1
|
Qin Q, Zhang H, Li X, Ruan H, Liu S, Chen Y, Xu Z, Wang Y, Yan X, Jiang X. MiR-129-5p alleviates depression and anxiety by increasing astrocyte ATP production partly through targeting deubiquitinase Mysm1. PLoS One 2025; 20:e0322715. [PMID: 40344568 PMCID: PMC12064192 DOI: 10.1371/journal.pone.0322715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/26/2025] [Indexed: 05/11/2025] Open
Abstract
Major depressive disorder (MDD) is a major global mental concern that severely affects quality of life, yet current pharmacological treatments remain limited in their effectiveness. Long-term chronic stress has been shown to increase the incidence of depression and anxiety. Micro RNAs (miRNAs) have been revealed to participate in the pathological process of depression and represent promising therapeutic targets. In this study, we found that microRNA-129-5p (miR-129-5p) was significantly decreased in the brains of depressive mice. Overexpression of miR-129-5p in the hippocampus effectively alleviated depressive-like behaviors and reduced the activation of microglial cells and astrocytes. In addition, ATP levels in depressive mice were significantly increased following miR-129-5p overexpression. The antidepressant effects of miR-129-5p were reversed when ATP function was blocked with the non-specific P2 receptor antagonist suramin. In vitro experiments revealed that miR-129-5p overexpression enhanced ATP production in astrocytes. Furthermore, using a dual-luciferase reporter assay, we found that miR-129-5p directly targeted Mysm1. When overexpressed in astrocytes, miR-129-5p significantly suppressed Mysm1 expression, promoted phosphorylation of p53 and AMPK, and enhanced the expression of PGC1α, factors previously associated with ATP production. Our findings highlight the crucial role of miR-129-5p in regulating depression, suggesting that miR-129-5p overexpression may serve as an effective strategy for antidepressant treatment.
Collapse
Affiliation(s)
- Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
| | - Xiaotong Li
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
| | - Huaqiang Ruan
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
| | - Shuirong Liu
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
| | - Yue Chen
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
| | - Zhenhua Xu
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
| | - Yan Wang
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
- Anhui Medical University, Hefei, Anhui, China
- Jishou University, Jishou, Hunan, China
| |
Collapse
|
2
|
Qin Q, Ruan H, Zhang H, Xu Z, Pan W, Yan X, Jiang X. Deubiquitinase MYSM1: An Important Tissue Development and Function Regulator. Int J Mol Sci 2024; 25:13051. [PMID: 39684760 DOI: 10.3390/ijms252313051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
MYSM1, a deubiquitinating enzyme, plays a pivotal role in diverse biological processes. Both MYSM1 knockout mice and patients with Mysm1 gene mutations exhibit developmental abnormalities across multiple tissues and organs. Serving as a crucial regulator, MYSM1 influences stem cell function, immune responses, and the pathogenesis of diverse diseases. This review comprehensively details MYSM1's deubiquitinating activities in both the nucleus and cytoplasmic compartments, its effects on stem cell proliferation, differentiation, and immune cell function, and its involvement in cancer, aging, and depression. The high sequence homology between murine and human MYSM1, along with similar phenotypes observed in Mysm1-deficient models, provides valuable insights into the etiology of human Mysm1-deficiency syndromes. This review aims to offer a foundation for future comprehensive research on MYSM1.
Collapse
Affiliation(s)
- Qiaozhen Qin
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Huaqiang Ruan
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhenhua Xu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Wenting Pan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
3
|
Mousa M, Liang Y, Tung LT, Wang H, Krawczyk C, Langlais D, Nijnik A. Chromatin-binding deubiquitinase MYSM1 acts in haematopoietic progenitors to control dendritic cell development and to program dendritic cell responses to microbial stimulation. Immunology 2024; 172:109-126. [PMID: 38316548 DOI: 10.1111/imm.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Dendritic cells (DCs) are the most significant antigen presenting cells of the immune system, critical for the activation of naïve T cells. The pathways controlling DC development, maturation, and effector function therefore require precise regulation to allow for an effective induction of adaptive immune response. MYSM1 is a chromatin binding deubiquitinase (DUB) and an activator of gene expression via its catalytic activity for monoubiquitinated histone H2A (H2A-K119ub), which is a highly abundant repressive epigenetic mark. MYSM1 is an important regulator of haematopoiesis in mouse and human, and a systemic constitutive loss of Mysm1 in mice results in a depletion of many haematopoietic progenitors, including DC precursors, with the downstream loss of most DC lineage cells. However, the roles of MYSM1 at the later checkpoints in DC development, maturation, activation, and effector function at present remain unknown. In the current work, using a range of novel mouse models (Mysm1flCreERT2, Mysm1flCD11c-cre, Mysm1DN), we further the understanding of MYSM1 functions in the DC lineage: assessing the requirement for MYSM1 in DC development independently of other complex developmental phenotypes, exploring its role at the later checkpoints in DC maintenance and activation in response to microbial stimulation, and testing the requirement for the DUB catalytic activity of MYSM1 in these processes. Surprisingly, we demonstrate that MYSM1 expression and catalytic activity in DCs are dispensable for the maintenance of DC numbers in vivo or for DC activation in response to microbial stimulation. In contrast, MYSM1 acts via its DUB catalytic activity specifically in haematopoietic progenitors to allow normal DC lineage development, and its loss results not only in a severe DC depletion but also in the production of functionally altered DCs, with a dysregulation of many housekeeping transcriptional programs and significantly altered responses to microbial stimulation.
Collapse
Affiliation(s)
- Marwah Mousa
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Lin Tze Tung
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Connie Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, Michigan, United States
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University Genome Centre, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Yu H, Yang W, Cao M, Lei Q, Yuan R, Xu H, Cui Y, Chen X, Su X, Zhuo H, Lin L. Mechanism study of ubiquitination in T cell development and autoimmune disease. Front Immunol 2024; 15:1359933. [PMID: 38562929 PMCID: PMC10982411 DOI: 10.3389/fimmu.2024.1359933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Wenyong Yang
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Min Cao
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Qingqiang Lei
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Renbin Yuan
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - He Xu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuqian Cui
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xuerui Chen
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xu Su
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hui Zhuo
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
5
|
Xu Z, Qin Q, Wang Y, Zhang H, Liu S, Li X, Chen Y, Wang Y, Ruan H, He W, Zhang T, Yan X, Wang C, Xu D, Jiang X. Deubiquitinase Mysm1 regulates neural stem cell proliferation and differentiation by controlling Id4 expression. Cell Death Dis 2024; 15:129. [PMID: 38342917 PMCID: PMC10859383 DOI: 10.1038/s41419-024-06530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Neural stem cells (NSCs) are critical for brain development and maintenance of neurogenesis. However, the molecular mechanisms that regulate NSC proliferation and differentiation remain unclear. Mysm1 is a deubiquitinase and is essential for the self-renewal and differentiation of several stem cells. It is unknown whether Mysm1 plays an important role in NSCs. Here, we found that Mysm1 was expressed in NSCs and its expression was increased with age in mice. Mice with Mysm1 knockdown by crossing Mysm1 floxed mice with Nestin-Cre mice exhibited abnormal brain development with microcephaly. Mysm1 deletion promoted NSC proliferation and apoptosis, resulting in depletion of the stem cell pool. In addition, Mysm1-deficient NSCs skewed toward neurogenesis instead of astrogliogenesis. Mechanistic investigations with RNA sequencing and genome-wide CUT&Tag analysis revealed that Mysm1 epigenetically regulated Id4 transcription by regulating histone modification at the promoter region. After rescuing the expression of Id4, the hyperproliferation and imbalance differentiation of Mysm1-deficient NSCs was reversed. Additionally, knockdown Mysm1 in aged mice could promote NSC proliferation. Collectively, the present study identified a new factor Mysm1 which is essential for NSC homeostasis and Mysm1-Id4 axis may be an ideal target for proper NSC proliferation and differentiation.
Collapse
Affiliation(s)
- Zhenhua Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Yan Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
- Anhui Medical University, Hefei, 230032, Anhui, China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Shuirong Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Xiaotong Li
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yue Chen
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yuqing Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Huaqiang Ruan
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Wenyan He
- China National Clinical Research Center for Neurological Diseases, Jing-Jin Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Tao Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China.
- Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
6
|
Qiu Z, Cai W, Liu Q, Liu K, Liu C, Yang H, Huang R, Li P, Zhao Q. Unravelling novel and pleiotropic genes for cannon bone circumference and bone mineral density in Yorkshire pigs. J Anim Sci 2024; 102:skae036. [PMID: 38330300 PMCID: PMC10914368 DOI: 10.1093/jas/skae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
Leg weakness is a prevalent health condition in pig farms. The augmentation of cannon bone circumference and bone mineral density can effectively improve limb strength in pigs and alleviate leg weakness. This study measured forelimb cannon bone circumference (fCBC) and rear limb cannon bone circumference (rCBC) using an inelastic tapeline and rear limb metatarsal area bone mineral density (raBMD) using a dual-energy X-ray absorptiometry bone density scanner. The samples of Yorkshire castrated boars were genotyped using a 50K single-nucleotide polymorphism (SNP) array. The SNP-chip data were imputed to the level of whole-genome sequencing data (iWGS). This study used iWGS data to perform genome-wide association studies and identified novel significant SNPs associated with fCBC on SSC6, SSC12, and SSC13, rCBC on SSC12 and SSC14, and raBMD on SSC7. Based on the high phenotypic and genetic correlations between CBC and raBMD, multi-trait meta-analysis was performed to identify pleiotropic SNPs. A significant potential pleiotropic quantitative trait locus (QTL) regulating both CBC and raBMD was identified on SSC15. Bayes fine mapping was used to establish the confidence intervals for these novel QTLs with the most refined confidence interval narrowed down to 56 kb (15.11 to 15.17 Mb on SSC12 for fCBC). Furthermore, the confidence interval for the potential pleiotropic QTL on SSC15 in the meta-analysis was narrowed down to 7.45 kb (137.55 to137.56 Mb on SSC15). Based on the biological functions of genes, the following genes were identified as novel regulatory candidates for different phenotypes: DDX42, MYSM1, FTSJ3, and MECOM for fCBC; SMURF2, and STC1 for rCBC; RGMA for raBMD. Additionally, RAMP1, which was determined to be located 23.68 kb upstream of the confidence interval of the QTL on SSC15 in the meta-analysis, was identified as a potential pleiotropic candidate gene regulating both CBC and raBMD. These findings offered valuable insights for identifying pathogenic genes and elucidating the genetic mechanisms underlying CBC and BMD.
