1
|
Desai SA, Patel VP, Bhosle KP, Nagare SD, Thombare KC. The tumor microenvironment: shaping cancer progression and treatment response. J Chemother 2025; 37:15-44. [PMID: 38179655 DOI: 10.1080/1120009x.2023.2300224] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and treatment response. It comprises a complex network of stromal cells, immune cells, extracellular matrix, and blood vessels, all of which interact with cancer cells and influence tumor behaviour. This review article provides an in-depth examination of the TME, focusing on stromal cells, blood vessels, signaling molecules, and ECM, along with commonly available therapeutic compounds that target these components. Moreover, we explore the TME as a novel strategy for discovering new anti-tumor drugs. The dynamic and adaptive nature of the TME offers opportunities for targeting specific cellular interactions and signaling pathways. We discuss emerging approaches, such as combination therapies that simultaneously target cancer cells and modulate the TME. Finally, we address the challenges and future prospects in targeting the TME. Overcoming drug resistance, improving drug delivery, and identifying new therapeutic targets within the TME are among the challenges discussed. We also highlight the potential of personalized medicine and the integration of emerging technologies, such as immunotherapy and nanotechnology, in TME-targeted therapies. This comprehensive review provides insights into the TME and its therapeutic implications. Understanding the TME's complexity and targeting its components offer promising avenues for the development of novel anti-tumor therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Sharav A Desai
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Vipul P Patel
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kunal P Bhosle
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Sandip D Nagare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kirti C Thombare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| |
Collapse
|
2
|
Rodríguez Silva J, Monsalves-Álvarez M, Sepúlveda C, Donoso-Barraza C, Troncoso R, Hirsch S. Folate induces stemness and increases oxygen consumption under glucose deprivation by notch-1 pathway activation in colorectal cancer cell. Mol Cell Biochem 2025; 480:505-519. [PMID: 38536555 DOI: 10.1007/s11010-024-04987-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/09/2024] [Indexed: 01/03/2025]
Abstract
Evidence for folate's protective effects on neural tube defects led the USA and Chile to start mandatory folic acid (FA) fortification programs, decreasing up to 50%. However, ∼30% of the population consuming fortified foods reach supraphysiologic serum levels. Although controversial, several epidemiological and clinical observations suggest that folate increases cancer risk, giving concern about the risks of FA supplementation. The Cancer stem cells (CSCs) model has been used to explain survival to anticancer therapies. The Notch-1 pathway plays a role in several cancers and is associated with the stemness process. Different studies show that modulation of metabolic pathways regulates stemness capacity in cancer. Supraphysiologic concentrations of FA increase the proliferation of HT-29 cells by Notch-1 activation. However, whether folate can induce a stemness-like phenotype in cancer is not known. We hypothesized that FA protects from glucose deprivation-induced cell death through Notch-1 activation. HT-29 cells were challenged with glucose deprivation at basal (20 nM) and supraphysiological (400 nM) FA and 5-MTHF concentrations. We analyzed changes in stemness-like gene expression, cell death and different energetic metabolic functions. Supraphysiological concentrations of FA increased stemness-like genes, and improved survival and oxygen consumption, inducing AMPK phosphorylation and HSP-70 protein expression. We evaluated the Notch-1 pathway using the DAPT and siRNA as inhibitors, decreasing the stemness-like gene expression and preventing the FA protection against glucose deprivation-induced cell death. Moreover, they decreased oxygen consumption and AMPK phosphorylation. These results suggest that FA protects against glucose deprivation. These effects were associated with AMPK activation, a critical metabolic mediator in nutrient consumption and availability that activates the Notch-1 pathway.
Collapse
Affiliation(s)
- Juan Rodríguez Silva
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
| | - Matías Monsalves-Álvarez
- Instituto de Ciencias de la Salud, Universidad de O´Higgins, Rancagua, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Carlos Sepúlveda
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Camila Donoso-Barraza
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Sandra Hirsch
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
3
|
da Veiga Moreira J, Schwartz L, Jolicoeur M. Singlet Oxygen-Induced Mitochondrial Reset in Cancer: A Novel Approach for Ovarian Cancer Therapy. Metabolites 2024; 14:648. [PMID: 39728429 DOI: 10.3390/metabo14120648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: This study explores the generation of singlet oxygen (SO) through methylene blue (MB) activation as a metabolic intervention for ovarian cancer. We aimed to examine the role of SO in modulating mitochondrial function, cellular metabolism, and proliferation in ovarian cancer cell lines compared to control cells. Methods: The study utilized two ovarian cancer cell lines, OV1369-R2 and TOV1369, along with ARPE-19 control cells. Following MB treatment and light activation, mitochondrial function and ATP synthesis were assessed. Metabolomic analyses were performed to evaluate changes in central carbon metabolism, particularly focusing on markers of the Warburg effect. Results: TOV1369 cells exhibited a pronounced sensitivity to MB treatment, resulting in significant inhibition of ATP synthesis and reduced proliferation. Metabolomic analysis indicated that MB-induced SO production partially reversed the Warburg effect, suggesting a shift from glycolysis to oxidative phosphorylation. These effects were less pronounced in OV1369-R2 and ARPE-19 cells, correlating with their lower MB sensitivity. Conclusions: MB-generated SO selectively modulates mitochondrial energetics in ovarian cancer cells, driving a metabolic reorganization that curtails their proliferative capacity. This approach, leveraging the bacterial-like features of cancer metabolism, offers a promising therapeutic avenue to induce apoptosis and enhance treatment outcomes in ovarian cancer.
Collapse
Affiliation(s)
- Jorgelindo da Veiga Moreira
- Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC H3C 3A7, Canada
| | - Laurent Schwartz
- Assistance Publique des Hôpitaux de Paris, Avenue Victoria, 75003 Paris, France
| | - Mario Jolicoeur
- Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
4
|
da Veiga Moreira J, Schwartz L, Jolicoeur M. In Vitro Methylene Blue and Carboplatin Combination Triggers Ovarian Cancer Cells Death. Int J Mol Sci 2024; 25:11005. [PMID: 39456787 PMCID: PMC11507203 DOI: 10.3390/ijms252011005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Ovarian cancer presents a dire prognosis and high mortality rates, necessitating the exploration of alternative therapeutic avenues, particularly in the face of platinum-based chemotherapy resistance. Conventional treatments often overlook the metabolic implications of cancer, but recent research has highlighted the pivotal role of mitochondria in cancer pathogenesis and drug resistance. This study delves into the metabolic landscape of ovarian cancer treatment, focusing on modulating mitochondrial activity using methylene blue (MB). Investigating two epithelial ovarian cancer (EOC) cell lines, OV1369-R2 and OV1946, exhibiting disparate responses to carboplatin, we sought to identify metabolic nodes, especially those linked to mitochondrial dysfunction, contributing to chemo-resistance. Utilizing ARPE-19, a normal retinal epithelial cell line, as a control model, our study reveals MB's distinct cellular uptake, with ARPE-19 absorbing 5 to 7 times more MB than OV1946 and OV1369-R2. Treatment with 50 µM MB (MB-50) effectively curtailed the proliferation of both ovarian cancer cell lines. Furthermore, MB-50 exhibited the ability to quell glutaminolysis and the Warburg effect in cancer cell cultures. Regarding mitochondrial energetics, MB-50 spurred oxygen consumption, disrupted glycolytic pathways, and induced ATP depletion in the chemo-sensitive OV1946 cell line. These findings highlight the potential of long-term MB exposure as a strategy to improve the chemotherapeutic response in ovarian cancer cells. The ability of MB to stimulate oxygen consumption and enhance mitochondrial activity positions it as a promising candidate for ovarian cancer therapy, shedding light on the metabolic pressures exerted on mitochondria and their modulation by MB, thus contributing to a deeper understanding of mitochondrial dysregulation and the metabolic underpinnings of cancer cell proliferation.
Collapse
Affiliation(s)
- Jorgelindo da Veiga Moreira
- Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC H3C 3A7, Canada;
| | - Laurent Schwartz
- Assistance Publique des Hôpitaux de Paris, Avenue Victoria, 75003 Paris, France;
| | - Mario Jolicoeur
- Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC H3C 3A7, Canada;
| |
Collapse
|
5
|
Fiorentino F, Fabbrizi E, Raucci A, Noce B, Fioravanti R, Valente S, Paolini C, De Maria R, Steinkühler C, Gallinari P, Rotili D, Mai A. Uracil- and Pyridine-Containing HDAC Inhibitors Displayed Cytotoxicity in Colorectal and Glioblastoma Cancer Stem Cells. ChemMedChem 2024; 19:e202300655. [PMID: 38529661 DOI: 10.1002/cmdc.202300655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Cancer stem cells (CSCs) are a niche of highly tumorigenic cells featuring self-renewal, activation of pluripotency genes, multidrug resistance, and ability to cause cancer relapse. Seven HDACi (1-7), showing either hydroxamate or 2'-aminoanilide function, were tested in colorectal cancer (CRC) and glioblastoma multiforme (GBM) CSCs to determine their effects on cell proliferation, H3 acetylation levels and in-cell HDAC activity. Two uracil-based hydroxamates, 5 and 6, which differ in substitution at C5 and C6 positions of the pyrimidine ring, exhibited the greatest cytotoxicity in GBM (5) and CRC (6) CSCs, followed by the pyridine-hydroxamate 2, with 2- to 6-fold higher potency than the positive control SAHA. Finally, increased H3 acetylation as well as HDAC inhibition directly in cells by selected 2'-aminoanilide 4 and hydroxamate 5 confirmed target engagement. Further investigation will be conducted into the broad-spectrum anticancer properties of the most potent derivatives and their effects in combination with approved, conventional anticancer drugs.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Alessia Raucci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Chantal Paolini
- IRBM S.p.A., Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Christian Steinkühler
- Research and Development, Italfarmaco Group, Via dei Lavoratori 54, 20092, Cinisello Balsamo, Italy
| | - Paola Gallinari
- Exiris S.r.l., Tecnopolo Castel, Romano, Via Castel Romano 100, 00128, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P. de Aldo Moro n. 5, 00185, Rome, Italy
| |
Collapse
|
6
|
Gagliano T, Kerschbamer E, Baccarani U, Minisini M, Di Giorgio E, Dalla E, Weichenberger CX, Cherchi V, Terrosu G, Brancolini C. Changes in chromatin accessibility and transcriptional landscape induced by HDAC inhibitors in TP53 mutated patient-derived colon cancer organoids. Biomed Pharmacother 2024; 173:116374. [PMID: 38447451 DOI: 10.1016/j.biopha.2024.116374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Here we present the generation and characterization of patient-derived organoids (PDOs) from colorectal cancer patients. PDOs derived from two patients with TP53 mutations were tested with two different HDAC inhibitors (SAHA and NKL54). Cell death induction, transcriptome, and chromatin accessibility changes were analyzed. HDACIs promote the upregulation of low expressed genes and the downregulation of highly expressed genes. A similar differential effect is observed at the level of chromatin accessibility. Only SAHA is a potent inducer of cell death, which is characterized by the upregulation of BH3-only genes BIK and BMF. Up-regulation of BIK is associated with increased accessibility in an intronic region that has enhancer properties. SAHA, but not NKL54, also causes downregulation of BCL2L1 and decreases chromatin accessibility in three distinct regions of the BCL2L1 locus. Both inhibitors upregulate the expression of innate immunity genes and members of the MHC family. In summary, our exploratory study indicates a mechanism of action for SAHA and demonstrate the low efficacy of NKL54 as a single agent for apoptosis induction, using two PDOs. These observations need to be validated in a larger cohort of PDOs.
Collapse
Affiliation(s)
- Teresa Gagliano
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Emanuela Kerschbamer
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Umberto Baccarani
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | | | - Vittorio Cherchi
- General Surgery Clinic and Liver Transplant Center, University-Hospital of Udine, Udine, Italy
| | - Giovanni Terrosu
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy.
| |
Collapse
|
7
|
da Veiga Moreira J, Nleme N, Schwartz L, Leclerc-Desaulniers K, Carmona E, Mes-Masson AM, Jolicoeur M. Methylene Blue Metabolic Therapy Restrains In Vivo Ovarian Tumor Growth. Cancers (Basel) 2024; 16:355. [PMID: 38254843 PMCID: PMC10814748 DOI: 10.3390/cancers16020355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Ovarian cancer remains a significant challenge, especially in platinum-resistant cases where treatment options are limited. In this study, we investigated the potential of methylene blue (MB) as a metabolic therapy and complementary treatment approach for ovarian cancer. Our findings demonstrated a significant in vivo reduction in the proliferation of TOV112D-based ovarian-cell-line xenografts. In this preclinical study, which used a carboplatin-resistant ovarian cancer tumor model implanted into mice, MB-mediated metabolic therapy exhibited superior tumor slowdown compared to carboplatin treatment alone. This indicates, for the first time, MB's potential as an alternative or adjuvant treatment, especially for resistant cases. Our in vitro study on TOV112D and ARPE-19 sheds light on the impact of such an MB-based metabolic therapy on mitochondrial energetics (respiration and membrane potential). MB showed a modulatory role in the oxygen consumption rate and the mitochondrial membrane potential. These results revealed, for the first time, that MB specifically targets TOV112D mitochondria and probably induces cell apoptosis. The differential response of normal (ARPE-19) and cancer (TOV112D) cells to the MB treatment suggests potential alterations in cancer cell mitochondria, opening avenues for therapeutic approaches that target the mitochondria. Overall, our findings suggest the efficacy of MB as a possible treatment for ovarian cancer and provide valuable insights into the mechanisms underlying the efficacy of methylene blue metabolic therapy in ovarian cancer treatment.
