartum dairy cows. This review intends to comprehend these major nutritional metabolic alterations, their mechanisms of influence on the reproduction process, and relevant mitigation strategies.
Collapse
|
13
|
Beavers KM, Beavers DP, Fernandez AZ, Greene KA, Swafford AA, Weaver AA, Wherry SJ, Ard JD. Risedronate use to attenuate bone loss following sleeve gastrectomy: Results from a pilot randomized controlled trial. Clin Obes 2021; 11:e12487. [PMID: 34569167 PMCID: PMC8563448 DOI: 10.1111/cob.12487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to explore the efficacy of 150 mg once monthly oral risedronate use in the prevention of sleeve gastrectomy (SG) associated bone loss. Twenty-four SG patients (56 ± 7 years, 83% female, 21% black) were randomized to risedronate or placebo for 6 months, with an optional 12-month assessment. Outcome measures included 6 (n = 21) and 12 (n = 14) month change in dual energy x-ray absorptiometry-acquired regional areal bone mineral density (aBMD). Six-month treatment effect estimates [mean (95% CI)] revealed significant between group aBMD differences at the femoral neck [risedronate: +0.013 g/cm2 (-0.021, 0.046) vs. placebo: -0.041 g/cm2 (-0.067, -0.015)] and lumbar spine [risedronate: +0.028 g/cm2 (-0.006, 0.063) vs. placebo: -0.029 g/cm2 (-0.054, -0.004)]; both p ≤ 0.02. When followed postoperatively to 12 months, differential aBMD treatment effects were observed at the total hip [risedronate: -0.035 g/cm2 (-0.061, -0.009) vs. placebo: -0.072 g/cm2 (-0.091, -0.052)] and lumbar spine [risedronate: +0.012 g/cm2 (-0.038, 0.063) vs. placebo: -0.052 g/cm2 (-0.087, -0.017)]; both p < 0.05. Preliminary treatment effect estimates signal 6 months of risedronate use may be efficacious in reducing aBMD loss at the axial skeleton post-SG, with benefit largely maintained throughout the 1-year postoperative period. Confirmatory data from an adequately powered trial are needed.
Collapse
Affiliation(s)
- Kristen M. Beavers
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Daniel P. Beavers
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Adolfo Z. Fernandez
- Weight Management Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Katelyn A. Greene
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ashlyn A. Swafford
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Ashley A. Weaver
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sarah J. Wherry
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jamy D. Ard
- Weight Management Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
14
|
Wherry SJ, Blatchford PJ, Swanson CM, Wellington T, Boxer RS, Kohrt WM. Maintaining serum ionized calcium during brisk walking attenuates the increase in bone resorption in older adults. Bone 2021; 153:116108. [PMID: 34252605 PMCID: PMC8478867 DOI: 10.1016/j.bone.2021.116108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/26/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Endurance exercise can cause a decrease in serum ionized calcium (iCa) and increases in parathyroid hormone (PTH) and bone resorption, reflected by serum carboxy-terminal collagen crosslinks (CTX). We developed a calcium clamp to prevent the decrease in iCa during exercise, which attenuated increases in PTH and CTX during vigorous cycling in young men. The goal was to determine whether this occurs in older adults during brisk walking. METHODS Twelve older adults (6 men, 6 women) performed two identical 60-min treadmill walking bouts with Ca gluconate or half-normal saline infusion. Blood sampling for iCa, total calcium (tCa), phosphate (P), PTH, and CTX, occurred before, during, and for 4 h after exercise. RESULTS iCa decreased during exercise with the saline infusion (p = 0.04) and this provoked increases in PTH and CTX (both p < 0.01). The Ca clamp prevented the decrease in serum iCa during exercise and attenuated the PTH and CTX responses. CONCLUSIONS Preventing the exercise-induced decrease in iCa markedly attenuated the increases in PTH and CTX. The cause of the decrease in iCa during exercise remains unclear, but the increases in PTH and CTX are likely counter-regulatory responses to defend serum iCa. This contention is supported by previous observations that the disruption of Ca homeostasis during exercise occurs regardless of training status. It will be important to establish whether this acute catabolic effect of exercise diminishes the potential chronic anabolic effects of exercise on bone.
Collapse
Affiliation(s)
- Sarah J Wherry
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), Aurora, CO 80045, United States of America.
| | - Patrick J Blatchford
- VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), Aurora, CO 80045, United States of America; Department of Biostatistics and Bioinformatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Christine M Swanson
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Toby Wellington
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Rebecca S Boxer
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), Aurora, CO 80045, United States of America
| | - Wendy M Kohrt
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), Aurora, CO 80045, United States of America
| |
Collapse
|
15
|
Lai X, Chung R, Li Y, Liu XS, Wang L. Lactation alters fluid flow and solute transport in maternal skeleton: A multiscale modeling study on the effects of microstructural changes and loading frequency. Bone 2021; 151:116033. [PMID: 34102350 PMCID: PMC8276854 DOI: 10.1016/j.bone.2021.116033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
The female skeleton undergoes significant material and ultrastructural changes to meet high calcium demands during reproduction and lactation. Through the peri-lacunar/canalicular remodeling (PLR), osteocytes actively resorb surrounding matrix and enlarge their lacunae and canaliculi during lactation, which are quickly reversed after weaning. How these changes alter the physicochemical environment of osteocytes, the most abundant and primary mechanosensing cells in bone, are not well understood. In this study, we developed a multiscale poroelastic modeling technique to investigate lactation-induced changes in stress, fluid pressurization, fluid flow, and solute transport across multiple length scales (whole bone, porous midshaft cortex, lacunar-canalicular pore system (LCS), and pericellular matrix (PCM) around osteocytes) in murine tibiae subjected to axial compression at 3 N peak load (~320 με) at 0.5, 2, or 4 Hz. Based on previously reported skeletal anatomical measurements from lactating and nulliparous mice, our models demonstrated that loading frequency, LCS porosity, and PCM density were major determinants of fluid and solute flows responsible for osteocyte mechanosensing, cell-cell signaling, and metabolism. When loaded at 0.5 Hz, lactation-induced LCS expansion and potential PCM reduction promoted solute transport and osteocyte mechanosensing via primary cilia, but suppressed mechanosensing via fluid shear and/or drag force on the cell membrane. Interestingly, loading at 2 or 4 Hz was found to overcome the mechanosensing deficits observed at 0.5 Hz and these counter effects became more pronounced at 4 Hz and with sparser PCM in the lactating bone. Synergistically, higher loading frequency (2, 4 Hz) and sparser PCM enhanced flow-mediated mechanosensing and diffusion/convection of nutrients and signaling molecules for osteocytes. In summary, lactation-induced structural changes alter the local environment of osteocytes in ways that favor metabolism, mechanosensing, and post-weaning recovery of maternal bone. Thus, osteocytes play a role in balancing the metabolic and mechanical functions of female skeleton during reproduction and lactation.
Collapse
Affiliation(s)
- Xiaohan Lai
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Rebecca Chung
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaowei Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, United States.
| |
Collapse
|
16
|
Casanova M, Schindeler A, Peacock L, Lee L, Schneider P, Little DG, Müller R. Characterization of the Developing Lacunocanalicular Network During Fracture Repair. JBMR Plus 2021; 5:e10525. [PMID: 34532613 PMCID: PMC8441443 DOI: 10.1002/jbm4.10525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/23/2021] [Accepted: 06/06/2021] [Indexed: 11/09/2022] Open
Abstract
Fracture repair is a normal physiological response to bone injury. During the process of bony callus formation, a lacunocanalicular network (LCN) is formed de novo that evolves with callus remodeling. Our aim was the longitudinal assessment of the development and evolution of the LCN during fracture repair. To this end, 45 adult wild‐type C57BL/6 mice underwent closed tibial fracture surgery. Fractured and intact contralateral tibias were harvested after 2, 3, and 6 weeks of bone healing (n = 15/group). High‐resolution micro–computed tomography (μCT) and deconvolution microscopy (DV) approaches were applied to quantify lacunar number density from the calluses and intact bone. On histological sections, Goldner's trichrome staining was used to assess lacunar occupancy, fluorescein isothiocyanate staining to visualize the canalicular network, and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate‐biotin nick end labeling (TUNEL) staining to examine osteocyte apoptosis. Analysis of μCT scans showed progressive decreases in mean lacuna volume over time (−27% 2–3 weeks; −13% 3–6 weeks). Lacunar number density increased considerably between 2 and 3 weeks (+156%). Correlation analysis was performed, showing a positive linear relationship between canalicular number density and trabecular thickness (R2 = 0.56, p < 0.001) and an inverse relationship between mean lacuna volume and trabecular thickness (R2 = 0.57, p < 0.001). Histology showed increases in canalicular number density over time (+22% 2–3 weeks, +51% 3–6 weeks). Lacunar occupancy in new bone of the callus was high (>90%), but the old cortical bone within the fracture site appeared necrotic as it underwent resorption. In conclusion, our data shows a progressive increase in the complexity of the LCN over time during fracture healing and demonstrates that this network is initiated during the early stages of repair. Further studies are needed to address the functional importance of osteocytes in bone healing, particularly in detecting and translating the effects of micromotion in the fracture. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology The Children's Hospital at Westmead Westmead Australia.,Discipline of Child and Adolescent Health University of Sydney Camperdown Australia
| | - Lauren Peacock
- Orthopaedic Research & Biotechnology The Children's Hospital at Westmead Westmead Australia
| | - Lucinda Lee
- Orthopaedic Research & Biotechnology The Children's Hospital at Westmead Westmead Australia.,Discipline of Child and Adolescent Health University of Sydney Camperdown Australia
| | - Philipp Schneider
- Institute for Biomechanics ETH Zurich Zurich Switzerland.,Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences University of Southampton Southampton UK.,High-Performance Vision Systems, Center for Vision, Automation & Control Austrian Institute of Technology (AIT) Vienna Austria
| | - David G Little
- Orthopaedic Research & Biotechnology The Children's Hospital at Westmead Westmead Australia.,Discipline of Child and Adolescent Health University of Sydney Camperdown Australia
| | - Ralph Müller
- Institute for Biomechanics ETH Zurich Zurich Switzerland
| |
Collapse
|
17
|
The Effect of Space Travel on Bone Metabolism: Considerations on Today's Major Challenges and Advances in Pharmacology. Int J Mol Sci 2021; 22:ijms22094585. [PMID: 33925533 PMCID: PMC8123809 DOI: 10.3390/ijms22094585] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Microgravity-induced bone loss is currently a significant and unresolved health risk for space travelers, as it raises the likelihood for irreversible changes that weaken skeletal integrity and the incremental onset of fracture injuries and renal stone formation. Another issue related to bone tissue homeostasis in microgravity is its capacity to regenerate following fractures due to weakening of the tissue and accidental events during the accomplishment of particularly dangerous tasks. Today, several pharmacological and non-pharmacological countermeasures to this problem have been proposed, including physical exercise, diet supplements and administration of antiresorptive or anabolic drugs. However, each class of pharmacological agents presents several limitations as their prolonged and repeated employment is not exempt from the onset of serious side effects, which limit their use within a well-defined range of time. In this review, we will focus on the various countermeasures currently in place or proposed to address bone loss in conditions of microgravity, analyzing in detail the advantages and disadvantages of each option from a pharmacological point of view. Finally, we take stock of the situation in the currently available literature concerning bone loss and fracture healing processes. We try to understand which are the critical points and challenges that need to be addressed to reach innovative and targeted therapies to be used both in space missions and on Earth.