Collapse
Affiliation(s)
- Zijian Qiu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Cai
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiyue Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenxi Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Huilong Yang
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruihua Huang
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - Pinghua Li
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - Qingbo Zhao
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Liang Y, Bhatt G, Tung LT, Wang H, Kim JE, Mousa M, Plackoska V, Illes K, Georges AA, Gros P, Henneman L, Huijbers IJ, Nagar B, Nijnik A. Deubiquitinase catalytic activity of MYSM1 is essential in vivo for hematopoiesis and immune cell development. Sci Rep 2023; 13:338. [PMID: 36611064 PMCID: PMC9825392 DOI: 10.1038/s41598-023-27486-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Myb-like SWIRM and MPN domains 1 (MYSM1) is a chromatin binding protein with deubiquitinase (DUB) catalytic activity. Rare MYSM1 mutations in human patients result in an inherited bone marrow failure syndrome, highlighting the biomedical significance of MYSM1 in the hematopoietic system. We and others characterized Mysm1-knockout mice as a model of this disorder and established that MYSM1 regulates hematopoietic function and leukocyte development in such models through different mechanisms. It is, however, unknown whether the DUB catalytic activity of MYSM1 is universally required for its many functions and for the maintenance of hematopoiesis in vivo. To test this, here we generated a new mouse strain carrying a Mysm1D660N point mutation (Mysm1DN) and demonstrated that the mutation renders MYSM1 protein catalytically inactive. We characterized Mysm1DN/DN and Mysm1fl/DN CreERT2 mice, against appropriate controls, for constitutive and inducible loss of MYSM1 catalytic function. We report a profound similarity in the developmental, hematopoietic, and immune phenotypes resulting from the loss of MYSM1 catalytic function and the full loss of MYSM1 protein. Overall, our work for the first time establishes the critical role of MYSM1 DUB catalytic activity in vivo in hematopoiesis, leukocyte development, and other aspects of mammalian physiology.
Collapse
Affiliation(s)
- Yue Liang
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1 Canada ,grid.14709.3b0000 0004 1936 8649McGill University Research Centre on Complex Traits, McGill University, Montreal, QC Canada
| | - Garvit Bhatt
- grid.14709.3b0000 0004 1936 8649Department of Pharmacology, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montreal, QC Canada
| | - Lin Tze Tung
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1 Canada ,grid.14709.3b0000 0004 1936 8649McGill University Research Centre on Complex Traits, McGill University, Montreal, QC Canada
| | - HanChen Wang
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1 Canada ,grid.14709.3b0000 0004 1936 8649McGill University Research Centre on Complex Traits, McGill University, Montreal, QC Canada
| | - Joo Eun Kim
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1 Canada ,grid.14709.3b0000 0004 1936 8649McGill University Research Centre on Complex Traits, McGill University, Montreal, QC Canada
| | - Marwah Mousa
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1 Canada ,grid.14709.3b0000 0004 1936 8649McGill University Research Centre on Complex Traits, McGill University, Montreal, QC Canada
| | - Viktoria Plackoska
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1 Canada ,grid.14709.3b0000 0004 1936 8649McGill University Research Centre on Complex Traits, McGill University, Montreal, QC Canada
| | - Katalin Illes
- grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montreal, QC Canada
| | - Anna A. Georges
- grid.14709.3b0000 0004 1936 8649McGill University Research Centre on Complex Traits, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, Montreal, QC Canada
| | - Philippe Gros
- grid.14709.3b0000 0004 1936 8649McGill University Research Centre on Complex Traits, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, Montreal, QC Canada
| | - Linda Henneman
- grid.430814.a0000 0001 0674 1393Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Ziekenhuis, Amsterdam, The Netherlands
| | - Ivo J. Huijbers
- grid.430814.a0000 0001 0674 1393Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Ziekenhuis, Amsterdam, The Netherlands
| | - Bhushan Nagar
- grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montreal, QC Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada. .,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Zhang H, Liu S, Qin Q, Xu Z, Qu Y, Wang Y, Wang J, Du Z, Yuan S, Hong S, Chang Z, He W, Yan X, Lang Y, Tang R, Wang Y, Zhu L, Jiang X. Genetic and Pharmacological Inhibition of Astrocytic Mysm1 Alleviates Depressive-Like Disorders by Promoting ATP Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204463. [PMID: 36414403 PMCID: PMC9811473 DOI: 10.1002/advs.202204463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/16/2022] [Indexed: 05/03/2023]
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. A comprehensive understanding of the molecular mechanisms of this disorder is critical for the therapy of MDD. In this study, it is observed that deubiquitinase Mysm1 is induced in the brain tissues from patients with major depression and from mice with depressive behaviors. The genetic silencing of astrocytic Mysm1 induced an antidepressant-like effect and alleviated the osteoporosis of depressive mice. Furthermore, it is found that Mysm1 knockdown led to increased ATP production and the activation of p53 and AMP-activated protein kinase (AMPK). Pifithrin α (PFT α) and Compound C, antagonists of p53 and AMPK, respectively, repressed ATP production and reversed the antidepressant effect of Mysm1 knockdown. Moreover, the pharmacological inhibition of astrocytic Mysm1 by aspirin relieved depressive-like behaviors in mice. The study reveals, for the first time, the important function of Mysm1 in the brain, highlighting astrocytic Mysm1 as a potential risk factor for depression and as a valuable target for drug discovery to treat depression.
Collapse
Affiliation(s)
- Heyang Zhang
- Beijing Institute of Basic Medical Sciences27 Taiping Road, Haidian DistrictBeijing100850China
| | - Shuirong Liu
- Beijing Institute of Basic Medical Sciences27 Taiping Road, Haidian DistrictBeijing100850China
| | - Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences27 Taiping Road, Haidian DistrictBeijing100850China
- Faculty of Environmental and Life SciencesBeijing University of TechnologyBeijing100124China
| | - Zhenhua Xu
- Beijing Institute of Basic Medical Sciences27 Taiping Road, Haidian DistrictBeijing100850China
| | - Yannv Qu
- Department of GeriatricsPeking University Shenzhen HospitalShenzhenGuangzhou518036China
| | - Yadi Wang
- Beijing Institute of Basic Medical Sciences27 Taiping Road, Haidian DistrictBeijing100850China
| | - Jianing Wang
- Beijing Institute of Basic Medical Sciences27 Taiping Road, Haidian DistrictBeijing100850China
| | - Zhangzhen Du
- Beijing Institute of Basic Medical Sciences27 Taiping Road, Haidian DistrictBeijing100850China
| | - Shanshan Yuan
- Beijing Institute of Basic Medical Sciences27 Taiping Road, Haidian DistrictBeijing100850China
| | - Shunming Hong
- Beijing Institute of Basic Medical Sciences27 Taiping Road, Haidian DistrictBeijing100850China
| | - Zhilin Chang
- China National Clinical Research Center for Neurological DiseasesJing‐Jin Center for NeuroinflammationBeijing Tiantan HospitalCapital Medical UniversityBeijing100050China
| | - Wenyan He
- China National Clinical Research Center for Neurological DiseasesJing‐Jin Center for NeuroinflammationBeijing Tiantan HospitalCapital Medical UniversityBeijing100050China
| | - Xinlong Yan
- Faculty of Environmental and Life SciencesBeijing University of TechnologyBeijing100124China
| | - Yiran Lang
- Beijing Innovation Center for Intelligent Robots and SystemsBeijing Institute of TechnologyBeijing100081China
| | - Rongyu Tang
- Beijing Innovation Center for Intelligent Robots and SystemsBeijing Institute of TechnologyBeijing100081China
| | - Yan Wang
- Beijing Institute of Basic Medical Sciences27 Taiping Road, Haidian DistrictBeijing100850China
- Anhui Medical UniversityHefeiAnhui230032China
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences27 Taiping Road, Haidian DistrictBeijing100850China
- Anhui Medical UniversityHefeiAnhui230032China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantong226019China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences27 Taiping Road, Haidian DistrictBeijing100850China
- Anhui Medical UniversityHefeiAnhui230032China
| |
Collapse
|
9
|
Zhong T, Lei K, Lin X, Xie Z, Luo S, Zhou Z, Zhao B, Li X. Protein ubiquitination in T cell development. Front Immunol 2022; 13:941962. [PMID: 35990660 PMCID: PMC9386135 DOI: 10.3389/fimmu.2022.941962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
As an important form of posttranslational modification, protein ubiquitination regulates a wide variety of biological processes, including different aspects of T cell development and differentiation. During T cell development, thymic seeding progenitor cells (TSPs) in the thymus undergo multistep maturation programs and checkpoints, which are critical to build a functional and tolerant immune system. Currently, a tremendous amount of research has focused on the transcriptional regulation of thymocyte development. However, in the past few years, compelling evidence has revealed that the ubiquitination system also plays a crucial role in the regulation of thymocyte developmental programs. In this review, we summarize recent findings on the molecular mechanisms and cellular pathways that regulate thymocyte ubiquitination and discuss the roles of E3 ligases and deubiquitinating enzymes (DUBs) involved in these processes. Understanding how T cell development is regulated by ubiquitination and deubiquitination will not only enhance our understanding of cell fate determination via gene regulatory networks but also provide potential novel therapeutic strategies for treating autoimmune diseases and cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Zhao
- *Correspondence: Bin Zhao, ; Xia Li,
| | - Xia Li
- *Correspondence: Bin Zhao, ; Xia Li,
| |
Collapse
|
10
|
Chiara VD, Daxinger L, Staal FJT. The Route of Early T Cell Development: Crosstalk between Epigenetic and Transcription Factors. Cells 2021; 10:1074. [PMID: 33946533 PMCID: PMC8147249 DOI: 10.3390/cells10051074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic multipotent progenitors seed the thymus and then follow consecutive developmental stages until the formation of mature T cells. During this process, phenotypic changes of T cells entail stage-specific transcriptional programs that underlie the dynamic progression towards mature lymphocytes. Lineage-specific transcription factors are key drivers of T cell specification and act in conjunction with epigenetic regulators that have also been elucidated as crucial players in the establishment of regulatory networks necessary for proper T cell development. In this review, we summarize the activity of transcription factors and epigenetic regulators that together orchestrate the intricacies of early T cell development with a focus on regulation of T cell lineage commitment.