Collapse
Affiliation(s)
- Jorgelindo da Veiga Moreira
- Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada
| | - Nancy Nleme
- Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada
| | | | - Kim Leclerc-Desaulniers
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada (A.-M.M.-M.)
| | - Euridice Carmona
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada (A.-M.M.-M.)
| | - Anne-Marie Mes-Masson
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada (A.-M.M.-M.)
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Mario Jolicoeur
- Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
8
|
Zaarour RF, Ribeiro M, Azzarone B, Kapoor S, Chouaib S. Tumor microenvironment-induced tumor cell plasticity: relationship with hypoxic stress and impact on tumor resistance. Front Oncol 2023; 13:1222575. [PMID: 37886168 PMCID: PMC10598765 DOI: 10.3389/fonc.2023.1222575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The role of tumor interaction with stromal components during carcinogenesis is crucial for the design of efficient cancer treatment approaches. It is widely admitted that tumor hypoxic stress is associated with tumor aggressiveness and thus impacts susceptibility and resistance to different types of treatments. Notable biological processes that hypoxia functions in include its regulation of tumor heterogeneity and plasticity. While hypoxia has been reported as a major player in tumor survival and dissemination regulation, the significance of hypoxia inducible factors in cancer stem cell development remains poorly understood. Several reports indicate that the emergence of cancer stem cells in addition to their phenotype and function within a hypoxic tumor microenvironment impacts cancer progression. In this respect, evidence showed that cancer stem cells are key elements of intratumoral heterogeneity and more importantly are responsible for tumor relapse and escape to treatments. This paper briefly reviews our current knowledge of the interaction between tumor hypoxic stress and its role in stemness acquisition and maintenance. Our review extensively covers the influence of hypoxia on the formation and maintenance of cancer stem cells and discusses the potential of targeting hypoxia-induced alterations in the expression and function of the so far known stem cell markers in cancer therapy approaches. We believe that a better and integrated understanding of the effect of hypoxia on stemness during carcinogenesis might lead to new strategies for exploiting hypoxia-associated pathways and their targeting in the clinical setting in order to overcome resistance mechanisms. More importantly, at the present time, efforts are oriented towards the design of innovative therapeutical approaches that specifically target cancer stem cells.
Collapse
Affiliation(s)
- RF. Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - M. Ribeiro
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - B. Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - S. Kapoor
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - S. Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, Villejuif, France
| |
Collapse
|
9
|
Brisset M, Mehlen P, Meurette O, Hollande F. Notch receptor/ligand diversity: contribution to colorectal cancer stem cell heterogeneity. Front Cell Dev Biol 2023; 11:1231416. [PMID: 37860822 PMCID: PMC10582728 DOI: 10.3389/fcell.2023.1231416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Cancer cell heterogeneity is a key contributor to therapeutic failure and post-treatment recurrence. Targeting cell subpopulations responsible for chemoresistance and recurrence seems to be an attractive approach to improve treatment outcome in cancer patients. However, this remains challenging due to the complexity and incomplete characterization of tumor cell subpopulations. The heterogeneity of cells exhibiting stemness-related features, such as self-renewal and chemoresistance, fuels this complexity. Notch signaling is a known regulator of cancer stem cell (CSC) features in colorectal cancer (CRC), though the effects of its heterogenous signaling on CRC cell stemness are only just emerging. In this review, we discuss how Notch ligand-receptor specificity contributes to regulating stemness, self-renewal, chemoresistance and cancer stem cells heterogeneity in CRC.
Collapse
Affiliation(s)
- Morgan Brisset
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Patrick Mehlen
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Olivier Meurette
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Frédéric Hollande
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Cho E, Mun SJ, Jeon M, Kim HK, Baek H, Ham YS, Gil WJ, Kim JW, Yang CS. Tumor-targeted liposomes with platycodin D2 promote apoptosis in colorectal cancer. Mater Today Bio 2023; 22:100745. [PMID: 37576871 PMCID: PMC10415802 DOI: 10.1016/j.mtbio.2023.100745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/28/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
Conventional chemotherapy for colorectal cancer (CRC), though efficacious, is discouraging due to its limited targeting capability, lack of selectivity, and chemotherapy-associated side effects. With the advent of nanomedicines, a liposomal delivery system making use of a combination of anticancer phytochemicals is fast gaining popularity as one of the most promising nanoplatforms for CRC treatment. Rising evidence supports phytochemicals such as platycosides for their anticancer potency. To this end, a combination therapy including tumor-targeted liposomes along with phytochemicals might have a greater therapeutic potential against cancer. In this study, we developed acidity-triggered rational membrane (ATRAM) along with conjugated platycodin D2 (PCD2) and liposomes (PCD2-Lipo-ATRAM) as a tumor-targeting therapy. The PCD2-Lipo-ATRAM treatment demonstrated a successful tumor-targeting ability in the CRC xenografts, in which PCD2 not only exerted a potent antitumor effect by inducing apoptotic cell death and but also functioned as a liposome membrane stabilizer. Moreover, PCD2-Lipo-ATRAM suppressed antiapoptotic BCL-2 family proteins, resulting in enhanced cytotoxicity toward CRC cells by inducing intrinsic caspase-9/-3 mediated apoptosis. Thus, our data has shown that tumor-targeting PCD2-based liposomal systems represent a promising strategy for CRC therapy, since they directly target the tumors, unlike other therapies that can miss the target.
Collapse
Affiliation(s)
- Euni Cho
- Department of Bionano Engineering Technology, Hanyang University, Seoul, 04673, South Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, South Korea
| | - Seok-Jun Mun
- Department of Bionano Engineering Technology, Hanyang University, Seoul, 04673, South Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, South Korea
| | - Minha Jeon
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hyo Keun Kim
- Center for Bionano Intelligence Education and Research, Ansan, 15588, South Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, South Korea
| | - Hwira Baek
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Yu Seong Ham
- Center for Bionano Intelligence Education and Research, Ansan, 15588, South Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, South Korea
| | - Woo Jin Gil
- Center for Bionano Intelligence Education and Research, Ansan, 15588, South Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, South Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Chul-Su Yang
- Center for Bionano Intelligence Education and Research, Ansan, 15588, South Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, South Korea
- Department of Medicinal and Life Science, Hanyang University, Ansan, 15588, South Korea
| |
Collapse
|
11
|
Kasprzak A. Prognostic Biomarkers of Cell Proliferation in Colorectal Cancer (CRC): From Immunohistochemistry to Molecular Biology Techniques. Cancers (Basel) 2023; 15:4570. [PMID: 37760539 PMCID: PMC10526446 DOI: 10.3390/cancers15184570] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and severe malignancies worldwide. Recent advances in diagnostic methods allow for more accurate identification and detection of several molecular biomarkers associated with this cancer. Nonetheless, non-invasive and effective prognostic and predictive testing in CRC patients remains challenging. Classical prognostic genetic markers comprise mutations in several genes (e.g., APC, KRAS/BRAF, TGF-β, and TP53). Furthermore, CIN and MSI serve as chromosomal markers, while epigenetic markers include CIMP and many other candidates such as SERP, p14, p16, LINE-1, and RASSF1A. The number of proliferation-related long non-coding RNAs (e.g., SNHG1, SNHG6, MALAT-1, CRNDE) and microRNAs (e.g., miR-20a, miR-21, miR-143, miR-145, miR-181a/b) that could serve as potential CRC markers has also steadily increased in recent years. Among the immunohistochemical (IHC) proliferative markers, the prognostic value regarding the patients' overall survival (OS) or disease-free survival (DFS) has been confirmed for thymidylate synthase (TS), cyclin B1, cyclin D1, proliferating cell nuclear antigen (PCNA), and Ki-67. In most cases, the overexpression of these markers in tissues was related to worse OS and DFS. However, slowly proliferating cells should also be considered in CRC therapy (especially radiotherapy) as they could represent a reservoir from which cells are recruited to replenish the rapidly proliferating population in response to cell-damaging factors. Considering the above, the aim of this article is to review the most common proliferative markers assessed using various methods including IHC and selected molecular biology techniques (e.g., qRT-PCR, in situ hybridization, RNA/DNA sequencing, next-generation sequencing) as prognostic and predictive markers in CRC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
12
|
Chen J, Wu S, Peng Y, Zhao Y, Dong Y, Ran F, Geng H, Zhang K, Li J, Huang S, Wang Z. Constructing a cancer stem cell related prognostic model for predicting immune landscape and drug sensitivity in colorectal cancer. Front Pharmacol 2023; 14:1200017. [PMID: 37377935 PMCID: PMC10292801 DOI: 10.3389/fphar.2023.1200017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Background: Colorectal cancer (CRC) ranks the second malignancy with high incidence and mortality worldwide. Cancer stem cells (CSCs) function critically in cancer progression and metastasis via the interplay with immune cells in tumor microenvironment. This study aimed to identify important CSC marker genes and parsed the role of these marker genes in CRC. Materials and methods: CRC samples' single-cell RNA sequencing data and bulk transcriptome data were utilized. Seurat R package annotated CSCs and identified CSC marker genes. Consensus clustering subtyped CRC samples based on CSC marker genes. Immune microenvironment, pathway and oxidative stress analysis was performed using ESTIMATE, MCP-counter analysis and ssGSEA analysis. A prognostic model was established by Lasso and stepAIC. Sensitivity to chemotherapeutic drugs was determined by the biochemical half maximal inhibitory concentration with pRRophetic R package. Results: We identified a total of 29 CSC marker genes related to disease-specific survival (DSS). Two clusters (CSC1 and CSC2) were determined, and CSC2 showed shorter DSS, a larger proportion of late-stage samples, and higher oxidative stress response. Two clusters exhibited differential activation of biological pathways associated with immune response and oncogenic signaling. Drug sensitivity analysis showed that 44 chemotherapy drugs were more sensitive to CSC2 that those in CSC1. We constructed a seven-gene prognostic model (DRD4, DPP7, UCN, INHBA, SFTA2, SYNPO2, and NXPH4) that was effectively to distinguish high-risk and low-risk patients. 14 chemotherapy drugs were more sensitive to high-risk group and 13 chemotherapy drugs were more sensitive to low-risk group. Combination of higher oxidative stress and risk score indicated dismal prognosis. Conclusion: The CSC marker genes we identified may help to further decipher the role of CSCs in CRC development and progression. The seven-gene prognostic model could serve as an indicator for predicting the response to immunotherapy and chemotherapy as well as prognosis of CRC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianjun Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shuo Huang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhe Wang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
13
|
Rainho MDA, Siqueira PB, de Amorim ÍSS, Mencalha AL, Thole AA. Mitochondria in colorectal cancer stem cells - a target in drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:273-283. [PMID: 37457136 PMCID: PMC10344721 DOI: 10.20517/cdr.2022.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 07/18/2023]
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second most deadly type of cancer worldwide. In late diagnosis, CRC can resist therapy regimens in which cancer stem cells (CSCs) are intimately related. CSCs are a subpopulation of tumor cells responsible for tumor initiation and maintenance, metastasis, and resistance to conventional treatments. In this scenario, colorectal cancer stem cells (CCSCs) are considered an important key for therapeutic failure and resistance. In its turn, mitochondria is an organelle involved in many mechanisms in cancer, including chemoresistance of cytotoxic drugs due to alterations in mitochondrial metabolism, apoptosis, dynamics, and mitophagy. Therefore, it is crucial to understand the mitochondrial role in CCSCs regarding CRC drug resistance. It has been shown that enhanced anti-apoptotic protein expression, mitophagy rate, and addiction to oxidative phosphorylation are the major strategies developed by CCSCs to avoid drug insults. Thus, new mitochondria-targeted drug approaches must be explored to mitigate CRC chemoresistance via the ablation of CCSCs.