Collapse
|
18
|
Vahidi G, Rux C, Sherk VD, Heveran CM. Lacunar-canalicular bone remodeling: Impacts on bone quality and tools for assessment. Bone 2021; 143:115663. [PMID: 32987198 PMCID: PMC7769905 DOI: 10.1016/j.bone.2020.115663] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/06/2023]
Abstract
Osteocytes can resorb as well as replace bone adjacent to the expansive lacunar-canalicular system (LCS). Suppressed LCS remodeling decreases bone fracture toughness, but it is unclear how altered LCS remodeling impacts bone quality. The first goal of this review is to assess how LCS remodeling impacts LCS morphology as well as the composition and mechanical properties of surrounding bone tissue. The second goal is to compare tools available for the assessment of bone quality at length-scales that are physiologically-relevant to LCS remodeling. We find that changes to LCS morphology occur in response to a variety of physiological conditions and diseases and can be classified in two general phenotypes. In the 'aging phenotype', seen in aging and in some disuse models, the LCS is truncated and osteocytes apoptosis is increased. In the 'osteocytic osteolysis' phenotype, which is adaptive in some physiological settings and possibly maladaptive in others, the LCS enlarges and osteocytes generally maintain viability. Bone composition and mechanical properties vary near the osteocyte and change with at least some conditions that alter LCS morphology. However, few studies have evaluated bone composition and mechanical properties close to the LCS and so the impacts of LCS remodeling phenotypes on bone tissue quality are still undetermined. We summarize the current understanding of how LCS remodeling impacts LCS morphology, tissue-scale bone composition and mechanical properties, and whole-bone material properties. Tools are compared for assessing tissue-scale bone properties, as well as the resolution, advantages, and limitations of these techniques.
Collapse
Affiliation(s)
- G Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - C Rux
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - V D Sherk
- Department of Orthopedics, University of Colorado Anschutz School of Medicine, United States of America
| | - C M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America.
| |
Collapse
|
19
|
Dole NS, Yee CS, Schurman CA, Dallas SL, Alliston T. Assessment of Osteocytes: Techniques for Studying Morphological and Molecular Changes Associated with Perilacunar/Canalicular Remodeling of the Bone Matrix. Methods Mol Biol 2021; 2230:303-323. [PMID: 33197021 PMCID: PMC9165628 DOI: 10.1007/978-1-0716-1028-2_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent advances have revived interest in the concept of osteocyte perilacunar/canalicular remodeling (PLR) and have motivated efforts to identify the mechanisms regulating this process in bone in the context of normal physiology and pathological conditions. Here, we describe several methods that are evaluating morphological changes associated with PLR function of osteocytes.
Collapse
Affiliation(s)
- Neha S Dole
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Cristal S Yee
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Charles A Schurman
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, USA.
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, USA.
| |
Collapse
|
20
|
Misof BM, Blouin S, Hofstaetter JG, Roschger P, Zwerina J, Erben RG. No Role of Osteocytic Osteolysis in the Development and Recovery of the Bone Phenotype Induced by Severe Secondary Hyperparathyroidism in Vitamin D Receptor Deficient Mice. Int J Mol Sci 2020; 21:E7989. [PMID: 33121142 PMCID: PMC7662929 DOI: 10.3390/ijms21217989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Osteocytic osteolysis/perilacunar remodeling is thought to contribute to the maintenance of mineral homeostasis. Here, we utilized a reversible, adult-onset model of secondary hyperparathyroidism to study femoral bone mineralization density distribution (BMDD) and osteocyte lacunae sections (OLS) based on quantitative backscattered electron imaging. Male mice with a non-functioning vitamin D receptor (VDRΔ/Δ) or wild-type mice were exposed to a rescue diet (RD) (baseline) and subsequently to a low calcium challenge diet (CD). Thereafter, VDRΔ/Δ mice received either the CD, a normal diet (ND), or the RD. At baseline, BMDD and OLS characteristics were similar in VDRΔ/Δ and wild-type mice. The CD induced large cortical pores, osteomalacia, and a reduced epiphyseal average degree of mineralization in the VDRΔ/Δ mice relative to the baseline (-9.5%, p < 0.05 after two months and -10.3%, p < 0.01 after five months of the CD). Switching VDRΔ/Δ mice on the CD back to the RD fully restored BMDD to baseline values. However, OLS remained unchanged in all groups of mice, independent of diet. We conclude that adult VDRΔ/Δ animals on an RD lack any skeletal abnormalities, suggesting that VDR signaling is dispensable for normal bone mineralization as long as mineral homeostasis is normal. Our findings also indicate that VDRΔ/Δ mice attempt to correct a calcium challenge by enhanced osteoclastic resorption rather than by osteocytic osteolysis.
Collapse
Affiliation(s)
- Barbara M. Misof
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Deptartment, Hanusch Hospital, 11140 Vienna, Austria; (S.B.); (J.G.H.); (P.R.); (J.Z.)
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Deptartment, Hanusch Hospital, 11140 Vienna, Austria; (S.B.); (J.G.H.); (P.R.); (J.Z.)
| | - Jochen G. Hofstaetter
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Deptartment, Hanusch Hospital, 11140 Vienna, Austria; (S.B.); (J.G.H.); (P.R.); (J.Z.)
- Michael Ogon Laboratory for Orthopaedic Research, Orthopaedic Hospital Vienna Speising, 1130 Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Deptartment, Hanusch Hospital, 11140 Vienna, Austria; (S.B.); (J.G.H.); (P.R.); (J.Z.)
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Deptartment, Hanusch Hospital, 11140 Vienna, Austria; (S.B.); (J.G.H.); (P.R.); (J.Z.)
| | - Reinhold G. Erben
- Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria;
| |
Collapse
|
21
|
Hongo H, Hasegawa T, Saito M, Tsuboi K, Yamamoto T, Sasaki M, Abe M, Henrique Luiz de Freitas P, Yurimoto H, Udagawa N, Li M, Amizuka N. Osteocytic Osteolysis in PTH-treated Wild-type and Rankl-/- Mice Examined by Transmission Electron Microscopy, Atomic Force Microscopy, and Isotope Microscopy. J Histochem Cytochem 2020; 68:651-668. [PMID: 32942927 DOI: 10.1369/0022155420961375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To demonstrate the ultrastructure of osteocytic osteolysis and clarify whether osteocytic osteolysis occurs independently of osteoclastic activities, we examined osteocytes and their lacunae in the femora and tibiae of 11-week-old male wild-type and Rankl-/- mice after injection of human parathyroid hormone (PTH) [1-34] (80 µg/kg/dose). Serum calcium concentration rose temporarily 1 hr after PTH administration in wild-type and Rankl-/- mice, when renal arteries and veins were ligated. After 6 hr, enlargement of osteocytic lacunae was evident in the cortical bones of wild-type and Rankl-/- mice, but not so in their metaphyses. Von Kossa staining and transmission electron microscopy showed broadly demineralized bone matrix peripheral to enlarged osteocytic lacunae, which contained fragmented collagen fibrils and islets of mineralized matrices. Nano-indentation by atomic force microscopy revealed the reduced elastic modulus of the PTH-treated osteocytic perilacunar matrix, despite the microscopic verification of mineralized matrix in that region. In addition, 44Ca deposition was detected by isotope microscopy and calcein labeling in the eroded osteocytic lacunae of wild-type and Rankl-/- mice. Taken together, our findings suggest that osteocytes can erode the bone matrix around them and deposit minerals on their lacunar walls independently of osteoclastic activity, at least in the murine cortical bone. (J Histochem Cytochem 68: -XXX, 2020).
