1
|
Salomo-Coll C, Jimenez-Moreno N, Wilkinson S. Lysosomal Degradation of ER Client Proteins by ER-phagy and Related Pathways. J Mol Biol 2025:169035. [PMID: 39993592 DOI: 10.1016/j.jmb.2025.169035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
The endoplasmic reticulum (ER) is a major site of cellular protein synthesis. Degradation of overabundant, misfolded, aggregating or unwanted proteins is required to maintain proteostasis and avoid the deleterious consequences of aberrant protein accumulation, at a cellular and organismal level. While extensive research has shown an important role for proteasomally-mediated, ER-associated degradation (ERAD) in maintaining proteostasis, it is becoming clear that there is a substantial role for lysosomal degradation of "client" proteins from the ER lumen or membrane (ER-to-lysosome degradation, ERLAD). Here we provide a brief overview of the broad categories of ERLAD - predominantly ER-phagy (ER autophagy) pathways and related processes. We collate the client proteins known to date, either individual species or categories of proteins. Where known, we summarise the molecular mechanisms by which they are selected for degradation, and the setting in which lysosomal degradation of the client(s) is important for correct cell or tissue function. Finally, we highlight the questions that remain open in this area.
Collapse
Affiliation(s)
- Carla Salomo-Coll
- CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU, United Kingdom
| | - Natalia Jimenez-Moreno
- CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU, United Kingdom
| | - Simon Wilkinson
- CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU, United Kingdom.
| |
Collapse
|
2
|
Tsumura T, Hagiwara D, Naito S, Kondo Y, Kawaguchi Y, Miyata T, Kobayashi T, Sugiyama M, Onoue T, Iwama S, Suga H, Banno R, Arima H. Compensatory mechanisms underlying arginine vasopressin regulation in transient polyuria during pregnancy. Peptides 2025; 184:171352. [PMID: 39870309 DOI: 10.1016/j.peptides.2025.171352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Transient polyuria during pregnancy is reportedly caused by increased arginine vasopressin (AVP) degradation due to vasopressinase produced by the placenta. The mechanism underlying transient polyuria during pregnancy has not been established. In this study we measured urine volume, urine osmolality, and AVP transcriptional activity during pregnancy in wild-type and familial neurohypophysial diabetes insipidus (FNDI) mice. The FNDI mice were used as a partial AVP deficiency model. Vasopressinase was shown to be present in the placentas of pregnant mice. The Avp hnRNA level in the supraoptic nucleus, which is indicative of AVP transcriptional activity, was upregulated in wild-type and FNDI mice during late pregnancy. FNDI mice, but not wild-type mice, had a significant increase in urine volume and a decrease in urine osmolality during pregnancy. These data suggest that an increase in urine volume during pregnancy only occurs when the compensatory increase in AVP release is insufficient to counteract degradation by vasopressinase.
Collapse
Affiliation(s)
- Tetsuro Tsumura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Satoshi Naito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuichi Kondo
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
3
|
Miwata T, Suga H, Mitsumoto K, Zhang J, Hamada Y, Sakakibara M, Soen M, Ozaki H, Asano T, Miyata T, Kawaguchi Y, Yasuda Y, Kobayashi T, Sugiyama M, Onoue T, Hagiwara D, Iwama S, Oyadomari S, Arima H. Simplified drug efficacy evaluation system for vasopressin neurodegenerative disease using mouse disease-specific induced pluripotent stem cells. Peptides 2024; 173:171151. [PMID: 38215943 DOI: 10.1016/j.peptides.2024.171151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Familial neurohypophyseal diabetes insipidus (FNDI) is a degenerative disorder in which vasopressin-secreting neurons degenerate over time due to the production of mutant proteins. We have demonstrated therapeutic effects of chemical chaperones in an FNDI mouse model, but the complexity and length of this evaluation were problematic. In this study, we established disease-specific mouse induced pluripotent stem cells (iPSCs) from FNDI-model mice and differentiated vasopressin neurons that produced mutant proteins. Fluorescence immunostaining showed that chemical chaperones appeared to protect vasopressin neurons generated from iPSCs derived from FNDI-model mice. Although KCL stimulation released vasopressin hormone from vasopressin neurons generated from FNDI-derived iPSCs, vasopressin hormone levels did not differ significantly between baseline and chaperone-added culture. Semi-quantification of vasopressin carrier protein and mutant protein volumes in vasopressin neurons confirmed that chaperones exerted a therapeutic effect. This research provides fundamental technology for creating in vitro disease models using human iPSCs and can be applied to therapeutic evaluation of various degenerative diseases that produce abnormal proteins.
Collapse
Affiliation(s)
- Tsutomu Miwata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Kazuki Mitsumoto
- Department of Endocrinology and Diabetes, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Jun Zhang
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshimasa Hamada
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Mayu Sakakibara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mika Soen
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hajime Ozaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoyoshi Asano
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
4
|
Kurimoto J, Takagi H, Miyata T, Kawaguchi Y, Hodai Y, Tsumura T, Hagiwara D, Kobayashi T, Yasuda Y, Sugiyama M, Onoue T, Iwama S, Suga H, Banno R, Katsuki T, Ando F, Uchida S, Arima H. Mineralocorticoids induce polyuria by reducing apical aquaporin-2 expression of the kidney in partial vasopressin deficiency. Endocr J 2023; 70:295-304. [PMID: 36450452 DOI: 10.1507/endocrj.ej22-0339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The symptoms of diabetes insipidus may be masked by the concurrence of adrenal insufficiency and emerge after the administration of hydrocortisone, occasionally at high doses. To elucidate the mechanism underlying polyuria induced by the administration of high-dose corticosteroids in the deficiency of arginine vasopressin (AVP), we first examined the secretion of AVP in three patients in whom polyuria was observed only after the administration of high-dose corticosteroids. Next, we examined the effects of dexamethasone or aldosterone on water balance in wild-type and familial neurohypophyseal diabetes insipidus (FNDI) model mice. A hypertonic saline test showed that AVP secretion was partially impaired in all patients. In one patient, there were no apparent changes in AVP secretion before and after the administration of high-dose corticosteroids. In FNDI mice, unlike dexamethasone, the administration of aldosterone increased urine volumes and decreased urine osmolality. Immunohistochemical analyses showed that, after the administration of aldosterone in FNDI mice, aquaporin-2 expression was decreased in the apical membrane and increased in the basolateral membrane in the collecting duct. These changes were not observed in wild-type mice. The present data suggest that treatment with mineralocorticoids induces polyuria by reducing aquaporin-2 expression in the apical membrane of the kidney in partial AVP deficiency.