Collapse
Affiliation(s)
- Veronica Della Chiara
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
11
|
Mark KG, Rape M. Ubiquitin-dependent regulation of transcription in development and disease. EMBO Rep 2021; 22:e51078. [PMID: 33779035 DOI: 10.15252/embr.202051078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/29/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Transcription is an elaborate process that is required to establish and maintain the identity of the more than two hundred cell types of a metazoan organism. Strict regulation of gene expression is therefore vital for tissue formation and homeostasis. An accumulating body of work found that ubiquitylation of histones, transcription factors, or RNA polymerase II is crucial for ensuring that transcription occurs at the right time and place during development. Here, we will review principles of ubiquitin-dependent control of gene expression and discuss how breakdown of these regulatory circuits leads to a wide array of human diseases.
Collapse
Affiliation(s)
- Kevin G Mark
- Department of Molecular Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Michael Rape
- Department of Molecular Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
12
|
Huang J, Zhan XY, Zhao AL, Wu B, Yang Y, Tan P, Wan LJ, Lu YH. [A novel compound heterozygous mutation in MYSM1 gene in a 1-month-old girl: a bone marrow failure syndrome 4 family survey and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:129-134. [PMID: 33858043 PMCID: PMC8071664 DOI: 10.3760/cma.j.issn.0253-2727.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 11/18/2022]
Abstract
Objective: To report the clinical manifestations and total exon detection results of one case of MYSM1 gene complex heterozygosity mutation of bone marrow failure syndrome 4 and the results of total exon detection of her family to provide a case phenotype for the early diagnosis of bone marrow failure syndrome 4. Methods: A 1-month-old girl with severe anemia was sequenced with trio-WES. Similarly, the family was also sequenced with tribe-WES to confirm the molecular diagnosis. BWA, GATK, and other software were used for annotation analysis of sequencing results. After polymerase chain reaction, Sanger sequencing was performed by ABI3730 sequencer to verify the target sequence. Moreover, the verification results were obtained by the sequence analysis software. The clinical diagnosis of this girl was reported and the relevant pieces of literature were reviewed. Results: The girl presented with pancytopenia, polydactylism, nonspecific white matter changes, and cysts. However, CD3(-)CD19(+) B decreased. The child was identified with MYSM1 complex heterozygous mutation by whole-exome sequencing, NM_001085487.2:c.1607_c.1611delAAGAG and c.1432C>T, which was respectively inherited from his parents. Genealogy verification confirmed that the c.1432C>T mutation carried by the father was from the grandfather (father's father) , whereas the c.1607_c.1611delAAGAG mutation carried by the mother was from the grandfather (mother's father) , whereas the grandmothers, aunts, and uncle did not carry the mutation. The child was diagnosed with BMFS4 combined with clinical phenotypic and molecular genetic findings. Conclusion: This case provides a case phenotype for the early diagnosis of BMFS4 and extends the pathogenicity variation and phenotype spectrum of the MYSM1 gene. The newly discovered pathogenic variant of MYSM1 c. 1607_c.1611delAAGAG has not been reported at home or abroad.
Collapse
Affiliation(s)
- J Huang
- Department of Hematology, Maternal and Child Hospital of Tongji Medical College of HUST, Maternal and Child Hospital of Hubei Province, Wuhan 430030, China
| | - X Y Zhan
- Department of Hematology, Maternal and Child Hospital of Tongji Medical College of HUST, Maternal and Child Hospital of Hubei Province, Wuhan 430030, China
| | - A L Zhao
- Department of Hematology, Maternal and Child Hospital of Tongji Medical College of HUST, Maternal and Child Hospital of Hubei Province, Wuhan 430030, China
| | - B Wu
- Department of Hematology, Maternal and Child Hospital of Tongji Medical College of HUST, Maternal and Child Hospital of Hubei Province, Wuhan 430030, China
| | - Y Yang
- Department of Hematology, Maternal and Child Hospital of Tongji Medical College of HUST, Maternal and Child Hospital of Hubei Province, Wuhan 430030, China
| | - P Tan
- Department of Hematology, Maternal and Child Hospital of Tongji Medical College of HUST, Maternal and Child Hospital of Hubei Province, Wuhan 430030, China
| | - L J Wan
- Department of Hematology, Maternal and Child Hospital of Tongji Medical College of HUST, Maternal and Child Hospital of Hubei Province, Wuhan 430030, China
| | - Y H Lu
- Department of Hematology, Maternal and Child Hospital of Tongji Medical College of HUST, Maternal and Child Hospital of Hubei Province, Wuhan 430030, China
| |
Collapse
|
13
|
Tian M, Huang Y, Song Y, Li W, Zhao P, Liu W, Wu K, Wu J. MYSM1 Suppresses Cellular Senescence and the Aging Process to Prolong Lifespan. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001950. [PMID: 33240758 PMCID: PMC7675055 DOI: 10.1002/advs.202001950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/31/2020] [Indexed: 05/19/2023]
Abstract
Aging is a universal feature of life that is a major focus of scientific research and a risk factor in many diseases. A comprehensive understanding of the cellular and molecular mechanisms of aging are critical to the prevention of diseases associated with the aging process. Here, it is shown that MYSM1 is a key suppressor of aging and aging-related pathologies. MYSM1 functionally represses cellular senescence and the aging process in human and mice primary cells and in mice organs. MYSM1 mechanistically attenuates the aging process by promoting DNA repair processes. Remarkably, MYSM1 deficiency facilitates the aging process and reduces lifespan, whereas MYSM1 over-expression attenuates the aging process and increases lifespan in mice. The functional role of MYSM1 is demonstrated in suppressing the aging process and prolonging lifespan. MYSM1 is a key suppressor of aging and may act as a potential agent for the prevention of aging and aging-associated diseases.
Collapse
Affiliation(s)
- Mingfu Tian
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Yuqing Huang
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Yunting Song
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Wen Li
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Peiyi Zhao
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Weiyong Liu
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Kailang Wu
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Jianguo Wu
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
- Guangdong Provincial Key Laboratory of VirologyInstitute of Medical MicrobiologyJinan UniversityGuangzhou510632China
| |
Collapse
|
14
|
Tian M, Liu W, Zhang Q, Huang Y, Li W, Wang W, Zhao P, Huang S, Song Y, Shereen MA, Qin M, Liu Y, Wu K, Wu J. MYSM1 Represses Innate Immunity and Autoimmunity through Suppressing the cGAS-STING Pathway. Cell Rep 2020; 33:108297. [PMID: 33086059 DOI: 10.1016/j.celrep.2020.108297] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/25/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
The immune system is not only required for preventing threats exerted by pathogens but also essential for developing immune tolerance to avoid tissue damage. This study identifies a distinct mechanism by which MYSM1 suppresses innate immunity and autoimmunity. The expression of MYSM1 is induced upon DNA virus infection and by intracellular DNA stimulation. MYSM1 subsequently interacts with STING and cleaves STING K63-linked ubiquitination to suppress cGAS-STING signaling. Notably, Mysm1-deficient mice exhibit a hyper-inflammatory response, acute tissue damage, and high mortality upon virus infection. Moreover, in the PBMCs of patients with systemic lupus erythematosus (SLE), MYSM1 production decreases, while type I interferons and pro-inflammatory cytokine expressions increase. Importantly, MYSM1 treatment represses the production of IFNs and pro-inflammatory cytokines in the PBMCs of SLE patients. Thus, MYSM1 is a critical repressor of innate immunity and autoimmunity and is thus a potential therapeutic agent for infectious, inflammatory, and autoimmune diseases.