Collapse
Affiliation(s)
- Hiromi Hongo
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Masami Saito
- Bruker Japan K.K., Nano Surfaces & Metrology Division, Tokyo, Japan
| | - Kanako Tsuboi
- Dental Surgery, Haibara General Hospital, Makinohara, Japan
| | - Tomomaya Yamamoto
- Department of Dentistry, Japan Ground Self Defense Force Camp Asaka, Tokyo, Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | - Hisayoshi Yurimoto
- Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, Sapporo, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Japan
| | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Olvera D, Stolzenfeld R, Fisher E, Nolan B, Caird MS, Kozloff KM. Pamidronate Administration During Pregnancy and Lactation Induces Temporal Preservation of Maternal Bone Mass in a Mouse Model of Osteogenesis Imperfecta. J Bone Miner Res 2019; 34:2061-2074. [PMID: 31310351 PMCID: PMC6854294 DOI: 10.1002/jbmr.3831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 01/25/2023]
Abstract
During pregnancy and lactation, the maternal skeleton undergoes significant bone loss through increased resorption to provide the necessary calcium supply to the developing fetus and suckling neonate. This period of skeletal vulnerability has not been clearly associated with increased maternal fracture risk, but these physiological conditions can exacerbate an underlying metabolic bone condition like osteogenesis imperfecta. Although bisphosphonates (BPs) are commonly used in postmenopausal women, there are cases where premenopausal women taking BPs become pregnant. Given BPs' long half-life, there is a need to establish how BPs affect the maternal skeleton during periods of demanding metabolic bone changes that are critical for the skeletal development of their offspring. In the present study, pamidronate- (PAM-) amplified pregnancy-induced bone mass gains and lactation-induced bone loss were prevented. This preservation of bone mass was less robust when PAM was administered at late stages of lactation compared with early pregnancy and first day of lactation. Pregnancy-induced osteocyte osteolysis was also observed and was unaffected with PAM treatment. No negative skeletal effects were observed in offspring from PAM-treated dams despite lactation-induced bone loss prevention. These findings provide important insight into (1) a treatment window for when PAM is most effective in preserving maternal bone mass, and (2) the maternal changes in bone metabolism that maintain calcium homeostasis crucial for fetal and neonatal bone development. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Diana Olvera
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Stolzenfeld
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Emily Fisher
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Bonnie Nolan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Michelle S Caird
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
King HE, Tommasini SM, Rodriguez-Navarro AB, Mercado BQ, Skinner HCW. Correlative vibrational spectroscopy and 2D X-ray diffraction to probe the mineralization of bone in phosphate-deficient mice. J Appl Crystallogr 2019; 52:960-971. [PMID: 31636517 PMCID: PMC6782074 DOI: 10.1107/s1600576719009361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/29/2019] [Indexed: 11/18/2022] Open
Abstract
Bone crystallite chemistry and structure change during bone maturation. However, these properties of bone can also be affected by limited uptake of the chemical constituents of the mineral by the animal. This makes probing the effect of bone-mineralization-related diseases a complicated task. Here it is shown that the combination of vibrational spectroscopy with two-dimensional X-ray diffraction can provide unparalleled information on the changes in bone chemistry and structure associated with different bone pathologies (phosphate deficiency) and/or health conditions (pregnancy, lactation). Using a synergistic analytical approach, it was possible to trace the effect that changes in the remodelling regime have on the bone mineral chemistry and structure in normal and mineral-deficient (hypophosphatemic) mice. The results indicate that hypophosphatemic mice have increased bone remodelling, increased carbonate content and decreased crystallinity of the bone mineral, as well as increased misalignment of crystallites within the bone tissue. Pregnant and lactating mice that are normal and hypophosphatemic showed changes in the chemistry and misalignment of the apatite crystals that can be related to changes in remodelling rates associated with different calcium demand during pregnancy and lactation.
Collapse
Affiliation(s)
- Helen E King
- Department of Earth Sciences, Utrecht University, Princetonlaan 8a, Utrecht 3584 CB, The Netherlands
- Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, Connecticut CT-06511, USA
| | - Steven M Tommasini
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, 330 Cedar Street, New Haven, Connecticut CT-06510, USA
| | | | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut CT-06511, USA
| | - H Catherine W Skinner
- Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, Connecticut CT-06511, USA
| |
Collapse
|
24
|
Wittig NK, Birkbak ME, Bach-Gansmo FL, Pacureanu A, Wendelboe MH, Brüel A, Thomsen JS, Birkedal H. No Signature of Osteocytic Osteolysis in Cortical Bone from Lactating NMRI Mice. Calcif Tissue Int 2019; 105:308-315. [PMID: 31147741 DOI: 10.1007/s00223-019-00569-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/25/2019] [Indexed: 01/13/2023]
Abstract
The roles of osteocytes in bone homeostasis have garnered increasing attention since it has been realized that osteocytes communicate with other organs. It has long been debated whether and/or to which degree osteocytes can break down the bone matrix surrounding them in a process called osteocytic osteolysis. Osteocytic osteolysis has been indicated to be induced by a number of skeletal challenges including lactation in CD1 and C57BL/6 mice, whereas immobilization-induced osteocytic osteolysis is still a matter of controversy. Motivated by the wish to understand this process better, we studied osteocyte lacunae in lactating NMRI mice, which is a widely used outbred mouse strain. Surprisingly, no trace of osteocytic osteolysis could be detected in tibial or femoral cortical bone either by 3D investigation by synchrotron nanotomography, by studies of lacunar cross-sectional areas using scanning electron microscopy, or by light microscopy. These results lead us to conclude that osteocytic osteolysis does not occur in NMRI mice as a response to lactation, in turn suggesting that osteocytic osteolysis may not play a generic role in mobilizing calcium during lactation.
Collapse
Affiliation(s)
- Nina Kølln Wittig
- Department of Chemistry and iNANO, Aarhus University, Gustav Wieds vej 14, 8000, Aarhus C, Denmark
| | - Mie Elholm Birkbak
- Department of Chemistry and iNANO, Aarhus University, Gustav Wieds vej 14, 8000, Aarhus C, Denmark
| | - Fiona Linnea Bach-Gansmo
- Department of Chemistry and iNANO, Aarhus University, Gustav Wieds vej 14, 8000, Aarhus C, Denmark
| | - Alexandra Pacureanu
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, CS 40220, 38043, Grenoble Cedex 9, France
| | - Mette Høegh Wendelboe
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark
| | - Jesper Skovhus Thomsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark
| | - Henrik Birkedal
- Department of Chemistry and iNANO, Aarhus University, Gustav Wieds vej 14, 8000, Aarhus C, Denmark.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW In perilacunar/canalicular remodeling (PLR), osteocytes dynamically resorb, and then replace, the organic and mineral components of the pericellular extracellular matrix. Given the enormous surface area of the osteocyte lacuna-canalicular network (LCN), PLR is important for maintaining homeostasis of the skeleton. The goal of this review is to examine the motivations and critical considerations for the analysis of PLR, in both in vitro and in vivo systems. RECENT FINDINGS Morphological approaches alone are insufficient to elucidate the complex mechanisms regulating PLR in the healthy skeleton and in disease. Understanding the role and regulation of PLR will require the incorporation of standardized PLR outcomes as a routine part of skeletal phenotyping, as well as the development of improved molecular and cellular outcomes. Current PLR outcomes assess PLR enzyme expression, the LCN, and bone matrix composition and organization, among others. Here, we discuss current PLR outcomes and how they have been applied to study PLR induction and suppression in vitro and in vivo. Given the role of PLR in skeletal health and disease, integrated analysis of PLR has potential to elucidate new mechanisms by which osteocytes participate in skeletal health and disease.
Collapse
Affiliation(s)
- Cristal S Yee
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Charles A Schurman
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA
| | - Carter R White
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA.
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA.
| |
Collapse
|
26
|
Review: Endocrine pathways to regulate calcium homeostasis around parturition and the prevention of hypocalcemia in periparturient dairy cows. Animal 2019; 14:330-338. [PMID: 31337460 DOI: 10.1017/s1751731119001605] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Calcium homeostasis is crucial for the normal function of the organism. Parathyroid hormone, calcitriol and calcitonin play critical roles in the homeostatic regulation of calcium. Serotonin and prolactin have also been shown to be involved in the regulation of calcium homeostasis. In modern dairy cows, the endocrine pathways controlling calcium homeostasis during non-lactating and non-pregnant physiological states are unable to fully support the increased demand of calcium required for milk synthesis at the onset of lactation. This review describes different endocrine systems associated with the regulation of calcium homeostasis in mammalian species around parturition with special focus on dairy cows. Additionally, classic and novel strategies to reduce the incidence of hypocalcemia in parturient dairy cows are discussed.