Collapse
Affiliation(s)
- Mateus de Almeida Rainho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Priscyanne Barreto Siqueira
- Laboratory of Cancer Biology, Biometry and Biophysics Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Ísis Salviano Soares de Amorim
- Laboratory of Cancer Biology, Biometry and Biophysics Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Andre Luiz Mencalha
- Laboratory of Cancer Biology, Biometry and Biophysics Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Alessandra Alves Thole
- Laboratory of Stem Cell Research, Histology and Embryology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| |
Collapse
|
14
|
Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, et alVitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, Karin M, Kashkar H, Kaufmann T, Kelly GL, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Kluck R, Krysko DV, Kulms D, Kumar S, Lavandero S, Lavrik IN, Lemasters JJ, Liccardi G, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Luedde T, MacFarlane M, Madeo F, Malorni W, Manic G, Mantovani R, Marchi S, Marine JC, Martin SJ, Martinou JC, Mastroberardino PG, Medema JP, Mehlen P, Meier P, Melino G, Melino S, Miao EA, Moll UM, Muñoz-Pinedo C, Murphy DJ, Niklison-Chirou MV, Novelli F, Núñez G, Oberst A, Ofengeim D, Opferman JT, Oren M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pentimalli F, Pereira DM, Pervaiz S, Peter ME, Pinton P, Porta G, Prehn JHM, Puthalakath H, Rabinovich GA, Rajalingam K, Ravichandran KS, Rehm M, Ricci JE, Rizzuto R, Robinson N, Rodrigues CMP, Rotblat B, Rothlin CV, Rubinsztein DC, Rudel T, Rufini A, Ryan KM, Sarosiek KA, Sawa A, Sayan E, Schroder K, Scorrano L, Sesti F, Shao F, Shi Y, Sica GS, Silke J, Simon HU, Sistigu A, Stephanou A, Stockwell BR, Strapazzon F, Strasser A, Sun L, Sun E, Sun Q, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Troy CM, Turk B, Urbano N, Vandenabeele P, Vanden Berghe T, Vander Heiden MG, Vanderluit JL, Verkhratsky A, Villunger A, von Karstedt S, Voss AK, Vousden KH, Vucic D, Vuri D, Wagner EF, Walczak H, Wallach D, Wang R, Wang Y, Weber A, Wood W, Yamazaki T, Yang HT, Zakeri Z, Zawacka-Pankau JE, Zhang L, Zhang H, Zhivotovsky B, Zhou W, Piacentini M, Kroemer G, Galluzzi L. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Cell Death Differ 2023; 30:1097-1154. [PMID: 37100955 PMCID: PMC10130819 DOI: 10.1038/s41418-023-01153-w] [Show More Authors] [Citation(s) in RCA: 173] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.
Collapse
Affiliation(s)
- Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy.
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institut für Immunologie, Kiel University, Kiel, Germany
| | - Massimiliano Agostini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- BIOGEM, Avellino, Italy
| | - Ivano Amelio
- Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - David W Andrews
- Sunnybrook Research Institute, Toronto, ON, Canada
- Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Rami I Aqeilan
- Hebrew University of Jerusalem, Lautenberg Center for Immunology & Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniele Bano
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nickolai A Barlev
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Mathieu J M Bertrand
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marco E Bianchi
- Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy and Ospedale San Raffaele IRCSS, Milan, Italy
| | | | - J Magarian Blander
- Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Carl D Bortner
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Pierluigi Bove
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patricia Boya
- Centro de Investigaciones Biologicas Margarita Salas, CSIC, Madrid, Spain
| | - Catherine Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques, Villejuif, France
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Thomas Brunner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- UCL Consortium for Mitochondrial Research, London, UK
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Francesco Cecconi
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francis K-M Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Guo-Qiang Chen
- State Key Lab of Oncogene and its related gene, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Youhai H Chen
- Shenzhen Institute of Advanced Technology (SIAT), Shenzhen, Guangdong, China
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Aaron Ciechanover
- The Technion-Integrated Cancer Center, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Marcus Conrad
- Helmholtz Munich, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Mads Daugaard
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ted M Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruggero De Maria
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bart De Strooper
- VIB Centre for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J Deberardinis
- Howard Hughes Medical Institute and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Division of Hematology/Oncology, Brown University and the Lifespan Cancer Institute, Providence, RI, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kurt Engeland
- Molecular Oncology, University of Leipzig, Leipzig, Germany
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Carlo Ganini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
| | - Ana J Garcia-Saez
- CECAD, Institute of Genetics, University of Cologne, Cologne, Germany
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM, UMR, 1231, Dijon, France
- Faculty of Medicine, Université de Bourgogne Franche-Comté, Dijon, France
- Anti-cancer Center Georges-François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler school of Medicine, Tel Aviv university, Tel Aviv, Israel
| | - Sourav Ghosh
- Department of Neurology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hinrich Gronemeyer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Departments of Molecular Microbiology and Immunology, Pharmacology, Oncology and Neurology, Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Ygal Haupt
- VITTAIL Ltd, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sudan He
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, The University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- National Cancer Center Research Institute, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ana Janic
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Philipp J Jost
- Clinical Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Michael Karin
- Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Hamid Kashkar
- CECAD Research Center, Institute for Molecular Immunology, University of Cologne, Cologne, Germany
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Ruth Kluck
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dagmar Kulms
- Department of Dermatology, Experimental Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden, TU-Dresden, Dresden, Germany
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sergio Lavandero
- Universidad de Chile, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - John J Lemasters
- Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Gianmaria Liccardi
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Richard A Lockshin
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
- St. John's University, Jamaica, NY, USA
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Marion MacFarlane
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gwenola Manic
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Jean-Christophe Marine
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Rotterdam, the Netherlands
- IFOM-ETS The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer, and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Ute M Moll
- Department of Pathology and Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Daniel J Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Flavia Novelli
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Dimitry Ofengeim
- Rare and Neuroscience Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine and Howard Hughes Medical Institute, New York, NY, USA
| | - Theocharis Panaretakis
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, YLL School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
- National University Cancer Institute, NUHS, Singapore, Singapore
- ISEP, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Marcus E Peter
- Department of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Porta
- Center of Genomic Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina. Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Cell Clearance, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Barak Rotblat
- Department of Life sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- The NIBN, Beer Sheva, Israel
| | - Carla V Rothlin
- Department of Immunobiology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Thomas Rudel
- Microbiology Biocentre, University of Würzburg, Würzburg, Germany
| | - Alessandro Rufini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- University of Leicester, Leicester Cancer Research Centre, Leicester, UK
| | - Kevin M Ryan
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA
- Department of Systems Biology, Lab of Systems Pharmacology, Harvard Program in Therapeutics Science, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
| | - Akira Sawa
- Johns Hopkins Schizophrenia Center, Johns Hopkins University, Baltimore, MD, USA
| | - Emre Sayan
- Faculty of Medicine, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, NJ, USA
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, PR China
| | - Yufang Shi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Giuseppe S Sica
- Department of Surgical Science, University Tor Vergata, Rome, Italy
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Flavie Strapazzon
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Univ Lyon, Univ Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène CNRS, INSERM, Lyon, France
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Liming Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - Stephen W G Tait
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Daolin Tang
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Carol M Troy
- Departments of Pathology & Cell Biology and Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Nicoletta Urbano
- Department of Oncohaematology, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Methusalem Program, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
- School of Forensic Medicine, China Medical University, Shenyang, China
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences (OeAW), Vienna, Austria
- The Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Daniela Vuri
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Henning Walczak
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Achim Weber
- University of Zurich and University Hospital Zurich, Department of Pathology and Molecular Pathology, Zurich, Switzerland
- University of Zurich, Institute of Molecular Cancer Research, Zurich, Switzerland
| | - Will Wood
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Huang-Tian Yang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Queens College and Graduate Center, City University of New York, Flushing, NY, USA
| | - Joanna E Zawacka-Pankau
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Biochemistry, Laboratory of Biophysics and p53 protein biology, Medical University of Warsaw, Warsaw, Poland
| | - Lin Zhang
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Wenzhao Zhou
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Wang HC, Haung LY, Wang CJ, Chao YJ, Hou YC, Yen CJ, Shan YS. Tumor-associated macrophages promote resistance of hepatocellular carcinoma cells against sorafenib by activating CXCR2 signaling. J Biomed Sci 2022; 29:99. [PMID: 36411463 PMCID: PMC9677647 DOI: 10.1186/s12929-022-00881-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Sorafenib (SOR) is the first line treatment for advanced hepatocellular carcinoma (HCC), but resistance develops frequently. Tumor-associated macrophages (TAMs) have been reported to affect the progression of HCC. We therefore aimed to study the role of TAMs in promoting SOR resistance. METHODS Immunofluorescence staining for the M2 marker CD204 and the cancer stem cell (CSC) markers CD44 and CD133 was performed in paired HCC and adjacent noncancerous tissues and HCC tissues stratified by response of SOR treatment. HCC/U937 coculture system and cytokines were used to induce M2 polarization for studying the effects of M2 TAMs on CSC properties and apoptotic death of HCC cells after SOR treatment. RESULTS Higher expression of CD204, CD44, and CD133 was observed in patients with SOR nonresponse (SNR) than in those with SOR response (SR), suggesting that SNR is positively correlated to levels of CSCs and M2 TAMs. After coculture, M2 TAMs could increase the level of CSCs but decrease SOR-induced apoptosis. Incubation of HCC cells with coculture conditioned medium increased the formation of spheres that were resistant to SOR. Furthermore, CXCL1 and CXCL2 were found to be the potential paracrine factors released by M2 TAMs to upregulate SOR resistance in HCC cells. Treatment with CXCL1 and CXCL2 could increase HCC CSC activity but decrease SOR-induced apoptosis by affecting BCL-2 family gene expression. Using pharmacological inhibitors, CXCR2/ERK signaling was found to be critical to CXCL1- and CXCL2-mediated SOR resistance. CONCLUSION This study identified CXCL1, CXCL2, and their downstream CXCR2/ERK signaling as potential therapeutic targets to overcome SOR resistance in HCC.
Collapse
Affiliation(s)
- Hao-Chen Wang
- grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Road, Tainan, 704017 Taiwan
| | - Lin-Ya Haung
- grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Road, Tainan, 704017 Taiwan
| | - Chih-Jung Wang
- grid.64523.360000 0004 0532 3255Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704302 Taiwan
| | - Ying-Jui Chao
- grid.64523.360000 0004 0532 3255Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704302 Taiwan
| | - Ya-Chin Hou
- grid.64523.360000 0004 0532 3255Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704302 Taiwan
| | - Chia-Jui Yen
- grid.64523.360000 0004 0532 3255Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704302 Taiwan
| | - Yan-Shen Shan
- grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Road, Tainan, 704017 Taiwan ,grid.64523.360000 0004 0532 3255Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704302 Taiwan
| |
Collapse
|
16
|
Urh K, Zidar N, Tomažič A, Boštjančič E. Intra‑tumor heterogeneity of cancer stem cell‑related genes and their potential regulatory microRNAs in metastasizing colorectal carcinoma. Oncol Rep 2022; 48:193. [PMID: 36111489 DOI: 10.3892/or.2022.8408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/13/2022] [Indexed: 11/06/2022] Open
Abstract
Intra‑tumor heterogeneity (ITH) is related to cancer progression, therapy resistance and recurrences, and is one of the challenging fields in cancerogenesis research. Cancer stem cells (CSC) are thought to be crucially involved in the pathogenesis of several cancer types, including colorectal carcinoma (CRC), and associated with ITH. In the present study, the expression gradient of four genes related to CSC (L1TD1, SLITRK6, ST6GALNAC1 and TCEA3) and their potential regulatory microRNAs (miRNAs) were investigated in the central part and invasive front of the primary tumor, as well as in lymph node and liver metastases. In total, 63 formalin‑fixed paraffin‑embedded biopsy samples of primary tumor (central part, invasive tumor front), as well as lymph node and liver metastases from 19 patients with CRC, were analyzed. The expression of selected genes (L1TD1, SLITRK6, ST6GALNAC1 and TCEA3) and miRNAs (miR‑199a‑3p, miR‑425‑5p, miR‑1225‑3p, miR‑1233‑3p and miR‑1303) was evaluated using reverse transcription‑quantitative PCR. Significant differences in expression were identified for all investigated genes in lymph node metastasis, but not in the liver metastases. All investigated miRNAs were significantly differentially expressed in lymph node metastasis, and miR‑199a‑3p, miR‑425‑5p and miR‑1233‑3p in liver metastasis. Furthermore, a negative correlation between the expression of miR‑199a‑3p and expression of its potential target gene SLITRK6 was confirmed. The present results provide further evidence that expression of CSC‑related genes and their potential regulatory miRNAs contribute to ITH in CRC, lymph node and liver metastasis. The SLITRK6 gene and its regulatory miRNA miR‑199a‑3p are promising for further validation in functional studies to deepen the present understanding of the regulation of CSC‑related genes in CRC.