Collapse
Affiliation(s)
- Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuqing Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wen Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenbiao Wang
- Guangzhou Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Peiyi Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shanyu Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yunting Song
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengying Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Guangzhou Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
15
|
Belle JI, Wang H, Fiore A, Petrov JC, Lin YH, Feng CH, Nguyen TTM, Tung J, Campeau PM, Behrends U, Brunet T, Leszinski GS, Gros P, Langlais D, Nijnik A. MYSM1 maintains ribosomal protein gene expression in hematopoietic stem cells to prevent hematopoietic dysfunction. JCI Insight 2020; 5:125690. [PMID: 32641579 DOI: 10.1172/jci.insight.125690] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
Ribosomopathies are congenital disorders caused by mutations in the genes encoding ribosomal and other functionally related proteins. They are characterized by anemia, other hematopoietic and developmental abnormalities, and p53 activation. Ribosome assembly requires coordinated expression of many ribosomal protein (RP) genes; however, the regulation of RP gene expression, especially in hematopoietic stem cells (HSCs), remains poorly understood. MYSM1 is a transcriptional regulator essential for HSC function and hematopoiesis. We established that HSC dysfunction in Mysm1 deficiency is driven by p53; however, the mechanisms of p53 activation remained unclear. Here, we describe the transcriptome of Mysm1-deficient mouse HSCs and identify MYSM1 genome-wide DNA binding sites. We establish a direct role for MYSM1 in RP gene expression and show a reduction in protein synthesis in Mysm1-/- HSCs. Loss of p53 in mice fully rescues Mysm1-/- anemia phenotype but not RP gene expression, indicating that RP gene dysregulation is a direct outcome of Mysm1 deficiency and an upstream mediator of Mysm1-/- phenotypes through p53 activation. We characterize a patient with a homozygous nonsense MYSM1 gene variant, and we demonstrate reduced protein synthesis and increased p53 levels in patient hematopoietic cells. Our work provides insights into the specialized mechanisms regulating RP gene expression in HSCs and establishes a common etiology of MYSM1 deficiency and ribosomopathy syndromes.
Collapse
Affiliation(s)
- Jad I Belle
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - HanChen Wang
- Department of Physiology.,McGill University Research Centre on Complex Traits, and.,Department of Human Genetics, McGill University, Quebec, Canada
| | - Amanda Fiore
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Jessica C Petrov
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Yun Hsiao Lin
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Chu-Han Feng
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Thi Tuyet Mai Nguyen
- Centre Hospitalier Universitaire St. Justine Research Center, University of Montreal, Quebec, Canada
| | - Jacky Tung
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Philippe M Campeau
- Centre Hospitalier Universitaire St. Justine Research Center, University of Montreal, Quebec, Canada
| | | | - Theresa Brunet
- Institute of Human Genetics, Technische Universität München (TUM), Munich, Germany
| | - Gloria Sarah Leszinski
- Institute of Human Genetics, Technische Universität München (TUM), Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Philippe Gros
- McGill University Research Centre on Complex Traits, and.,Department of Biochemistry and.,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Quebec, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, and.,Department of Human Genetics, McGill University, Quebec, Canada.,McGill University Genome Centre, Montreal, Quebec, Canada
| | - Anastasia Nijnik
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| |
Collapse
|
16
|
Interaction of Deubiquitinase 2A-DUB/MYSM1 with DNA Repair and Replication Factors. Int J Mol Sci 2020; 21:ijms21113762. [PMID: 32466590 PMCID: PMC7312997 DOI: 10.3390/ijms21113762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023] Open
Abstract
The deubiquitination of histone H2A on lysine 119 by 2A-DUB/MYSM1, BAP1, USP16, and other enzymes is required for key cellular processes, including transcriptional activation, apoptosis, and cell cycle control, during normal hematopoiesis and tissue development, and in tumor cells. Based on our finding that MYSM1 colocalizes with γH2AX foci in human peripheral blood mononuclear cells, leukemia cells, and melanoma cells upon induction of DNA double-strand breaks with topoisomerase inhibitor etoposide, we applied a mass spectrometry-based proteomics approach to identify novel 2A-DUB/MYSM1 interaction partners in DNA-damage responses. Differential display of MYSM1 binding proteins significantly enriched after exposure of 293T cells to etoposide revealed an interacting network of proteins involved in DNA damage and replication, including factors associated with poor melanoma outcome. In the context of increased DNA-damage in a variety of cell types in Mysm1-deficient mice, in bone marrow cells upon aging and in UV-exposed Mysm1-deficient skin, our current mass spectrometry data provide additional evidence for an interaction between MYSM1 and key DNA replication and repair factors, and indicate a potential function of 2A-DUB/MYSM1 in DNA repair processes.
Collapse
|
17
|
Fiore A, Liang Y, Lin YH, Tung J, Wang H, Langlais D, Nijnik A. Deubiquitinase MYSM1 in the Hematopoietic System and beyond: A Current Review. Int J Mol Sci 2020; 21:ijms21083007. [PMID: 32344625 PMCID: PMC7216186 DOI: 10.3390/ijms21083007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/21/2023] Open
Abstract
MYSM1 has emerged as an important regulator of hematopoietic stem cell function, blood cell production, immune response, and other aspects of mammalian physiology. It is a metalloprotease family protein with deubiquitinase catalytic activity, as well as SANT and SWIRM domains. MYSM1 normally localizes to the nucleus, where it can interact with chromatin and regulate gene expression, through deubiquitination of histone H2A and non-catalytic contacts with other transcriptional regulators. A cytosolic form of MYSM1 protein was also recently described and demonstrated to regulate signal transduction pathways of innate immunity, by promoting the deubiquitination of TRAF3, TRAF6, and RIP2. In this work we review the current knowledge on the molecular mechanisms of action of MYSM1 protein in transcriptional regulation, signal transduction, and potentially other cellular processes. The functions of MYSM1 in different cell types and aspects of mammalian physiology are also reviewed, highlighting the key checkpoints in hematopoiesis, immunity, and beyond regulated by MYSM1. Importantly, mutations in MYSM1 in human were recently linked to a rare hereditary disorder characterized by leukopenia, anemia, and other hematopoietic and developmental abnormalities. Our growing knowledge of MYSM1 functions and mechanisms of actions sheds important insights into its role in mammalian physiology and the etiology of the MYSM1-deficiency disorder in human.
Collapse
Affiliation(s)
- Amanda Fiore
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
| | - Yun Hsiao Lin
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
| | - Jacky Tung
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
- Department of Human Genetics, McGill University, Montreal, QC 3640, Canada
| | - David Langlais
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
- Department of Human Genetics, McGill University, Montreal, QC 3640, Canada
- McGill University Genome Centre, Montreal, QC 740, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
- Correspondence: ; Tel.: +1-514-398-5567
| |
Collapse
|
18
|
Abstract
T cell development involves stepwise progression through defined stages that give rise to multiple T cell subtypes, and this is accompanied by the establishment of stage-specific gene expression. Changes in chromatin accessibility and chromatin modifications accompany changes in gene expression during T cell development. Chromatin-modifying enzymes that add or reverse covalent modifications to DNA and histones have a critical role in the dynamic regulation of gene expression throughout T cell development. As each chromatin-modifying enzyme has multiple family members that are typically all coexpressed during T cell development, their function is sometimes revealed only when two related enzymes are concurrently deleted. This work has also revealed that the biological effects of these enzymes often involve regulation of a limited set of targets. The growing diversity in the types and sites of modification, as well as the potential for a single enzyme to catalyze multiple modifications, is also highlighted.
Collapse
Affiliation(s)
- Michael J Shapiro
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA; ,
| | | |
Collapse
|
19
|
Sun J, Hu X, Gao Y, Tang Q, Zhao Z, Xi W, Yang F, Zhang W, Song Y, Song B, Wang T, Wang H. MYSM1-AR complex-mediated repression of Akt/c-Raf/GSK-3β signaling impedes castration-resistant prostate cancer growth. Aging (Albany NY) 2019; 11:10644-10663. [PMID: 31761786 PMCID: PMC6914400 DOI: 10.18632/aging.102482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022]
Abstract
Epigenetic alterations that lead to dysregulated gene expression in the progression of castration-resistant prostate cancer (CRPC) remain elusive. Here, we investigated the role of histone deubiquitinase MYSM1 in the pathogenesis of prostate cancer (PCa). Tissues and public datasets of PCa were evaluated for MYSM1 levels. We explored the effects of MYSM1 on cell proliferation, senescence and viability both in vitro and in vivo. Integrative database analyses and co-immunoprecipitation assays were performed to elucidate genomic association of MYSM1 and MYSM1-involved biological interaction network in PCa. We observed that MYSM1 were downregulated in CRPC compared to localized prostate tumors. Knockdown of MYSM1 promoted cell proliferation and suppressed senescence of CRPC cells under condition of androgen ablation. MYSM1 downregulation enhanced the tumorigenic ability in nude mice. Integrative bioinformatic analyses of the significantly associated genes with MYSM1 revealed MYSM1-correlated pathways, providing substantial clues as to the role of MYSM1 in PCa. MYSM1 was able to bind to androgen receptor instead of increasing its expression and knockdown of MYSM1 resulted in activation of Akt/c-Raf/GSK-3β signaling. Together, our findings indicate that MYSM1 is pivotal in CRPC pathogenesis and may be established as a potential target for future treatment.