Collapse
|
27
|
Roschger A, Roschger P, Wagermaier W, Chen J, van Tol AF, Repp F, Blouin S, Berzlanovich A, Gruber GM, Klaushofer K, Fratzl P, Weinkamer R. The contribution of the pericanalicular matrix to mineral content in human osteonal bone. Bone 2019; 123:76-85. [PMID: 30898694 DOI: 10.1016/j.bone.2019.03.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 01/11/2023]
Abstract
The osteocyte lacunar-canalicular network (LCN) penetrates bone and houses the osteocytes and their processes. Despite its rather low volume fraction, the LCN represents an outstanding large surface that is possibly used by the osteocytes to interact with the surrounding mineralized bone matrix thereby contributing to mineral homeostasis. The aim of this study was to quantitatively describe such contributions by spatially correlating the local density of the LCN with the mineral content at the same location in micrometer-sized volume elements in human osteons. For this purpose, 65 osteons from the femur midshaft from healthy adults (n = 4) and children (n = 2) were structurally characterized with two different techniques. The 3D structure of the LCN in the osteons was imaged with confocal laser scanning microscopy after staining the bone samples with rhodamine. Subsequent image analysis provided the canalicular length density, i.e. the total length of the canaliculi per unit volume (μm/μm3). Quantitative information on the mineral content (wt%Ca) from the identical regions was obtained using quantitative backscattered electron imaging. As the LCN-porosity lowers the mineral content, a negative correlation between Ca content and network density was expected. Calculations predict a reduction of around -0.97 fmol Ca per μm of network. However, the experiment revealed for 62 out of 65 osteons a positive correlation resulting in an average additional Ca loading of +1.15 fmol per μm of canalicular network, i.e. an accumulation of mineral has occurred at dense network regions. We hypothesize that this accumulation happens in the close vicinity of canaliculi forming mineral reservoirs that can be utilized by osteocytes. Significant differences found between individuals indicate that the extent of mineral loading of the reservoir zone reflects an important parameter for mineral homeostasis.
Collapse
Affiliation(s)
- A Roschger
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany; Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria.
| | - P Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - W Wagermaier
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - J Chen
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany; College of Engineering, Mathematics, and Physical Science, University of Exeter, Exeter EX4 4QF, UK
| | - A F van Tol
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - F Repp
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - S Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - A Berzlanovich
- Department of Forensic Medicine, Medical University of Vienna, Sensengasse 2, A-1090 Vienna, Austria
| | - G M Gruber
- Department of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - P Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - R Weinkamer
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| |
Collapse
|
28
|
Davesne D, Meunier FJ, Schmitt AD, Friedman M, Otero O, Benson RBJ. The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism. Biol Rev Camb Philos Soc 2019; 94:1338-1363. [DOI: 10.1111/brv.12505] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Donald Davesne
- Department of Earth SciencesUniversity of Oxford OX1 3AN Oxford U.K
| | - François J. Meunier
- BOREA (UMR 7208 CNRS, IRD, MNHN, Sorbonne Université)Muséum national d'Histoire naturelle 75005 Paris France
| | - Armin D. Schmitt
- Department of Earth SciencesUniversity of Oxford OX1 3AN Oxford U.K
| | - Matt Friedman
- Museum of Paleontology and Department of Earth and Environmental SciencesUniversity of Michigan Ann Arbor MI 48109‐1079 U.S.A
| | - Olga Otero
- PalEvoPrim (UMR 7262 CNRS)Université de Poitiers 86000 Poitiers France
| | | |
Collapse
|
29
|
Gardinier JD, Al-Omaishi S, Rostami N, Morris MD, Kohn DH. Examining the influence of PTH(1-34) on tissue strength and composition. Bone 2018; 117:130-137. [PMID: 30261327 PMCID: PMC6202137 DOI: 10.1016/j.bone.2018.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/27/2018] [Accepted: 09/23/2018] [Indexed: 01/13/2023]
Abstract
The lacunar-canaliculi system is a network of channels that is created and maintained by osteocytes as they are embedded throughout cortical bone. As osteocytes modify their lacuna space, the local tissue composition and tissue strength are subject to change. Although continual exposure to parathyroid hormone (PTH) can induce adaptation at the lacunar wall, the impact of intermittent PTH treatment on perilacunar adaptation remains unclear. Therefore, the primary objective of this study was to establish how intermittent PTH(1-34) treatment influences perilacunar adaptation with respect to changes in tissue composition. We hypothesized that local changes in tissue composition following PTH(1-34) are associated with corresponding gains in tissue strength and resistance to microdamage at the whole bone level. Adult male C57BL/6J mice were treated daily with PTH(1-34) or vehicle for 3 weeks. In response to PTH(1-34), Raman spectroscopy revealed a significant decrease in the carbonate-to-phosphate ratio and crystallinity across the entire tissue, while the mineral-to-matrix ratio demonstrated a significant decrease in just the perilacunar region. The shift in perilacunar composition largely explained the corresponding increase in tissue strength, while the degree of new tissue added at the endosteum and periosteum did not produce any significant changes in cortical area or moment of inertia that would explain the increase in tissue strength. Furthermore, fatigue testing revealed a greater resistance to crack formation within the existing tissue following PTH(1-34) treatment. As a result, the shift in perilacunar composition presents a unique mechanism by which PTH(1-34) produces localized differences in tissue quality that allow more energy to be dissipated under loading, thereby increasing tissue strength and resistance to microdamage. In addition, our findings demonstrate the potential for PTH(1-34) to amplify osteocytes' mechanotransduction by producing a more compliant tissue. Overall, the present study demonstrates that changes in tissue composition localized at the lacuna wall contribute to the strength and fatigue resistance of cortical bone gained in response to intermittent PTH(1-34) treatment.
Collapse
Affiliation(s)
| | - Salam Al-Omaishi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Niloufar Rostami
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Michael D Morris
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - David H Kohn
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
30
|
Fornetti J, Welm AL, Stewart SA. Understanding the Bone in Cancer Metastasis. J Bone Miner Res 2018; 33:2099-2113. [PMID: 30476357 DOI: 10.1002/jbmr.3618] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
Abstract
The bone is the third most common site of metastasis for a wide range of solid tumors including lung, breast, prostate, colorectal, thyroid, gynecologic, and melanoma, with 70% of metastatic prostate and breast cancer patients harboring bone metastasis.1 Unfortunately, once cancer spreads to the bone, it is rarely cured and is associated with a wide range of morbidities including pain, increased risk of fracture, and hypercalcemia. This fact has driven experts in the fields of bone and cancer biology to study the bone, and has revealed that there is a great deal that each can teach the other. The complexity of the bone was first described in 1889 when Stephen Paget proposed that tumor cells have a proclivity for certain organs, where they "seed" into a friendly "soil" and eventually grow into metastatic lesions. Dr. Paget went on to argue that although many study the "seed" it would be paramount to understand the "soil." Since this original work, significant advances have been made not only in understanding the cell-autonomous mechanisms that drive metastasis, but also alterations which drive changes to the "soil" that allow a tumor cell to thrive. Indeed, it is now clear that the "soil" in different metastatic sites is unique, and thus the mechanisms that allow tumor cells to remain in a dormant or growing state are specific to the organ in question. In the bone, our knowledge of the components that contribute to this fertile "soil" continues to expand, but our understanding of how they impact tumor growth in the bone remains in its infancy. Indeed, we now appreciate that the endosteal niche likely contributes to tumor cell dormancy, and that osteoclasts, osteocytes, and adipocytes can impact tumor cell growth. Here, we discuss the bone microenvironment and how it impacts cancer cell seeding, dormancy, and growth. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jaime Fornetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Sheila A Stewart
- Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Integrating Communication within the Cancer Environment (ICCE) Institute, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
31
|
Tokarz D, Martins JS, Petit ET, Lin CP, Demay MB, Liu ES. Hormonal Regulation of Osteocyte Perilacunar and Canalicular Remodeling in the Hyp Mouse Model of X-Linked Hypophosphatemia. J Bone Miner Res 2018; 33:499-509. [PMID: 29083055 PMCID: PMC6005377 DOI: 10.1002/jbmr.3327] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/14/2017] [Accepted: 10/27/2017] [Indexed: 01/07/2023]
Abstract
Osteocytes remodel their surrounding perilacunar matrix and canalicular network to maintain skeletal homeostasis. Perilacunar/canalicular remodeling is also thought to play a role in determining bone quality. X-linked hypophosphatemia (XLH) is characterized by elevated serum fibroblast growth factor 23 (FGF23) levels, resulting in hypophosphatemia and decreased production of 1,25 dihydroxyvitamin D (1,25D). In addition to rickets and osteomalacia, long bones from mice with XLH (Hyp) have impaired whole-bone biomechanical integrity accompanied by increased osteocyte apoptosis. To address whether perilacunar/canalicular remodeling is altered in Hyp mice, histomorphometric analyses of tibia and 3D intravital microscopic analyses of calvaria were performed. These studies demonstrate that Hyp mice have larger osteocyte lacunae in both the tibia and calvaria, accompanied by enhanced osteocyte mRNA and protein expression of matrix metalloproteinase 13 (MMP13) and genes classically used by osteoclasts to resorb bone, such as cathepsin K (CTSK). Hyp mice also exhibit impaired canalicular organization, with a decrease in number and branching of canaliculi extending from tibial and calvarial lacunae. To determine whether improving mineral ion and hormone homeostasis attenuates the lacunocanalicular phenotype, Hyp mice were treated with 1,25D or FGF23 blocking antibody (FGF23Ab). Both therapies were shown to decrease osteocyte lacunar size and to improve canalicular organization in tibia and calvaria. 1,25D treatment of Hyp mice normalizes osteocyte expression of MMP13 and classic osteoclast markers, while FGF23Ab decreases expression of MMP13 and selected osteoclast markers. Taken together, these studies point to regulation of perilacunar/canalicular remodeling by physiologic stimuli including hypophosphatemia and 1,25D. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Danielle Tokarz
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Janaina S Martins
- Harvard Medical School, Boston, MA, USA
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | | | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marie B Demay
- Harvard Medical School, Boston, MA, USA
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eva S Liu
- Harvard Medical School, Boston, MA, USA
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
32
|
Harlow L, Sahbani K, Nyman JS, Cardozo CP, Bauman WA, Tawfeek HA. Daily parathyroid hormone administration enhances bone turnover and preserves bone structure after severe immobilization-induced bone loss. Physiol Rep 2017; 5:5/18/e13446. [PMID: 28963125 PMCID: PMC5617932 DOI: 10.14814/phy2.13446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Immobilization, as a result of motor‐complete spinal cord injury (SCI), is associated with severe osteoporosis. Whether parathyroid hormone (PTH) administration would reduce bone loss after SCI remains unclear. Thus, female mice underwent sham or surgery to produce complete spinal cord transection. PTH (80 μg/kg) or vehicle was injected subcutaneously (SC) daily starting on the day of surgery and continued for 35 days. Isolated tibias and femurs were examined by microcomputed tomography scanning (micro‐CT) and histology and serum markers of bone turnover were measured. Micro‐CT analysis of tibial metaphysis revealed that the SCI‐vehicle animals exhibited 49% reduction in fractional trabecular bone volume and 18% in trabecular thickness compared to sham‐vehicle controls. SCI‐vehicle animals also had 15% lower femoral cortical thickness and 16% higher cortical porosity than sham‐vehicle counterparts. Interestingly, PTH administration to SCI animals restored 78% of bone volume, increased connectivity to 366%, and lowered structure model index by 10% compared to sham‐vehicle animals. PTH further favorably attenuated femoral cortical bone loss to 5% and prevented the SCI‐associated cortical porosity. Histomorphometry evaluation of femurs of SCI‐vehicle animals demonstrated a marked 49% and 38% decline in osteoblast and osteoclast number, respectively, and 35% reduction in bone formation rate. In contrast, SCI‐PTH animals showed preserved osteoblast and osteoclast numbers and enhanced bone formation rate. Furthermore, SCI‐PTH animals had higher levels of bone formation and resorption markers than either SCI‐ or sham‐vehicle groups. Collectively, these findings suggest that intermittent PTH receptor activation is an effective therapeutic strategy to preserve bone integrity after severe immobilization.
