1
|
Valenza M. Dysregulated astrocyte cholesterol synthesis in Huntington's disease: A potential intersection with other cellular dysfunctions. J Huntingtons Dis 2025:18796397251336192. [PMID: 40396448 DOI: 10.1177/18796397251336192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Astrocytes are key elements for synapse development and function. Several astrocytic dysfunctions contribute to the pathophysiology of various neurodegenerative disorders, including Huntington's disease (HD), an autosomal-dominant neurodegenerative disorder that is characterized by motor and cognitive defects with behavioral/psychiatric disturbances. One dysfunction in HD related to astrocytes is reduced cholesterol synthesis, leading to a decreased availability of local cholesterol for synaptic activity. This review describes the specific role of astrocytes in the brain local cholesterol synthesis and presents evidence supporting a defective astrocyte-neuron cholesterol crosstalk in HD, by focusing on SREBP-2, the transcription factor that regulates the majority of genes involved in the cholesterol biosynthetic pathway. The emerging coordination of SREBP-2 with other physiological processes, such as energy metabolism, autophagy, and Sonic Hedgehog signaling, is also discussed. Finally, this review intends to stimulate future research directions to explore whether the impairment of astrocytic SREBP-2-mediated cholesterol synthesis in HD associates with other cellular dysfunctions in the disease.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Dakal TC, Ranga V, Kakde GS, Thakur M, Yadav V, Sharma NK, Maurya PK. Systematic comprehension of genomics and mutational landscape of glioma: A goal towards advanced therapeutics. Neuroscience 2025; 573:491-504. [PMID: 40127758 DOI: 10.1016/j.neuroscience.2025.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/14/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
We provide a systematic understanding of the mutation frequency, genetic profile, and functional implications of genes associated with glioma. Through an analysis of data from the Human Gene Mutation Database (HGMD) and clinical information obtained from a diverse cohort of patients, we identified prominent mutated genes in glioma. PTEN, TP53, EGFR, and MUC16 emerged as the most frequently mutated, each exceeding a 10% occurrence rate. Correlative analyses confirmed phenotypic associations between genes known to cause glioma and various other cancer types, underscoring shared genetic factors in tumorigenesis. Furthermore, we revealed sex-specific mutation patterns and significant age-related variations in glioma incidence. Transcription factors such as TP53 and PPARG were recognized as crucial regulators of genes associated with glioma, emphasizing their pivotal roles in glioma pathogenesis. Enrichment analysis highlighted the involvement of fundamental biological processes and pathways, while our protein-protein interaction (PPI) analysis identified TP53 as a central hub within the network of genes associated with glioma. Additionally, the prevalence of kinases in these interactions underscores the relevance of kinase signaling in glioma pathogenesis. These findings will aid in the identification of potential therapeutic and diagnostic targets for future research and clinical applications.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001 Rajasthan, India.
| | - Vipin Ranga
- DBT-NECAB, Assam Agricultural University, Jorhat 785013 Assam, India
| | - Ganesh S Kakde
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031 Haryana, India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031 Haryana, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031 Haryana, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022 Rajasthan, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031 Haryana, India.
| |
Collapse
|
3
|
Quansah E, Vatsa N, Ensink E, Brown J, Cave T, Aguileta M, Schulz E, Lindquist A, Gilliland C, Steiner JA, Escobar Galvis ML, Milčiūtė M, Henderson MX, Brundin P, Brundin L, Marshall LL, Gordevicius J. Tet2 loss and enhanced ciliogenesis suppress α-synuclein pathology. Acta Neuropathol Commun 2025; 13:71. [PMID: 40189544 PMCID: PMC11974201 DOI: 10.1186/s40478-025-01988-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
There are no approved treatments that slow Parkinson's disease (PD) progression and therefore it is important to identify novel pathogenic mechanisms that can be targeted. Loss of the epigenetic marker, Tet2 appears to have some beneficial effects in PD models, but the underlying mechanism of action is not well understood. We performed an unbiased transcriptomic analysis of cortical neurons isolated from patients with PD to identify dysregulated pathways and determine their potential contributions to the disease process. We discovered that genes associated with primary cilia, non-synaptic sensory and signaling organelles, are upregulated in both early and late stage PD patients. Enhancing ciliogenesis in primary cortical neurons via sonic hedgehog signaling suppressed the accumulation of α-synuclein pathology in vitro. Interestingly, deletion of Tet2 in mice also enhanced the expression of primary cilia and sonic hedgehog signaling genes and reduced the accumulation of α-synuclein pathology and dopamine neuron degeneration in vivo. Our findings demonstrate the crucial role of TET2 loss in regulating ciliogenesis and potentially affecting the progression of PD pathology.
Collapse
Affiliation(s)
- Emmanuel Quansah
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Naman Vatsa
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Elizabeth Ensink
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Jaycie Brown
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Tyce Cave
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Miguel Aguileta
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Schulz
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Allison Lindquist
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Carla Gilliland
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Jennifer A Steiner
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | | | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Patrik Brundin
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Roche Pharma Research and Early Development (pRED), Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Lena Brundin
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | | |
Collapse
|
4
|
Yao JY, Liu T, Hu XR, Sheng H, Chen ZH, Zhao HY, Li XJ, Wang Y, Hao L. An insight into allele-selective approaches to lowering mutant huntingtin protein for Huntington's disease treatment. Biomed Pharmacother 2024; 180:117557. [PMID: 39405896 DOI: 10.1016/j.biopha.2024.117557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Huntington's disease (HD), a monogenic neurodegenerative disorder, stems from a CAG repeat expansion within the mutant huntingtin gene (HTT). This leads to a detrimental gain-of-function of the mutated huntingtin protein (mHTT). As of now, there exist no efficacious therapies to alter the disease progression. In view of the monogenetic mutation nature and an indispensable role of wild-type HTT in healthy neurodevelopment and cellular functions, the developing strategy of allele-selectively deleting/silencing mutant HTT as well as only inactivating mHTT without altering wild-type HTT or wild-type huntingtin protein (wtHTT) comes highly recommended, and may offer a promising treatment option for HD. Here, we reviewed the therapeutic approaches that allele-selective lowering mHTT expression by targeting only mutant HTT DNA, RNA and mHTT along with recent preclinical and clinical outcomes and challenges, in anticipation of some novel ideas to be introduced into HD therapeutic research.