Collapse
Affiliation(s)
- Jinbo Sun
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Xiangnan Hu
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Yongheng Gao
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Qisheng Tang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhining Zhao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China.,Clinical Laboratory, 451 Hospital of Chinese People's Liberation Army, Xi'an, Shaanxi 710054, China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fan Yang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Wei Zhang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Yue Song
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bin Song
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Tao Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - He Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| |
Collapse
|
20
|
Wang YH, Huang XH, Yang YM, He Y, Dong XH, Yang HX, Zhang L, Wang Y, Zhou J, Wang C, Jiang XX. Mysm1 epigenetically regulates the immunomodulatory function of adipose-derived stem cells in part by targeting miR-150. J Cell Mol Med 2019; 23:3737-3746. [PMID: 30895711 PMCID: PMC6484305 DOI: 10.1111/jcmm.14281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/31/2019] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
Adipose‐derived stem cells (ASCs) are highly attractive for cell‐based therapies in tissue repair and regeneration because they have multilineage differentiation capacity and are immunosuppressive. However, the detailed epigenetic mechanisms of their immunoregulatory capacity are not fully defined. In this study, we found that Mysm1 was induced in ASCs treated with inflammatory cytokines. Adipose‐derived stem cells with Mysm1 knockdown exhibited attenuated immunosuppressive capacity, evidenced by less inhibition of T cell proliferation, more pro‐inflammatory factor secretion and less nitric oxide (NO) production in vitro. Mysm1‐deficient ASCs exacerbated inflammatory bowel diseases but inhibited tumour growth in vivo. Mysm1‐deficient ASCs also showed depressed miR‐150 expression. When transduced with Mysm1 overexpression lentivirus, ASCs exhibited enhanced miR‐150 expression. Furthermore, Mysm1‐deficient cells transduced with lentivirus containing miR‐150 mimics produced less pro‐inflammatory factors and more NO. Our study reveals a new role of Mysm1 in regulating the immunomodulatory activities of ASCs by targeting miR‐150. These novel insights into the mechanisms through which ASCs regulate immune reactions may lead to better clinical utility of these cells.
Collapse
Affiliation(s)
- Yu-Han Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Xiao-Hui Huang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China.,Anhui Medical University, Hefei, Anhui, China
| | - Yan-Mei Yang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China.,Department of Stomatology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Youdi He
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiao-Hui Dong
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Hui-Xin Yang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China.,Department of Stomatology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Lei Zhang
- College of Agroforestry Engineering and Planning, Tongren University, Tongren, Guizhou, China
| | - Yan Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Jin Zhou
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Changyong Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Xiao-Xia Jiang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China.,Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
21
|
Zhao X, Huang XH, Dong XH, Wang YH, Yang HX, Wang Y, He Y, Liu S, Zhou J, Wang C, Jiang XX. Deubiquitinase Mysm1 regulates macrophage survival and polarization. Mol Biol Rep 2018; 45:2393-2401. [PMID: 30386973 DOI: 10.1007/s11033-018-4405-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/25/2018] [Indexed: 11/24/2022]
Abstract
Macrophages play pivotal roles in innate and adaptive immune response, tissue homeostasis and cancer development. Their development and heterogeneity are tightly controlled by epigenetic program and transcription factors. Deubiquitinase Mysm1 plays crucial roles in regulating stem cell maintenance and immune cell development. Here we show that Mysm1 expression is up regulated during bone marrow macrophage development. Mysm1 deficient cells exhibit accelerating proliferation with more cells going to S phase and higher cyclin D1, cyclin D2 and c-Myc expression. However, compared to WT counterparts, more cell death is also detected in Mysm1 deficient cells no matter M-CSF deprived or not. In LPS-condition medium, Mysm1-/- macrophages show more pro-inflammatory factors IL-1β, TNFα and iNOS production. In addition, much higher expression of surface marker CD86 is detected in Mysm1-/- macrophages. In vivo tumor model data demonstrate that in contrast to WT macrophages promoting tumor growth, Mysm1-/- macrophages inhibit tumor growth, showing the properties of M1 macrophages. Collectively, these data indicate that Mysm1 is essential for macrophage survival and plays an important role in macrophage polarization and might be a target for cell therapy.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.,Department of Urology, First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Xiao-Hui Huang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Xiao-Hui Dong
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Yu-Han Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.,Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, 305-764, South Korea
| | - Hui-Xin Yang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Yan Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Youdi He
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Shuang Liu
- Department of Urology, First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Jin Zhou
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Changyong Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.
| | - Xiao-Xia Jiang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.
| |
Collapse
|
22
|
Wilms C, Krikki I, Hainzl A, Kilo S, Alupei M, Makrantonaki E, Wagner M, Kroeger CM, Brinker TJ, Gatzka M. 2A-DUB/Mysm1 Regulates Epidermal Development in Part by Suppressing p53-Mediated Programs. Int J Mol Sci 2018; 19:ijms19030687. [PMID: 29495602 PMCID: PMC5877548 DOI: 10.3390/ijms19030687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/18/2018] [Accepted: 02/27/2018] [Indexed: 01/26/2023] Open
Abstract
Development and homeostasis of the epidermis are governed by a complex network of sequence-specific transcription factors and epigenetic modifiers cooperatively regulating the subtle balance of progenitor cell self-renewal and terminal differentiation. To investigate the role of histone H2A deubiquitinase 2A-DUB/Mysm1 in the skin, we systematically analyzed expression, developmental functions, and potential interactions of this epigenetic regulator using Mysm1-deficient mice and skin-derived epidermal cells. Morphologically, skin of newborn and young adult Mysm1-deficient mice was atrophic with reduced thickness and cellularity of epidermis, dermis, and subcutis, in context with altered barrier function. Skin atrophy correlated with reduced proliferation rates in Mysm1-/- epidermis and hair follicles, and increased apoptosis compared with wild-type controls, along with increases in DNA-damage marker γH2AX. In accordance with diminished α6-Integrinhigh+CD34⁺ epidermal stem cells, reduced colony formation of Mysm1-/- epidermal progenitors was detectable in vitro. On the molecular level, we identified p53 as potential mediator of the defective Mysm1-deficient epidermal compartment, resulting in increased pro-apoptotic and anti-proliferative gene expression. In Mysm1-/-p53-/- double-deficient mice, significant recovery of skin atrophy was observed. Functional properties of Mysm1-/- developing epidermis were assessed by quantifying the transepidermal water loss. In summary, this investigation uncovers a role for 2A-DUB/Mysm1 in suppression of p53-mediated inhibitory programs during epidermal development.
Collapse
Affiliation(s)
- Christina Wilms
- Department of Dermatology and Allergic Diseases, University of Ulm, 89081 Ulm, Germany.
| | - Ioanna Krikki
- Department of Dermatology and Allergic Diseases, University of Ulm, 89081 Ulm, Germany.
| | - Adelheid Hainzl
- Department of Dermatology and Allergic Diseases, University of Ulm, 89081 Ulm, Germany.
| | - Sonja Kilo
- Institute and Out-Patient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander University, 91054 Erlangen-Nürnberg, Germany.
| | - Marius Alupei
- Department of Dermatology and Allergic Diseases, University of Ulm, 89081 Ulm, Germany.
| | - Evgenia Makrantonaki
- Department of Dermatology and Allergic Diseases, University of Ulm, 89081 Ulm, Germany.
| | - Maximilian Wagner
- Department of Dermatology and Allergic Diseases, University of Ulm, 89081 Ulm, Germany.
| | - Carsten M Kroeger
- Department of Dermatology and Allergic Diseases, University of Ulm, 89081 Ulm, Germany.
| | - Titus Josef Brinker
- Department of Dermatology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany.
| | - Martina Gatzka
- Department of Dermatology and Allergic Diseases, University of Ulm, 89081 Ulm, Germany.