Collapse
Affiliation(s)
- Junki Kurimoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuichi Hodai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tetsuro Tsumura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan
| | - Takeshi Katsuki
- Department of Diabetes and Endocrinology, Tokyo Saiseikai Central Hospital, Tokyo 108-0073, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
5
|
Differentiation of human induced pluripotent stem cells into hypothalamic vasopressin neurons with minimal exogenous signals and partial conversion to the naive state. Sci Rep 2022; 12:17381. [PMID: 36253431 PMCID: PMC9576732 DOI: 10.1038/s41598-022-22405-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 10/14/2022] [Indexed: 01/10/2023] Open
Abstract
Familial neurohypophyseal diabetes insipidus (FNDI) is a degenerative disease of vasopressin (AVP) neurons. Studies in mouse in vivo models indicate that accumulation of mutant AVP prehormone is associated with FNDI pathology. However, studying human FNDI pathology in vivo is technically challenging. Therefore, an in vitro human model needs to be developed. When exogenous signals are minimized in the early phase of differentiation in vitro, mouse embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) differentiate into AVP neurons, whereas human ESCs/iPSCs die. Human ESCs/iPSCs are generally more similar to mouse epiblast stem cells (mEpiSCs) compared to mouse ESCs. In this study, we converted human FNDI-specific iPSCs by the naive conversion kit. Although the conversion was partial, we found improved cell survival under minimal exogenous signals and differentiation into rostral hypothalamic organoids. Overall, this method provides a simple and straightforward differentiation direction, which may improve the efficiency of hypothalamic differentiation.
Collapse
|
6
|
Türkmen MÖ, Karaduman T, Tuncdemir BE, Ünal MA, Mergen H. Functional analyses of three different mutations in the AVP-NPII gene causing familial neurohypophyseal diabetes insipidus. Endocrine 2021; 74:658-665. [PMID: 34232487 DOI: 10.1007/s12020-021-02803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/14/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Familial neurohypophyseal diabetes insipidus (FNDI), a rare disorder, which is clinically characterized by polyuria and polydipsia, results from mutations in the arginine vasopressin-neurophysin II (AVP-NPII) gene. The aim of this study was to perform functional analyses of three different mutations (p.G45C, 207_209delGGC, and p.G88V) defined in the AVP-NPII gene of patients diagnosed with FNDI, which are not included in the literature. METHODS For functional analysis studies, the relevant mutations were created using PCR-based site-directed mutagenesis and restriction fragment replacement strategy and expressed in Neuro2A cells. AVP secretion into the cell culture medium was determined by radioimmunoassay (RIA) analysis. Fluorescence imaging studies were conducted to determine the differences in the intracellular trafficking of wild-type (WT) and mutant AVP-NPII precursors. Molecular dynamics (MD) simulations were performed to determine the changing of the conformational properties of domains for both WT and 207-209delGGC mutant structures and dynamics behavior of residues. RESULTS Reduced levels of AVP in the supernatant culture medium of p.G45C and p.G88V transfected cells compared to 207_209delGGC and WT cells were found. Fluorescence imaging studies showed that a substantial portion of the mutant p.G45C and p.G88V AVP-NPII precursors appeared to be located in the endoplasmic reticulum (ER), whereas 207_209delGGC and WT AVP-NPII precursors were distributed throughout the cytoplasm. CONCLUSIONS The mutations p.G45C and p.G88V cause a failure in the intracellular trafficking of mutant AVP-NPII precursors. However, 207_209delGGC mutation does not result in impaired cellular trafficking, probably due to not having any significant effect in processes such as the proper folding, gain of three-dimensional structure, or processing. These results will provide valuable information for understanding the influence of mutations on the function of the AVP precursor hormone and cellular trafficking. Therefore, this study will contribute to elucidate the mechanisms of the molecular pathology of AVP-NPII mutations.
Collapse
Affiliation(s)
- Merve Özcan Türkmen
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey.
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey.
| | - Tugce Karaduman
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
- Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| | | | | | - Hatice Mergen
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Li H, Sun S. Protein Aggregation in the ER: Calm behind the Storm. Cells 2021; 10:cells10123337. [PMID: 34943844 PMCID: PMC8699410 DOI: 10.3390/cells10123337] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
As one of the largest organelles in eukaryotic cells, the endoplasmic reticulum (ER) plays a vital role in the synthesis, folding, and assembly of secretory and membrane proteins. To maintain its homeostasis, the ER is equipped with an elaborate network of protein folding chaperones and multiple quality control pathways whose cooperative actions safeguard the fidelity of protein biogenesis. However, due to genetic abnormalities, the error-prone nature of protein folding and assembly, and/or defects or limited capacities of the protein quality control systems, nascent proteins may become misfolded and fail to exit the ER. If not cleared efficiently, the progressive accumulation of misfolded proteins within the ER may result in the formation of toxic protein aggregates, leading to the so-called “ER storage diseases”. In this review, we first summarize our current understanding of the protein folding and quality control networks in the ER, including chaperones, unfolded protein response (UPR), ER-associated protein degradation (ERAD), and ER-selective autophagy (ER-phagy). We then survey recent research progress on a few ER storage diseases, with a focus on the role of ER quality control in the disease etiology, followed by a discussion on outstanding questions and emerging concepts in the field.
Collapse
Affiliation(s)
- Haisen Li
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Shengyi Sun
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
8
|
Al-Kuraishy HM, Al-Gareeb AI, Qusti S, Alshammari EM, Atanu FO, Batiha GES. Arginine vasopressin and pathophysiology of COVID-19: An innovative perspective. Biomed Pharmacother 2021; 143:112193. [PMID: 34543987 PMCID: PMC8440235 DOI: 10.1016/j.biopha.2021.112193] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
In Covid-19, systemic disturbances may progress due to development of cytokine storm and dysregulation of and plasma osmolarility due to high release of pro-inflammatory cytokines and neuro-hormonal disorders. Arginine vasopressin (AVP) which is involve in the regulation of body osmotic system, body water content, blood pressure and plasma volume, that are highly disturbed in Covid-19 and linked with poor clinical outcomes. Therefore, this present study aimed to find the potential association between AVP serum level and inflammatory disorders in Covid-19. It has been observed by different recent studies that physiological response due to fever, pain, hypovolemia, dehydration, and psychological stress is characterized by activation release of AVP to counter-balance high blood viscosity in Covid-19 patients. In addition, activated immune cells mainly T and B lymphocytes and released pro-inflammatory cytokines stimulate discharge of stored AVP from immune cells, which in a vicious cycle trigger release of pro-inflammatory cytokines. Vasopressin receptor antagonists have antiviral and anti-inflammatory effects that may inhibit AVP-induced hyponatremia and release of pro-inflammatory cytokines in Covid-19. In conclusion, release of AVP from hypothalamus is augmented in Covid-19 due to stress, high pro-inflammatory cytokines, high circulating AngII and inhibition of GABAergic neurons. In turn, high AVP level leads to induction of hyponatremia, inflammatory disorders, and development of complications in Covid-19 by activation of NF-κB and NLRP3 inflammasome with release of pro-inflammatory cytokines. Therefore, AVP antagonists might be novel potential therapeutic modality in treating Covid-19 through mitigation of AVP-mediated inflammatory disorders and hyponatremia.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq.
| | - Safaa Qusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia.
| | - Francis O Atanu
- Department of Biochemistry, Faculty of Natural Sciences, Kogi State University, P.M.B. 1008 Anyigba, Nigeria.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt.