Collapse
Affiliation(s)
- Jia-Yuan Yao
- The First Clinical College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Ting Liu
- The Queen's University of Belfast Joint College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xin-Ru Hu
- The First Clinical College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Hui Sheng
- Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenhe Area, Shenyang 110016, PR China
| | - Zi-Hao Chen
- The Queen's University of Belfast Joint College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Hai-Yang Zhao
- Teaching Center for Basic Medical Experiment, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xiao-Jia Li
- Teaching Center for Basic Medical Experiment, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| | - Yang Wang
- Department of Chemistry, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; China Medical University Center of Forensic Investigation, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; China Medical University Center of Forensic Investigation, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| |
Collapse
|
5
|
Lo CH, Liu Z, Chen S, Lin F, Berneshawi AR, Yu CQ, Koo EB, Kowal TJ, Ning K, Hu Y, Wang WJ, Liao YJ, Sun Y. Primary cilia formation requires the Leigh syndrome-associated mitochondrial protein NDUFAF2. J Clin Invest 2024; 134:e175560. [PMID: 38949024 PMCID: PMC11213510 DOI: 10.1172/jci175560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
Mitochondria-related neurodegenerative diseases have been implicated in the disruption of primary cilia function. Mutation in an intrinsic mitochondrial complex I component NDUFAF2 has been identified in Leigh syndrome, a severe inherited mitochondriopathy. Mutations in ARMC9, which encodes a basal body protein, cause Joubert syndrome, a ciliopathy with defects in the brain, kidney, and eye. Here, we report a mechanistic link between mitochondria metabolism and primary cilia signaling. We discovered that loss of NDUFAF2 caused both mitochondrial and ciliary defects in vitro and in vivo and identified NDUFAF2 as a binding partner for ARMC9. We also found that NDUFAF2 was both necessary and sufficient for cilia formation and that exogenous expression of NDUFAF2 rescued the ciliary and mitochondrial defects observed in cells from patients with known ARMC9 deficiency. NAD+ supplementation restored mitochondrial and ciliary dysfunction in ARMC9-deficient cells and zebrafish and ameliorated the ocular motility and motor deficits of a patient with ARMC9 deficiency. The present results provide a compelling mechanistic link, supported by evidence from human studies, between primary cilia and mitochondrial signaling. Importantly, our findings have significant implications for the development of therapeutic approaches targeting ciliopathies.
Collapse
Affiliation(s)
- Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Zhiquan Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Siyu Chen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Frank Lin
- Department of Medicine, Stanford University, Palo Alto, California, USA
| | - Andrew R. Berneshawi
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Charles Q. Yu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Euna B. Koo
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Tia J. Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, College of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Y. Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
- Palo Alto Veterans Administration, Palo Alto, California, USA
- Stanford Maternal and Child Health Research Institute and
- BioX, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
6
|
Lee YJ, Rio DC. A mutation in the low-complexity domain of splicing factor hnRNPA1 linked to amyotrophic lateral sclerosis disrupts distinct neuronal RNA splicing networks. Genes Dev 2024; 38:11-30. [PMID: 38182429 PMCID: PMC10903937 DOI: 10.1101/gad.351104.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disease characterized by loss of motor neurons. Human genetic studies have linked mutations in RNA-binding proteins as causative for this disease. The hnRNPA1 protein, a known pre-mRNA splicing factor, is mutated in some ALS patients. Here, two human cell models were generated to investigate how a mutation in the C-terminal low-complexity domain (LCD) of hnRNPA1 can cause splicing changes of thousands of transcripts that collectively are linked to the DNA damage response, cilium organization, and translation. We show that the hnRNPA1 D262V mutant protein binds to new binding sites on differentially spliced transcripts from genes that are linked to ALS. We demonstrate that this ALS-linked hnRNPA1 mutation alters normal RNA-dependent protein-protein interactions. Furthermore, cells expressing this hnRNPA1 mutant exhibit a cell aggregation phenotype, markedly reduced growth rates, changes in stress granule kinetics, and aberrant growth of neuronal processes. This study provides insight into how a single amino acid mutation in a splicing factor can alter RNA splicing networks of genes linked to ALS.
Collapse
Affiliation(s)
- Yeon J Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California 94720, USA
| | - Donald C Rio
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA;
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
7
|
Loukil A, Ebright E, Uezu A, Gao Y, Soderling SH, Goetz SC. Identification of new ciliary signaling pathways in the brain and insights into neurological disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572700. [PMID: 38187761 PMCID: PMC10769350 DOI: 10.1101/2023.12.20.572700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Primary cilia are conserved sensory hubs essential for signaling transduction and embryonic development. Ciliary dysfunction causes a variety of developmental syndromes with neurological features and cognitive impairment, whose basis mostly remains unknown. Despite connections to neural function, the primary cilium remains an overlooked organelle in the brain. Most neurons have a primary cilium; however, it is still unclear how this organelle modulates brain architecture and function, given the lack of any systemic dissection of neuronal ciliary signaling. Here, we present the first in vivo glance at the molecular composition of cilia in the mouse brain. We have adapted in vivo BioID (iBioID), targeting the biotin ligase BioID2 to primary cilia in neurons. We identified tissue-specific signaling networks enriched in neuronal cilia, including Eph/Ephrin and GABA receptor signaling pathways. Our iBioID ciliary network presents a wealth of neural ciliary hits that provides new insights into neurological disorders. Our findings are a promising first step in defining the fundamentals of ciliary signaling and their roles in shaping neural circuits and behavior. This work can be extended to pathological conditions of the brain, aiming to identify the molecular pathways disrupted in the brain cilium. Hence, finding novel therapeutic strategies will help uncover and leverage the therapeutic potential of the neuronal cilium.
Collapse
Affiliation(s)
- Abdelhalim Loukil
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Emma Ebright
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Akiyoshi Uezu
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Yudong Gao
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Sarah C. Goetz
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
8
|
Hett K, Eisma JJ, Hernandez AB, McKnight CD, Song A, Elenberger J, Considine C, Donahue MJ, Claassen DO. Cerebrospinal Fluid Flow in Patients with Huntington's Disease. Ann Neurol 2023; 94:885-894. [PMID: 37493342 PMCID: PMC10615133 DOI: 10.1002/ana.26749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVE Investigations of cerebrospinal fluid (CSF) flow aberrations in Huntington's disease (HD) are of growing interest, as impaired CSF flow may contribute to mutant Huntington retention and observed heterogeneous responsiveness to intrathecally administered therapies. METHOD We assessed net cerebral aqueduct CSF flow and velocity in 29 HD participants (17 premanifest and 12 manifest) and 51 age- and sex matched non-HD control participants using 3-Tesla magnetic resonance imaging methods. Regression models were applied to test hypotheses regarding: (i) net CSF flow and cohort, (ii) net CSF flow and disease severity (CAP-score), and (iii) CSF volume after correcting for age and sex. RESULTS Group-wise analyses support a decrease in net CSF flow in HD (mean 0.14 ± 0.27 mL/min) relative to control (mean 0.32 ± 0.20 mL/min) participants (p = 0.02), with lowest flow in the manifest HD cohort (mean 0.04 ± 0.25 mL/min). This finding was explained by hyperdynamic CSF movement, manifesting as higher caudal systolic CSF flow velocity and higher diastolic cranial CSF flow velocity across the cardiac cycle, in HD (caudal flow: 0.17 ± 0.07 mL/s, cranial flow: 0.14 ± 0.08 mL/s) compared to control (caudal flow: 0.13 ± 0.06 mL/s, cranial flow: 0.11 ± 0.04 mL/s) participants. A positive correlation between cranial diastolic flow and disease severity was observed (p = 0.02). INTERPRETATIONS Findings support aqueductal CSF flow dynamics changing with disease severity in HD. These accelerated changes are consistent with changes observed over the typical adult lifespan, and may have relevance to mutant Huntington retention and intrathecally administered therapeutics responsiveness. ANN NEUROL 2023;94:885-894.