| |
Collapse
|
23
|
Jiang XX, Liu Y, Li H, Gao Y, Mu R, Guo J, Zhang J, Yang YM, Xiao F, Liu B, Wang C, Shen B, Chen SY, Li Z, Yang G. MYSM1/miR-150/FLT3 inhibits B1a cell proliferation. Oncotarget 2018; 7:68086-68096. [PMID: 27590507 PMCID: PMC5356540 DOI: 10.18632/oncotarget.11738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/25/2016] [Indexed: 01/09/2023] Open
Abstract
The aberrant expansion of B1a cells has been observed in several murine autoimmune disease models; however, the mechanism of such proliferation of B1a cells is still limited. Here, we identify that Myb Like, SWIRM And MPN Domains 1 (MYSM1), a histone H2A deubiquitinase, plays an intrinsic role in the proliferation of B1a cells where MYSM1 deficiency results in the increased proliferation of B1a cells in mice. We demonstrate that MYSM1 recruits c-Myc to the promoter of miR-150 and stimulates the transcription of miR-150. Our further investigation shows that miR-150 decreases FMS-like tyrosine kinase 3 (FLT3) in B1a cells. In agreement with our animal studies, the percentage of FLT3+ B1 cells in Systemic Lupus Erythematosus (SLE) patients is significantly higher than healthy control. Thus, this study uncovers a novel pathway MYSM1/miR-150/FLT3 that inhibits proliferation of B1a, which may be involved in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Xiao-Xia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Hong Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yaping Gao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Rong Mu
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Jing Zhang
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Yan-Mei Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | | | - Bing Liu
- 307-Ivy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Beifen Shen
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhanguo Li
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
24
|
Haffner-Luntzer M, Kovtun A, Fischer V, Prystaz K, Hainzl A, Kroeger CM, Krikki I, Brinker TJ, Ignatius A, Gatzka M. Loss of p53 compensates osteopenia in murine Mysm1 deficiency. FASEB J 2018; 32:1957-1968. [PMID: 29203593 DOI: 10.1096/fj.201700871r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone modifications critically contribute to the epigenetic orchestration of bone homeostasis-in part, by modifying the access of transcription factors to specific genes involved in the osteogenic differentiation process of bone marrow mesenchymal stem cells (MSCs) and osteoblasts. Based on our previous finding that histone H2A deubiquitinase 2A-DUB/Mysm1 interacts with the p53 axis in hematopoiesis and tissue development, we analyzed the molecular basis of the skeletal phenotype of Mysm1-deficient mice and dissected the underlying p53-dependent and -independent mechanisms. Visible morphologic, skeletal deformations of young Mysm1-deficient mice-including a kinked and truncated tail and shortened long bones-were associated with osteopenia of long bones. On the cellular level, Mysm1-deficient primary osteoblasts displayed reduced potential to differentiate into mature osteoblasts, as indicated by decreased expression of osteogenic markers. Reduced osteogenic differentiation capacity of Mysm1-deficient osteoblasts was accompanied by an impaired induction of osteogenic transcription factor Runx2. Osteogenic differentiation of Mysm1-/- MSCs, however, was not compromised in vitro. In line with defective hematopoietic development of Mysm1-deficient mice, Mysm1-/- osteoclasts had reduced resorption activity and were more prone to apoptosis in TUNEL assays. Skeletal alterations and osteopenia of Mysm1-deficient mice were phenotypically completely rescued by simultaneous ablation of p53 in p53-/-Mysm1-/- double-deficient mice-although p53 deficiency did not restore Runx2 expression in Mysm1-/- osteoblasts on the molecular level but, instead, enhanced proliferation and osteogenic differentiation of MSCs. In summary, our results demonstrate novel roles for Mysm1 in osteoblast differentiation and osteoclast formation, resulting in osteopenia in Mysm1-deficient mice that could be abrogated by the loss of p53 from increased osteogenic differentiation of Mysm1-/-p53-/- MSCs.-Haffner-Luntzer, M., Kovtun, A., Fischer, V., Prystaz, K., Hainzl, A., Kroeger, C. M., Krikki, I., Brinker, T. J., Ignatius, A., Gatzka, M. Loss of p53 compensates osteopenia in murine Mysm1 deficiency.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Ulm, Germany.,Trauma Research Centre, University of Ulm, Ulm, Germany
| | - Anna Kovtun
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Ulm, Germany.,Trauma Research Centre, University of Ulm, Ulm, Germany
| | - Verena Fischer
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Ulm, Germany.,Trauma Research Centre, University of Ulm, Ulm, Germany
| | - Katja Prystaz
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Ulm, Germany.,Trauma Research Centre, University of Ulm, Ulm, Germany
| | - Adelheid Hainzl
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Carsten M Kroeger
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Ioanna Krikki
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Titus J Brinker
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.,Department of National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Ulm, Germany.,Trauma Research Centre, University of Ulm, Ulm, Germany
| | - Martina Gatzka
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| |
Collapse
|
25
|
Wilms C, Kroeger CM, Hainzl AV, Banik I, Bruno C, Krikki I, Farsam V, Wlaschek M, Gatzka MV. MYSM1/2A-DUB is an epigenetic regulator in human melanoma and contributes to tumor cell growth. Oncotarget 2017; 8:67287-67299. [PMID: 28978033 PMCID: PMC5620173 DOI: 10.18632/oncotarget.18617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/31/2017] [Indexed: 01/12/2023] Open
Abstract
Histone modifying enzymes, such as histone deacetylases (HDACs) and polycomb repressive complex (PRC) components, have been implicated in regulating tumor growth, epithelial-mesenchymal transition, tumor stem cell maintenance, or repression of tumor suppressor genes - and may be promising targets for combination therapies of melanoma and other cancers. According to recent findings, the histone H2A deubiquitinase 2A-DUB/Mysm1 interacts with the p53-axis in hematopoiesis and tissue differentiation in mice, in part by modulating DNA-damage responses in stem cell and progenitor compartments. Based on the identification of alterations in skin pigmentation and melanocyte specification in Mysm1-deficient mice, we hypothesized that MYSM1 may be involved in melanoma formation. In human melanoma samples, expression of MYSM1 was increased compared with normal skin melanocytes and nevi and co-localized with melanocyte markers such as Melan-A and c-KIT. Similarly, in melanoma cell lines A375 and SK-MEL-28 and in murine skin, expression of the deubiquitinase was detectable at the mRNA and protein level that was inducible by growth factor signals and UVB exposure, respectively. Upon stable silencing of MYSM1 in A375 and SK-MEL-28 melanoma cells by lentivirally-mediated shRNA expression, survival and proliferation were significantly reduced in five MYSM1 shRNA cell lines analyzed compared with control cells. In addition, MYSM1-silenced melanoma cells proliferated less well in softagar assays. In context with our finding that MYSM1 bound to the c-MET promoter region in close vicinity to PAX3 in melanoma cells, our data indicate that MYSM1 is an epigenetic regulator of melanoma growth and potentially promising new target for tumor therapy.
Collapse
Affiliation(s)
- Christina Wilms
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Carsten M Kroeger
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Adelheid V Hainzl
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Ishani Banik
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany.,ETH, 8092 Zurich, Switzerland
| | - Clara Bruno
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany.,Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Ioanna Krikki
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Vida Farsam
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Martina V Gatzka
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
26
|
Jacobsen JA, Woodard J, Mandal M, Clark MR, Bartom ET, Sigvardsson M, Kee BL. EZH2 Regulates the Developmental Timing of Effectors of the Pre-Antigen Receptor Checkpoints. THE JOURNAL OF IMMUNOLOGY 2017; 198:4682-4691. [PMID: 28490575 DOI: 10.4049/jimmunol.1700319] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022]
Abstract
The histone methyltransferase EZH2 is required for B and T cell development; however, the molecular mechanisms underlying this requirement remain elusive. In a murine model of lymphoid-specific EZH2 deficiency we found that EZH2 was required for proper development of adaptive, but not innate, lymphoid cells. In adaptive lymphoid cells EZH2 prevented the premature expression of Cdkn2a and the consequent stabilization of p53, an effector of the pre-Ag receptor checkpoints. Deletion of Cdkn2a in EZH2-deficient lymphocytes prevented p53 stabilization, extended lymphocyte survival, and restored differentiation resulting in the generation of mature B and T lymphocytes. Our results uncover a crucial role for EZH2 in adaptive lymphocytes to control the developmental timing of effectors of the pre-Ag receptor checkpoints.
Collapse
Affiliation(s)
| | - Jennifer Woodard
- Committee on Immunology, The University of Chicago, Chicago, IL 60637
| | - Malay Mandal
- Division of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637
| | - Marcus R Clark
- Committee on Immunology, The University of Chicago, Chicago, IL 60637.,Division of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637
| | | | - Mikael Sigvardsson
- Department of Molecular Hematology, Lund University, 22184 Lund, Sweden; and
| | - Barbara L Kee
- Committee on Immunology, The University of Chicago, Chicago, IL 60637; .,Department of Pathology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
27
|
Petrov JC, Nijnik A. Mysm1 expression in the bone marrow niche is not essential for hematopoietic maintenance. Exp Hematol 2017; 47:76-82.e3. [DOI: 10.1016/j.exphem.2016.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 10/20/2022]
|
28
|
Förster M, Boora RK, Petrov JC, Fodil N, Albanese I, Kim J, Gros P, Nijnik A. A role for the histone H2A deubiquitinase MYSM1 in maintenance of CD8 + T cells. Immunology 2017; 151:110-121. [PMID: 28066899 DOI: 10.1111/imm.12710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
Several previous studies outlined the importance of the histone H2A deubiquitinase MYSM1 in the regulation of stem cell quiescence and haematopoiesis. In this study we investigated the role of MYSM1 in T-cell development. Using mouse models that allow conditional Mysm1 ablation at late stages of thymic development, we found that MYSM1 is intricately involved in the maintenance, activation and survival of CD8+ T cells. Mysm1 ablation resulted in a twofold reduction in CD8+ T-cell numbers, and also led to a hyperactivated CD8+ T-cell state accompanied by impaired proliferation and increased pro-inflammatory cytokine production after ex vivo stimulation. These phenotypes coincided with an increased apoptosis and preferential up-regulation of p53 tumour suppressor protein in CD8+ T cells. Lastly, we examined a model of experimental cerebral malaria, in which pathology is critically dependent on CD8+ T cells. In the mice conditionally deleted for Mysm1 in the T-cell compartment, CD8+ T-cell numbers remained reduced following infection, both in the periphery and in the brain, and the mice displayed improved survival after parasite challenge. Collectively, our data identify MYSM1 as a novel factor for CD8+ T cells in the immune system, increasing our understanding of the role of histone H2A deubiquitinases in cytotoxic T-cell biology.
Collapse
Affiliation(s)
- Michael Förster
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Rupinder K Boora
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Jessica C Petrov
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Nassima Fodil
- Department of Biochemistry and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Isabella Albanese
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Jamie Kim
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Philippe Gros
- Department of Biochemistry and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| |
Collapse
|
29
|
Bahrami E, Witzel M, Racek T, Puchałka J, Hollizeck S, Greif-Kohistani N, Kotlarz D, Horny HP, Feederle R, Schmidt H, Sherkat R, Steinemann D, Göhring G, Schlegelbeger B, Albert MH, Al-Herz W, Klein C. Myb-like, SWIRM, and MPN domains 1 (MYSM1) deficiency: Genotoxic stress-associated bone marrow failure and developmental aberrations. J Allergy Clin Immunol 2017; 140:1112-1119. [PMID: 28115216 DOI: 10.1016/j.jaci.2016.10.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/22/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Myb-like, SWIRM, and MPN domains 1 (MYSM1) is a transcriptional regulator mediating histone deubiquitination. Its role in human immunity and hematopoiesis is poorly understood. OBJECTIVES We sought to investigate the clinical, cellular, and molecular features in 2 siblings presenting with progressive bone marrow failure (BMF), immunodeficiency, and developmental aberrations. METHODS We performed genome-wide homozygosity mapping, whole-exome and Sanger sequencing, immunophenotyping studies, and analysis of genotoxic stress responses. p38 activation, reactive oxygen species levels, rate of apoptosis and clonogenic survival, and growth in immune and nonimmune cells were assessed. The outcome of allogeneic hematopoietic stem cell transplantation (HSCT) was monitored. RESULTS We report 2 patients with progressive BMF associated with myelodysplastic features, immunodeficiency affecting B cells and neutrophil granulocytes, and complex developmental aberrations, including mild skeletal anomalies, neurocognitive developmental delay, and cataracts. Whole-exome sequencing revealed a homozygous premature stop codon mutation in the gene encoding MYSM1. MYSM1-deficient cells are characterized by increased sensitivity to genotoxic stress associated with sustained induction of phosphorylated p38 protein, increased reactive oxygen species production, and decreased survival following UV light-induced DNA damage. Both patients were successfully treated with allogeneic HSCT with sustained reconstitution of hematopoietic defects. CONCLUSIONS Here we show that MYSM1 deficiency is associated with developmental aberrations, progressive BMF with myelodysplastic features, and increased susceptibility to genotoxic stress. HSCT represents a curative therapy for patients with MYSM1 deficiency.