Collapse
Affiliation(s)
- Kristian Urh
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Aleš Tomažič
- Department of Abdominal Surgery, Division of Surgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Urh K, Zidar N, Boštjančič E. Bioinformatics Analysis of RNA-seq Data Reveals Genes Related to Cancer Stem Cells in Colorectal Cancerogenesis. Int J Mol Sci 2022; 23:ijms232113252. [PMID: 36362041 PMCID: PMC9654446 DOI: 10.3390/ijms232113252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer stem cells (CSC) play one of the crucial roles in the pathogenesis of various cancers, including colorectal cancer (CRC). Although great efforts have been made regarding our understanding of the cancerogenesis of CRC, CSC involvement in CRC development is still poorly understood. Using bioinformatics and RNA-seq data of normal mucosa, colorectal adenoma, and carcinoma (n = 106) from GEO and TCGA, we identified candidate CSC genes and analyzed pathway enrichment analysis (PEI) and protein–protein interaction analysis (PPI). Identified CSC-related genes were validated using qPCR and tissue samples from 47 patients with adenoma, adenoma with early carcinoma, and carcinoma without and with lymph node metastasis and were compared to normal mucosa. Six CSC-related genes were identified: ANLN, CDK1, ECT2, PDGFD, TNC, and TNXB. ANLN, CDK1, ECT2, and TNC were differentially expressed between adenoma and adenoma with early carcinoma. TNC was differentially expressed in CRC without lymph node metastases whereas ANLN, CDK1, and PDGFD were differentially expressed in CRC with lymph node metastases compared to normal mucosa. ANLN and PDGFD were differentially expressed between carcinoma without and with lymph node metastasis. Our study identified and validated CSC-related genes that might be involved in early stages of CRC development (ANLN, CDK1, ECT2, TNC) and in development of metastasis (ANLN, PDGFD).
Collapse
|
18
|
Weng M, Li T, Zhao J, Guo M, Zhao W, Gu W, Sun C, Yue Y, Zhong Z, Nan K, Liao Q, Sun M, Zhou D, Miao C. mRNAsi-related metabolic risk score model identifies poor prognosis, immunoevasive contexture, and low chemotherapy response in colorectal cancer patients through machine learning. Front Immunol 2022; 13:950782. [PMID: 36081499 PMCID: PMC9445443 DOI: 10.3389/fimmu.2022.950782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most fatal cancers of the digestive system. Although cancer stem cells and metabolic reprogramming have an important effect on tumor progression and drug resistance, their combined effect on CRC prognosis remains unclear. Therefore, we generated a 21-gene mRNA stemness index-related metabolic risk score model, which was examined in The Cancer Genome Atlas and Gene Expression Omnibus databases (1323 patients) and validated using the Zhongshan Hospital cohort (200 patients). The high-risk group showed more immune infiltrations; higher levels of immunosuppressive checkpoints, such as CD274, tumor mutation burden, and resistance to chemotherapeutics; potentially better response to immune therapy; worse prognosis; and advanced stage of tumor node metastasis than the low-risk group. The combination of risk score and clinical characteristics was effective in predicting overall survival. Zhongshan cohort validated that high-risk score group correlated with malignant progression, worse prognosis, inferior adjuvant chemotherapy responsiveness of CRC, and shaped an immunoevasive contexture. This tool may provide a more accurate risk stratification in CRC and screening of patients with CRC responsive to immunotherapy.
Collapse
Affiliation(s)
- Meilin Weng
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Ting Li
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Jing Zhao
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Miaomiao Guo
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Wenling Zhao
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Caihong Sun
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Ziwen Zhong
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Qingwu Liao
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Minli Sun
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
- *Correspondence: Changhong Miao, ; Di Zhou, ; Minli Sun,
| | - Di Zhou
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
- *Correspondence: Changhong Miao, ; Di Zhou, ; Minli Sun,
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
- *Correspondence: Changhong Miao, ; Di Zhou, ; Minli Sun,
| |
Collapse
|
19
|
Gao X, Liao Z, Su R, Zheng D, Huang G, Huang Z, Cheng X. Depletion of Fibroblast Growth Factor 12 Restrains the Viability, Stemness, and Motility of Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9948461. [PMID: 35860801 PMCID: PMC9293533 DOI: 10.1155/2022/9948461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022]
Abstract
Background Colorectal cancer (CRC) is a leading cause of cancer-related death. CRC patients have a poor prognosis due to tumor metastasis and recurrence. Fibroblast growth factor 12 (FGF12), a member of the FGF family, is highly expressed in several cancers. However, little is known about the roles of FGF12 in CRC progression. Methods The overall survival (OS) of CRC patients was detected via Kaplan-Meier analysis. The FGF12 expression in both CRC tissues and cells was analyzed by qRT-PCR, immunohistochemistry (IHC), and western blotting (WB). LoVo and SW480 cells were transfected with shFGF12 lentivirus to silence FGF12. In vivo and in vitro experiments were performed to explore the FGF12 functions in CRC, including CCK-8, Edu, flow cytometry, Transwell, EMT, cancer stemness, and tumor xenograft experiments. Results FGF12 was upregulated in both CRC cells and tissues. High expression of FGF12 indicated a shorter OS in CRC patients. FGF12 knockdown inhibited the proliferation, invasion, stemness, and EMT of CRC cells. FGF12 knockdown promoted CRC cell apoptosis in vitro. 740 Y-P (a PI3K/AKT pathway activator) restored the proliferation, stemness, invasion, and EMT in FGF12-deficient cells and reversed LoVo cell apoptosis induced by FGF12 depletion. Depletion of FGF12 inhibited tumor growth, EMT, cancer stemness, and PI3K/AKT pathway in a xenograft mouse model. Conclusions FGF12 predicts bad clinical outcome and modulates the viability, stemness, and motility of CRC cells. Our study may provide a new insight for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Xueyuan Gao
- Department of General Surgery, Beihai People's Hospital, Beihai, Guangxi 536000, China
| | - Zuowei Liao
- Department of General Surgery, Beihai People's Hospital, Beihai, Guangxi 536000, China
| | - Rukui Su
- Department of General Surgery, Beihai People's Hospital, Beihai, Guangxi 536000, China
| | - Dongni Zheng
- Department of General Surgery, Beihai People's Hospital, Beihai, Guangxi 536000, China
| | - Guoyuan Huang
- Department of General Surgery, Beihai People's Hospital, Beihai, Guangxi 536000, China
| | - Zhong Huang
- Department of General Surgery, Beihai People's Hospital, Beihai, Guangxi 536000, China
| | - Xueyuan Cheng
- Department of General Surgery, Beihai People's Hospital, Beihai, Guangxi 536000, China
| |
Collapse
|
20
|
The Protective Role of 4-Acetylarylquinolinol B in Different Pathological Processes. Curr Issues Mol Biol 2022; 44:2362-2373. [PMID: 35678690 PMCID: PMC9164036 DOI: 10.3390/cimb44050161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Antrodia cinnamomea is a traditional plant and a unique fungus native to Taiwan that has been reported to have many biological functions, including anti-inflammatory and anticancer activities. The compound 4-acetylarylquinolinol B (4-AAQB) is one of the main bioactive compounds in the stamens of Antrodia cinnamomea, and has many biological functions, such as anti-inflammatory, antiproliferative, blood sugar reduction, antimetastasis, and vascular tone relaxation. In recent years, the increasing evidences have shown that 4-AAQB is involved in many diseases; however, the relevant mechanisms have not been fully clarified. This review aimed to clarify the improvement by 4-AAQB in different pathological processes, as well as the compound’s molecular mechanisms, in order to provide a theoretical reference for future related research
Collapse
|
21
|
Gao H, He C, Hua R, Guo Y, Wang B, Liang C, Gao L, Shang H, Xu JD. Endoplasmic Reticulum Stress of Gut Enterocyte and Intestinal Diseases. Front Mol Biosci 2022; 9:817392. [PMID: 35402506 PMCID: PMC8988245 DOI: 10.3389/fmolb.2022.817392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum, a vast reticular membranous network from the nuclear envelope to the plasma membrane responsible for the synthesis, maturation, and trafficking of a wide range of proteins, is considerably sensitive to changes in its luminal homeostasis. The loss of ER luminal homeostasis leads to abnormalities referred to as endoplasmic reticulum (ER) stress. Thus, the cell activates an adaptive response known as the unfolded protein response (UPR), a mechanism to stabilize ER homeostasis under severe environmental conditions. ER stress has recently been postulated as a disease research breakthrough due to its significant role in multiple vital cellular functions. This has caused numerous reports that ER stress-induced cell dysfunction has been implicated as an essential contributor to the occurrence and development of many diseases, resulting in them targeting the relief of ER stress. This review aims to outline the multiple molecular mechanisms of ER stress that can elucidate ER as an expansive, membrane-enclosed organelle playing a crucial role in numerous cellular functions with evident changes of several cells encountering ER stress. Alongside, we mainly focused on the therapeutic potential of ER stress inhibition in gastrointestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer. To conclude, we reviewed advanced research and highlighted future treatment strategies of ER stress-associated conditions.
Collapse
Affiliation(s)
- Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuexin Guo
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, China
| | - Chen Liang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing-Dong Xu,
| |
Collapse
|
22
|
Roca MS, Moccia T, Iannelli F, Testa C, Vitagliano C, Minopoli M, Camerlingo R, De Riso G, De Cecio R, Bruzzese F, Conte M, Altucci L, Di Gennaro E, Avallone A, Leone A, Budillon A. HDAC class I inhibitor domatinostat sensitizes pancreatic cancer to chemotherapy by targeting cancer stem cell compartment via FOXM1 modulation. J Exp Clin Cancer Res 2022; 41:83. [PMID: 35241126 PMCID: PMC8892808 DOI: 10.1186/s13046-022-02295-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/19/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) represents an unmet clinical need due to the very poor prognosis and the lack of effective therapy. Here we investigated the potential of domatinostat (4SC-202), a new class I histone deacetylase (HDAC) inhibitor, currently in clinical development, to sensitize PDAC to first line standard gemcitabine (G)/taxol (T) doublet chemotherapy treatment. METHODS Synergistic anti-tumor effect of the combined treatment was assessed in PANC1, ASPC1 and PANC28 PDAC cell lines in vitro as well as on tumor spheroids and microtissues, by evaluating combination index (CI), apoptosis, clonogenic capability. The data were confirmed in vivo xenograft models of PANC28 and PANC1 cells in athymic mice. Cancer stem cells (CSC) targeting was studied by mRNA and protein expression of CSC markers, by limiting dilution assay, and by flow cytometric and immunofluorescent evaluation of CSC mitochondrial and cellular oxidative stress. Mechanistic role of forkhead box M1 (FOXM1) and downstream targets was evaluated in FOXM1-overexpressing PDAC cells. RESULTS We showed that domatinostat sensitized in vitro and in vivo models of PDAC to chemotherapeutics commonly used in PDAC patients management and particularly to GT doublet, by targeting CSC compartment through the induction of mitochondrial and cellular oxidative stress. Mechanistically, we showed that domatinostat hampers the expression and function of FOXM1, a transcription factor playing a crucial role in stemness, oxidative stress modulation and DNA repair. Domatinostat reduced FOXM1 protein levels by downregulating mRNA expression and inducing proteasome-mediated protein degradation thus preventing nuclear translocation correlated with a reduction of FOXM1 target genes. Furthermore, by overexpressing FOXM1 in PDAC cells we significantly reduced domatinostat-inducing oxidative mitochondrial and cellular stress and abolished GT sensitization, both in adherent and spheroid cells, confirming FOXM1 crucial role in the mechanisms described. Finally, we found a correlation of FOXM1 expression with poor progression free survival in PDAC chemotherapy-treated patients. CONCLUSIONS Overall, we suggest a novel therapeutic strategy based on domatinostat to improve efficacy and to overcome resistance of commonly used chemotherapeutics in PDAC that warrant further clinical evaluation.
Collapse
Affiliation(s)
- Maria Serena Roca
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Tania Moccia
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Federica Iannelli
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Cristina Testa
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Michele Minopoli
- Neoplastic Progression Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Rosa Camerlingo
- Cell Biology and Biotherapy Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Giulia De Riso
- Department of molecular medicine and medical biotechnology, University of Naples "Federico II", Naples, Italy
| | - Rossella De Cecio
- Pathology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Francesca Bruzzese
- Animal Facility, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Mariarosaria Conte
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy.,BIOGEM, (AV), Naples, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Antonio Avallone
- Experimental Clinical Abdominal Oncology; Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy.
| |
Collapse
|
23
|
Ramesh P, Di Franco S, Atencia Taboada L, Zhang L, Nicotra A, Stassi G, Medema JP. BCL-XL inhibition induces an FGFR4-mediated rescue response in colorectal cancer. Cell Rep 2022; 38:110374. [PMID: 35172148 DOI: 10.1016/j.celrep.2022.110374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/27/2021] [Accepted: 01/21/2022] [Indexed: 01/15/2023] Open
Abstract
The heterogeneous therapy response observed in colorectal cancer is in part due to cancer stem cells (CSCs) that resist chemotherapeutic insults. The anti-apoptotic protein BCL-XL plays a critical role in protecting CSCs from cell death, where its inhibition with high doses of BH3 mimetics can induce apoptosis. Here, we screen a compound library for synergy with low-dose BCL-XL inhibitor A-1155463 to identify pathways that regulate sensitivity to BCL-XL inhibition and reveal that fibroblast growth factor receptor (FGFR)4 inhibition effectively sensitizes to A-1155463 both in vitro and in vivo. Mechanistically, we identify a rescue response that is activated upon BCL-XL inhibition and leads to rapid FGF2 secretion and subsequent FGFR4-mediated post-translational stabilization of MCL-1. FGFR4 inhibition prevents MCL-1 upregulation and thereby sensitizes CSCs to BCL-XL inhibition. Altogether, our findings suggest a cell transferable induction of a FGF2/FGFR4 rescue response in CRC that is induced upon BCL-XL inhibition and leads to MCL-1 upregulation.