Collapse
Affiliation(s)
- Kilian Hett
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jarrod J. Eisma
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Colin D. McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason Elenberger
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciaran Considine
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J. Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O. Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
Morleo M, Vieira HL, Pennekamp P, Palma A, Bento-Lopes L, Omran H, Lopes SS, Barral DC, Franco B. Crosstalk between cilia and autophagy: implication for human diseases. Autophagy 2023; 19:24-43. [PMID: 35613303 PMCID: PMC9809938 DOI: 10.1080/15548627.2022.2067383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Macroautophagy/autophagy is a self-degradative process necessary for cells to maintain their energy balance during development and in response to nutrient deprivation. Autophagic processes are tightly regulated and have been found to be dysfunctional in several pathologies. Increasing experimental evidence points to the existence of an interplay between autophagy and cilia. Cilia are microtubule-based organelles protruding from the cell surface of mammalian cells that perform a variety of motile and sensory functions and, when dysfunctional, result in disorders known as ciliopathies. Indeed, selective autophagic degradation of ciliary proteins has been shown to control ciliogenesis and, conversely, cilia have been reported to control autophagy. Moreover, a growing number of players such as lysosomal and mitochondrial proteins are emerging as actors of the cilia-autophagy interplay. However, some of the published data on the cilia-autophagy axis are contradictory and indicate that we are just starting to understand the underlying molecular mechanisms. In this review, the current knowledge about this axis and challenges are discussed, as well as the implication for ciliopathies and autophagy-associated disorders.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy,Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Helena L.A. Vieira
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal,UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Münster, University of Münster, Münster48149, Germany,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Alessandro Palma
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital - IRCCS, Rome, Italy
| | - Liliana Bento-Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Münster, University of Münster, Münster48149, Germany,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Duarte C. Barral
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy,Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, Naples, Italy,Scuola Superiore Meridionale, School for Advanced Studies, Naples, Italy,CONTACT Brunella Franco CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| |
Collapse
|
10
|
Nelles DG, Hazrati LN. Ependymal cells and neurodegenerative disease: outcomes of compromised ependymal barrier function. Brain Commun 2022; 4:fcac288. [PMID: 36415662 PMCID: PMC9677497 DOI: 10.1093/braincomms/fcac288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 11/01/2022] [Indexed: 08/08/2023] Open
Abstract
Within the central nervous system, ependymal cells form critical components of the blood-cerebrospinal fluid barrier and the cerebrospinal fluid-brain barrier. These barriers provide biochemical, immunological and physical protection against the entry of molecules and foreign substances into the cerebrospinal fluid while also regulating cerebrospinal fluid dynamics, such as the composition, flow and removal of waste from the cerebrospinal fluid. Previous research has demonstrated that several neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis, display irregularities in ependymal cell function, morphology, gene expression and metabolism. Despite playing key roles in maintaining overall brain health, ependymal barriers are largely overlooked and understudied in the context of disease, thus limiting the development of novel diagnostic and treatment options. Therefore, this review explores the anatomical properties, functions and structures that define ependymal cells in the healthy brain, as well as the ways in which ependymal cell dysregulation manifests across several neurodegenerative diseases. Specifically, we will address potential mechanisms, causes and consequences of ependymal cell dysfunction and describe how compromising the integrity of ependymal barriers may initiate, contribute to, or drive widespread neurodegeneration in the brain.
Collapse
Affiliation(s)
- Diana G Nelles
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Ave, Canada
| | - Lili-Naz Hazrati
- Correspondence to: Dr. Lili-Naz Hazrati 555 University Ave, Toronto ON M5G 1X8, Canada E-mail:
| |
Collapse
|
11
|
Masyuk AI, Masyuk TV, Trussoni CE, Pirius NE, LaRusso NF. Autophagy promotes hepatic cystogenesis in polycystic liver disease by depletion of cholangiocyte ciliogenic proteins. Hepatology 2022; 75:1110-1122. [PMID: 34942041 PMCID: PMC9035076 DOI: 10.1002/hep.32298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUNDS AND AIMS Polycystic liver disease (PLD) is characterized by defective cholangiocyte cilia that regulate progressive growth of hepatic cysts. Because formation of primary cilia is influenced by autophagy through degradation of proteins involved in ciliogenesis, we hypothesized that ciliary defects in PLD cholangiocytes (PLDCs) originate from autophagy-mediated depletion of ciliogenic proteins ADP-ribosylation factor-like protein 3 (ARL3) and ADP-ribosylation factor-like protein 13B (ARL13B) and ARL-dependent mislocation of a ciliary-localized bile acid receptor, Takeda G-protein-coupled receptor 5 (TGR5), the activation of which enhances hepatic cystogenesis (HCG). The aims here were to determine whether: (1) ciliogenesis is impaired in PLDC, is associated with increased autophagy, and involves autophagy-mediated depletion of ARL3 and ARL13B; (2) depletion of ARL3 and ARL13B in PLDC cilia impacts ciliary localization of TGR5; and (3) pharmacological inhibition of autophagy re-establishes cholangiocyte cilia and ciliary localization of ARL3, ARL3B, and TGR5 and reduces HCG. APPROACH AND RESULTS By using liver tissue from healthy persons and patients with PLD, in vitro and in vivo models of PLD, and in vitro models of ciliogenesis, we demonstrated that, in PLDCs: ciliogenesis is impaired; autophagy is enhanced; ARL3 and ARL13B are ubiquitinated by HDAC6, depleted in cilia, and present in autophagosomes; depletion of ARL3 and ARL13B impacts ciliary localization of TGR5; and pharmacological inhibition of autophagy with mefloquine and verteporfin re-establishes cholangiocyte cilia and ciliary localization of ARL3, ARL13B, and TGR5 and reduces HCG. CONCLUSIONS The intersection between autophagy, defective cholangiocyte cilia, and enhanced HCG contributes to PLD progression and can be considered a target for therapeutic interventions.