| |
Collapse
|
9
|
Kurimoto J, Takagi H, Miyata T, Hodai Y, Kawaguchi Y, Hagiwara D, Suga H, Kobayashi T, Sugiyama M, Onoue T, Ito Y, Iwama S, Banno R, Tanabe K, Tanizawa Y, Arima H. Deficiency of WFS1 leads to the impairment of AVP secretion under dehydration in male mice. Pituitary 2021; 24:582-588. [PMID: 33666833 DOI: 10.1007/s11102-021-01135-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Wolfram syndrome (WS) is mainly caused by mutations in the WFS1 gene and characterized by diabetes mellitus, optic atrophy, hearing loss, and central diabetes insipidus (CDI). WFS1 is an endoplasmic reticulum (ER)-resident transmembrane protein, and Wfs1 knockout (Wfs1-/-) mice, which have been used as a mouse model for WS, reportedly manifested impairment of glucose tolerance due to pancreatic β-cell loss. In the present study, we examined water balance, arginine vasopressin (AVP) secretion, and ER stress in AVP neurons of the hypothalamus in Wfs1-/- mice. There were no differences in urine volumes between Wfs1-/- and wild-type mice with free access to water. Conversely, when mice were subjected to intermittent water deprivation (WD) for 20 weeks, during which water was unavailable for 2 days a week, urine volumes were larger in Wfs1-/- mice, accompanied by lower urine AVP concentrations and urine osmolality, compared to wild-type mice. The mRNA expression of immunoglobulin heavy chain binding protein, a marker of ER stress, was significantly increased in the supraoptic nucleus and paraventricular nuclei in Wfs1-/- mice compared to wild-type mice after WD. Our results thus showed that Wfs1 knockout leads to a decrease in AVP secretion during dehydration, which could explain in part the mechanisms by which Wfs1 mutations cause CDI in humans.
Collapse
Affiliation(s)
- Junki Kurimoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuichi Hodai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, 464-8601, Japan
| | - Katsuya Tanabe
- Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Yukio Tanizawa
- Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
10
|
Hagiwara D, Tochiya M, Azuma Y, Tsumura T, Hodai Y, Kawaguchi Y, Miyata T, Kobayashi T, Sugiyama M, Onoue T, Takagi H, Ito Y, Iwama S, Suga H, Banno R, Arima H. Arginine vasopressin-Venus reporter mice as a tool for studying magnocellular arginine vasopressin neurons. Peptides 2021; 139:170517. [PMID: 33647312 DOI: 10.1016/j.peptides.2021.170517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/20/2022]
Abstract
Arginine vasopressin (AVP) synthesized in the magnocellular neurons of the hypothalamus is transported through their axons and released from the posterior pituitary into the systemic circulation to act as an antidiuretic hormone. AVP synthesis and release are precisely regulated by changes in plasma osmolality. Magnocellular AVP neurons receive innervation from osmosensory and sodium-sensing neurons, but previous studies showed that AVP neurons per se are osmosensitive as well. In the current study, we made AVP-Venus reporter mice and showed that Venus was expressed exclusively in AVP neurons and was upregulated under water deprivation. In hypothalamic organotypic cultures from the AVP-Venus mice, Venus-labeled AVP neurons in the supraoptic and paraventricular nuclei survived for 1 month, and Venus expression was upregulated by forskolin. Furthermore, in dissociated Venus-labeled magnocellular neurons, treatment with NaCl, but not with mannitol, decreased Venus fluorescence in the soma of the AVP neurons. Thus, Venus expression in AVP-Venus transgenic mice, as well as in primary cultures, faithfully showed the properties of intrinsic AVP expression. These findings indicate that AVP-Venus mice as well as the primary hypothalamic cultures could be useful for studying magnocellular AVP neurons.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Masayoshi Tochiya
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoshinori Azuma
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tetsuro Tsumura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuichi Hodai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, 464-8601, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
11
|
Driano JE, Lteif AN, Creo AL. Vasopressin-Dependent Disorders: What Is New in Children? Pediatrics 2021; 147:peds.2020-022848. [PMID: 33795481 DOI: 10.1542/peds.2020-022848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 11/24/2022] Open
Abstract
Arginine vasopressin (AVP)-mediated osmoregulatory disorders, such as diabetes insipidus (DI) and syndrome of inappropriate secretion of antidiuretic hormone (SIADH) are common in the differential diagnosis for children with hypo- and hypernatremia and require timely recognition and treatment. DI is caused by a failure to concentrate urine secondary to impaired production of or response to AVP, resulting in hypernatremia. Newer methods of diagnosing DI include measuring copeptin levels; copeptin is AVP's chaperone protein and serves as a surrogate biomarker of AVP secretion. Intraoperative copeptin levels may also help predict the risk for developing DI after neurosurgical procedures. Copeptin levels hold diagnostic promise in other pediatric conditions, too. Recently, expanded genotype and phenotype correlations in inherited DI disorders have been described and may better predict the clinical course in affected children and infants. Similarly, newer formulations of synthetic AVP may improve pediatric DI treatment. In contrast to DI, SIADH, characterized by inappropriate AVP secretion, commonly leads to severe hyponatremia. Contemporary methods aid clinicians in distinguishing SIADH from other hyponatremic conditions, particularly cerebral salt wasting. Further research on the efficacy of therapies for pediatric SIADH is needed, although some adult treatments hold promise for pediatrics. Lastly, expansion of home point-of-care sodium testing may transform management of SIADH and DI in children. In this article, we review recent developments in the understanding of pathophysiology, diagnostic workup, and treatment of better outcomes and quality of life for children with these challenging disorders.
Collapse
Affiliation(s)
- Jane E Driano
- School of Medicine, Creighton University, Omaha, Nebraska; and
| | - Aida N Lteif
- Division of Pediatric Endocrinology and Metabolism, Mayo Clinic, Rochester, Minnesota
| | - Ana L Creo
- Division of Pediatric Endocrinology and Metabolism, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
12
|
Abstract
The hormone arginine vasopressin (AVP) is a nonapeptide synthesized by hypothalamic magnocellular nuclei and secreted from the posterior pituitary into the bloodstream. It binds to AVP receptor 2 in the kidney to promote the insertion of aquaporin channels (AQP2) and antidiuretic responses. AVP secretion deficits produce central diabetes insipidus (CDI), while renal insensitivity to the antidiuretic effect of AVP causes nephrogenic diabetes insipidus (NDI). Hereditary and acquired forms of CDI and NDI generate hypotonic polyuria, polydipsia, hyperosmolality, and hypernatremia. The AVP mutant (Brattleboro) rat is the principal animal model of hereditary CDI, while neurohypophysectomy, pituitary stalk compression, hypophysectomy, and mediobasal hypothalamic lesions produce acquired CDI. In animals, hereditary NDI is mainly caused by mutations in AVP2R or AQP2 genes, while acquired NDI is most frequently induced by lithium. We report here on the determinants of the intake and excretion of water and mineral salts and on the different types of DI in humans. We then describe the hydromineral characteristics of these animal models and the responses observed after administration of hypertonic NaCl or when they are fed with low-sodium diets. Finally, we report on the effects of drugs such as AVP analogues and/or oxytocin, another neuropeptide that increases sodium excretion in animal models and humans with CDI, and sildenafil, a compound that increases the expression and function of AQP2 channels in animal models and humans with NDI.