Collapse
Affiliation(s)
- Lauren Harlow
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Karim Sahbani
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biomedical Engineering, Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York.,Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pharmacologic Science, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York.,Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hesham A Tawfeek
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York .,Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
33
|
Targeting subchondral bone mesenchymal stem cell activities for intrinsic joint repair in osteoarthritis. Future Sci OA 2017; 3:FSO228. [PMID: 29134116 PMCID: PMC5674229 DOI: 10.4155/fsoa-2017-0055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a common age-related disease with complex pathophysiology. It is characterized by wide-ranging tissue damage and ultimate biomechanical failure of the whole joint. However, signs of tissue adaptation and attempted repair responses are evident in OA-affected osteochondral tissues. Highlighted in this review article is the role of bone-resident mesenchymal stem cells (MSCs) in these bone remodeling responses, and a proposal that targeting MSC activities in OA subchondral bone could represent a novel approach for intrinsic joint regeneration in OA. The development of these therapies will require better understanding of MSC proliferation, migration and differentiation patterns in relation to OA tissue damage and further clarification of the molecular signaling events in these MSCs during disease progression. Osteoarthritis (OA) is a joint disorder, in which the cartilage, the underlying bone and other joint tissues are affected. Recent evidence demonstrating attempted repair responses in these OA tissues challenges the traditional view of OA as a degenerative disorder. Signs of tissue regeneration are particularly evident in the bone located directly underneath the damaged cartilage, where increased stem cell activity has been observed. Targeting these stem cells could represent a novel approach for intrinsic joint regeneration in OA. To progress with developing these novel therapies, a better understanding of stem cell function in normal and OA joint tissues is needed.
Collapse
|
34
|
Dyskova T, Gallo J, Kriegova E. The Role of the Chemokine System in Tissue Response to Prosthetic By-products Leading to Periprosthetic Osteolysis and Aseptic Loosening. Front Immunol 2017; 8:1026. [PMID: 28883822 PMCID: PMC5573717 DOI: 10.3389/fimmu.2017.01026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/08/2017] [Indexed: 12/27/2022] Open
Abstract
Millions of total joint replacements are performed annually worldwide, and the number is increasing every year. The overall proportion of patients achieving a successful outcome is about 80–90% in a 10–20-years time horizon postoperatively, periprosthetic osteolysis (PPOL) and aseptic loosening (AL) being the most frequent reasons for knee and hip implant failure and reoperations. The chemokine system (chemokine receptors and chemokines) is crucially involved in the inflammatory and osteolytic processes leading to PPOL/AL. Thus, the modulation of the interactions within the chemokine system may influence the extent of PPOL. Indeed, recent studies in murine models reported that (i) blocking the CCR2–CCL2 or CXCR2–CXCL2 axis or (ii) activation of the CXCR4–CXCL12 axis attenuate the osteolysis of artificial joints. Importantly, chemokines, inhibitory mutant chemokines, antagonists of chemokine receptors, or neutralizing antibodies to the chemokine system attached to or incorporated into the implant surface may influence the tissue responses and mitigate PPOL, thus increasing prosthesis longevity. This review summarizes the current state of the art of the knowledge of the chemokine system in human PPOL/AL. Furthermore, the potential for attenuating cell trafficking to the bone–implant interface and influencing tissue responses through modulation of the chemokine system is delineated. Additionally, the prospects of using immunoregenerative biomaterials (including chemokines) for the prevention of failed implants are discussed. Finally, this review highlights the need for a more sophisticated understanding of implant debris-induced changes in the chemokine system to mitigate this response effectively.
Collapse
Affiliation(s)
- Tereza Dyskova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Olomouc, Czechia
| | - Jiri Gallo
- Faculty of Medicine and Dentistry, Department of Orthopaedics, Palacky University Olomouc, University Hospital Olomouc, Olomouc, Czechia
| | - Eva Kriegova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Olomouc, Czechia
| |
Collapse
|
35
|
Leprévost A, Azaïs T, Trichet M, Sire JY. Identification of a new mineralized tissue in the notochord of reared Siberian sturgeon (Acipenser baerii). J Morphol 2017; 278:1586-1597. [PMID: 28744949 DOI: 10.1002/jmor.20734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 11/06/2022]
Abstract
In a study aiming to improve knowledge on the mineralization of the axial skeleton in reared Siberian sturgeon (Acipenser baerii Brandt, 1869), we discovered a new mineralized tissue within the notochord. To our knowledge, such a structure has never been reported in any vertebrate species with the exception of the pathological mineralization of the notochord remains in degenerative intervertebral disks of mammals. Here, we describe this enigmatic tissue using X-ray microtomography, histological analyses and solid state NMR-spectroscopy. We also performed a 1-year monitoring of the mineral content (MC) of the notochord in relation with seasonal variations of temperature. In all specimens studied from 2-year-old juveniles onwards, this mineralized structure was found within a particular region of the notochord called funiculus. This feature first appears in the abdominal region then extends posteriorly with ageing, while the notochord MC also increases. The mineral phase is mainly composed of amorphous calcium phosphate, a small amount of which changes into hydroxyapatite with ageing. The putative role of this structure is discussed as either a store of minerals available for the phosphocalcic metabolism, or a mechanical support in a species with a poorly mineralized axial skeleton. A pathological feature putatively related to rearing conditions is also discussed.
Collapse
Affiliation(s)
- Amandine Leprévost
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine, CNRS, UMR7138-Department Evolution Paris Seine, Equipe 'Evolution et Développement du Squelette', Paris, France
| | - Thierry Azaïs
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 11 place Marcelin Berthelot, Paris, F-75005, France
| | - Michael Trichet
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine, CNRS, Service de Microscopie Electronique, Paris, France
| | - Jean-Yves Sire
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine, CNRS, UMR7138-Department Evolution Paris Seine, Equipe 'Evolution et Développement du Squelette', Paris, France
| |
Collapse
|
36
|
Paiva KBS, Granjeiro JM. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:203-303. [PMID: 28662823 DOI: 10.1016/bs.pmbts.2017.05.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering.