Collapse
Affiliation(s)
- Anatoliy I. Masyuk
- Mayo Clinic College of Medicine and Science, 200 First Street, SW Rochester, Minnesota 55905, USA
| | - Tatyana V. Masyuk
- Mayo Clinic College of Medicine and Science, 200 First Street, SW Rochester, Minnesota 55905, USA
| | - Christy E. Trussoni
- Mayo Clinic College of Medicine and Science, 200 First Street, SW Rochester, Minnesota 55905, USA
| | - Nicholas E. Pirius
- Mayo Clinic College of Medicine and Science, 200 First Street, SW Rochester, Minnesota 55905, USA
| | - Nicholas F. LaRusso
- Mayo Clinic College of Medicine and Science, 200 First Street, SW Rochester, Minnesota 55905, USA
| |
Collapse
|
12
|
Aggresome assembly at the centrosome is driven by CP110–CEP97–CEP290 and centriolar satellites. Nat Cell Biol 2022; 24:483-496. [PMID: 35411088 PMCID: PMC9033585 DOI: 10.1038/s41556-022-00869-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
Protein degradation is critical to maintaining cellular homeostasis, and perturbation of the ubiquitin proteasome system leads to the accumulation of protein aggregates. These aggregates are either directed towards autophagy for destruction or sequestered into an inclusion, termed the aggresome, at the centrosome. Utilizing high-resolution quantitative analysis, here, we define aggresome assembly at the centrosome in human cells. Centriolar satellites are proteinaceous granules implicated in the trafficking of proteins to the centrosome. During aggresome assembly, satellites were required for the growth of the aggresomal structure from an initial ring of phosphorylated HSP27 deposited around the centrioles. The seeding of this phosphorylated HSP27 ring depended on the centrosomal proteins CP110, CEP97 and CEP290. Owing to limiting amounts of CP110, senescent cells, which are characterized by the accumulation of protein aggregates, were defective in aggresome formation. Furthermore, satellites and CP110–CEP97–CEP290 were required for the aggregation of mutant huntingtin. Together, these data reveal roles for CP110–CEP97–CEP290 and satellites in the control of cellular proteostasis and the aggregation of disease-relevant proteins. Prosser et al. report that centriolar satellite and centrosomal proteins seed aggresomes, perinuclear inclusions of misfolded proteins, and may play a role in aggresome formation during senescence and huntingtin aggregation.
Collapse
|
13
|
Hernandez SJ, Fote G, Reyes-Ortiz AM, Steffan JS, Thompson LM. Cooperation of cell adhesion and autophagy in the brain: Functional roles in development and neurodegenerative disease. Matrix Biol Plus 2021; 12:100089. [PMID: 34786551 PMCID: PMC8579148 DOI: 10.1016/j.mbplus.2021.100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Cellular adhesive connections directed by the extracellular matrix (ECM) and maintenance of cellular homeostasis by autophagy are seemingly disparate functions that are molecularly intertwined, each regulating the other. This is an emerging field in the brain where the interplay between adhesion and autophagy functions at the intersection of neuroprotection and neurodegeneration. The ECM and adhesion proteins regulate autophagic responses to direct protein clearance and guide regenerative programs that go awry in brain disorders. Concomitantly, autophagic flux acts to regulate adhesion dynamics to mediate neurite outgrowth and synaptic plasticity with functional disruption contributed by neurodegenerative disease. This review highlights the cooperative exchange between cellular adhesion and autophagy in the brain during health and disease. As the mechanistic alliance between adhesion and autophagy has been leveraged therapeutically for metastatic disease, understanding overlapping molecular functions that direct the interplay between adhesion and autophagy might uncover therapeutic strategies to correct or compensate for neurodegeneration.
Collapse
Affiliation(s)
- Sarah J. Hernandez
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Gianna Fote
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Andrea M. Reyes-Ortiz
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Joan S. Steffan
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| | - Leslie M. Thompson
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| |
Collapse
|
14
|
Saffari A, Schröter J, Garbade SF, Alecu JE, Ebrahimi-Fakhari D, Hoffmann GF, Kölker S, Ries M, Syrbe S. Quantitative retrospective natural history modeling of WDR45-related developmental and epileptic encephalopathy - a systematic cross-sectional analysis of 160 published cases. Autophagy 2021; 18:1715-1727. [PMID: 34818117 DOI: 10.1080/15548627.2021.1990671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
WDR45-related neurodevelopmental disorder (NDD) is a clinically-heterogenous congenital disorder of macroautophagy/autophagy. The natural history of this ultra-orphan disease remains incompletely understood, leading to delays in diagnosis and lack of quantifiable outcome measures. In this cross-sectional study, we model quantitative natural history data for WDR45-related NDD using a standardized analysis of 160 published cases, representing the largest cohort to date. The primary outcome of this study was survival. Age at disease onset, diagnostic delay and geographic distribution were quantified as secondary endpoints. Our tertiary aim was to explore and quantify the spectrum of WDR45-related phenotypes. Survival estimations showed low mortality until 39 years of age. Median age at onset was 10 months, with a median diagnostic delay of 6.2 years. Geographic distribution appeared worldwide with clusters in North America, East Asia, Western Europe and the Middle East. The clinical spectrum was highly variable with a bi-phasic evolution characterized by early-onset developmental and epileptic encephalopathy during childhood followed by a progressive dystonia-parkinsonism syndrome along with cognitive decline during early adulthood. Female individuals showed milder disease severity. The majority of pathogenic WDR45 variants were predicted to result in a loss of WDR45 expression, without clear genotype-phenotype associations. Our results provide clinical and epidemiological data that may facilitate an earlier diagnosis, enable anticipatory guidance and counseling of affected families and provide the foundation for endpoints for future interventional trials.Abbreviations: BPAN: beta-propeller protein-associated neurodegeneration; CNS: central nervous system; DEE: developmental and epileptic encephalopathy; MRI: magnetic resonance imaging; NBIA: neurodegeneration with brain iron accumulation; NDD: neurodevelopmental disorder; NGS: next-generation sequencing; WDR45/WIPI4: WD repeat domain 45.
Collapse
Affiliation(s)
- Afshin Saffari
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian Schröter
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian E Alecu
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georg F Hoffmann
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Ries
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Venkatachalam N, Bakavayev S, Engel D, Barak Z, Engel S. Primate differential redoxome (PDR) - A paradigm for understanding neurodegenerative diseases. Redox Biol 2020; 36:101683. [PMID: 32829254 PMCID: PMC7451816 DOI: 10.1016/j.redox.2020.101683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/18/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Despite different phenotypic manifestations, mounting evidence points to similarities in the molecular basis of major neurodegenerative diseases (ND). CNS has evolved to be robust against hazard of ROS, a common perturbation aerobic organisms are confronted with. The trade-off of robustness is system's fragility against rare and unexpected perturbations. Identifying the points of CNS fragility is key for understanding etiology of ND. We postulated that the 'primate differential redoxome' (PDR), an assembly of proteins that contain cysteine residues present only in the primate orthologues of mammals, is likely to associate with an added level of regulatory functionalities that enhanced CNS robustness against ROS and facilitated evolution. The PDR contains multiple deterministic and susceptibility factors of major ND, which cluster to form coordinated redox networks regulating various cellular processes. The PDR analysis revealed a potential CNS fragility point, which appears to associates with a non-redundant PINK1-PRKN-SQSTM1(p62) axis coordinating protein homeostasis and mitophagy.