Collapse
Affiliation(s)
- Javier Mahía
- Department of Psychobiology, and Mind, Brain and Behavior Research Center, University of Granada, Granada, Spain
| | - Antonio Bernal
- Department of Psychobiology, and Mind, Brain and Behavior Research Center, University of Granada, Granada, Spain
| |
Collapse
|
13
|
Endoplasmic reticulum chaperone BiP/GRP78 knockdown leads to autophagy and cell death of arginine vasopressin neurons in mice. Sci Rep 2020; 10:19730. [PMID: 33184425 PMCID: PMC7661499 DOI: 10.1038/s41598-020-76839-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
The immunoglobulin heavy chain binding protein (BiP), also referred to as 78-kDa glucose-regulated protein (GRP78), is a pivotal endoplasmic reticulum (ER) chaperone which modulates the unfolded protein response under ER stress. Our previous studies showed that BiP is expressed in arginine vasopressin (AVP) neurons under non-stress conditions and that BiP expression is upregulated in proportion to the increased AVP expression under dehydration. To clarify the role of BiP in AVP neurons, we used a viral approach in combination with shRNA interference for BiP knockdown in mouse AVP neurons. Injection of a recombinant adeno-associated virus equipped with a mouse AVP promoter and BiP shRNA cassette provided specific BiP knockdown in AVP neurons of the supraoptic (SON) and paraventricular nuclei (PVN) in mice. AVP neuron-specific BiP knockdown led to ER stress and AVP neuronal loss in the SON and PVN, resulting in increased urine volume due to lack of AVP secretion. Immunoelectron microscopy of AVP neurons revealed that autophagy was activated through the process of AVP neuronal loss, whereas no obvious features characteristic of apoptosis were observed. Pharmacological inhibition of autophagy by chloroquine exacerbated the AVP neuronal loss due to BiP knockdown, indicating a protective role of autophagy in AVP neurons under ER stress. In summary, our results demonstrate that BiP is essential for the AVP neuron system.
Collapse
|
14
|
Miyata T, Hagiwara D, Hodai Y, Miwata T, Kawaguchi Y, Kurimoto J, Ozaki H, Mitsumoto K, Takagi H, Suga H, Kobayashi T, Sugiyama M, Onoue T, Ito Y, Iwama S, Banno R, Matsumoto M, Kawakami N, Ohno N, Sakamoto H, Arima H. Degradation of Mutant Protein Aggregates within the Endoplasmic Reticulum of Vasopressin Neurons. iScience 2020; 23:101648. [PMID: 33103081 PMCID: PMC7578753 DOI: 10.1016/j.isci.2020.101648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/08/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Misfolded or unfolded proteins in the ER are said to be degraded only after translocation or isolation from the ER. Here, we describe a mechanism by which mutant proteins are degraded within the ER. Aggregates of mutant arginine vasopressin (AVP) precursor were confined to ER-associated compartments (ERACs) connected to the ER in AVP neurons of a mouse model of familial neurohypophysial diabetes insipidus. The ERACs were enclosed by membranes, an ER chaperone and marker protein of phagophores and autophagosomes were expressed around the aggregates, and lysosomes fused with the ERACs. Moreover, lysosome-related molecules were present within the ERACs, and aggregate degradation within the ERACs was dependent on autophagic-lysosomal activity. Thus, we demonstrate that protein aggregates can be degraded by autophagic-lysosomal machinery within specialized compartments of the ER. Mutant AVP precursors are confined to ERACs connected to the ER of FNDI AVP neurons Lysosomes fuse with ERACs surrounded by phagophore-like membranes Lysosome-related molecules are localized within ERACs Rapamycin reduces and chloroquine increases protein aggregate accumulation in ERACs
Collapse
Affiliation(s)
- Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuichi Hodai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsutomu Miwata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Junki Kurimoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hajime Ozaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kazuki Mitsumoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | - Natsuko Kawakami
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Setouchi 701-4303, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke 329-0498, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Setouchi 701-4303, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
15
|
Abstract
In the majority of cases, hereditary neurohypophyseal diabetes insipidus (DI) is a monogenic disorder caused by mutations in the AVP gene. Dominant transmission is by far the most common form. In these patients, symptoms develop gradually at various ages during childhood, progressing with complete penetrance to polyuria and polydipsia that is usually severe. In autosomal dominant neurohypophyseal DI (ADNDI), the mutant prohormone is folding deficient and consequently retained in the ER, where it forms amyloid-like fibrillar aggregates. Degradation by proteasomes occurs, but their clearance capacity appears to be insufficient. Postmortem studies in affected individuals suggest a neurodegenerative process confined to vasopressinergic neurons. Other forms of genetic neurohypophyseal DI include the very rare autosomal recessive type, also caused by mutations in the AVP gene, and complex multiorgan disorders, such as Wolfram syndrome. In all individuals where a congenital form of DI is suspected, including nephrogenic types, genetic analysis should be performed.
Collapse
Affiliation(s)
- Martin Spiess
- University of Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | - Nicole Beuret
- University of Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | - Jonas Rutishauser
- University of Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland; Kantonsspital Baden, Clinical Trial Unit, Im Ergel 1, CH-5405 Baden, Switzerland.
| |
Collapse
|
16
|
García-Castaño A, Madariaga L, Pérez de Nanclares G, Vela A, Rica I, Gaztambide S, Martínez R, Martinez de LaPiscina I, Urrutia I, Aguayo A, Velasco O, Castaño L. Forty-One Individuals With Mutations in the AVP-NPII Gene Associated With Familial Neurohypophyseal Diabetes Insipidus. J Clin Endocrinol Metab 2020; 105:5735194. [PMID: 32052034 DOI: 10.1210/clinem/dgaa069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/07/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Familial neurohypophyseal diabetes insipidus is a rare disease produced by a deficiency in the secretion of antidiuretic hormone and is caused by mutations in the arginine vasopressin gene. OBJECTIVE Clinical, biochemical, and genetic characterization of a group of patients clinically diagnosed with familial neurohypophyseal diabetes insipidus, 1 of the largest cohorts of patients with protein neurophysin II (AVP-NPII) gene alterations studied so far. DESIGN The AVP-NPII gene was screened for mutations by PCR followed by direct Sanger sequencing in 15 different unrelated families from Spain. RESULTS The 15 probands presented with polyuria and polydipsia as the most important symptoms at the time of diagnosis. In these patients, the disease was diagnosed at a median of 6 years of age. We observed 11 likely pathogenic variants. Importantly, 4 of the AVP-NPII variants were novel (p.(Tyr21Cys), p.(Gly45Ser), p.(Cys75Tyr), p.(Gly88Cys)). CONCLUSIONS Cytotoxicity seems to be due to consequences common to all the variants found in our cohort, which are not able to fold correctly and pass the quality control of the ER. In concordance, we found autosomal dominant familial neurohypophyseal diabetes insipidus in the 15 families studied.