Collapse
Affiliation(s)
- Katiucia B S Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction (LabMec), Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - José M Granjeiro
- National Institute of Metrology, Quality and Technology (InMetro), Bioengineering Laboratory, Duque de Caxias, RJ, Brazil; Fluminense Federal University, Dental School, Niterói, RJ, Brazil
| |
Collapse
|
37
|
Kaya S, Basta-Pljakic J, Seref-Ferlengez Z, Majeska RJ, Cardoso L, Bromage T, Zhang Q, Flach CR, Mendelsohn R, Yakar S, Fritton SP, Schaffler MB. Lactation-Induced Changes in the Volume of Osteocyte Lacunar-Canalicular Space Alter Mechanical Properties in Cortical Bone Tissue. J Bone Miner Res 2017; 32:688-697. [PMID: 27859586 PMCID: PMC5395324 DOI: 10.1002/jbmr.3044] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/27/2016] [Accepted: 11/15/2016] [Indexed: 01/23/2023]
Abstract
Osteocytes can remove and remodel small amounts of their surrounding bone matrix through osteocytic osteolysis, which results in increased volume occupied by lacunar and canalicular space (LCS). It is well established that cortical bone stiffness and strength are strongly and inversely correlated with vascular porosity, but whether changes in LCS volume caused by osteocytic osteolysis are large enough to affect bone mechanical properties is not known. In the current studies we tested the hypotheses that (1) lactation and postlactation recovery in mice alter the elastic modulus of bone tissue, and (2) such local changes in mechanical properties are related predominantly to alterations in lacunar and canalicular volume rather than bone matrix composition. Mechanical testing was performed using microindentation to measure modulus in regions containing solely osteocytes and no vascular porosity. Lactation caused a significant (∼13%) reduction in bone tissue-level elastic modulus (p < 0.001). After 1 week postweaning (recovery), bone modulus levels returned to control levels and did not change further after 4 weeks of recovery. LCS porosity tracked inversely with changes in cortical bone modulus. Lacunar and canalicular void space increased 7% and 15% with lactation, respectively (p < 0.05), then returned to control levels at 1 week after weaning. Neither bone mineralization (assessed by high-resolution backscattered scanning electron microscopy) nor mineral/matrix ratio or crystallinity (assessed by Raman microspectroscopy) changed with lactation. Thus, changes in bone mechanical properties induced by lactation and recovery appear to depend predominantly on changes in osteocyte LCS dimensions. Moreover, this study demonstrates that tissue-level cortical bone mechanical properties are rapidly and reversibly modulated by osteocytes in response to physiological challenge. These data point to a hitherto unappreciated role for osteocytes in modulating and maintaining local bone mechanical properties. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Serra Kaya
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Jelena Basta-Pljakic
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | | | - Robert J Majeska
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Luis Cardoso
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Timothy Bromage
- Department of Biomaterials, New York University College of Dentistry, New York, NY, USA
| | - Qihong Zhang
- Department of Chemistry, Rutgers University, Newark, NJ, USA
| | - Carol R Flach
- Department of Chemistry, Rutgers University, Newark, NJ, USA
| | | | - Shoshana Yakar
- Department of Basic Science, New York University College of Dentistry, New York, NY, USA
| | - Susannah P Fritton
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Mitchell B Schaffler
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| |
Collapse
|
38
|
Fujii O, Tatsumi S, Ogata M, Arakaki T, Sakaguchi H, Nomura K, Miyagawa A, Ikuta K, Hanazaki A, Kaneko I, Segawa H, Miyamoto KI. Effect of Osteocyte-Ablation on Inorganic Phosphate Metabolism: Analysis of Bone-Kidney-Gut Axis. Front Endocrinol (Lausanne) 2017; 8:359. [PMID: 29312149 PMCID: PMC5742590 DOI: 10.3389/fendo.2017.00359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/11/2017] [Indexed: 01/24/2023] Open
Abstract
In response to kidney damage, osteocytes increase the production of several hormones critically involved in mineral metabolism. Recent studies suggest that osteocyte function is altered very early in the course of chronic kidney disease. In the present study, to clarify the role of osteocytes and the canalicular network in mineral homeostasis, we performed four experiments. In Experiment 1, we investigated renal and intestinal Pi handling in osteocyte-less (OCL) model mice [transgenic mice with the dentin matrix protein-1 promoter-driven diphtheria toxin (DT)-receptor that were injected with DT]. In Experiment 2, we administered granulocyte colony-stimulating factor to mice to disrupt the osteocyte canalicular network. In Experiment 3, we investigated the role of osteocytes in dietary Pi signaling. In Experiment 4, we analyzed gene expression level fluctuations in the intestine and liver by comparing mice fed a high Pi diet and OCL mice. Together, the findings of these experiments indicate that osteocyte ablation caused rapid renal Pi excretion (P < 0.01) before the plasma fibroblast growth factor 23 (FGF23) and parathyroid hormone (PTH) levels increased. At the same time, we observed a rapid suppression of renal Klotho (P < 0.01), type II sodium phosphate transporters Npt2a (P < 0.01) and Npt2c (P < 0.05), and an increase in intestinal Npt2b (P < 0.01) protein. In OCL mice, Pi excretion in feces was markedly reduced (P < 0.01). Together, these effects of osteocyte ablation are predicted to markedly increase intestinal Pi absorption (P < 0.01), thus suggesting that increased intestinal Pi absorption stimulates renal Pi excretion in OCL mice. In addition, the ablation of osteocytes and feeding of a high Pi diet affected FGF15/bile acid metabolism and controlled Npt2b expression. In conclusion, OCL mice exhibited increased renal Pi excretion due to enhanced intestinal Pi absorption. We discuss the role of FGF23-Klotho on renal and intestinal Pi metabolism in OCL mice.
Collapse
Affiliation(s)
- Osamu Fujii
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Sawako Tatsumi
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
- *Correspondence: Sawako Tatsumi, ; Ken-ichi Miyamoto,
| | - Mao Ogata
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Tomohiro Arakaki
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Haruna Sakaguchi
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kengo Nomura
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Atsumi Miyagawa
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kayo Ikuta
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ai Hanazaki
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ken-ichi Miyamoto
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
- *Correspondence: Sawako Tatsumi, ; Ken-ichi Miyamoto,
| |
Collapse
|
39
|
Currey JD, Dean MN, Shahar R. Revisiting the links between bone remodelling and osteocytes: insights from across phyla. Biol Rev Camb Philos Soc 2016; 92:1702-1719. [DOI: 10.1111/brv.12302] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/01/2023]
Affiliation(s)
- John D. Currey
- Department of Biology; University of York; York YO10 5DD U.K
| | - Mason N. Dean
- Department Biomaterials; Max Planck Institute of Colloids & Interfaces; 14424 Potsdam Germany
| | - Ron Shahar
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| |
Collapse
|
40
|
Casanova M, Herelle J, Thomas M, Softley R, Schindeler A, Little D, Schneider P, Müller R. Effect of combined treatment with zoledronic acid and parathyroid hormone on mouse bone callus structure and composition. Bone 2016; 92:70-78. [PMID: 27542660 DOI: 10.1016/j.bone.2016.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/12/2016] [Accepted: 08/14/2016] [Indexed: 11/20/2022]
Abstract
In recent years, great interest in combined treatment of parathyroid hormone (PTH) with anti-resorptive therapy has emerged. PTH has been suggested to aid bridging of atrophic fractures and improve strength in closed fracture models. Bisphosphonate treatments typically result in a larger woven bone callus that is slower to remodel. The combination of both drugs has been demonstrated to be effective for the treatment of osteoporotic bone loss in many preclinical studies. However, the effect of combined treatment on fracture repair is still largely unexplored. In this study, we aimed to compare these drugs as single-agent and in combination in a murine closed fracture model. We wanted to assess potential differences in material properties, morphometry and in the development of the lacuno-canalicular network. A total of 40 female, 11-week-old wild type mice underwent a closed fracture on the midshaft of the tibia and were assigned to four groups (n=8-10 per group). Beginning on post-operative day 8, animals received different subcutaneous injections. Group 1 received a single injection of saline solution and Group 2 of zoledronic acid (ZA). Group 3 received daily dosing of PTH. Group 4 received a dual treatment, starting with a single dose of ZA followed by daily injection of PTH. Three weeks after fracture, all animals were euthanized and tibiae were assessed using micro-computed tomography (micro-CT), high-resolution micro-CT (HR micro-CT), Raman spectroscopy, quantitative histomorphometry, and deconvolution microscopy (DV microscopy). Combined treatment showed a significant increase of 41% in bone volume fraction and a significant decrease of 61% in the standard deviation of the trabecular spacing compared to vehicle, both known to be strong predictors of callus strength. An analysis via HR micro-CT showed similar results on all groups for lacunar numerical density, whereas mean lacuna volume was found to be higher compared to vehicle in treated groups, but only PTH mono-treatment showed a significant increase compared to vehicle (+45%). Raman spectroscopy did not reveal detectable changes in material properties of the bone calluses. Sclerostin staining, tartrate resistant acid phosphatase (TRAP) staining and canalicular analysis with DV microscopy on a subset of samples did not display distinctive difference in any of the treatments. We therefore consider PTH+ZA treatment beneficial for bone healing. No clear negative effect on bone quality was detected during this study.