Collapse
Affiliation(s)
- Prashanthi Ramesh
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Simone Di Franco
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Lidia Atencia Taboada
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Le Zhang
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Annalisa Nicotra
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Andrabi Q, Ramalingam S. Role of Notch Signalling in Oxidative Stress and Stem Cell Self-Renewal During Colitis and Colon Cancer. HANDBOOK OF OXIDATIVE STRESS IN CANCER: THERAPEUTIC ASPECTS 2022:1623-1637. [DOI: 10.1007/978-981-16-5422-0_82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
25
|
Ramesh P, Lannagan TRM, Jackstadt R, Atencia Taboada L, Lansu N, Wirapati P, van Hooff SR, Dekker D, Pritchard J, Kirov AB, van Neerven SM, Tejpar S, Kops GJPL, Sansom OJ, Medema JP. BCL-XL is crucial for progression through the adenoma-to-carcinoma sequence of colorectal cancer. Cell Death Differ 2021; 28:3282-3296. [PMID: 34117376 PMCID: PMC8630104 DOI: 10.1038/s41418-021-00816-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Evasion of apoptosis is a hallmark of cancer, which is frequently mediated by upregulation of the antiapoptotic BCL-2 family proteins. In colorectal cancer (CRC), previous work has highlighted differential antiapoptotic protein dependencies determined by the stage of the disease. While intestinal stem cells (ISCs) require BCL-2 for adenoma outgrowth and survival during transformation, ISC-specific MCL1 deletion results in disturbed intestinal homeostasis, eventually contributing to tumorigenesis. Colon cancer stem cells (CSCs), however, no longer require BCL-2 and depend mainly on BCL-XL for their survival. We therefore hypothesized that a shift in antiapoptotic protein reliance occurs in ISCs as the disease progresses from normal to adenoma to carcinoma. By targeting antiapoptotic proteins with specific BH3 mimetics in organoid models of CRC progression, we found that BCL-2 is essential only during ISC transformation while MCL1 inhibition did not affect adenoma outgrowth. BCL-XL, on the other hand, was crucial for stem cell survival throughout the adenoma-to-carcinoma sequence. Furthermore, we identified that the limited window of BCL-2 reliance is a result of its downregulation by miR-17-5p, a microRNA that is upregulated upon APC-mutation driven transformation. Here we show that BCL-XL inhibition effectively impairs adenoma outgrowth in vivo and enhances the efficacy of chemotherapy. In line with this dependency, expression of BCL-XL, but not BCL-2 or MCL1, directly correlated to the outcome of chemotherapy-treated CRC patients. Our results provide insights to enable the rational use of BH3 mimetics in CRC management, particularly underlining the therapeutic potential of BCL-XL targeting mimetics in both early and late-stage disease.
Collapse
Affiliation(s)
- Prashanthi Ramesh
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | - Rene Jackstadt
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, G61 1BD, UK
| | - Lidia Atencia Taboada
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nico Lansu
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Sander R van Hooff
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Danielle Dekker
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jessica Pritchard
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Aleksandar B Kirov
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sanne M van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Duraj T, Carrión-Navarro J, Seyfried TN, García-Romero N, Ayuso-Sacido A. Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. Mol Metab 2021; 54:101389. [PMID: 34749013 PMCID: PMC8637646 DOI: 10.1016/j.molmet.2021.101389] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aberrant metabolism is recognized as a hallmark of cancer, a pillar necessary for cellular proliferation. Regarding bioenergetics (ATP generation), most cancers display a preference not only toward aerobic glycolysis ("Warburg effect") and glutaminolysis (mitochondrial substrate level-phosphorylation) but also toward other metabolites such as lactate, pyruvate, and fat-derived sources. These secondary metabolites can assist in proliferation but cannot fully cover ATP demands. SCOPE OF REVIEW The concept of a static metabolic profile is challenged by instances of heterogeneity and flexibility to meet fuel/anaplerotic demands. Although metabolic therapies are a promising tool to improve therapeutic outcomes, either via pharmacological targets or press-pulse interventions, metabolic plasticity is rarely considered. Lack of bioenergetic analysis in vitro and patient-derived models is hindering translational potential. Here, we review the bioenergetics of cancer and propose a simple analysis of major metabolic pathways, encompassing both affordable and advanced techniques. A comprehensive compendium of Seahorse XF bioenergetic measurements is presented for the first time. MAJOR CONCLUSIONS Standardization of principal readouts might help researchers to collect a complete metabolic picture of cancer using the most appropriate methods depending on the sample of interest.
Collapse
Affiliation(s)
- Tomás Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, 28668, Madrid, Spain.
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain; Faculty of Medicine, Universidad Francisco de Vitoria, 28223, Madrid, Spain.
| |
Collapse
|
27
|
The Targeting of MRE11 or RAD51 Sensitizes Colorectal Cancer Stem Cells to CHK1 Inhibition. Cancers (Basel) 2021; 13:cancers13081957. [PMID: 33921638 PMCID: PMC8073980 DOI: 10.3390/cancers13081957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The ATR-CHK1 axis of the DNA damage response is crucial for the survival of most colorectal cancer stem cells (CRC-SCs), but a significant fraction of primary CRC-SCs either is resistant to ATR or CHK1 inhibitors or survives the abrogation of the ATR-CHK1 cascade despite an initial response. Here, we demonstrate that the targeting of RAD51 or MRE11 improves the sensitivity of primary CRC-SCs to the CHK1/2 inhibitor prexasertib by sequentially inducing replication stress, the abrogation of cell cycle checkpoints, and the emergence of mitotic defects. This results in the induction of mitotic catastrophe and CRC-SC killing via a caspase-dependent apoptosis. Abstract Cancer stem cells (CSCs) drive not only tumor initiation and expansion, but also therapeutic resistance and tumor relapse. Therefore, CSC eradication is required for effective cancer therapy. In preclinical models, CSCs demonstrated high capability to tolerate even extensive genotoxic stress, including replication stress, because they are endowed with a very robust DNA damage response (DDR). This favors the survival of DNA-damaged CSCs instead of their inhibition via apoptosis or senescence. The DDR represents a unique CSC vulnerability, but the abrogation of the DDR through the inhibition of the ATR-CHK1 axis is effective only against some subtypes of CSCs, and resistance often emerges. Here, we analyzed the impact of druggable DDR players in the response of patient-derived colorectal CSCs (CRC-SCs) to CHK1/2 inhibitor prexasertib, identifying RAD51 and MRE11 as sensitizing targets enhancing prexasertib efficacy. We showed that combined inhibition of RAD51 and CHK1 (via B02+prexasertib) or MRE11 and CHK1 (via mirin+prexasertib) kills CSCs by affecting multiple genoprotective processes. In more detail, these two prexasertib-based regimens promote CSC eradication through a sequential mechanism involving the induction of elevated replication stress in a context in which cell cycle checkpoints usually activated during the replication stress response are abrogated. This leads to uncontrolled proliferation and premature entry into mitosis of replication-stressed cells, followed by the induction of mitotic catastrophe. CRC-SCs subjected to RAD51+CHK1 inhibitors or MRE11+CHK1 inhibitors are eventually eliminated, and CRC-SC tumorspheres inhibited or disaggregated, via a caspase-dependent apoptosis. These results support further clinical development of these prexasertib-based regimens in colorectal cancer patients.
Collapse
|
28
|
Zhang L, Ramesh P, Steinmetz M, Medema JP. BH3 Mimetic Sensitivity of Colorectal Cancer Cell Lines in Correlation with Molecular Features Identifies Predictors of Response. Int J Mol Sci 2021; 22:ijms22083811. [PMID: 33917026 PMCID: PMC8067732 DOI: 10.3390/ijms22083811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 01/08/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease, which in part explains the differential response to chemotherapy observed in the clinic. BH3 mimetics, which target anti-apoptotic BCL-2 family members, have shown potential in the treatment of hematological malignancies and offer promise for the treatment of solid tumors as well. To gain a comprehensive understanding of the response to BH3 mimetics in CRC and the underlying molecular factors predicting sensitivity, we screened a panel of CRC cell lines with four BH3 mimetics targeting distinct anti-apoptotic BCL-2 proteins. Treatment with compounds alone and in combination revealed potent efficacy of combined MCL-1 and BCL-XL inhibition in inducing CRC cell death, irrespective of molecular features. Importantly, expression of the anti-apoptotic protein target of BH3 mimetics on its own did not predict sensitivity. However, the analysis did identify consensus molecular subtype (CMS) specific response patterns, such as higher resistance to single and combined BCL-2 and MCL-1 inhibition in CMS2 cell lines. Furthermore, analysis of mutation status revealed that KRAS mutant cell lines were more resistant to MCL-1 inhibition. Conclusively, we find that CRC cell lines presented with distinct responses to BH3 mimetics that can in part be predicted by their CMS profile and KRAS/BRAF mutations. Overall, almost all CRC lines share sensitivity in the nanomolar range to combined MCL-1 and BCL-XL targeting suggesting that this would be the preferred approach to target these cancers.
Collapse
Affiliation(s)
- Le Zhang
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.Z.); (P.R.); (M.S.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Prashanthi Ramesh
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.Z.); (P.R.); (M.S.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maxime Steinmetz
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.Z.); (P.R.); (M.S.)
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.Z.); (P.R.); (M.S.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
29
|
Sun X, Diao X, Zhu X, Yin X, Cheng G. Nanog-mediated stem cell properties is critical for MBNL3 associated paclitaxel resistance of ovarian cancer. J Biochem 2021; 169:747-756. [PMID: 33599261 DOI: 10.1093/jb/mvab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/11/2021] [Indexed: 01/08/2023] Open
Abstract
Paclitaxel (PTX) is the standard first-line treatment of ovarian cancer, but its efficacy is limited by multi-drug resistance. Therefore, it is crucial to identify effective drug targets to facilitate PTX-sensitivity for ovarian cancer treatment. Seventy PTX-administrated ovarian cancer patients were recruited in this study for gene expression and survival rate analyses. Muscleblind-like-3 (MBNL3) gain- and loss-of-function experiments were carried out in ovarian cancer cells (parental and PTX-resistant) and xenograft model. Cancer cell viability, apoptosis, spheroids formation, Nanog gene silencing were examined and conducted to dissect the underlying mechanism of MBNL3-mediated PTX-resistance. High expression of MBNL3 was positively correlated with PTX-resistance and poor prognosis of ovarian cancer. MBNL3 increased cell viability and decreased apoptosis in ovarian stem-like cells, through up-regulating Nanog. This study suggests the MBNL3-Nanog axis is a therapeutic target for the treatment of PTX-resistance in ovarian cancer management.
Collapse
Affiliation(s)
- Xueqin Sun
- Department of Gynecology, Zibo Central Hospital, No.54 of Gongqingtuan West Road, Zhangdian district, Zibo 255000, Shandong, China
| | - Xinghua Diao
- Department of Reproductive Medicine, Binzhou Medical University Hospital, No. 661 of Huanghe 2 Road, Binzhou 256600, Shandong, China
| | - Xiaolin Zhu
- Department of Gynecology, Zibo Central Hospital, No.54 of Gongqingtuan West Road, Zhangdian district, Zibo 255000, Shandong, China
| | - Xuexue Yin
- Department of Gynecology, Zibo Central Hospital, No.54 of Gongqingtuan West Road, Zhangdian district, Zibo 255000, Shandong, China
| | - Guangying Cheng
- Department of Gynecology, Zibo Central Hospital, No.54 of Gongqingtuan West Road, Zhangdian district, Zibo 255000, Shandong, China
| |
Collapse
|
30
|
Urh K, Žlajpah M, Zidar N, Boštjančič E. Identification and Validation of New Cancer Stem Cell-Related Genes and Their Regulatory microRNAs in Colorectal Cancerogenesis. Biomedicines 2021; 9:biomedicines9020179. [PMID: 33670246 PMCID: PMC7916981 DOI: 10.3390/biomedicines9020179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Significant progress has been made in the last decade in our understanding of the pathogenetic mechanisms of colorectal cancer (CRC). Cancer stem cells (CSC) have gained much attention and are now believed to play a crucial role in the pathogenesis of various cancers, including CRC. In the current study, we validated gene expression of four genes related to CSC, L1TD1, SLITRK6, ST6GALNAC1 and TCEA3, identified in a previous bioinformatics analysis. Using bioinformatics, potential miRNA-target gene correlations were prioritized. In total, 70 formalin-fixed paraffin-embedded biopsy samples from 47 patients with adenoma, adenoma with early carcinoma and CRC without and with lymph node metastases were included. The expression of selected genes and microRNAs (miRNAs) was evaluated using quantitative PCR. Differential expression of all investigated genes and four of six prioritized miRNAs (hsa-miR-199a-3p, hsa-miR-335-5p, hsa-miR-425-5p, hsa-miR-1225-3p, hsa-miR-1233-3p and hsa-miR-1303) was found in at least one group of CRC cancerogenesis. L1TD1, SLITRK6, miR-1233-3p and miR-1225-3p were correlated to the level of malignancy. A negative correlation between miR-199a-3p and its predicted target SLITRK6 was observed, showing potential for further experimental validation in CRC. Our results provide further evidence that CSC-related genes and their regulatory miRNAs are involved in CRC development and progression and suggest that some them, particularly miR-199a-3p and its SLITRK6 target gene, are promising for further validation in CRC.