Collapse
Affiliation(s)
| | - Leire Madariaga
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
- Hospital Universitario Cruces, Barakaldo, Spain
- UPV/EHU, Leioa, Spain
| | - Gustavo Pérez de Nanclares
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
- Hospital Universitario Cruces, Barakaldo, Spain
| | - Amaia Vela
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
- Hospital Universitario Cruces, Barakaldo, Spain
- UPV/EHU, Leioa, Spain
| | - Itxaso Rica
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
- Hospital Universitario Cruces, Barakaldo, Spain
| | - Sonia Gaztambide
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
- Hospital Universitario Cruces, Barakaldo, Spain
- UPV/EHU, Leioa, Spain
| | - Rosa Martínez
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
| | | | - Inés Urrutia
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
| | - Anibal Aguayo
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
- Hospital Universitario Cruces, Barakaldo, Spain
| | - Olaia Velasco
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
| | | | - Luis Castaño
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
- Hospital Universitario Cruces, Barakaldo, Spain
- UPV/EHU, Leioa, Spain
| |
Collapse
|
17
|
Amyloid-like aggregation of provasopressin. VITAMINS AND HORMONES 2020. [PMID: 32138954 DOI: 10.1016/bs.vh.2019.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The antidiuretic hormone vasopressin is synthesized as a longer precursor protein. After folding in the endoplasmic reticulum (ER), provasopressin is transported through the secretory pathway, forms secretory granules in the trans-Golgi network (TGN), is processed, and finally secreted into the circulation. Mutations in provasopressin cause autosomal dominant diabetes insipidus. They prevent native protein folding and cause fibrillar, amyloid-like aggregation in the ER, which eventually results in cell death. Secretory granules of peptide hormones were proposed to constitute functional amyloids and thus might be the cause of amyloid formation of misfolded mutant protein in the ER. Indeed, the same two segments in the precursor-vasopressin and a C-terminal glycopeptide-were found to be responsible for pathological aggregation in the ER and physiological aggregation in granule formation in the TGN. Furthermore, even wild-type provasopressin tends to aggregate in the ER, but is controlled by ER-associated degradation. When essential components thereof, Sel1L or Hrd1, were inactivated, wild-type provasopressin accumulated as fibrillar aggregates in vasopressinergic neurons in mice, causing diabetes insipidus. Evolution of amyloidogenic sequences for granule formation thus made provasopressin dependent on ER quality control mechanisms. These principles may similarly apply to other peptide hormones.
Collapse
|
18
|
Spiess M, Friberg M, Beuret N, Prescianotto-Baschong C, Rutishauser J. Role of protein aggregation and degradation in autosomal dominant neurohypophyseal diabetes insipidus. Mol Cell Endocrinol 2020; 501:110653. [PMID: 31785344 DOI: 10.1016/j.mce.2019.110653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
This review focuses on the cellular and molecular aspects underlying familial neurohypophyseal diabetes insipidus (DI), a rare disorder that is usually transmitted in an autosomal-dominant fashion. The disease, manifesting in infancy or early childhood and gradually progressing in severity, is caused by fully penetrant heterozygous mutations in the gene encoding prepro-vasopressin-neurophysin II, the precursor of the antidiuretic hormone arginine vasopressin (AVP). Post mortem studies in affected adults have shown cell degeneration in vasopressinergic hypothalamic nuclei. Studies in cells expressing pathogenic mutants and knock-in rodent models have shown that the mutant precursors are folding incompetent and fail to exit the endoplasmic reticulum (ER), as occurs normally with proteins that have entered the regulated secretory pathway. A portion of these mutants is eliminated via ER-associated degradation (ERAD) by proteasomes after retrotranslocation to the cytosol. Another portion forms large disulfide-linked fibrillar aggregates within the ER, in which wild-type precursor is trapped. Aggregation capacity is independently conferred by two domains of the prohormone, namely the AVP moiety and the C-terminal glycopeptide (copeptin). The same domains are also required for packaging into dense-core secretory granules and regulated secretion, suggesting a disturbed balance between the physiological self-aggregation at the trans-Golgi network and avoiding premature aggregate formation at the ER in the disease. The critical role of ERAD in maintaining physiological water balance has been underscored by experiments in mice expressing wild-type AVP but lacking critical components of the ERAD machinery. These animals also develop DI and show amyloid-like aggregates in the ER lumen. Thus, the capacity of the ERAD is exceeded in autosomal dominant DI, which can be viewed as a neurodegenerative disorder associated with the formation of amyloid ER aggregates. While DI symptoms develop prior to detectable cell death in transgenic DI mice, the eventual loss of vasopressinergic neurons is accompanied by autophagy, but the mechanism leading to cell degeneration in autosomal dominant neurohypophyseal DI still remains unknown.
Collapse
Affiliation(s)
- Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Michael Friberg
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Nicole Beuret
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | | | - Jonas Rutishauser
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland.
| |
Collapse
|
19
|
Morishita Y, Arvan P. Lessons from animal models of endocrine disorders caused by defects of protein folding in the secretory pathway. Mol Cell Endocrinol 2020; 499:110613. [PMID: 31605742 PMCID: PMC6886696 DOI: 10.1016/j.mce.2019.110613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023]
Abstract
Most peptide hormones originate from secretory protein precursors synthesized within the endoplasmic reticulum (ER). In this specialized organelle, the newly-made prohormones must fold to their native state. Completion of prohormone folding usually occurs prior to migration through the secretory pathway, as unfolded/misfolded prohormones are retained by mechanisms collectively known as ER quality control. Not only do most monomeric prohormones need to fold properly, but many also dimerize or oligomerize within the ER. If oligomerization occurs before completion of monomer folding then when a poorly folded peptide prohormone is retained by quality control mechanisms, it may confer ER retention upon its oligomerization partners. Conversely, oligomerization between well-folded and improperly folded partners might help to override ER quality control, resulting in rescue of misfolded forms. Both scenarios appear to be possible in different animal models of endocrine disorders caused by genetic defects of protein folding in the secretory pathway. In this paper, we briefly review three such conditions, including familial neurohypophyseal diabetes insipidus, insulin-deficient diabetes mellitus, and hypothyroidism with defective thyroglobulin.
Collapse
Affiliation(s)
- Yoshiaki Morishita
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan School of Medicine, Brehm Tower Room 5112, 1000, Wall St., Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Mitsumoto K, Suga H, Sakakibara M, Soen M, Yamada T, Ozaki H, Nagai T, Kano M, Kasai T, Ozone C, Ogawa K, Sugiyama M, Onoue T, Tsunekawa T, Takagi H, Hagiwara D, Ito Y, Iwama S, Goto M, Banno R, Arima H. Improved methods for the differentiation of hypothalamic vasopressin neurons using mouse induced pluripotent stem cells. Stem Cell Res 2019; 40:101572. [PMID: 31539858 DOI: 10.1016/j.scr.2019.101572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/14/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022] Open
Abstract
High differentiation efficiency is one of the most important factors in developing an in vitro model from pluripotent stem cells. In this report, we improved the handling technique applied to mouse-induced pluripotent stem (iPS) cells, resulting in better differentiation into hypothalamic vasopressin (AVP) neurons. We modified the culture procedure to make the maintenance of iPS cells in an undifferentiated state much easier. Three-dimensional floating culture was demonstrated to be effective for mouse iPS cells. We also improved the differentiation method with regards to embryology, resulting in a greater number of bigger colonies of AVP neurons differentiating from mouse iPS cells. Fgf8, which was not used in the original differentiation method, increased iPS differentiation into AVP neurons. These refinements will be useful as a valuable tool for the modeling of degenerative disease in AVP neurons in vitro using disease-specific iPS cells in future studies.