Collapse
Affiliation(s)
- Michele Casanova
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| | - Janelle Herelle
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| | - Marcel Thomas
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| | - Rowan Softley
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| | - Aaron Schindeler
- Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Discipline of Paediatrics and Child Health, University of Sydney, Camperdown, Australia.
| | - David Little
- Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Discipline of Paediatrics and Child Health, University of Sydney, Camperdown, Australia.
| | - Philipp Schneider
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.
| | - Ralph Müller
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
41
|
Mabilleau G, Perrot R, Mieczkowska A, Boni S, Flatt PR, Irwin N, Chappard D. Glucose-dependent insulinotropic polypeptide (GIP) dose-dependently reduces osteoclast differentiation and resorption. Bone 2016; 91:102-12. [PMID: 27451082 DOI: 10.1016/j.bone.2016.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/23/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
A role for glucose-dependent insulinotropic polypeptide (GIP) in controlling bone resorption has been suspected. However uncertainty remains to identify whether GIP act directly on osteoclasts. The aim of the present study were (i) to identify in different osteoclast differentiation models (human peripheral blood mononuclear cells-PBMC, murine bone marrow macrophage-BMM and murine Raw 264.7 cells) whether GIP was capable of reducing osteoclast formation and resorption; (ii) ascertain whether the highly potent GIP analogue N-AcGIP was capable of inducing a response at lower concentrations and (iii) to decipher the molecular mechanisms responsible for such effects. [d-Ala(2)]-GIP dose-dependently reduced osteoclast formation at concentration as low as 1nM in human PBMC and 10nM in murine BMM cultures. Furthermore, [d-Ala(2)]-GIP also reduced the extent of osteoclast resorption at concentration as low as 1nM in human PBMC and murine BMM cultures. The mechanism of action of [d-Ala(2)]-GIP appeared to be mediated by reduction in intracellular calcium concentration and oscillation that subsequently inhibited calcineurin activity and NFATc1 nuclear translocation. The potency of the highly potent N-AcGIP was determined and highlighted an effect on osteoclast formation and resorption at concentration ten times lower than observed with [d-Ala(2)]-GIP in vitro. Furthermore, N-AcGIP was also capable of reducing the number of osteoclast in ovariectomized mice as well as the circulating level of type I collagen C-telopeptide. Pharmacological concentrations required for reducing osteoclast formation and resorption provide the impetus to design and exploit enzymatically stable GIP analogues for the treatment of bone resorption disorders in humans.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, University of Angers, 49933 ANGERS Cedex, France; SCIAM, Service Commun d'Imagerie et Analyses Microscopiques, IRIS-IBS Institut de Biologie en Santé, University of Angers, 49933 ANGERS Cedex, France.
| | - Rodolphe Perrot
- SCIAM, Service Commun d'Imagerie et Analyses Microscopiques, IRIS-IBS Institut de Biologie en Santé, University of Angers, 49933 ANGERS Cedex, France
| | - Aleksandra Mieczkowska
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, University of Angers, 49933 ANGERS Cedex, France
| | - Sébastien Boni
- Lentivec, IRIS-IBS Institut de Biologie en Santé, University of Angers, 49933 ANGERS Cedex, France
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Diabetes Research Group, Biomedical Sciences Research Institute, University of Ulster, BT52 1SA Coleraine, United Kingdom
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Diabetes Research Group, Biomedical Sciences Research Institute, University of Ulster, BT52 1SA Coleraine, United Kingdom
| | - Daniel Chappard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, University of Angers, 49933 ANGERS Cedex, France; SCIAM, Service Commun d'Imagerie et Analyses Microscopiques, IRIS-IBS Institut de Biologie en Santé, University of Angers, 49933 ANGERS Cedex, France
| |
Collapse
|
42
|
de Boer HH, Van der Merwe AL. Diagnostic dry bone histology in human paleopathology. Clin Anat 2016; 29:831-43. [DOI: 10.1002/ca.22753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 01/25/2023]
Affiliation(s)
- H.H. Hans de Boer
- Department of Pathology; Academic Medical Center; Meibergdreef 9 1105 AZ, Amsterdam The Netherlands
| | - A.E. Lida Van der Merwe
- Department of Anatomy; Embryology and Physiology, Academic Medical Center; Meibergdreef 9 1105 AZ, Amsterdam The Netherlands
| |
Collapse
|
43
|
Jáuregui EJ, Akil O, Acevedo C, Hall-Glenn F, Tsai BS, Bale HA, Liebenberg E, Humphrey MB, Ritchie RO, Lustig LR, Alliston T. Parallel mechanisms suppress cochlear bone remodeling to protect hearing. Bone 2016; 89:7-15. [PMID: 27085457 PMCID: PMC4916019 DOI: 10.1016/j.bone.2016.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/02/2016] [Accepted: 04/10/2016] [Indexed: 01/08/2023]
Abstract
Bone remodeling, a combination of bone resorption and formation, requires precise regulation of cellular and molecular signaling to maintain proper bone quality. Whereas osteoblasts deposit and osteoclasts resorb bone matrix, osteocytes both dynamically resorb and replace perilacunar bone matrix. Osteocytes secrete proteases like matrix metalloproteinase-13 (MMP13) to maintain the material quality of bone matrix through perilacunar remodeling (PLR). Deregulated bone remodeling impairs bone quality and can compromise hearing since the auditory transduction mechanism is within bone. Understanding the mechanisms regulating cochlear bone provides unique ways to assess bone quality independent of other aspects that contribute to bone mechanical behavior. Cochlear bone is singular in its regulation of remodeling by expressing high levels of osteoprotegerin. Since cochlear bone expresses a key PLR enzyme, MMP13, we examined whether cochlear bone relies on, or is protected from, osteocyte-mediated PLR to maintain hearing and bone quality using a mouse model lacking MMP13 (MMP13(-/-)). We investigated the canalicular network, collagen organization, lacunar volume via micro-computed tomography, and dynamic histomorphometry. Despite finding defects in these hallmarks of PLR in MMP13(-/-) long bones, cochlear bone revealed no differences in these markers, nor hearing loss as measured by auditory brainstem response (ABR) or distortion product oto-acoustic emissions (DPOAEs), between wild type and MMP13(-/-) mice. Dynamic histomorphometry revealed abundant PLR by tibial osteocytes, but near absence in cochlear bone. Cochlear suppression of PLR corresponds to repression of several key PLR genes in the cochlea relative to long bones. These data suggest that cochlear bone uniquely maintains bone quality and hearing independent of MMP13-mediated osteocytic PLR. Furthermore, the cochlea employs parallel mechanisms to inhibit remodeling by osteoclasts and osteoblasts, and by osteocytes, to protect hearing. Understanding the cellular and molecular mechanisms that confer site-specific control of bone remodeling has the potential to elucidate new pathways that are deregulated in skeletal disease.
Collapse
Affiliation(s)
- Emmanuel J Jáuregui
- Department of Orthopaedic Surgery, University of California, San Francisco, United States
| | - Omar Akil
- Department of Otolaryngology-Head & Neck Surgery, University of California, San Francisco, United States
| | - Claire Acevedo
- Department of Orthopaedic Surgery, University of California, San Francisco, United States; Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Faith Hall-Glenn
- Department of Orthopaedic Surgery, University of California, San Francisco, United States
| | - Betty S Tsai
- Department of Otorhinolaryngology, University of Oklahoma Health Sciences Center, United States
| | - Hrishikesh A Bale
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Ellen Liebenberg
- Department of Orthopaedic Surgery, University of California, San Francisco, United States
| | - Mary Beth Humphrey
- Department of Medicine, University of Oklahoma Health Sciences Center, United States
| | - Robert O Ritchie
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Lawrence R Lustig
- Department of Otolaryngology-Head & Neck Surgery, University of California, San Francisco, United States
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, United States; Department of Otolaryngology-Head & Neck Surgery, University of California, San Francisco, United States.
| |
Collapse
|
44
|
Macica CM, King HE, Wang M, McEachon CL, Skinner CW, Tommasini SM. Novel anatomic adaptation of cortical bone to meet increased mineral demands of reproduction. Bone 2016; 85:59-69. [PMID: 26825813 PMCID: PMC7429445 DOI: 10.1016/j.bone.2015.12.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 12/27/2022]
Abstract
The goal of this study was to investigate the effects of reproductive adaptations to mineral homeostasis on the skeleton in a mouse model of compromised mineral homeostasis compared to adaptations in control, unaffected mice. During pregnancy, maternal adaptations to high mineral demand include more than doubling intestinal calcium absorption by increasing calcitriol production. However, calcitriol biosynthesis is impaired in HYP mice, a murine model of X-linked hypophosphatemia (XLH). In addition, there is a paucity of mineralized trabecular bone, a primary target of bone resorption during pregnancy and lactation. Because the highest density of mineral is in mature cortical bone, we hypothesized that mineral demand is met by utilizing intracortical mineral reserves. Indeed, analysis of HYP mice revealed dramatic increases in intracortical porosity characterized by elevated serum PTH and type-I collagen matrix-degrading enzyme MMP-13. We discovered an increase in carbonate ion substitution in the bone mineral matrix during pregnancy and lactation of HYP mice, suggesting an alternative mechanism of bone remodeling that maintains maternal bone mass during periods of high mineral demand. This phenomenon is not restricted to XLH, as increased carbonate in the mineral matrix also occurred in wild-type mice during lactation. Taken together, these data suggest that increased intracortical perilacunar mineral turnover also contributes to maintaining phosphate levels during periods of high mineral demand. Understanding the mechanisms of skeletal contribution to mineral homeostasis is important to improving the treatment and prevention of fracture risk and bone fragility for female patients with XLH, but also provides important insight into the role and unique adaptations of the maternal skeleton to the demands of fetal development and the needs of postnatal nutrition.
Collapse
Affiliation(s)
- Carolyn M Macica
- Department of Medical Sciences, Frank H. Netter, M.D., School of Medicine at Quinnipiac University, North Haven, CT 06518, United States.
| | - Helen E King
- Department of Geology and Geophysics, Yale University, New Haven, CT 06520, United States; Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands.
| | - Meina Wang
- Department of Orthopaedics and Rehabilitation, Yale University, New Haven, CT 06520, United States.
| | - Courtney L McEachon
- Department of Orthopaedics and Rehabilitation, Yale University, New Haven, CT 06520, United States.
| | - Catherine W Skinner
- Department of Geology and Geophysics, Yale University, New Haven, CT 06520, United States.
| | - Steven M Tommasini
- Department of Orthopaedics and Rehabilitation, Yale University, New Haven, CT 06520, United States.
| |
Collapse
|
45
|
Sano H, Kikuta J, Furuya M, Kondo N, Endo N, Ishii M. Intravital bone imaging by two-photon excitation microscopy to identify osteocytic osteolysis in vivo. Bone 2015; 74:134-9. [PMID: 25624000 DOI: 10.1016/j.bone.2015.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/13/2015] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
Abstract
Bone is a highly dynamic organ in which several cell types function cooperatively. Among these, osteocytes have recently emerged as an important regulator of bone homeostasis, although their mechanism of regulation is unclear. Here, intravital bone imaging by two-photon excitation microscopy allowed us to directly visualize 'osteocytic osteolysis', or resorption of bone in the lacuno-canalicular system. Osteocyte lacunae and the canalicular network in the cortex of murine tibiae were imaged by in vivo calcein staining, and local acidification in these structures was monitored using a topically applied pH sensor. We also demonstrated that sciatic neurectomy causes significant acidification around osteocytic lacunae and enlargement of lacuno-canalicular areas. These results provide strong evidence for osteocytic osteolysis, and demonstrate that two-photon intravital microscopy is useful for analysis of this phenomenon.
