1
|
Huang X, Hou S, Li Y, Xu G, Xia N, Duan Z, Luo K, Tian B. Targeting lipid metabolism via nanomedicine: A prospective strategy for cancer therapy. Biomaterials 2025; 317:123022. [PMID: 39754967 DOI: 10.1016/j.biomaterials.2024.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025]
Abstract
Lipid metabolism has been increasingly recognized to play an influencing role in tumor initiation, progression, metastasis, and therapeutic drug resistance. Targeting lipid metabolic reprogramming represents a promising therapeutic strategy. Despite their structural complexity and poor targeting efficacy, lipid-metabolizing drugs, either used alone or in combination with chemotherapeutic agents, have been employed in clinical practice. The advent of nanotechnology offers new approaches to enhancing therapeutic effects, includingthe targeted delivery and integration of lipid metabolic reprogramming with chemotherapy, photodynamic therapy (PDT), and immunotherapy. The integrated nanoformulation, nanomedicine, could significantly advance the field of lipid metabolism therapy. In this review, we will briefly introduce the concept of cancer lipid metabolism reprogramming, then elaborate the latest advances in engineered nanomedicine for targeting lipid metabolism during cancer treatment, and finally provide our insights into future perspectives of nanomedicine for interference with lipid metabolism in the tumor microenvironment.
Collapse
Affiliation(s)
- Xing Huang
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shengzhong Hou
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinggang Li
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Xu
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Ning Xia
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Kui Luo
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Bole Tian
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
El-Sayed ASA, Shindia AA, El-Badry WM, Mostafa AA, A Al-Ghanayem A, Rady AM. Purification and Immobilization of Burkholderia gladioli Cholesterol Oxidase on Calcium Alginate, with Robust Catalytic Stability for Cholesterol Oxidation In Vitro. Curr Microbiol 2025; 82:119. [PMID: 39909895 DOI: 10.1007/s00284-025-04084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
Cholesterol oxidase (COX) is a key enzyme in diagnostic kits of cardiovascular diseases via oxidation of cholesterol producing smart enantiomerically compounds; however, the enzyme catalytic stability is the challenge. So, the objective of this study was to purify COX from novel endophytic bacterial isolates of medicinal plants that could have unique catalytic efficiency for the desired applications. Among the recovered forty bacterial isolates, Burkholderia gladioli EFBL PQ721377, an endophyte of Eruca sativa, had the highest COX productivity (14.7 μmol/mg/min). The COX productivity of B. gladioli has been maximized by with the response surface methodology, giving the highest productivity 30.9 μmol/mg/min, by ~ 2.0-fold increment compared to control. The enzyme was purified to its molecular homogeneity with subunit structure 40 kDa. The enzyme was entrapped in Ca-alginate with immobilization yield 87.5%, and the efficiency and homogeneity in Ca-alginate beads were assessed by FTIR and SEM-EDX analyses. The free and Ca-alginate-COX conjugates have the same maximum reaction temperature at 37-40 °C, reaction pH at 7.5 and pH stability at 6.5-8.0. The thermal stability of Ca-alginate-COX was increased by ~ 7.0 folds compared to the free one, ensuring the protective role of alginate beads on enzyme tertiary structure. Ca-alginate-COX had a higher potency of oxidation of human serum cholesterol, than the free one, confirming the feasibility of the product release, and allosteric activation of the enzyme, with a reliable operative stability till the fifth cycle, for production of cholest-4-en-3-one, as the precursor of various drugs.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed A Shindia
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Walaa M El-Badry
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed A Mostafa
- Applied College at Shaqra, Shaqra University, 11961, Shaqra, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Abdullah A Al-Ghanayem
- Department of Clinical Laboratory, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Amgad M Rady
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| |
Collapse
|
3
|
Capellmann S, Kauffmann M, Arock M, Huber M. SR-BI regulates the synergistic mast cell response by modulating the plasma membrane-associated cholesterol pool. Eur J Immunol 2024; 54:e2350788. [PMID: 38708681 DOI: 10.1002/eji.202350788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