Collapse
Affiliation(s)
- Nachiyappan Venkatachalam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zeev Barak
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
16
|
Lim KH, Joo JY, Baek KH. The potential roles of deubiquitinating enzymes in brain diseases. Ageing Res Rev 2020; 61:101088. [PMID: 32470641 DOI: 10.1016/j.arr.2020.101088] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Most proteins undergo posttranslational modification such as acetylation, methylation, phosphorylation, biotinylation, and ubiquitination to regulate various cellular processes. Ubiquitin-targeted proteins from the ubiquitin-proteasome system (UPS) are degraded by 26S proteasome, along with this, deubiquitinating enzymes (DUBs) have specific activity against the UPS through detaching of ubiquitin on ubiquitin-targeted proteins. Balancing between protein expression and degradation through interplay between the UPS and DUBs is important to maintain cell homeostasis, and abnormal expression and elongation of proteins lead to diverse diseases such as cancer, diabetes, and autoimmune response. Therefore, development of DUB inhibitors as therapeutic targets has been challenging. In addition, understanding of the roles of DUBs in neurodegeneration, specifically brain diseases, has emerged gradually. This review highlights recent studies on the molecular mechanisms for DUBs, and discusses potential therapeutic targets for DUBs in cases of brain diseases.
Collapse
Affiliation(s)
- Key-Hwan Lim
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Choeomdan-Ro 61, Daegu 41068, Republic of Korea.
| | - Jae-Yeol Joo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Choeomdan-Ro 61, Daegu 41068, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea
| |
Collapse
|
17
|
Martin-Hurtado A, Lastres-Becker I, Cuadrado A, Garcia-Gonzalo FR. NRF2 and Primary Cilia: An Emerging Partnership. Antioxidants (Basel) 2020; 9:antiox9060475. [PMID: 32498260 PMCID: PMC7346227 DOI: 10.3390/antiox9060475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023] Open
Abstract
When not dividing, many cell types target their centrosome to the plasma membrane, where it nucleates assembly of a primary cilium, an antenna-like signaling structure consisting of nine concentric microtubule pairs surrounded by membrane. Primary cilia play important pathophysiological roles in many tissues, their dysfunction being associated with cancer and ciliopathies, a diverse group of congenital human diseases. Several recent studies have unveiled functional connections between primary cilia and NRF2 (nuclear factor erythroid 2-related factor 2), the master transcription factor orchestrating cytoprotective responses to oxidative and other cellular stresses. These NRF2-cilia relationships are reciprocal: primary cilia, by promoting autophagy, downregulate NRF2 activity. In turn, NRF2 transcriptionally regulates genes involved in ciliogenesis and Hedgehog (Hh) signaling, a cilia-dependent pathway with major roles in embryogenesis, stem cell function and tumorigenesis. Nevertheless, while we found that NRF2 stimulates ciliogenesis and Hh signaling, a more recent study reported that NRF2 negatively affects these processes. Herein, we review the available evidence linking NRF2 to primary cilia, suggest possible explanations to reconcile seemingly contradictory data, and discuss what the emerging interplay between primary cilia and NRF2 may mean for human health and disease.
Collapse
Affiliation(s)
- Ana Martin-Hurtado
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28013 Madrid, Spain
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28013 Madrid, Spain
| | - Francesc R. Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Correspondence:
| |
Collapse
|
18
|
Mustafa R, Kreiner G, Kamińska K, Wood AEJ, Kirsch J, Tucker KL, Parlato R. Targeted Depletion of Primary Cilia in Dopaminoceptive Neurons in a Preclinical Mouse Model of Huntington's Disease. Front Cell Neurosci 2019; 13:565. [PMID: 31920562 PMCID: PMC6936315 DOI: 10.3389/fncel.2019.00565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Multiple pathomechanisms triggered by mutant Huntingtin (mHTT) underlie progressive degeneration of dopaminoceptive striatal neurons in Huntington’s disease (HD). The primary cilium is a membrane compartment that functions as a hub for various pathways that are dysregulated in HD, for example, dopamine (DA) receptor transmission and the mechanistic target of rapamycin (mTOR) pathway. The roles of primary cilia (PC) for the maintenance of striatal neurons and in HD progression remain unknown. Here, we investigated PC defects in vulnerable striatal neurons in a progressive model of HD, the mHTT-expressing knock-in zQ175 mice. We found that PC length is affected in striatal but not in cortical neurons, in association with the accumulation of mHTT. To explore the role of PC, we generated conditional mutant mice lacking IFT88, a component of the anterograde intraflagellar transport-B complex lacking PC in dopaminoceptive neurons. This mutation preserved the expression of the dopamine 1 receptor (D1R), and the survival of striatal neurons, but resulted in a mild increase of DA metabolites in the striatum, suggesting an imbalance of ciliary DA receptor transmission. Conditional loss of PC in zQ175 mice did not trigger astrogliosis, however, mTOR signaling was more active and resulted in a more pronounced accumulation of nuclear inclusions containing mHTT. Further studies will be required of aged mice to determine the role of aberrant ciliary function in more advanced stages of HD.
Collapse
Affiliation(s)
- Rasem Mustafa
- Institute of Applied Physiology, University of Ulm, Ulm, Germany.,Institute of Anatomy and Cell Biology, Medical Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Kamińska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.,Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
| | - Amelia-Elise J Wood
- Department of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, Medical Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Kerry L Tucker
- Department of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Rosanna Parlato
- Institute of Applied Physiology, University of Ulm, Ulm, Germany.,Institute of Anatomy and Cell Biology, Medical Cell Biology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Martin-Hurtado A, Martin-Morales R, Robledinos-Antón N, Blanco R, Palacios-Blanco I, Lastres-Becker I, Cuadrado A, Garcia-Gonzalo FR. NRF2-dependent gene expression promotes ciliogenesis and Hedgehog signaling. Sci Rep 2019; 9:13896. [PMID: 31554934 PMCID: PMC6761261 DOI: 10.1038/s41598-019-50356-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022] Open
Abstract
The transcription factor NRF2 is a master regulator of cellular antioxidant and detoxification responses, but it also regulates other processes such as autophagy and pluripotency. In human embryonic stem cells (hESCs), NRF2 antagonizes neuroectoderm differentiation, which only occurs after NRF2 is repressed via a Primary Cilia-Autophagy-NRF2 (PAN) axis. However, the functional connections between NRF2 and primary cilia, microtubule-based plasma membrane protrusions that function as cellular antennae, remain poorly understood. For instance, nothing is known about whether NRF2 affects cilia, or whether cilia regulation of NRF2 extends beyond hESCs. Here, we show that NRF2 and primary cilia reciprocally regulate each other. First, we demonstrate that fibroblasts lacking primary cilia have higher NRF2 activity, which is rescued by autophagy-activating mTOR inhibitors, indicating that the PAN axis also operates in differentiated cells. Furthermore, NRF2 controls cilia formation and function. NRF2-null cells grow fewer and shorter cilia and display impaired Hedgehog signaling, a cilia-dependent pathway. These defects are not due to increased oxidative stress or ciliophagy, but rather to NRF2 promoting expression of multiple ciliogenic and Hedgehog pathway genes. Among these, we focused on GLI2 and GLI3, the transcription factors controlling Hh pathway output. Both their mRNA and protein levels are reduced in NRF2-null cells, consistent with their gene promoters containing consensus ARE sequences predicted to bind NRF2. Moreover, GLI2 and GLI3 fail to accumulate at the ciliary tip of NRF2-null cells upon Hh pathway activation. Given the importance of NRF2 and ciliary signaling in human disease, our data may have important biomedical implications.