Collapse
Affiliation(s)
- Kazuki Mitsumoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan.
| | - Mayu Sakakibara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Mika Soen
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tomiko Yamada
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hajime Ozaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Takashi Nagai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Mayuko Kano
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Takatoshi Kasai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Chikafumi Ozone
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Koichiro Ogawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Motomitsu Goto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
21
|
Mitochondria, Oxytocin, and Vasopressin: Unfolding the Inflammatory Protein Response. Neurotox Res 2018; 36:239-256. [PMID: 30259418 DOI: 10.1007/s12640-018-9962-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
Neuroendocrine and immune signaling pathways are activated following insults such as stress, injury, and infection, in a systemic response aimed at restoring homeostasis. Mitochondrial metabolism and function have been implicated in the control of immune responses. Commonly studied along with mitochondrial function, reactive oxygen species (ROS) are closely linked to cellular inflammatory responses. It is also accepted that cells experiencing mitochondrial or endoplasmic reticulum (ER) stress induce response pathways in order to cope with protein-folding dysregulation, in homeostatic responses referred to as the unfolded protein responses (UPRs). Recent reports indicate that the UPRs may play an important role in immune responses. Notably, the homeostasis-regulating hormones oxytocin (OXT) and vasopressin (AVP) are also associated with the regulation of inflammatory responses and immune function. Intriguingly, OXT and AVP have been linked with ER unfolded protein responses (UPRER), and can impact ROS production and mitochondrial function. Here, we will review the evidence for interactions between these various factors and how these neuropeptides might influence mitochondrial processes.
Collapse
|
22
|
Tochiya M, Hagiwara D, Azuma Y, Miyata T, Morishita Y, Suga H, Onoue T, Tsunekawa T, Takagi H, Ito Y, Iwama S, Goto M, Banno R, Arima H. Chemical chaperone 4-phenylbutylate reduces mutant protein accumulation in the endoplasmic reticulum of arginine vasopressin neurons in a mouse model for familial neurohypophysial diabetes insipidus. Neurosci Lett 2018; 682:50-55. [DOI: 10.1016/j.neulet.2018.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/28/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
|
23
|
Hagiwara D, Grinevich V, Arima H. A novel mechanism of autophagy-associated cell death of vasopressin neurons in familial neurohypophysial diabetes insipidus. Cell Tissue Res 2018; 375:259-266. [PMID: 29961215 DOI: 10.1007/s00441-018-2872-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/09/2018] [Indexed: 10/28/2022]
Abstract
Familial neurohypophysial diabetes insipidus (FNDI), characterized by delayed-onset progressive polyuria and loss of arginine vasopressin (AVP) neuron, is an autosomal dominant disorder caused by AVP gene mutations. We previously generated a knock-in mouse model for FNDI, which recapitulated the phenotype of human FNDI. To address the mechanisms underlying AVP neuron loss, we subjected FNDI mice to intermittent water deprivation, which accelerated the phenotype and induced AVP neuron loss within a relative short period. Electron microscopic analyses revealed that aggregates were confined to a sub-compartment of the endoplasmic reticulum (ER), ER-associated compartment (ERAC), in AVP neurons of FNDI mice under normal conditions. In contrast, aggregates scattered throughout the dilated ER lumen, and phagophores, autophagosome precursors, emerged and surrounded the ER containing scattered aggregates in FNDI mice subjected to water deprivation for 4 weeks, suggesting that failure of ERAC formation leads to autophagy induction for degradation of aggregates. Furthermore, the cytoplasm was entirely occupied with large vacuoles in AVP neurons of FNDI mice subjected to water deprivation for 12 weeks, at which stage 30-40% of AVP neurons were lost. Our data demonstrated that although autophagy should primarily be a protective mechanism, continuous autophagy leads to gradual loss of organelles including ER, resulting in autophagy-associated cell death of AVP neurons in FNDI mice.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Schaller Research Group on Neuropeptides, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center (DKFZ), Heidelberg, Germany.,CellNetworks Cluster of Excellence, University of Heidelberg, Heidelberg, Germany.,Central Institute of Mental Health, Mannheim, Germany
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
24
|
Shi G, Somlo DRM, Kim GH, Prescianotto-Baschong C, Sun S, Beuret N, Long Q, Rutishauser J, Arvan P, Spiess M, Qi L. ER-associated degradation is required for vasopressin prohormone processing and systemic water homeostasis. J Clin Invest 2017; 127:3897-3912. [PMID: 28920920 DOI: 10.1172/jci94771] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Peptide hormones are crucial regulators of many aspects of human physiology. Mutations that alter these signaling peptides are associated with physiological imbalances that underlie diseases. However, the conformational maturation of peptide hormone precursors (prohormones) in the ER remains largely unexplored. Here, we report that conformational maturation of proAVP, the precursor for the antidiuretic hormone arginine-vasopressin, within the ER requires the ER-associated degradation (ERAD) activity of the Sel1L-Hrd1 protein complex. Serum hyperosmolality induces expression of both ERAD components and proAVP in AVP-producing neurons. Mice with global or AVP neuron-specific ablation of Se1L-Hrd1 ERAD progressively developed polyuria and polydipsia, characteristics of diabetes insipidus. Mechanistically, we found that ERAD deficiency causes marked ER retention and aggregation of a large proportion of all proAVP protein. Further, we show that proAVP is an endogenous substrate of Sel1L-Hrd1 ERAD. The inability to clear misfolded proAVP with highly reactive cysteine thiols in the absence of Sel1L-Hrd1 ERAD causes proAVP to accumulate and participate in inappropriate intermolecular disulfide-bonded aggregates, promoted by the enzymatic activity of protein disulfide isomerase (PDI). This study highlights a pathway linking ERAD to prohormone conformational maturation in neuroendocrine cells, expanding the role of ERAD in providing a conducive ER environment for nascent proteins to reach proper conformation.
Collapse
Affiliation(s)
- Guojun Shi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Diane RM Somlo
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Geun Hyang Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Shengyi Sun
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | | | - Qiaoming Long
- Cam-Su Mouse Genomic Resources Center, Suzhou University, Suzhou, Jiangsu, China
| | | | - Peter Arvan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Sequestosome 1 (SQSTM1/p62) maintains protein folding capacity under endoplasmic reticulum stress in mouse hypothalamic organotypic culture. Neurosci Lett 2017; 656:103-107. [PMID: 28619261 DOI: 10.1016/j.neulet.2017.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/06/2017] [Accepted: 06/12/2017] [Indexed: 11/21/2022]
Abstract
Sequestosome 1 (SQSTM1) also known as ubiquitin-binding protein p62 (p62) is a cargo protein involved in the degradation of misfolded proteins via selective autophagy. Disruption of autophagy and resulting accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress. ER stress is implicated in several neurodegenerative diseases and obesity. As knockout of p62 (p62KO) reportedly induces obesity in mice, we examined how p62 contributes to ER stress and the ensuing unfolded protein response (UPR) in hypothalamus using mouse organotypic cultures in the present study. Cultures from p62KO mice showed significantly reduced formation of LC3-GFP puncta, an index of autophagosome formation, in response to the chemical ER stressor thapsigargin compared to wild-type (WT) cultures. Hypothalamic cultures from p62KO mice exhibited higher basal expression of the UPR/ER stress markers CHOP mRNA and ATF4 mRNA than WT cultures. Thapsigargin enhanced CHOP, ATF4, and BiP mRNA as well as p-eIF2α protein expression in both WT and p62KO cultures, but all peak values were greater in p62KO cultures. A proteasome inhibitor increased p62 expression in WT cultures and upregulated the UPR/ER stress markers CHOP mRNA and ATF4 mRNA in both genotypes, but to a greater extent in p62KO cultures. Therefore, p62 deficiency disturbed autophagosome formation and enhanced both basal and chemically induced ER stress, suggesting that p62 serves to prevent ER stress in mouse hypothalamus by maintaining protein folding capacity.