Collapse
|
31
|
Ugarte-Alvarez O, Muñoz-López P, Moreno-Vargas LM, Prada-Gracia D, Mateos-Chávez AA, Becerra-Báez EI, Luria-Pérez R. Cell-Permeable Bak BH3 Peptide Induces Chemosensitization of Hematologic Malignant Cells. JOURNAL OF ONCOLOGY 2020; 2020:2679046. [PMID: 33312200 PMCID: PMC7721494 DOI: 10.1155/2020/2679046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/04/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022]
Abstract
Hematologic malignancies such as leukemias and lymphomas are among the leading causes of pediatric cancer death worldwide, and although survival rates have improved with conventional treatments, the development of drug-resistant cancer cells may lead to patient relapse and limited possibilities of a cure. Drug-resistant cancer cells in these hematologic neoplasms are induced by overexpression of the antiapoptotic B-cell lymphoma 2 (Bcl-2) protein families, such as Bcl-XL, Bcl-2, and Mcl-1. We have previously shown that peptides from the BH3 domain of the proapoptotic Bax protein that also belongs to the Bcl-2 family may antagonize the antiapoptotic activity of the Bcl-2 family proteins, restore apoptosis, and induce chemosensitization of tumor cells. Furthermore, cell-permeable Bax BH3 peptides also elicit antitumor activity and extend survival in a murine xenograft model of human B non-Hodgkin's lymphoma. However, the activity of the BH3 peptides of the proapoptotic Bak protein of the Bcl-2 family against these hematologic malignant cells requires further characterization. In this study, we report the ability of the cell-permeable Bak BH3 peptide to restore apoptosis and induce chemosensitization of acute lymphoblastic leukemia and non-Hodgkin's lymphoma cell lines, and this event is enhanced with the coadministration of cell-permeable Bax BH3 peptide and represents an attractive approach to improve the patient outcomes with relapsed or refractory hematological malignant cells.
Collapse
Affiliation(s)
- Omar Ugarte-Alvarez
- Unit of Investigative Research on Oncological Diseases, Children's Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Paola Muñoz-López
- Unit of Investigative Research on Oncological Diseases, Children's Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Liliana Marisol Moreno-Vargas
- Research Unit on Computational Biology and Drug Design, Children's Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Diego Prada-Gracia
- Research Unit on Computational Biology and Drug Design, Children's Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Armando Alfredo Mateos-Chávez
- Unit of Investigative Research on Oncological Diseases, Children's Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Elayne Irene Becerra-Báez
- Unit of Investigative Research on Oncological Diseases, Children's Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Rosendo Luria-Pérez
- Unit of Investigative Research on Oncological Diseases, Children's Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| |
Collapse
|
32
|
Iannelli F, Roca MS, Lombardi R, Ciardiello C, Grumetti L, De Rienzo S, Moccia T, Vitagliano C, Sorice A, Costantini S, Milone MR, Pucci B, Leone A, Di Gennaro E, Mancini R, Ciliberto G, Bruzzese F, Budillon A. Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:213. [PMID: 33032653 PMCID: PMC7545949 DOI: 10.1186/s13046-020-01723-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite the introduction of several novel therapeutic approaches that improved survival, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease. Herein we report the synergistic antitumor interaction between two well-known drugs used for years in clinical practice, the antiepileptic agent with histone deacetylase inhibitory activity valproic acid and the cholesterol lowering agent simvastatin, in mCRPC models. METHODS Synergistic anti-tumor effect was assessed on PC3, 22Rv1, DU145, DU145R80, LNCaP prostate cancer cell lines and EPN normal prostate epithelial cells, by calculating combination index (CI), caspase 3/7 activation and colony formation assays as well as on tumor spheroids and microtissues scored with luminescence 3D-cell viability assay. Cancer stem cells (CSC) compartment was studied evaluating specific markers by RT-PCR, western blotting and flow cytometry as well as by limiting dilution assay. Cholesterol content was evaluated by 1H-NMR. Overexpression of wild-type YAP and constitutively active YAP5SA were obtained by lipofectamine-based transfection and evaluated by immunofluorescence, western blotting and RT-PCR. 22Rv1 R_39 docetaxel resistant cells were selected by stepwise exposure to increasing drug concentrations. In vivo experiments were performed on xenograft models of DU145R80, 22Rv1 parental and docetaxel resistant cells, in athymic mice. RESULTS We demonstrated the capacity of the combined approach to target CSC compartment by a novel molecular mechanism based on the inhibition of YAP oncogene via concurrent modulation of mevalonate pathway and AMPK. Because both CSCs and YAP activation have been associated with chemo-resistance, we tested if the combined approach can potentiate docetaxel, a standard of care in mCRCP treatment. Indeed, we demonstrated, both in vitro and in vivo models, the ability of valproic acid/simvastatin combination to sensitize mCRPC cells to docetaxel and to revert docetaxel-resistance, by mevalonate pathway/YAP axis modulation. CONCLUSION Overall, mCRPC progression and therapeutic resistance driven by CSCs via YAP, can be tackled by the combined repurposing of two generic and safe drugs, an approach that warrants further clinical development in this disease.
Collapse
Affiliation(s)
- Federica Iannelli
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Rita Lombardi
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Chiara Ciardiello
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Laura Grumetti
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Simona De Rienzo
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Tania Moccia
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Angela Sorice
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Susan Costantini
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Maria Rita Milone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Biagio Pucci
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Francesca Bruzzese
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy. .,Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via Ammiraglio Bianco, 83013, Mercogliano, AV, Italy.
| | - Alfredo Budillon
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy.
| |
Collapse
|
33
|
Das PK, Islam F, Lam AK. The Roles of Cancer Stem Cells and Therapy Resistance in Colorectal Carcinoma. Cells 2020; 9:1392. [PMID: 32503256 PMCID: PMC7348976 DOI: 10.3390/cells9061392] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer stem cells (CSCs) are the main culprits involved in therapy resistance and disease recurrence in colorectal carcinoma (CRC). Results using cell culture, animal models and tissues from patients with CRC suggest the indispensable roles of colorectal CSCs in therapeutic failure. Conventional therapies target proliferating and mature cancer cells, while CSCs are mostly quiescent and poorly differentiated, thereby they can easily survive chemotherapeutic insults. The aberrant activation of Wnt/β-catenin, Notch, Hedgehog, Hippo/YAP (Yes-associated protein) and phosphatidylinositol 3-kinase/protein kinase B facilitates CSCs with excessive self-renewal and therapy resistance property in CRC. CSCs survive the chemo-radiotherapies by escaping therapy mediated DNA damage via altering the cell cycle checkpoints, increasing DNA damage repair capacity and by an efficient scavenging of reactive oxygen species. Furthermore, dysregulations of miRNAs e.g., miR-21, miR-93, miR-203, miR-215, miR-497 etc., modulate the therapeutic sensitivity of colorectal CSCs by regulating growth and survival signalling. In addition, a reversible quiescent G0 state and the re-entering cell cycle capacity of colorectal CSCs can accelerate tumour regeneration after treatment. Moreover, switching to favourable metabolic signatures during a therapeutic regimen will add more complexity in therapeutic outcomes against CSCs. Therapeutic strategies targeting these underlying mechanisms of CSCs' therapy resistance could provide a promising outcome, however, deep understanding and concerted research are necessary to design novel therapies targeting CSCs. To conclude, the understanding of these mechanisms of CSC in CRC could lead to the improved management of patients with CRC.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh;
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Alfred K. Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
34
|
Abstract
Apoptosis is a form of programmed cell death that is essential for tissue homeostasis. De-regulation of the balance between proliferation and apoptosis contributes to tumor initiation. Particularly in the colon where apoptosis is a crucial process in intestinal turnover, inhibition of apoptosis facilitates transformation and tumor progression. The BCL-2 family of proteins are key regulators of apoptosis and have been implicated in colorectal cancer (CRC) initiation, progression and resistance to therapy. In this review we outline the current knowledge on the BCL-2 family-regulated intrinsic apoptosis pathway and mechanisms by which it is de-regulated in CRC. We further review BH3 mimetics as a therapeutic opportunity to target this pathway and evaluate their potential for CRC treatment.
Collapse
Affiliation(s)
- Prashanthi Ramesh
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Serna N, Álamo P, Ramesh P, Vinokurova D, Sánchez-García L, Unzueta U, Gallardo A, Céspedes MV, Vázquez E, Villaverde A, Mangues R, Medema JP. Nanostructured toxins for the selective destruction of drug-resistant human CXCR4 + colorectal cancer stem cells. J Control Release 2020; 320:96-104. [PMID: 31931052 DOI: 10.1016/j.jconrel.2020.01.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/16/2022]
Abstract
Current therapies fail to eradicate colorectal Cancer Stem Cells (CSCs). One of the proposed reasons for this failure is the selection, by chemotherapy exposure, of resistant cells responsible for tumor recurrence. In this regard, CXCR4 overexpression in tumor associates with resistance and poor prognosis in colorectal cancer (CRC) patients. In this study, the effectiveness of engineered CXCR4-targeted self-assembling toxin nanoparticles has been explored in the selective killing of CXCR4+ human colon-CSCs compared to 5-Fluorouracil and Oxaliplatin, both classical CRC chemotherapeutic agents. To assess this, 3D spheroid colon-CSCs cultures directly derived from CRC patients and CRC-CSC spheroid-derived tumor mouse models were developed. In these animal models, nanostructured toxins show highly selective induction of pyroptosis in the absence of apoptosis, thus having a great potential to overcome tumor resistance, since the same tumor models show resistance to chemotherapeutics. Results set the basis for further development of more efficient therapies focused on selective CXCR4+ CSCs elimination activating non-apoptotic mechanisms and represent a pre-clinical proof of concept for the use of CSCs-targeted nanostructured toxins as protein drugs for CRC therapy.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain.
| | - Patricia Álamo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Prashanthi Ramesh
- Amsterdam UMC, Univ of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Daria Vinokurova
- Amsterdam UMC, Univ of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Alberto Gallardo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - María Virtudes Céspedes
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Jan Paul Medema
- Amsterdam UMC, Univ of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| |
Collapse
|
36
|
Valès S, Bacola G, Biraud M, Touvron M, Bessard A, Geraldo F, Dougherty KA, Lashani S, Bossard C, Flamant M, Duchalais E, Marionneau-Lambot S, Oullier T, Oliver L, Neunlist M, Vallette FM, Van Landeghem L. Tumor cells hijack enteric glia to activate colon cancer stem cells and stimulate tumorigenesis. EBioMedicine 2019; 49:172-188. [PMID: 31662289 PMCID: PMC6945247 DOI: 10.1016/j.ebiom.2019.09.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Colon cancer stem cells (CSCs), considered responsible for tumor initiation and cancer relapse, are constantly exposed to regulatory cues emanating from neighboring cells present in the tumor microenvironment. Among these cells are enteric glial cells (EGCs) that are potent regulators of the epithelium functions in a healthy intestine. However, whether EGCs impact CSC-driven tumorigenesis remains unknown. METHODS Impact of human EGC primary cultures or a non-transformed EGC line on CSCs isolated from human primary colon adenocarcinomas or colon cancer cell lines with different p53, MMR system and stemness status was determined using murine xenograft models and 3D co-culture systems. Supernatants of patient-matched human primary colon adenocarcinomas and non-adjacent healthy mucosa were used to mimic tumor versus healthy mucosa secretomes and compare their effects on EGCs. FINDINGS Our data show that EGCs stimulate CSC expansion and ability to give rise to tumors via paracrine signaling. Importantly, only EGCs that were pre-activated by tumor epithelial cell-derived soluble factors increased CSC tumorigenicity. Pharmacological inhibition of PGE2 biosynthesis in EGCs or IL-1 knockdown in tumor epithelial cells prevented EGC acquisition of a pro-tumorigenic phenotype. Inhibition of PGE2 receptor EP4 and EGFR in CSCs inhibited the effects of tumor-activated EGCs. INTERPRETATION Altogether, our results show that EGCs, once activated by the tumor, acquire a pro-tumorigenic phenotype and stimulate CSC-driven tumorigenesis via a PGE2/EP4/EGFR-dependent pathway. FUNDING This work was supported by grants from the French National Cancer Institute, La Ligue contre le Cancer, the 'Région des Pays de la Loire' and the UNC Lineberger Comprehensive Cancer Center.