Collapse
Affiliation(s)
- Ehsan Bahrami
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Maximilian Witzel
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Tomas Racek
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jacek Puchałka
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sebastian Hollizeck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Naschla Greif-Kohistani
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Hans-Peter Horny
- Institute for Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Regina Feederle
- Helmholtz Zentrum München, German Research Center for Environmental Health, Core Facility Monoclonal Antibody Development, Munich, Germany
| | - Heinrich Schmidt
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Doris Steinemann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Gudrun Göhring
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, and Department of Pediatrics, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
30
|
Polycomb complexes PRC1 and their function in hematopoiesis. Exp Hematol 2017; 48:12-31. [PMID: 28087428 DOI: 10.1016/j.exphem.2016.12.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022]
Abstract
Hematopoiesis, the process by which blood cells are continuously produced, is one of the best studied differentiation pathways. Hematological diseases are associated with reiterated mutations in genes encoding important gene expression regulators, including chromatin regulators. Among them, the Polycomb group (PcG) of proteins is an essential system of gene silencing involved in the maintenance of cell identities during differentiation. PcG proteins assemble into two major types of Polycomb repressive complexes (PRCs) endowed with distinct histone-tail-modifying activities. PRC1 complexes are histone H2A E3 ubiquitin ligases and PRC2 trimethylates histone H3. Established conceptions about their activities, mostly derived from work in embryonic stem cells, are being modified by new findings in differentiated cells. Here, we focus on PRC1 complexes, reviewing recent evidence on their intricate architecture, the diverse mechanisms of their recruitment to targets, and the different ways in which they engage in transcriptional control. We also discuss hematopoietic PRC1 gain- and loss-of-function mouse strains, including those that model leukemic and lymphoma diseases, in the belief that these genetic analyses provide the ultimate test for molecular mechanisms driving normal hematopoiesis and hematological malignancies.
Collapse
|
31
|
Differential regulated microRNA by wild type and mutant p53 in induced pluripotent stem cells. Cell Death Dis 2016; 7:e2567. [PMID: 28032868 PMCID: PMC5260988 DOI: 10.1038/cddis.2016.419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/08/2023]
Abstract
The tumour suppressor p53 plays an important role in somatic cell reprogramming. While wild-type p53 reduces reprogramming efficiency, mutant p53 exerts a gain of function activity that leads to increased reprogramming efficiency. Furthermore, induced pluripotent stem cells expressing mutant p53 lose their pluripotency in vivo and form malignant tumours when injected in mice. It is therefore of great interest to identify targets of p53 (wild type and mutant) that are responsible for this phenotype during reprogramming, as these could be exploited for therapeutic use, that is, formation of induced pluripotent stem cells with high reprogramming efficiency, but no oncogenic potential. Here we studied the transcriptional changes of microRNA in a series of mouse embryonic fibroblasts that have undergone transition to induced pluripotent stem cells with wild type, knock out or mutant p53 status in order to identify microRNAs whose expression during reprogramming is dependent on p53. We identified a number of microRNAs, with known functions in differentiation and carcinogenesis, the expression of which was dependent on the p53 status of the cells. Furthermore, we detected several uncharacterised microRNAs that were regulated differentially in the different p53 backgrounds, suggesting a novel role of these microRNAs in reprogramming and pluripotency.
Collapse
|
32
|
Zhou L, Shi L, Guo H, Yao X. MYSM-1 suppresses migration and invasion in renal carcinoma through inhibiting epithelial-mesenchymal transition. Tumour Biol 2016; 37:15583–15591. [PMID: 26409454 DOI: 10.1007/s13277-015-4138-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common malignant renal tumor and is prone to metastasis. However, the molecular variation and mechanism underlying renal cell carcinoma metastasis remains largely unknown. In our previous study, it was found that MYSM-1 was significantly downregulated in renal cell carcinoma tissues as compared with normal renal tissues without metastasis, using proteomics approach. Therefore, we hypothesized that MYSM-1 may suppress the metastasis of renal cell carcinoma in light of paucity of data regarding MYSM-1 in the cancers. In the present study, to confirm the expression status of MYSM-1 in renal cell carcinoma, immunohistochemistry with renal carcinoma tissue microarray was performed. It was shown that MYSM-1 was remarkably decreased in renal carcinoma tissues compared with paired normal control tissues; and that low expression of MYSM-1 was significantly associated with poor overall prognosis and metastasis. To investigate the biological roles of MYSM-1 in vitro in renal carcinoma cell lines, both knockdown using siRNA and over-expression were carried out. It was found that MYSM-1 could suppress the proliferation, migration, and invasion of renal carcinoma cells. In addition, we found that MYSM-1 could inhibit the epithelial-mesenchymal transition. Together, our results demonstrate that MYSM-1 could suppress the metastasis of renal carcinoma cells may be through inhibiting the epithelial-mesenchymal transition (EMT) process.
Collapse
Affiliation(s)
- Lei Zhou
- National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Liyin Shi
- The Department of Microbiology, College of Basic Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Hua Guo
- National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Xin Yao
- National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| |
Collapse
|
33
|
Abstract
Hematopoietic stem cells are endowed with a distinct potential to bolster self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. Both hematopoietic stem cells and mature cells have the same genome, but their gene expression is controlled by an additional layer of epigenetics such as DNA methylation and post-translational histone modifications, enabling each cell-type to acquire various forms and functions. Until recently, several studies have largely focussed on the transcription factors andniche factors for the understanding of the molecular mechanisms by which hematopoietic cells replicate and differentiate. Several lines of emerging evidence suggest that epigenetic modifications eventually result in a defined chromatin structure and an “individual” gene expression pattern, which play an essential role in the regulation of hematopoietic stem cell self-renewal and differentiation. Distinct epigenetic marks decide which sets of genes may be expressed and which genes are kept silent. Epigenetic mechanisms are interdependent and ensure lifelong production of blood and bone marrow, thereby contributing to stem cell homeostasis. The epigenetic analysis of hematopoiesis raises the exciting possibility that chromatin structure is dynamic enough for regulated expression of genes. Though controlled chromatin accessibility plays an essential role in maintaining blood homeostasis; mutations in chromatin impacts on the regulation of genes critical to the development of leukemia. In this review, we explored the contribution of epigenetic machinery which has implications for the ramification of molecular details of hematopoietic self-renewal for normal development and underlying events that potentially co-operate to induce leukemia.
Collapse
Affiliation(s)
- Shilpa Sharma
- Division of Stem Cell Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences (INMAS), Delhi, India
| | - Gangenahalli Gurudutta
- Division of Stem Cell Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences (INMAS), Delhi, India
| |
Collapse
|
34
|
Mysm1 is required for interferon regulatory factor expression in maintaining HSC quiescence and thymocyte development. Cell Death Dis 2016; 7:e2260. [PMID: 27277682 PMCID: PMC5143390 DOI: 10.1038/cddis.2016.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/28/2016] [Accepted: 05/06/2016] [Indexed: 12/14/2022]
Abstract
Mysm1(-/-) mice have severely decreased cellularity in hematopoietic organs. We previously revealed that Mysm1 knockout impairs self-renewal and lineage reconstitution of HSCs by abolishing the recruitment of key transcriptional factors to the Gfi-1 locus, an intrinsic regulator of HSC function. The present study further defines a large LSKs in >8-week-old Mysm1(-/-) mice that exhibit increased proliferation and reduced cell lineage differentiation compared with those of WT LSKs. We found that IRF2 and IRF8, which are important for HSC homeostasis and commitment as transcription repressors, were expressed at lower levels in Mysm1(-/-) HSCs, and Mysm1 enhanced function of the IRF2 and IRF8 promoters, suggesting that Mysm1 governs the IRFs for HSC homeostasis. We further found that the lower expressions of IRF2 and IRF8 led to an enhanced transcription of p53 in Mysm1(-/-) HSCs, which was recently defined to have an important role in mediating Mysm1(-/-)-associated defects. The study also revealed that Mysm1(-/-) thymocytes exhibited lower IRF2 expression, but had higher Sca1 expression, which has a role in mediating thymocyte death. Furthermore, we found that the thymocytes from B16 melanoma-bearing mice, which display severe thymus atrophy at late tumor stages, exhibited reduced Mysm1 and IRF2 expression but enhanced Sca1 expression, suggesting that tumors may downregulate Mysm1 and IRF2 for thymic T-cell elimination.