Collapse
Affiliation(s)
- Ana Martin-Hurtado
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Raquel Martin-Morales
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Natalia Robledinos-Antón
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Ruth Blanco
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Ines Palacios-Blanco
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Isabel Lastres-Becker
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Antonio Cuadrado
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Francesc R Garcia-Gonzalo
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain. .,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.
| |
Collapse
|
20
|
The Autophagy-Cilia Axis: An Intricate Relationship. Cells 2019; 8:cells8080905. [PMID: 31443299 PMCID: PMC6721705 DOI: 10.3390/cells8080905] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 01/19/2023] Open
Abstract
Primary cilia are microtubule-based organelles protruding from the surface of almost all vertebrate cells. This organelle represents the cell’s antenna which acts as a communication hub to transfer extracellular signals into intracellular responses during development and in tissue homeostasis. Recently, it has been shown that loss of cilia negatively regulates autophagy, the main catabolic route of the cell, probably utilizing the autophagic machinery localized at the peri-ciliary compartment. On the other side, autophagy influences ciliogenesis in a context-dependent manner, possibly to ensure that the sensing organelle is properly formed in a feedback loop model. In this review we discuss the recent literature and propose that the autophagic machinery and the ciliary proteins are functionally strictly related to control both autophagy and ciliogenesis. Moreover, we report examples of diseases associated with autophagic defects which cause cilia abnormalities, and propose and discuss the hypothesis that, at least some of the clinical manifestations observed in human diseases associated to ciliary disfunction may be the result of a perturbed autophagy.
Collapse
|
21
|
Satir P, Satir BH. The conserved ancestral signaling pathway from cilium to nucleus. J Cell Sci 2019; 132:132/15/jcs230441. [PMID: 31375541 DOI: 10.1242/jcs.230441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Many signaling molecules are localized to both the primary cilium and nucleus. Localization of specific transmembrane receptors and their signaling scaffold molecules in the cilium is necessary for correct physiological function. After a specific signaling event, signaling molecules leave the cilium, usually in the form of an endocytic vesicle scaffold, and move to the nucleus, where they dissociate from the scaffold and enter the nucleus to affect gene expression. This ancient pathway probably arose very early in eukaryotic evolution as the nucleus and cilium co-evolved. Because there are similarities in molecular composition of the nuclear and ciliary pores the entry and exit of proteins in both organelles rely on similar mechanisms. In this Hypothesis, we propose that the pathway is a dynamic universal cilia-based signaling pathway with some variations from protists to man. Everywhere the cilium functions as an important organelle for molecular storage of certain key receptors and selection and concentration of their associated signaling molecules that move from cilium to nucleus. This could also have important implications for human diseases such as Huntington disease.
Collapse
Affiliation(s)
- Peter Satir
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461 .,B&P Nanobiology Consultants, 7 Byfield Lane, Greenwich, CT 06830, USA
| | - Birgit H Satir
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461.,B&P Nanobiology Consultants, 7 Byfield Lane, Greenwich, CT 06830, USA
| |
Collapse
|
22
|
Park SM, Jang HJ, Lee JH. Roles of Primary Cilia in the Developing Brain. Front Cell Neurosci 2019; 13:218. [PMID: 31139054 PMCID: PMC6527876 DOI: 10.3389/fncel.2019.00218] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/30/2019] [Indexed: 01/07/2023] Open
Abstract
Essential to development, primary cilia are microtubule-based cellular organelles that protrude from the surface of cells. Acting as cellular antenna, primary cilia play central roles in transducing or regulating several signaling pathways, including Sonic hedgehog (Shh) and Wnt signaling. Defects in primary cilia contribute to a group of syndromic disorders known as “ciliopathies” and can adversely affect development of the brain and other essential organs, including the kidneys, eyes, and liver. The molecular mechanisms of how defective primary cilia contribute to neurological defects, however, remain poorly understood. In this mini review, we summarize recent advances in understanding of the interactions between primary cilia and signaling pathways essential to cellular homeostasis and brain development.
Collapse
Affiliation(s)
- Sang Min Park
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hee Jin Jang
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jeong Ho Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
23
|
Hor CHH, Tang BL. Beta-propeller protein-associated neurodegeneration (BPAN) as a genetically simple model of multifaceted neuropathology resulting from defects in autophagy. Rev Neurosci 2019; 30:261-277. [DOI: 10.1515/revneuro-2018-0045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/07/2018] [Indexed: 12/13/2022]
Abstract
AbstractAutophagy is an essential and conserved cellular homeostatic process. Defects in the core and accessory components of the autophagic machinery would most severely impact terminally differentiated cells, such as neurons. The neurodevelopmental/neurodegenerative disorder β-propeller protein-associated neurodegeneration (BPAN) resulted from heterozygous or hemizygous germline mutations/pathogenic variant of the X chromosome geneWDR45, encoding WD40 repeat protein interacting with phosphoinositides 4 (WIPI4). This most recently identified subtype of the spectrum of neurodegeneration with brain iron accumulation diseases is characterized by a biphasic mode of disease manifestation and progression. The first phase involves early-onset of epileptic seizures, global developmental delay, intellectual disability and autistic syndrome. Subsequently, Parkinsonism and dystonia, as well as dementia, emerge in a subacute manner in adolescence or early adulthood. BPAN disease phenotypes are thus complex and linked to a wide range of other neuropathological disorders. WIPI4/WDR45 has an essential role in autophagy, acting as a phosphatidylinositol 3-phosphate binding effector that participates in autophagosome biogenesis and size control. Here, we discuss recent updates on WIPI4’s mechanistic role in autophagy and link the neuropathological manifestations of BPAN’s biphasic infantile onset (epilepsy, autism) and adolescent onset (dystonic, Parkinsonism, dementia) phenotypes to neurological consequences of autophagy impairment that are now known or emerging in many other neurodevelopmental and neurodegenerative disorders. As monogenicWDR45mutations in BPAN result in a large spectrum of disease phenotypes that stem from autophagic dysfunctions, it could potentially serve as a simple and unique genetic model to investigate disease pathology and therapeutics for a wider range of neuropathological conditions with autophagy defects.