Collapse
Affiliation(s)
- Hiroshige Sano
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan; Department of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan; WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan; JST, CREST, Tokyo, Japan
| | - Masayuki Furuya
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan; WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Naoki Kondo
- Department of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Naoto Endo
- Department of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan; WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan; JST, CREST, Tokyo, Japan.
| |
Collapse
|
46
|
Skutschas P, Stein K. Long bone histology of the stem salamander Kokartus honorarius (Amphibia: Caudata) from the Middle Jurassic of Kyrgyzstan. J Anat 2015; 226:334-47. [PMID: 25682890 DOI: 10.1111/joa.12281] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 11/29/2022] Open
Abstract
Kokartus honorarius from the Middle Jurassic (Bathonian) of Kyrgyzstan is one of the oldest salamanders in the fossil record, characterized by a mixture of plesiomorphic morphological features and characters shared with crown-group salamanders. Here we present a detailed histological analysis of its long bones. The analysis of a growth series demonstrates a significant histological maturation during ontogeny, expressed by the progressive appearance of longitudinally oriented primary vascular canals, primary osteons, growth marks, remodelling features in primary bone tissues, as well as progressive resorption of the calcified cartilage, formation of endochondral bone and development of cartilaginous to bony trabeculae in the epiphyses. Apart from the presence of secondary osteons, the long bone histology of Kokartus is very similar to that of miniaturized temnospondyls, other Jurassic stem salamanders, miniaturized seymouriamorphs and modern crown-group salamanders. We propose that the presence of secondary osteons in Kokartus honorarius is a plesiomorphic feature, and the loss of secondary osteons in the long bones of crown-group salamanders as well as in those of miniaturized temnospondyls is the result of miniaturization processes. Hitherto, all stem salamander long bong histology (Kokartus, Marmorerpeton and 'salamander A') has been generally described as having paedomorphic features (i.e. the presence of Katschenko's Line and a layer of calcified cartilage), these taxa were thus most likely neotenic forms. The absence of clear lines of arrested growth and annuli in long bones of Kokartus honorarius suggests that the animals lived in an environment with stable local conditions.
Collapse
Affiliation(s)
- Pavel Skutschas
- Vertebrate Zoology Department, Biological Faculty, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | |
Collapse
|
47
|
Abstract
Odanacatib, a selective cathepsin K inhibitor, decreases bone resorption, whereas osteoclast number increases and bone formation is maintained, perhaps even increased on some cortical surfaces. In a phase 2 clinical trial, post-menopausal women receiving odanacatib presented a sustained reduction of bone resorption markers, whereas procollagen type 1 N-terminal propeptide returned to normal. In turn areal bone mineral density increased continuously at both spine and hip for up to 5 years. Blosozumab and romosozumab are sclerostin neutralizing antibodies that exert potent anabolic effects on both trabecular and cortical compartments. A phase 2 clinical trial has reported areal bone mineral density gains at spine and hip that were greater with romosozumab compared with placebo, but also with teriparatide. It also showed that antagonizing sclerostin results in a transient stimulation of bone formation but progressive inhibition of bone resorption. Other new medical entities that are promising for the treatment of osteoporosis include abaloparatide, a parathyroid hormone-related analogue with improved bone formation-resorption ratio.
Collapse
Affiliation(s)
- Serge Ferrari
- Service of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital and Faculty of Medicine, Switzerland.
| |
Collapse
|
48
|
Paiva KBS, Granjeiro JM. Bone tissue remodeling and development: focus on matrix metalloproteinase functions. Arch Biochem Biophys 2014; 561:74-87. [PMID: 25157440 DOI: 10.1016/j.abb.2014.07.034] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022]
Abstract
Bone-forming cells originate from distinct embryological layers, mesoderm (axial and appendicular bones) and ectoderm (precursor of neural crest cells, which mainly form facial bones). These cells will develop bones by two principal mechanisms: intramembranous and endochondral ossification. In both cases, condensation of multipotent mesenchymal cells occurs, at the site of the future bone, which differentiate into bone and cartilage-forming cells. During long bone development, an initial cartilaginous template is formed and replaced by bone in a coordinated and refined program involving chondrocyte proliferation and maturation, vascular invasion, recruitment of adult stem cells and intense remodeling of cartilage and bone matrix. Matrix metalloproteinases (MMPs) are the most important enzymes for cleaving structural components of the extracellular matrix (ECM), as well as other non-ECM molecules in the ECM space, pericellular perimeter and intracellularly. Thus, the bioactive molecules generated act on several biological events, such as development, tissue remodeling and homeostasis. Since the discovery of collagenase in bone cells, more than half of the MMP members have been detected in bone tissues under both physiological and pathological conditions. Pivotal functions of MMPs during development and bone regeneration have been revealed by knockout mouse models, such as chondrocyte proliferation and differentiation, osteoclast recruitment and function, bone modeling, coupling of bone resorption and formation (bone remodeling), osteoblast recruitment and survival, angiogenesis, osteocyte viability and function (biomechanical properties); as such alterations in MMP function may alter bone quality. In this review, we look at the principal properties of MMPs and their inhibitors (TIMPs and RECK), provide an up-date on their known functions in bone development and remodeling and discuss their potential application to Bone Bioengineering.
Collapse
Affiliation(s)
- Katiucia Batista Silva Paiva
- Matrix Biology and Cellular Interaction Group (GBMec), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - José Mauro Granjeiro
- National Institute of Metrology (InMetro), Quality and Technology, Head of Bioengineering Program, Xerem, RJ, Brazil; Head of Cell Therapy Center, Unit of Clinical Research, Fluminense Federal University, Niterói, RJ, Brazil
| |
Collapse
|
49
|
Abstract
Bone quality is determined by a variety of compositional, micro- and ultrastructural properties of the mineralized tissue matrix. In contrast to X-ray-based methods, the interaction of acoustic waves with bone tissue carries information about elastic and structural properties of the tissue. Quantitative ultrasound (QUS) methods represent powerful alternatives to ionizing x-ray based assessment of fracture risk. New in vivo applicable methods permit measurements of fracture-relevant properties, [eg, cortical thickness and stiffness at fragile anatomic regions (eg, the distal radius and the proximal femur)]. Experimentally, resonance ultrasound spectroscopy and acoustic microscopy can be used to assess the mesoscale stiffness tensor and elastic maps of the tissue matrix at microscale resolution, respectively. QUS methods, thus, currently represent the most promising approach for noninvasive assessment of components of fragility beyond bone mass and bone microstructure providing prospects for improved assessment of fracture risk.
Collapse
Affiliation(s)
- Kay Raum
- Julius Wolff Institute & Berlin-Brandenburg School for Regenerative Therapies, Augustenburger Platz 1, 13353, Berlin, Germany,
| | | | | | | | | | | |
Collapse
|
50
|
Shahar R, Dean MN. The enigmas of bone without osteocytes. BONEKEY REPORTS 2013; 2:343. [PMID: 24422081 DOI: 10.1038/bonekey.2013.77] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/22/2013] [Indexed: 12/11/2022]
Abstract
One of the hallmarks of tetrapod bone is the presence of numerous cells (osteocytes) within the matrix. Osteocytes are vital components of tetrapod bone, orchestrating the processes of bone building, reshaping and repairing (modeling and remodeling), and probably also participating in calcium-phosphorus homeostasis via both the local process of osteocytic osteolysis, and systemic effect on the kidneys. Given these critical roles of osteocytes, it is thought-provoking that the entire skeleton of many fishes consists of bone material that does not contain osteocytes. This raises the intriguing question of how the skeleton of these animals accomplishes the various essential functions attributed to osteocytes in other vertebrates, and raises the possibility that in acellular bone some of these functions are either accomplished by non-osteocytic routes or not necessary at all. In this review, we outline evidence for and against the fact that primary functions normally ascribed to osteocytes, such as mechanosensation, regulation of osteoblast/clast activity and mineral metabolism, also occur in fish bone devoid of these cells, and therefore must be carried out through alternative and perhaps ancient pathways. To enable meaningful comparisons with mammalian bone, we suggest thorough, phylogenetic examinations of regulatory pathways, studies of structure and mechanical properties and surveys of the presence/absence of bone cells in fishes. Insights gained into the micro-/nanolevel structure and architecture of fish bone, its mechanical properties and its physiology in health and disease will contribute to the discipline of fish skeletal biology, but may also help answer questions of basic bone biology.
Collapse
Affiliation(s)
- Ron Shahar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Israel
| | - Mason N Dean
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces , Potsdam, Germany
| |
Collapse
|