Collapse
|
35
|
Deubiquitinase MYSM1 Is Essential for Normal Bone Formation and Mesenchymal Stem Cell Differentiation. Sci Rep 2016; 6:22211. [PMID: 26915790 PMCID: PMC4768166 DOI: 10.1038/srep22211] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/09/2016] [Indexed: 12/14/2022] Open
Abstract
Deubiquitinase MYSM1 has been shown to play a critical role in hematopoietic cell differentiation and hematopoietic stem cell (HSC) maintenance. Mesenchymal stem cells (MSCs) are multipotent stromal cells within the bone marrow. MSCs are progenitors to osteoblasts, chondrocytes, adipocytes, and myocytes. Although, MSCs have been extensively studied, the roles of MYSM1 in these cells remain unclear. Here we describe the function of MYSM1 on MSC maintenance and differentiation. In this report, we found that Mysm1−/− mice had a lower bone mass both in long bone and calvaria compared with their control counterpart. Preosteoblasts from Mysm1−/− mice did not show changes in proliferation or osteogenesis when compared to WT mice. Conversely, Mysm1−/− MSCs showed enhanced autonomous differentiation and accelerated adipogenesis. Our results demonstrate that MYSM1 plays a critical role in MSC maintenance and differentiation. This study also underscores the biological significance of deubiquitinase activity in MSC function. Mysm1 may represent a potential therapeutic target for controlling MSC lineage differentiation, and possibly for the treatment of metabolic bone diseases such as osteoporosis.
Collapse
|
36
|
Belle JI, Petrov JC, Langlais D, Robert F, Cencic R, Shen S, Pelletier J, Gros P, Nijnik A. Repression of p53-target gene Bbc3/PUMA by MYSM1 is essential for the survival of hematopoietic multipotent progenitors and contributes to stem cell maintenance. Cell Death Differ 2016; 23:759-75. [PMID: 26768662 PMCID: PMC4832099 DOI: 10.1038/cdd.2015.140] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022] Open
Abstract
p53 is a central mediator of cellular stress responses, and its precise regulation is essential for the normal progression of hematopoiesis. MYSM1 is an epigenetic regulator essential for the maintenance of hematopoietic stem cell (HSC) function, hematopoietic progenitor survival, and lymphocyte development. We recently demonstrated that all developmental and hematopoietic phenotypes of Mysm1 deficiency are p53-mediated and rescued in the Mysm1(-/-)p53(-/-) mouse model. However, the mechanisms triggering p53 activation in Mysm1(-/-) HSPCs, and the pathways downstream of p53 driving different aspects of the Mysm1(-/-) phenotype remain unknown. Here we show the transcriptional activation of p53 stress responses in Mysm1(-/-) HSPCs. Mechanistically, we find that the MYSM1 protein associates with p53 and colocalizes to promoters of classical p53-target genes Bbc3/PUMA (p53 upregulated modulator of apoptosis) and Cdkn1a/p21. Furthermore, it antagonizes their p53-driven expression by modulating local histone modifications (H3K27ac and H3K4me3) and p53 recruitment. Using double-knockout mouse models, we establish that PUMA, but not p21, is an important mediator of p53-driven Mysm1(-/-) hematopoietic dysfunction. Specifically, Mysm1(-/-)Puma(-/-) mice show full rescue of multipotent progenitor (MPP) viability, partial rescue of HSC quiescence and function, but persistent lymphopenia. Through transcriptome analysis of Mysm1(-/-)Puma(-/-) MPPs, we demonstrate strong upregulation of other p53-induced mediators of apoptosis and cell-cycle arrest. The full viability of Mysm1(-/-)Puma(-/-) MPPs, despite strong upregulation of many other pro-apoptotic mediators, establishes PUMA as the essential non-redundant effector of p53-induced MPP apoptosis. Furthermore, we identify potential mediators of p53-dependent but PUMA-independent Mysm1(-/-)hematopoietic deficiency phenotypes. Overall, our study provides novel insight into the cell-type-specific roles of p53 and its downstream effectors in hematopoiesis using unique models of p53 hyperactivity induced by endogenous stress. We conclude that MYSM1 is a critical negative regulator of p53 transcriptional programs in hematopoiesis, and that its repression of Bbc3/PUMA expression is essential for MPP survival, and partly contributes to maintaining HSC function.
Collapse
Affiliation(s)
- J I Belle
- Department of Physiology, McGill University, Montreal, QC, Canada.,Complex Traits Group, McGill University, Montreal, QC, Canada
| | - J C Petrov
- Department of Physiology, McGill University, Montreal, QC, Canada.,Complex Traits Group, McGill University, Montreal, QC, Canada
| | - D Langlais
- Complex Traits Group, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - F Robert
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - R Cencic
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - S Shen
- Department of Physiology, McGill University, Montreal, QC, Canada.,Complex Traits Group, McGill University, Montreal, QC, Canada
| | - J Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - P Gros
- Complex Traits Group, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada.,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - A Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada.,Complex Traits Group, McGill University, Montreal, QC, Canada
| |
Collapse
|
37
|
Le Guen T, Touzot F, André-Schmutz I, Lagresle-Peyrou C, France B, Kermasson L, Lambert N, Picard C, Nitschke P, Carpentier W, Bole-Feysot C, Lim A, Cavazzana M, Callebaut I, Soulier J, Jabado N, Fischer A, de Villartay JP, Revy P. An in vivo genetic reversion highlights the crucial role of Myb-Like, SWIRM, and MPN domains 1 (MYSM1) in human hematopoiesis and lymphocyte differentiation. J Allergy Clin Immunol 2015. [DOI: 10.1016/j.jaci.2015.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Panda S, Nilsson J, Gekara N. Deubiquitinase MYSM1 Regulates Innate Immunity through Inactivation of TRAF3 and TRAF6 Complexes. Immunity 2015; 43:647-59. [DOI: 10.1016/j.immuni.2015.09.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/14/2015] [Accepted: 07/21/2015] [Indexed: 11/25/2022]
|
39
|
Citterio E. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work. Front Genet 2015; 6:282. [PMID: 26442100 PMCID: PMC4561801 DOI: 10.3389/fgene.2015.00282] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/23/2015] [Indexed: 01/23/2023] Open
Abstract
Ubiquitination is a reversible protein modification broadly implicated in cellular functions. Signaling processes mediated by ubiquitin (ub) are crucial for the cellular response to DNA double-strand breaks (DSBs), one of the most dangerous types of DNA lesions. In particular, the DSB response critically relies on active ubiquitination by the RNF8 and RNF168 ub ligases at the chromatin, which is essential for proper DSB signaling and repair. How this pathway is fine-tuned and what the functional consequences are of its deregulation for genome integrity and tissue homeostasis are subject of intense investigation. One important regulatory mechanism is by reversal of substrate ubiquitination through the activity of specific deubiquitinating enzymes (DUBs), as supported by the implication of a growing number of DUBs in DNA damage response processes. Here, we discuss the current knowledge of how ub-mediated signaling at DSBs is controlled by DUBs, with main focus on DUBs targeting histone H2A and on their recent implication in stem cell biology and cancer.
Collapse
Affiliation(s)
- Elisabetta Citterio
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam Netherlands
| |
Collapse
|
40
|
Förster M, Belle JI, Petrov JC, Ryder EJ, Clare S, Nijnik A. Deubiquitinase MYSM1 Is Essential for Normal Fetal Liver Hematopoiesis and for the Maintenance of Hematopoietic Stem Cells in Adult Bone Marrow. Stem Cells Dev 2015; 24:1865-77. [PMID: 26125289 DOI: 10.1089/scd.2015.0058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MYSM1 is a chromatin-interacting deubiquitinase recently shown to be essential for hematopoietic stem cell (HSC) function and normal progression of hematopoiesis in both mice and humans. However, it remains unknown whether the loss of function in Mysm1-deficient HSCs is due to the essential role of MYSM1 in establishing the HSC pool during development or due to a continuous requirement for MYSM1 in adult HSCs. In this study we, for the first time, address these questions first, by performing a detailed analysis of hematopoiesis in the fetal livers of Mysm1-knockout mice, and second, by assessing the effects of an inducible Mysm1 ablation on adult HSC functions. Our data indicate that MYSM1 is essential for normal HSC function and progression of hematopoiesis in the fetal liver. Furthermore, the inducible knockout model demonstrates a continuous requirement for MYSM1 to maintain HSC functions and antagonize p53 activation in adult bone marrow. These studies advance our understanding of the role of MYSM1 in HSC biology, and provide new insights into the human hematopoietic failure syndrome resulting from MYSM1 deficiency.
Collapse
Affiliation(s)
- Michael Förster
- 1 Department of Physiology, McGill University , Montreal, Quebec, Canada .,2 Complex Traits Group, McGill University , Montreal, Quebec, Canada
| | - Jad I Belle
- 1 Department of Physiology, McGill University , Montreal, Quebec, Canada .,2 Complex Traits Group, McGill University , Montreal, Quebec, Canada
| | - Jessica C Petrov
- 1 Department of Physiology, McGill University , Montreal, Quebec, Canada .,2 Complex Traits Group, McGill University , Montreal, Quebec, Canada
| | - Edward J Ryder
- 3 Wellcome Trust Sanger Institute , Hinxton, Cambridge, United Kingdom
| | - Simon Clare
- 3 Wellcome Trust Sanger Institute , Hinxton, Cambridge, United Kingdom
| | - Anastasia Nijnik
- 1 Department of Physiology, McGill University , Montreal, Quebec, Canada .,2 Complex Traits Group, McGill University , Montreal, Quebec, Canada
| |
Collapse
|