Collapse
|
26
|
Abstract
Diabetes insipidus is a disease characterized by polyuria and polydipsia due to inadequate release of arginine vasopressin from the posterior pituitary gland (neurohypophyseal diabetes insipidus) or due to arginine vasopressin insensitivity by the renal distal tubule, leading to a deficiency in tubular water reabsorption (nephrogenic diabetes insipidus). This article reviews the genetics of diabetes insipidus in the context of its diagnosis, clinical presentation, and therapy.
Collapse
Affiliation(s)
- Marie Helene Schernthaner-Reiter
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria; Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892, USA.
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892, USA
| | - Anton Luger
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| |
Collapse
|
27
|
Ariyasu D, Yoshida H, Hasegawa Y. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders. Int J Mol Sci 2017; 18:ijms18020382. [PMID: 28208663 PMCID: PMC5343917 DOI: 10.3390/ijms18020382] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
The endoplasmic reticulum (ER) is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR), which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI), Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2) are discussed in this article.
Collapse
Affiliation(s)
- Daisuke Ariyasu
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Hiderou Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan.
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo 183-8561, Japan.
| |
Collapse
|
28
|
Beuret N, Hasler F, Prescianotto-Baschong C, Birk J, Rutishauser J, Spiess M. Amyloid-like aggregation of provasopressin in diabetes insipidus and secretory granule sorting. BMC Biol 2017; 15:5. [PMID: 28122547 PMCID: PMC5267430 DOI: 10.1186/s12915-017-0347-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Aggregation of peptide hormone precursors in the trans-Golgi network is an essential process in the biogenesis of secretory granules in endocrine cells. It has recently been proposed that this aggregation corresponds to the formation of functional amyloids. Our previous finding that dominant mutations in provasopressin, which cause cell degeneration and diabetes insipidus, prevent native folding and produce fibrillar aggregates in the endoplasmic reticulum (ER) might thus reflect mislocalized amyloid formation by sequences that evolved to mediate granule sorting. RESULTS Here we identified two sequences responsible for fibrillar aggregation of mutant precursors in the ER: the N-terminal vasopressin nonapeptide and the C-terminal glycopeptide. To test their role in granule sorting, the glycopeptide was deleted and/or vasopressin mutated to inactivate ER aggregation while still permitting precursor folding and ER exit. These mutations strongly reduced sorting into granules and regulated secretion in endocrine AtT20 cells. CONCLUSION The same sequences - vasopressin and the glycopeptide - mediate physiological aggregation of the wild-type hormone precursor into secretory granules and the pathological fibrillar aggregation of disease mutants in the ER. These findings support the amyloid hypothesis for secretory granule biogenesis.
Collapse
Affiliation(s)
- Nicole Beuret
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Franziska Hasler
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | | | - Julia Birk
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Jonas Rutishauser
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland.
| |
Collapse
|
29
|
Tsunekawa T, Banno R, Mizoguchi A, Sugiyama M, Tominaga T, Onoue T, Hagiwara D, Ito Y, Iwama S, Goto M, Suga H, Sugimura Y, Arima H. Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2-STAT3 Pathway in Microglia. EBioMedicine 2017; 16:172-183. [PMID: 28094236 PMCID: PMC5474442 DOI: 10.1016/j.ebiom.2017.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 02/06/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) regulates leptin signaling in hypothalamic neurons via the JAK2-STAT3 pathway. PTP1B has also been implicated in the regulation of inflammation in the periphery. However, the role of PTP1B in hypothalamic inflammation, which is induced by a high-fat diet (HFD), remains to be elucidated. Here, we showed that STAT3 phosphorylation (p-STAT3) was increased in microglia in the hypothalamic arcuate nucleus of PTP1B knock-out mice (KO) on a HFD, accompanied by decreased Tnf and increased Il10 mRNA expression in the hypothalamus compared to wild-type mice (WT). In hypothalamic organotypic cultures, incubation with TNFα led to increased p-STAT3, accompanied by decreased Tnf and increased Il10 mRNA expression, in KO compared to WT. Incubation with p-STAT3 inhibitors or microglial depletion eliminated the differences in inflammation between genotypes. These data indicate an important role of JAK2-STAT3 signaling negatively regulated by PTP1B in microglia, which attenuates hypothalamic inflammation under HFD conditions.
Collapse
Affiliation(s)
- Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Akira Mizoguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Takashi Tominaga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan.
| | - Motomitsu Goto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Yoshihisa Sugimura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
30
|
Toustrup LB, Zhou Y, Kvistgaard H, Gregersen N, Rittig S, Aagaard L, Corydon TJ, Luo Y, Christensen JH. Induced pluripotent stem cells derived from a patient with autosomal dominant familial neurohypophyseal diabetes insipidus caused by a variant in the AVP gene. Stem Cell Res 2016; 19:37-42. [PMID: 28413003 DOI: 10.1016/j.scr.2016.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 01/22/2023] Open
Abstract
Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is caused by variants in the arginine vasopressin (AVP) gene. Here we report the generation of induced pluripotent stem cells (iPSCs) from a 42-year-old man carrying an adFNDI causing variant in exon 1 of the AVP gene using lentivirus-mediated nuclear reprogramming. The iPSCs carried the expected variant in the AVP gene. Furthermore, the iPSCs expressed pluripotency markers; displayed in vitro differentiation potential to the three germ layers and had a normal karyotype consistent with the original fibroblasts. This iPSC line is useful in future studies focusing on the pathogenesis of adFNDI.
Collapse
Affiliation(s)
- Lise Bols Toustrup
- Department of Paediatrics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Yan Zhou
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, 8000 Aarhus C, Denmark
| | - Helene Kvistgaard
- Department of Paediatrics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Aarhus University Hospital, Oluf Palmes Allé 49, 8200 Aarhus N, Denmark
| | - Søren Rittig
- Department of Paediatrics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Lars Aagaard
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, 8000 Aarhus C, Denmark
| | - Thomas Juhl Corydon
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, 8000 Aarhus C, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, 8000 Aarhus C, Denmark.