Collapse
Affiliation(s)
- Simon Valès
- Bretagne Loire University, Nantes University, INSERM 1235, IMAD, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Gregory Bacola
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Mandy Biraud
- Bretagne Loire University, Nantes University, INSERM 1235, IMAD, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Mélissa Touvron
- Bretagne Loire University, Nantes University, INSERM 1235, IMAD, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Anne Bessard
- Bretagne Loire University, Nantes University, INSERM 1235, IMAD, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Fanny Geraldo
- Nantes University, INSERM 1232, CRCINA, Nantes, France
| | - Kelsie A. Dougherty
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Shaian Lashani
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | - Mathurin Flamant
- Nantes University Hospital, Nantes, France,Jules Verne Clinic, Nantes, France
| | - Emilie Duchalais
- Bretagne Loire University, Nantes University, INSERM 1235, IMAD, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France,Nantes University Hospital, Nantes, France
| | | | | | - Lisa Oliver
- Nantes University, INSERM 1232, CRCINA, Nantes, France,Nantes University Hospital, Nantes, France
| | - Michel Neunlist
- Bretagne Loire University, Nantes University, INSERM 1235, IMAD, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France,Nantes University Hospital, Nantes, France
| | | | - Laurianne Van Landeghem
- Bretagne Loire University, Nantes University, INSERM 1235, IMAD, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA,Corresponding author at: North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, CB# 8401, Raleigh, NC 27607, USA.
| |
Collapse
|
37
|
Iyer DN, Sin WY, Ng L. Linking stemness with colorectal cancer initiation, progression, and therapy. World J Stem Cells 2019; 11:519-534. [PMID: 31523371 PMCID: PMC6716088 DOI: 10.4252/wjsc.v11.i8.519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
The discovery of cancer stem cells caused a paradigm shift in the concepts of origin and development of colorectal cancer. Several unresolved questions remain in this field though. Are colorectal cancer stem cells the cause or an effect of the disease? How do cancer stem cells assist in colorectal tumor dissemination to distant organs? What are the molecular or environmental factors affecting the roles of these cells in colorectal cancer? Through this review, we investigate the key findings until now and attempt to elucidate the origins, physical properties, microenvironmental niches, as well as the molecular signaling network that support the existence, self-renewal, plasticity, quiescence, and the overall maintenance of cancer stem cells in colorectal cancer. Increasing data show that the cancer stem cells play a crucial role not only in the establishment of the primary colorectal tumor but also in the distant spread of the disease. Hence, we will also look at the mechanisms adopted by cancer stem cells to influence the development of metastasis and evade therapeutic targeting and its role in the overall disease prognosis. Finally, we will illustrate the importance of understanding the biology of these cells to develop improved clinical strategies to tackle colorectal cancer.
Collapse
Affiliation(s)
- Deepak Narayanan Iyer
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai-Yan Sin
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
Implication for Cancer Stem Cells in Solid Cancer Chemo-Resistance: Promising Therapeutic Strategies Based on the Use of HDAC Inhibitors. J Clin Med 2019; 8:jcm8070912. [PMID: 31247937 PMCID: PMC6678716 DOI: 10.3390/jcm8070912] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022] Open
Abstract
Resistance to therapy in patients with solid cancers represents a daunting challenge that must be addressed. Indeed, current strategies are still not effective in the majority of patients; which has resulted in the need for novel therapeutic approaches. Cancer stem cells (CSCs), a subset of tumor cells that possess self-renewal and multilineage differentiation potential, are known to be intrinsically resistant to anticancer treatments. In this review, we analyzed the implications for CSCs in drug resistance and described that multiple alterations in morphogenetic pathways (i.e., Hippo, Wnt, JAK/STAT, TGF-β, Notch, Hedgehog pathways) were suggested to be critical for CSC plasticity. By interrogating The Cancer Genome Atlas (TCGA) datasets, we first analyzed the prevalence of morphogenetic pathways alterations in solid tumors with associated outcomes. Then, by highlighting epigenetic relevance in CSC development and maintenance, we selected histone deacetylase inhibitors (HDACi) as potential agents of interest to target this subpopulation based on the pleiotropic effects exerted specifically on altered morphogenetic pathways. In detail, we highlighted the role of HDACi in solid cancers and, specifically, in the CSC subpopulation and we pointed out some mechanisms by which HDACi are able to overcome drug resistance and to modulate stemness. Although, further clinical and preclinical investigations should be conducted to disclose the unclear mechanisms by which HDACi modulate several signaling pathways in different tumors. To date, several lines of evidence support the testing of novel combinatorial therapeutic strategies based on the combination of drugs commonly used in clinical practice and HDACi to improve therapeutic efficacy in solid cancer patients.
Collapse
|
39
|
Visioli A, Giani F, Trivieri N, Pracella R, Miccinilli E, Cariglia MG, Palumbo O, Arleo A, Dezi F, Copetti M, Cajola L, Restelli S, Papa V, Sciuto A, Latiano TP, Carella M, Amadori D, Gallerani G, Ricci R, Alfieri S, Pesole G, Vescovi AL, Binda E. Stemness underpinning all steps of human colorectal cancer defines the core of effective therapeutic strategies. EBioMedicine 2019; 44:346-360. [PMID: 31056474 PMCID: PMC6603803 DOI: 10.1016/j.ebiom.2019.04.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite their lethality and ensuing clinical and therapeutic relevance, circulating tumor cells (CTCs) from colorectal carcinoma (CRC) remain elusive, poorly characterized biological entities. METHODS AND FINDINGS We perfected a cell system of stable, primary lines from human CRC showing that they possess the full complement of ex- and in-vivo, in xenogeneic models, characteristics of CRC stem cells (CCSCs). Here we show how tumor-initiating, CCSCs cells can establish faithful orthotopic phenocopies of the original disease, which contain cells that spread into the circulatory system. While in the vascular bed, these cells retain stemness, thus qualifying as circulating CCSCs (cCCSCs). This is followed by the establishment of lesions in distant organs, which also contain resident metastatic CCSCs (mCCSCs). INTERPRETATION Our results support the concept that throughout all the stages of CRC, stemness is retained as a continuous property by some of their tumor cells. Importantly, we describe a useful standardized model that can enable isolation and stable perpetuation of human CRC's CCSCs, cCCSCs and mCCSCs, providing a useful platform for studies of CRC initiation and progression that is suitable for the discovery of reliable stage-specific biomarkers and the refinement of new patient-tailored therapies. FUND: This work was financially supported by grants from "Ministero della Salute Italiano"(GR-2011-02351534, RC1703IC36 and RC1803IC35) to Elena Binda and from "Associazione Italiana Cancro" (IG-14368) Angelo L. Vescovi. None of the above funders have any role in study design, data collection, data analysis, interpretation, writing the project.
Collapse
Affiliation(s)
| | | | - Nadia Trivieri
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISBReMIT, Foggia, Italy
| | - Riccardo Pracella
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISBReMIT, Foggia, Italy
| | - Elide Miccinilli
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISBReMIT, Foggia, Italy
| | - Maria Grazia Cariglia
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISBReMIT, Foggia, Italy
| | - Orazio Palumbo
- Fondazione IRCCS Casa Sollievo della Sofferenza, Medical Genetics Unit, Foggia, Italy
| | - Andrea Arleo
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISBReMIT, Foggia, Italy
| | - Fabio Dezi
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISBReMIT, Foggia, Italy
| | - Massimiliano Copetti
- Fondazione IRCCS Casa Sollievo della Sofferenza, Biostatistic Unit, Foggia, Italy
| | | | | | - Valerio Papa
- Digestive Surgery Unit, IRCCS "A. Gemelli", Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio Sciuto
- IRCCS Casa Sollievo della Sofferenza, Abdominal Surgery Unit, Foggia, Italy
| | | | - Massimo Carella
- Fondazione IRCCS Casa Sollievo della Sofferenza, Medical Genetics Unit, Foggia, Italy
| | - Dino Amadori
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS Meldola, Italy
| | - Giulia Gallerani
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS Meldola, Biosciences Laboratory, Italy
| | - Riccardo Ricci
- Department of Pathology, IRCCS "A. Gemelli", Catholic University of the Sacred Heart, Rome, Italy
| | - Sergio Alfieri
- Department of Pathology, IRCCS "A. Gemelli", Catholic University of the Sacred Heart, Rome, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari del Consiglio Nazionale delle Ricerche, Bari, Italy; Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica dell'Università di Bari "A. Moro". Bari, Italy
| | - Angelo L Vescovi
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISBReMIT, Foggia, Italy; Hyperstem SA, Lugano, Switzerland.
| | - Elena Binda
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISBReMIT, Foggia, Italy.
| |
Collapse
|
40
|
Chang CW, Lo JF, Wang XW. Roles of mitochondria in liver cancer stem cells. Differentiation 2019; 107:35-41. [PMID: 31176254 DOI: 10.1016/j.diff.2019.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023]
Abstract
Primary liver cancer (PLC) is heterogeneous and it is an aggressive malignancy with a poor prognostic outcome. Current evidence suggests that PLC tumorigenesis is driven by rare subpopulations of cancer stem cells (CSCs), which contribute to tumor initiation, progression, and therapy resistance through particular molecular mechanisms. Energy metabolism and mitochondrial function play an important role in the regulation of cancer stemness and stem cell specifications. Since the role of mitochondrial function as central hubs in cell growth and survival, studies on the critical physiological mechanisms of the liver underlying their therapy-resistant phenotype is important. In this review, we focus on liver CSC-related mitochondrial metabolism that contributes to the liver CSC features, in terms of enhanced drug-resistance and increased tumorigenicity, and to discuss their roles on potential therapies windows for PLC therapies.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan; Cancer Progression Center of Excellence, National Yang-Ming University, Taipei, Taiwan
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA; Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
41
|
Guo W, Dong W, Li M, Shen Y. Mitochondria P-glycoprotein confers paclitaxel resistance on ovarian cancer cells. Onco Targets Ther 2019; 12:3881-3891. [PMID: 31190887 PMCID: PMC6529025 DOI: 10.2147/ott.s193433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/27/2019] [Indexed: 01/01/2023] Open
Abstract
Background: Subcellular expression of P-glycoprotein (P-gp) may play an essential role in multidrug resistance (MDR) in many cancers. However, the mitochondria expression and functional activity of P-gp in ovarian cancer are still unclear. In this study, we isolated mitochondria from A2780 cell line and its paclitaxel-resistant subline A2780T and investigated the expression and function of mitochondria P-gp. Methods: Immunocytochemistry was used to evaluate P-gp expression and subcellular localization in cancer cells. Immunofluorescence and laser confocal microscopy were used to detect the co-localization of P-gp and mitochondria both in ovarian cancer tissues and in cell lines. Western blotting (WB), transmission electron microscopy and JC-1 kit were used to evaluate the purity, integrity and activity of the isolated mitochondria. P-gp expression in the whole cell and the isolated mitochondria was evaluated by WB. Flow cytometry was used to evaluate the efflux function of mitochondria P-gp. Results: P-gp expression was detected at the membrane, cytoplasm and nuclei of the A2780T cells, but not in the A2780 cells. Co-localization of P-gp and mitochondria was observed in the A2780T cell line and ovarian cancer tissues, but not in A2780 cells. The purity, integration and activity of the isolated mitochondria are high. P-gp was highly expressed in the A2780T cells and the isolated mitochondria, but was not found in A2780 cells. Rho123 efflux rate was significantly increased in isolated A2780T mitochondria compared to those in A2780 (43.2% vs 9.6%), but it was partly reversed by cyclosporin A (CsA, a P-gp inhibitor). Conclusion: P-gp is highly expressed in mitochondria of taxol-resistant ovarian cancer cells and ovarian cancer tissues and mediates the drug efflux, which probably protect cancer cells from chemotherapy.