Collapse
|
24
|
Bravo-Arredondo JM, Kegulian NC, Schmidt T, Pandey NK, Situ AJ, Ulmer TS, Langen R. The folding equilibrium of huntingtin exon 1 monomer depends on its polyglutamine tract. J Biol Chem 2018; 293:19613-19623. [PMID: 30315108 DOI: 10.1074/jbc.ra118.004808] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/05/2018] [Indexed: 11/06/2022] Open
Abstract
Expansion of the polyglutamine (polyQ) tract in exon 1 of the huntingtin protein (Httex1) leads to Huntington's disease resulting in fatal neurodegeneration. However, it remains poorly understood how polyQ expansions alter protein structure and cause toxicity. Using CD, EPR, and NMR spectroscopy, we found here that monomeric Httex1 consists of two co-existing structural states whose ratio is determined by polyQ tract length. We observed that short Q-lengths favor a largely random-coil state, whereas long Q-lengths increase the proportion of a predominantly α-helical state. We also note that by following a mobility gradient, Httex1 α-helical conformation is restricted to the N-terminal N17 region and to the N-terminal portion of the adjoining polyQ tract. Structuring in both regions was interdependent and likely stabilized by tertiary contacts. Although little helicity was present in N17 alone, each Gln residue in Httex1 enhanced helix stability by 0.03-0.05 kcal/mol, causing a pronounced preference for the α-helical state at pathological Q-lengths. The Q-length-dependent structuring and rigidification could be mimicked in proteins with shorter Q-lengths by a decrease in temperature, indicating that lower temperatures similarly stabilize N17 and polyQ intramolecular contacts. The more rigid α-helical state of Httex1 with an expanded polyQ tract is expected to alter interactions with cellular proteins and modulate the toxic Httex1 misfolding process. We propose that the polyQ-dependent shift in the structural equilibrium may enable future therapeutic strategies that specifically target Httex1 with toxic Q-lengths.
Collapse
Affiliation(s)
- Jose M Bravo-Arredondo
- From the Departments of Physiology and Neuroscience and.,the Facultad de Ciencias Básicas, Ingeniería y Tecnología, Universidad Autónoma de Tlaxcala, Calzada Apizaquito S/N, 90300 Apizaco, Tlaxcala, Mexico
| | - Natalie C Kegulian
- Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| | - Thomas Schmidt
- Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| | | | - Alan J Situ
- From the Departments of Physiology and Neuroscience and
| | - Tobias S Ulmer
- From the Departments of Physiology and Neuroscience and.,Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| | - Ralf Langen
- From the Departments of Physiology and Neuroscience and .,Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| |
Collapse
|
25
|
Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC, Nixon RA, Duchen MR, Mallucci GR, Kroemer G, Levine B, Eskelinen EL, Mochel F, Spedding M, Louis C, Martin OR, Millan MJ. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 2018; 17:660-688. [PMID: 30116051 DOI: 10.1038/nrd.2018.109] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders of ageing (NDAs) such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and amyotrophic lateral sclerosis represent a major socio-economic challenge in view of their high prevalence yet poor treatment. They are often called 'proteinopathies' owing to the presence of misfolded and aggregated proteins that lose their physiological roles and acquire neurotoxic properties. One reason underlying the accumulation and spread of oligomeric forms of neurotoxic proteins is insufficient clearance by the autophagic-lysosomal network. Several other clearance pathways are also compromised in NDAs: chaperone-mediated autophagy, the ubiquitin-proteasome system, extracellular clearance by proteases and extrusion into the circulation via the blood-brain barrier and glymphatic system. This article focuses on emerging mechanisms for promoting the clearance of neurotoxic proteins, a strategy that may curtail the onset and slow the progression of NDAs.
Collapse
Affiliation(s)
- Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Wai Haung Yu
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer's Disease Research, Columbia University, New York, NY, USA
| | - Olga Corti
- ICM Institute for Brain and Spinal Cord, Paris, France
| | | | | | - Erwan Bezard
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Greg M Pastores
- Department of Metabolic Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge and UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Departments of Psychiatry and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Michael R Duchen
- UCL Consortium for Mitochondrial Research and Department of Cell and Developmental Biology, University College London, London, UK
| | - Giovanna R Mallucci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou (AP-HP), Paris, France
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Fanny Mochel
- INSERM U 1127, Brain and Spine Institute, Paris, France
| | | | - Caroline Louis
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| | - Olivier R Martin
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), Orléans, France
| | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| |
Collapse
|
26
|
Abstract
SIGNIFICANCE The p53 family of transcription factors, including p53, p63, and p73, plays key roles in both biological and pathological processes, including cancer and neural development. Recent Advances: In recent years, a growing body of evidence has indicated that the entire p53 family is involved in the regulation of the central nervous system (CNS) functions as well as in the pathogenesis of several neurological disorders. Mechanistically, the p53 proteins control neuronal cell fate, terminal differentiation, and survival, via a complex interplay among the family members. CRITICAL ISSUES In this article, we discuss the involvement of the p53 family in neurobiology and in pathological conditions affecting the CNS, including neuroinflammation. FUTURE DIRECTIONS Understanding the molecular mechanism(s) underlying the function of the p53 family could improve our general knowledge of the pathogenesis of brain disorders and potentially pave the road for new therapeutic intervention. Antioxid. Redox Signal. 29, 1-14.