| | - Jane H Christensen
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, 8000 Aarhus C, Denmark
| |
Collapse
|
31
|
Two novel mutations in seven Czech and Slovak kindreds with familial neurohypophyseal diabetes insipidus-benefit of genetic testing. Eur J Pediatr 2016; 175:1199-1207. [PMID: 27539621 DOI: 10.1007/s00431-016-2759-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Familial neurohypophyseal diabetes insipidus (FNDI) is a rare hereditary disorder with unknown prevalence characterized by arginine-vasopressin hormone (AVP) deficiency resulting in polyuria and polydipsia from early childhood. We report the clinical manifestation and genetic test results in seven unrelated kindreds of Czech or Slovak origin with FNDI phenotype. The age of the sign outset ranged from 2 to 17 years with remarkable interfamilial and intrafamilial variability. Inconclusive result of the fluid deprivation test in three children aged 7 and 17 years old might cause misdiagnosis; however, the AVP gene analysis confirmed the FNDI. The seven families segregated together five different mutations, two of them were novel (c.164C > A, c.298G > C). In addition, DNA analysis proved mutation carrier status in one asymptomatic 1-year-old infant. CONCLUSIONS The present study together with previously published data identified 38 individuals with FNDI in the studied population of 16 million which predicts a disease prevalence of 1:450,000 for the Central European region. The paper underscores that diagnostic water deprivation test may be inconclusive in polyuric children with partial diabetes insipidus and points to the clinical importance and feasibility of molecular genetic testing for AVP gene mutations in the proband and her/his first degree relatives. WHAT IS KNOWN • At least 70 different mutations were reported to date in about 100 families with neurohypophyseal diabetes insipidus (FNDI), and new mutations appear sporadically. What is New: • Two novel mutations of the AVP gene are reported • The importance of molecular testing in children with polyuria and inconclusive water deprivation test is emphasized.
Collapse
|
32
|
Abstract
Neurohypophyseal diabetes insipidus is characterized by polyuria and polydipsia owing to partial or complete deficiency of the antidiuretic hormone, arginine vasopressin (AVP). Although in most patients non-hereditary causes underlie the disorder, genetic forms have long been recognized and studied both in vivo and in vitro. In most affected families, the disease is transmitted in an autosomal dominant manner, whereas autosomal recessive forms are much less frequent. Both phenotypes can be caused by mutations in the vasopressin-neurophysin II (AVP) gene. In transfected cells expressing dominant mutations, the mutated hormone precursor is retained in the endoplasmic reticulum, where it forms fibrillar aggregates. Autopsy studies in humans and a murine knock-in model suggest that the dominant phenotype results from toxicity to vasopressinergic neurons, but the mechanisms leading to cell death remain unclear. Recessive transmission results from AVP with reduced biologic activity or the deletion of the locus. Genetic neurohypophyseal diabetes insipidus occurring in the context of diabetes mellitus, optic atrophy, and deafness is termed DIDMOAD or Wolfram syndrome, a genetically and phenotypically heterogeneous autosomal recessive disorder caused by mutations in the wolframin (WFS 1) gene.
Collapse
Affiliation(s)
- Jonas Rutishauser
- Kantonsspital Baselland, Department of Medicine, CH-4101 Bruderholz, Switzerland; University of Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | - Martin Spiess
- University of Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | - Peter Kopp
- Northwestern University, Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Tarry 15, 303 East Chicago Ave., Chicago, IL 60611, USA.
| |
Collapse
|
33
|
Lu W, Hagiwara D, Morishita Y, Tochiya M, Azuma Y, Suga H, Goto M, Banno R, Sugimura Y, Oyadomari S, Mori K, Arima H. Unfolded protein response in hypothalamic cultures of wild-type and ATF6α-knockout mice. Neurosci Lett 2015; 612:199-203. [PMID: 26708632 DOI: 10.1016/j.neulet.2015.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/16/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
Recent studies suggest that endoplasmic reticulum (ER) stress in the hypothalamus could affect systemic homeostatic regulation in areas such as energy and water balance. Activating transcription factor 6α (ATF6α) is an ER stress transducer which increases the expression of ER chaperones and ER-associated degradation (ERAD) components under ER stress. In the present study, we examined the regulation of the unfolding protein response (UPR) in mouse hypothalamic cultures of wild-type (WT) and ATF6α(-/-) mice. Thapsigargin (TG), an ER stressor, significantly increased the mRNA expression of immunoglobulin heavy chain binding protein (BiP), spliced X-box binding protein 1 (XBP1), activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), and ERAD components, in hypothalamic cultures of WT mice with the same threshold (0.1μM) and similar time courses. On the other hand, TG-induced upregulation of BiP and CHOP as well as most ERAD-related genes, but not spliced XBP1 or ATF4, was attenuated in ATF6α(-/-) mice compared with WT mice. Our data suggest that all the UPR arms are activated similarly in the mouse hypothalamus under ER stress conditions, where ATF6α regulates the expression of ER chaperones, CHOP, and ERAD components.
Collapse
Affiliation(s)
- Wenjun Lu
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Yoshiaki Morishita
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Masayoshi Tochiya
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshinori Azuma
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Motomitsu Goto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Seiichi Oyadomari
- Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
34
|
Azuma Y, Hagiwara D, Lu W, Morishita Y, Suga H, Goto M, Banno R, Sugimura Y, Oyadomari S, Mori K, Shiota A, Asai N, Takahashi M, Oiso Y, Arima H. Activating transcription factor 6α is required for the vasopressin neuron system to maintain water balance under dehydration in male mice. Endocrinology 2014; 155:4905-14. [PMID: 25203138 DOI: 10.1210/en.2014-1522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Activating transcription factor 6α (ATF6α) is a sensor of endoplasmic reticulum (ER) stress and increases the expression of ER chaperones and molecules related to the ER-associated degradation of unfolded/misfolded proteins. In this study, we used ATF6α knockout (ATF6α(-/-)) mice to clarify the role of ATF6α in the arginine vasopressin (AVP) neuron system. Although urine volumes were not different between ATF6α(-/-) and wild-type (ATF6α(+/+)) mice with access to water ad libitum, they were increased in ATF6α(-/-) mice compared with those in ATF6α(+/+) mice under intermittent water deprivation (WD) and accompanied by less urine AVP in ATF6α(-/-) mice. The mRNA expression of immunoglobulin heavy chain binding protein, an ER chaperone, was significantly increased in the supraoptic nucleus in ATF6α(+/+) but not ATF6α(-/-) mice after WD. Electron microscopic analyses demonstrated that the ER lumen of AVP neurons was more dilated in ATF6α(-/-) mice than in ATF6α(+/+) mice after WD. ATF6α(-/-) mice that were mated with mice possessing a mutation causing familial neurohypophysial diabetes insipidus (FNDI), which is characterized by progressive polyuria and AVP neuronal loss due to the accumulation of mutant AVP precursor in the ER, manifested increased urine volume under intermittent WD. The aggregate formation in the ER of AVP neurons was further impaired in FNDI/ATF6α(-/-) mice compared with that in FNDI mice, and AVP neuronal loss was accelerated in FNDI/ATF6α(-/-) mice under WD. These data suggest that ATF6α is required for the AVP neuron system to maintain water balance under dehydration.
Collapse
Affiliation(s)
- Yoshinori Azuma
- Departments of Endocrinology and Diabetes (Y.A., D.H., W.L., Y.M., H.S., M.G., R.B., Y.S., Y.O., H.A.) and Pathology (N.A., M.T.), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute of Immunology Co., Ltd (A.S.), 1198-4 Iwazo, Utsunomiya 321-0973, Japan; Institute for Genome Research (S.O.), University of Tokushima, Tokushima 770-8503, Japan; and Department of Biophysics (K.M.), Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|