Collapse
Affiliation(s)
- Weina Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weihong Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
42
|
Mesenchymal Stem Cells and Cancer: Clinical Challenges and Opportunities. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2820853. [PMID: 31205939 PMCID: PMC6530243 DOI: 10.1155/2019/2820853] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Stem cell-based therapies exhibit profound therapeutic potential for treating various human diseases, including cancer. Among the cell types that can be used for this purpose, mesenchymal stem cells (MSCs) are considered as promising source of stem cells in personalized cell-based therapies. The inherent tumor-tropic property of MSCs can be used to target cancer cells. Although the impacts of MSCs on tumor progression remain elusive, they have been genetically modified or engineered as targeted anticancer agents which could inhibit tumor growth by blocking different processes of tumor. In addition, there are close interactions between MSCs and cancer stem cells (CSCs). MSCs can regulate the growth of CSCs through paracrine mechanisms. This review aims to focus on the current knowledge about MSCs-based tumor therapies, the opportunities and challenges, as well as the prospective of its further clinical implications.
Collapse
|
43
|
van der Heijden M, Vermeulen L. Stem cells in homeostasis and cancer of the gut. Mol Cancer 2019; 18:66. [PMID: 30927915 PMCID: PMC6441158 DOI: 10.1186/s12943-019-0962-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelial lining is one of the most rapidly renewing cell populations in the body. As a result, the gut has been an attractive model to resolve key mechanisms in epithelial homeostasis. In particular the role of intestinal stem cells (ISCs) in the renewal process has been intensely studied. Interestingly, as opposed to the traditional stem cell theory, the ISC is not a static population but displays significant plasticity and in situations of tissue regeneration more differentiated cells can revert back to a stem cell state upon exposure to extracellular signals. Importantly, normal intestinal homeostasis provides important insight into mechanisms that drive colorectal cancer (CRC) development and growth. Specifically, the dynamics of cancer stem cells bear important resemblance to ISC functionality. In this review we present an overview of the current knowledge on ISCs in homeostasis and their role in malignant transformation. Also, we discuss the existence of stem cells in intestinal adenomas and CRC and how these cells contribute to (pre-)malignant growth. Furthermore, we will focus on new paradigms in the field of dynamical cellular hierarchies in CRC and the intimate relationship between tumor cells and their niche.
Collapse
Affiliation(s)
- Maartje van der Heijden
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105, Amsterdam, AZ, Netherlands
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105, Amsterdam, AZ, Netherlands.
| |
Collapse
|
44
|
MEK5/ERK5 activation regulates colon cancer stem-like cell properties. Cell Death Discov 2019; 5:68. [PMID: 30774996 PMCID: PMC6370793 DOI: 10.1038/s41420-019-0150-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
Colon cancer has been proposed to be sustained by a small subpopulation of stem-like cells with unique properties allowing them to survive conventional therapies and drive tumor recurrence. Identification of targetable signaling pathways contributing to malignant stem-like cell maintenance may therefore translate into new therapeutic strategies to overcome drug resistance. Here we demonstrated that MEK5/ERK5 signaling activation is associated with stem-like malignant phenotypes. Conversely, using a panel of cell line-derived three-dimensional models, we showed that ERK5 inhibition markedly suppresses the molecular and functional features of colon cancer stem-like cells. Particularly, pharmacological inhibition of ERK5 using XMD8-92 reduced the rate of primary and secondary sphere formation, the expression of pluripotency transcription factors SOX2, NANOG, and OCT4, and the proportion of tumor cells with increased ALDH activity. Notably, this was further associated with increased sensitivity to 5-fluorouracil-based chemotherapy. Mechanistically, ERK5 inhibition resulted in decreased IL-8 expression and NF-κB transcriptional activity, suggesting a possible ERK5/NF-κB/IL-8 signaling axis regulating stem-like cell malignancy. Taken together, our results provide proof of principle that ERK5-targeted inhibition may be a promising therapeutic approach to eliminate drug-resistant cancer stem-like cells and improve colon cancer treatment.
Collapse
|
45
|
Levesley J, Steele L, Brüning-Richardson A, Davison A, Zhou J, Ding C, Lawler S, Short SC. Selective BCL-XL inhibition promotes apoptosis in combination with MLN8237 in medulloblastoma and pediatric glioblastoma cells. Neuro Oncol 2019; 20:203-214. [PMID: 29016820 DOI: 10.1093/neuonc/nox134] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background CNS tumors, including medulloblastoma and pediatric glioblastoma (pGBM) account for the majority of solid pediatric malignancies. There remains an unmet need to identify novel treatment approaches in poor prognosis and relapsed pediatric brain tumors, where therapeutic options are limited. Small-molecule B-cell lymphoma 2 (BCL-2) family inhibitors may enhance tumor cell killing when combined with conventional and targeted chemotherapeutic agents. We investigated the effect of disrupting BCL-2 and B cell lymphoma-extra large (BCL-XL) protein function using ABT-263, ABT-199 and WEHI-539 in medulloblastoma and pGBM cells following treatment with MLN8237, an Aurora kinase inhibitor under investigation as a novel agent for the treatment of malignant brain tumors. Methods Tumor cell growth and viability were determined by MTT/WST-1 assays and flow cytometry. Effects on cell phenotype, cell cycle progression, and ploidy were determined by live cell imaging and DNA content analysis. Apoptosis was determined by annexin V/propidium iodide staining and time-lapse microscopy and confirmed by measuring caspase-3/7 activity and western blotting and by short interfering RNA (siRNA) knockdown of BCL-2 associated X protein/BCL-2 antagonist killer (BAX/BAK). Results ABT-263, in combination with MLN8237, reduced mitotic slippage and polyploidy and promoted the elimination of mitotically defective cells via a BAX/BAK-dependent, caspase-mediated apoptotic pathway. The BCL-XL antagonist, WEHI-539, significantly augmented tumor cell killing when used in combination with MLN8237, as well as sensitized resistant brain tumor cells to a novel BAX activator, SMBA1. In addition, siRNA-mediated knockdown of BCL-XL sensitized pGBM and medulloblastoma cells to MLN8237 and mimicked the effect of combination drug treatment. Conclusion Selective small-molecule inhibitors of BCL-XL may enhance the efficacy of MLN8237 and other targeted chemotherapeutic agents.
Collapse
Affiliation(s)
- Jane Levesley
- Translational Neuro-Oncology Group, Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - Lynette Steele
- Translational Neuro-Oncology Group, Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - Anke Brüning-Richardson
- Translational Neuro-Oncology Group, Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - Adam Davison
- Flow Cytometry Facility, Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chunyong Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sean Lawler
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan C Short
- Translational Neuro-Oncology Group, Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| |
Collapse
|
46
|
Pharmacological targeting of mitochondria in cancer stem cells: An ancient organelle at the crossroad of novel anti-cancer therapies. Pharmacol Res 2019; 139:298-313. [DOI: 10.1016/j.phrs.2018.11.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
47
|
Discovery of a small-molecule inhibitor of specific serine residue BAD phosphorylation. Proc Natl Acad Sci U S A 2018; 115:E10505-E10514. [PMID: 30309962 DOI: 10.1073/pnas.1804897115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human BCL-2-associated death promoter (hBAD) is an apoptosis-regulatory protein mediating survival signals to carcinoma cells upon phosphorylation of Ser99, among other residues. Herein, we screened multiple small-molecule databases queried in a Laplacian-modified naive Bayesian-based cheminformatics platform and identified a Petasis reaction product as a site-specific inhibitor for hBAD phosphorylation. Based on apoptotic efficacy against mammary carcinoma cells, N-cyclopentyl-3-((4-(2,3-dichlorophenyl) piperazin-1-yl) (2-hydroxyphenyl) methyl) benzamide (NPB) was identified as a potential lead compound. In vitro biochemical analyses demonstrated that NPB inhibited the phosphorylation of hBAD specifically on Ser99. NPB was observed to exert this effect independently of AKT and other kinase activities despite the demonstration of AKT-mediated BAD-Ser99 phosphorylation. Using a structure-based bioinformatics platform, we observed that NPB exhibited predicted interactions with hBAD in silico and verified the same by direct binding kinetics. NPB reduced phosphorylation of BAD-Ser99 and enhanced caspase 3/7 activity with associated loss of cell viability in various human cancer cell lines derived from mammary, endometrial, ovarian, hepatocellular, colon, prostatic, and pancreatic carcinoma. Furthermore, by use of a xenograft model, it was observed that NPB, as a single agent, markedly diminished BAD phosphorylation in tumor tissue and significantly inhibited tumor growth. Similar doses of NPB utilized in acute toxicity studies in mice did not exhibit significant effects. Hence, we report a site-specific inhibitor of BAD phosphorylation with efficacy in tumor models.
Collapse
|
48
|
BH3 mimetics induce apoptosis independent of DRP-1 in melanoma. Cell Death Dis 2018; 9:907. [PMID: 30185782 PMCID: PMC6125485 DOI: 10.1038/s41419-018-0932-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/11/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
Despite the recent advancement in treating melanoma, options are still limited for patients without BRAF mutations or in relapse from current treatments. BH3 mimetics against members of the BCL-2 family have gained excitement with the recent success in hematological malignancies. However, single drug BH3 mimetic therapy in melanoma has limited effectiveness due to escape by the anti-apoptotic protein MCL-1 and/or survival of melanoma-initiating cells (MICs). We tested the efficacy of the BH3 mimetic combination of A-1210477 (an MCL-1 inhibitor) and ABT-263 (a BCL-2/BCL-XL/BCL-W inhibitor) in killing melanoma, especially MICs. We also sought to better define Dynamin-Related Protein 1 (DRP-1)'s role in melanoma; DRP-1 is known to interact with members of the BCL-2 family and is a possible therapeutic target for melanoma treatment. We used multiple assays (cell viability, apoptosis, bright field, immunoblot, and sphere formation), as well as the CRISPR/Cas9 genome-editing techniques. For clinical relevance, we employed patient samples of different mutation status, including some relapsed from current treatments such as anti-PD-1 immunotherapy. We found the BH3 mimetic combination kill both the MICs and non-MICs (bulk of melanoma) in all cell lines and patient samples irrespective of the mutation status or relapsed state (p < 0.05). Unexpectedly, the major pro-apoptotic proteins, NOXA and BIM, are not necessary for the combination-induced cell death. Furthermore, the combination impedes the activation of DRP-1, and inhibition of DRP-1 further enhances apoptosis (p < 0.05). DRP-1 effects in melanoma differ from those seen in other cancer cells. These results provide new insights into BCL-2 family's regulation of the apoptotic pathway in melanoma, and suggest that inhibiting the major anti-apoptotic proteins is sufficient to induce cell death even without involvement from major pro-apoptotic proteins. Importantly, our study also indicates that DRP-1 inhibition is a promising adjuvant for BH3 mimetics in melanoma treatment.
Collapse
|
49
|
Two novel SHP-1 agonists, SC-43 and SC-78, are more potent than regorafenib in suppressing the in vitro stemness of human colorectal cancer cells. Cell Death Discov 2018; 4:25. [PMID: 30109144 PMCID: PMC6089896 DOI: 10.1038/s41420-018-0084-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/28/2018] [Accepted: 06/03/2018] [Indexed: 12/20/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) has been shown to play a critical role in the maintenance of cancer stem cells (CSCs). Hence, the inhibition of STAT3 signaling has been suggested to be a viable therapeutic approach for cancers. Moreover, the efficacy of combinations of chemotherapeutic drugs and napabucasin, a small-molecule STAT3 inhibitor, have been assessed in various clinical trials, including those involving patients with metastatic colorectal cancer (CRC). Two recently developed small-molecule STAT3 inhibitors, SC-43 and SC-78, which can stimulate SHP-1 to inactivate STAT3, were found to have anti-tumor activity. In this study, the inhibitory effects of SC-43, SC-78, and regorafenib (a reference drug) on cell viability, STAT3 phosphorylation, and various stemness properties [e.g., sphere-forming and soft agar colony-forming abilities, CD133+/CD44+ (stem cell-like) subpopulations, and the expression of several CSC markers] were examined for both HCT-116 and HT-29 human CRC cells. We found that SC-43 and SC-78 but not regorafenib inhibited constitutive and IL-6-induced STAT3 phosphorylation in HCT-116 and HT-29 cells, respectively. Moreover, SC-43 and SC-78 were more potent than regorafenib in suppressing the stemness properties (except stem cell-like subpopulations) of these cells. As expected, SHP-1 knockdown almost completely abolished the suppressive effects of SC-43 and SC-78 on the sphere formation in both cell lines. Furthermore, SC-43 and SC-78 showed synergistic inhibitory effects with oxaliplatin and/or irinotecan on sphere formation. Overall, our results suggest that SC-43 and SC-78 are potent STAT3 inhibitors that may potentially be used in combination therapy for CRC.
Collapse
|
50
|
Identification of molecular features necessary for selective inhibition of B cell lymphoma proteins using machine learning techniques. Mol Divers 2018; 23:55-73. [DOI: 10.1007/s11030-018-9856-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/30/2018] [Indexed: 11/30/2022]
|