Collapse
Affiliation(s)
- Massimiliano Agostini
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy .,2 Medical Research Council, Toxicology Unit, Leicester University , Leicester, United Kingdom
| | - Gerry Melino
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy .,2 Medical Research Council, Toxicology Unit, Leicester University , Leicester, United Kingdom
| | - Francesca Bernassola
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy
| |
Collapse
|
27
|
Areal LB, Pereira LP, Ribeiro FM, Olmo IG, Muniz MR, do Carmo Rodrigues M, Costa PF, Martins-Silva C, Ferguson SSG, Guimarães DAM, Pires RGW. Role of Dynein Axonemal Heavy Chain 6 Gene Expression as a Possible Biomarker for Huntington's Disease: a Translational Study. J Mol Neurosci 2017; 63:342-348. [PMID: 29019003 DOI: 10.1007/s12031-017-0984-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/04/2017] [Indexed: 11/27/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor dysfunction, cognitive deficits, and psychiatric symptoms. The primary genetic cause is an expansion of cytosine adenine guanine (CAG) nucleotides of the huntingtin gene, which codes an important protein involved with neuronal signaling. The severity of HD correlates with the number of CAG repeats and individuals with longer expansions have an earlier onset and more severe symptoms. A microarray study conducted by our research group showed alteration in DNAH6 gene (encoding dynein axonemal heavy chain 6). DNAH6 belongs to dynein family, whose members are constituents of the microtubule-associated motor proteins and is downregulated in the striatum of a HD mouse model (knockin HdhQ111/Q111). In this manner, our goal was to confirm these downregulations in the mouse model and verify if the same alteration in the axonemal DNAH6 gene expression is observed in blood samples of HD patients. Blood samples were collected from 17 patients with clinical diagnosis of HD and 12 healthy individuals and RNA extracted for qPCR analysis. Microarray data were confirmed by qPCR in knockin HdhQ111/Q111, and DNAH6 was severely decreased in those mice, as compared to control mice (HdhQ20/Q20). Notably, decreased expression of DNAH6 gene was also observed in HD patients when compared to control group and negatively correlates with the CAG expansion. Although further studies are necessary to underlie the molecular mechanisms of dynein-htt interaction, this data highlights DNAH6 as a potential new blood marker for HD.
Collapse
Affiliation(s)
- Lorena B Areal
- Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Vitória, ES, Brazil.,Graduate Program in Neuroscience, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lorraine P Pereira
- Graduate Program in Biochemistry and Pharmacology, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Fabiola M Ribeiro
- Graduate Program in Neuroscience, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isabella G Olmo
- Graduate Program in Neuroscience, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo R Muniz
- Department of Clinical Medicine, Health Science Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Maria do Carmo Rodrigues
- Department of Clinical Medicine, Health Science Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Patrik F Costa
- Department of Physiotherapy, School of Sciences, Santa Casa de Misericordia de Vitoria, Vitória, ES, Brazil
| | - Cristina Martins-Silva
- Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Vitória, ES, Brazil.,Graduate Program in Biochemistry and Pharmacology, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Stephen S G Ferguson
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Daniela A M Guimarães
- Graduate Program in Biochemistry and Pharmacology, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Rita G W Pires
- Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Vitória, ES, Brazil. .,Graduate Program in Neuroscience, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Graduate Program in Biochemistry and Pharmacology, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil. .,Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Marechal Campos Avenue, 1468, Vitória, ES, 29043-910, Brazil.
| |
Collapse
|
28
|
Wen H, Zhan L, Chen S, Long L, Xu E. Rab7 may be a novel therapeutic target for neurologic diseases as a key regulator in autophagy. J Neurosci Res 2017; 95:1993-2004. [PMID: 28186670 DOI: 10.1002/jnr.24034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Haixia Wen
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China; Guangzhou China
| | - Lixuan Zhan
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China; Guangzhou China
| | - Siyuan Chen
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China; Guangzhou China
| | - Long Long
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China; Guangzhou China
| | - En Xu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China; Guangzhou China
| |
Collapse
|
29
|
Marsh AG, Cottrell MT, Goldman MF. Epigenetic DNA Methylation Profiling with MSRE: A Quantitative NGS Approach Using a Parkinson's Disease Test Case. Front Genet 2016; 7:191. [PMID: 27853465 PMCID: PMC5090125 DOI: 10.3389/fgene.2016.00191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/14/2016] [Indexed: 11/22/2022] Open
Abstract
Epigenetics is a rapidly developing field focused on deciphering chemical fingerprints that accumulate on human genomes over time. As the nascent idea of precision medicine expands to encompass epigenetic signatures of diagnostic and prognostic relevance, there is a need for methodologies that provide high-throughput DNA methylation profiling measurements. Here we report a novel quantification methodology for computationally reconstructing site-specific CpG methylation status from next generation sequencing (NGS) data using methyl-sensitive restriction endonucleases (MSRE). An integrated pipeline efficiently incorporates raw NGS metrics into a statistical discrimination platform to identify functional linkages between shifts in epigenetic DNA methylation and disease phenotypes in samples being analyzed. In this pilot proof-of-concept study we quantify and compare DNA methylation in blood serum of individuals with Parkinson's Disease relative to matched healthy blood profiles. Even with a small study of only six samples, a high degree of statistical discrimination was achieved based on CpG methylation profiles between groups, with 1008 statistically different CpG sites (p < 0.0025, after false discovery rate correction). A methylation load calculation was used to assess higher order impacts of methylation shifts on genes and pathways and most notably identified FGF3, FGF8, HTT, KMTA5, MIR8073, and YWHAG as differentially methylated genes with high relevance to Parkinson's Disease and neurodegeneration (based on PubMed literature citations). Of these, KMTA5 is a histone methyl-transferase gene and HTT is Huntington Disease Protein or Huntingtin, for which there are well established neurodegenerative impacts. The future need for precision diagnostics now requires more tools for exploring epigenetic processes that may be linked to cellular dysfunction and subsequent disease progression.
Collapse
Affiliation(s)
- Adam G Marsh
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of DelawareNewark, DE, USA; Genome Profiling LLC, Helen F. Graham Cancer Center and Research Institute, Center for Translational Cancer ResearchNewark, DE USA; Marine Biosciences, School of Marine Science and Policy, University of DelawareLewes, DE, USA
| | - Matthew T Cottrell
- Genome Profiling LLC, Helen F. Graham Cancer Center and Research Institute, Center for Translational Cancer ResearchNewark, DE USA; Marine Biosciences, School of Marine Science and Policy, University of DelawareLewes, DE, USA
| | - Morton F Goldman
- Genome Profiling LLC, Helen F. Graham Cancer Center and Research Institute, Center for Translational Cancer Research Newark, DE USA
| |
Collapse
|
30
|
Pampliega O, Cuervo AM. Autophagy and primary cilia: dual interplay. Curr Opin Cell Biol 2016; 39:1-7. [PMID: 26826446 DOI: 10.1016/j.ceb.2016.01.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/08/2016] [Accepted: 01/13/2016] [Indexed: 12/11/2022]
Abstract
Primary cilia are microtubule-based organelles for sensing of the extracellular milieu and transducing this information into the cell through a variety of molecular signaling pathways. Functioning of the primary cilium has been recently connected to autophagy, a pathway for degradation of cellular components in lysosomes. Autophagy regulates the length of the cilia by removing proteins required for ciliogenesis, a phenomenon that is molecularly different if performed by basal autophagy or when autophagy is induced in response to various stressors. Here we review the current knowledge about the dual interaction between autophagy and ciliogenesis, and discuss the potential role that deregulated ciliary autophagy could have in pathologies with alterations in autophagy and ciliogenesis.
Collapse
Affiliation(s)
- Olatz Pampliega
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|