The high-affinity IgE receptor FcεRI is the mast cell (MC) receptor responsible for the involvement of MCs in IgE-associated allergic disorders. Activation of the FcεRI is achieved via crosslinking by multivalent antigen (Ag) recognized by IgE resulting in degranulation and proinflammatory cytokine production. In comparison to the T- and B-cell receptor complexes, for which several co-receptors orchestrating the initial signaling events have been described, information is scarce about FcεRI-associated proteins. Additionally, it is unclear how FcεRI signaling synergizes with input from other receptors and how regulators affect this synergistic response. We found that the HDL receptor SR-BI (gene name: Scarb1/SCARB1) is expressed in MCs, functionally associates with FcεRI, and regulates the plasma membrane cholesterol content in cholesterol-rich plasma membrane nanodomains. This impacted the activation of MCs upon co-stimulation of the FcεRI with receptors known to synergize with FcεRI signaling. Amongst them, we investigated the co-activation of the FcεRI with the receptor tyrosine kinase KIT, the IL-33 receptor, and GPCRs activated by adenosine or PGE2. Scarb1-deficient bone marrow-derived MCs showed reduced cytokine secretion upon co-stimulation conditions suggesting a role for plasma membrane-associated cholesterol regulating respective MC activation. Mimicking Scarb1 deficiency by cholesterol depletion employing MβCD, we identified PKB and PLCγ1 as cholesterol-sensitive proteins downstream of FcεRI activation in bone marrow-derived MCs. When MCs were co-stimulated with stem cell factor (SCF) and Ag, PLCγ1 activation was boosted, which could be mitigated by cholesterol depletion and SR-BI inhibition. Similarly, SR-BI inhibition attenuated the synergistic response to PGE2 and anti-IgE in the human ROSAKIT WT MC line, suggesting that SR-BI is a crucial regulator of synergistic MC activation.
Collapse
Affiliation(s)
- Sandro Capellmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Marlies Kauffmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Charles-Foix Hospital, AP-HP Sorbonne University, Paris, France
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Zhang P, Shi Y, Xu Y, Liang Y, Huang C, Zhong D, Zhang Z, Yu Y, Zhang Z, Zhang J, Yu L, Zuo Y, Wang X, Niu H. A Nano-Autophagy Inhibitor Triggering Reciprocal Feedback Control of Cholesterol Depletion for Solid Tumor Therapy. Adv Healthc Mater 2023; 12:e2302020. [PMID: 37767984 DOI: 10.1002/adhm.202302020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Solid tumors are characterized by enhanced metabolism of lipid, particularly cholesterol, inspiring the exploration of metabolic therapy through cholesterol oxidase (COD)-mediated cholesterol deprivation. However, the therapeutic efficacy of COD is limited due to the hypoxic tumor microenvironment and the protective autophagy triggered by cholesterol deprivation. Herein, a combination therapy for metabolically treating solid tumors through COD in conjunction with molybdenum oxide nanodots (MONDs), which serve as both potent oxygen generators and autophagy inhibitors, is reported. MONDs convert H2 O2 (arising from COD-mediated cholesterol oxidation) into O2 , which is then recycled by COD to form reciprocal feedback for cholesterol depletion. Concurrently, MONDs can overcome autophagy-induced therapeutic resistance frequently occurring in conventional nutrient deprivation therapy by activating AKT/mTOR pathway phosphorylation. Combination therapy in the xenograft model results in an ≈5-fold increase in therapeutic efficiency as compared with COD treatment alone. This functionally cooperative metabolic coupling strategy holds great promise as a novel polytherapy approach that will benefit patients with solid tumors.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yuanhong Xu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Ye Liang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Chao Huang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Zhilei Zhang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yongbo Yu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhao Zhang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Jianfeng Zhang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lei Yu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yuhui Zuo
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Xinsheng Wang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Haitao Niu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|
5
|
Wu Y, Fang W, Hu Y, Dang J, Xin S, Li M, Li Z, Zhao H. Optimization of the tandem enzyme activity of V-MOF and its derivatives for highly sensitive nonenzymatic detection of cholesterol in living cells. J Colloid Interface Sci 2023; 649:601-615. [PMID: 37364460 DOI: 10.1016/j.jcis.2023.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
It remains a great challenge to properly design and synthesize single-component artificial tandem enzymes for specific substrates with high selectivity. Herein, V-MOF is synthesized by solvothermal method and its derivatives are constructed via pyrolyzing V-MOF in nitrogen atmosphere at different temperatures, which are denoted as V-MOF-y (y = 300, 400, 500, 700 and 800). V-MOF and V-MOF-y possess tandem enzyme-like activity, i.e. cholesterol oxidase-like and peroxidase-like activity. Among them, V-MOF-700 shows the strongest tandem enzyme activity for V-N bonds. Based on the cascade enzyme activity of V-MOF-700, the nonenzymatic detection platform for cholesterol by fluorescent assay can be established in the presence of o-phenylenediamine (OPD) for the first time. The detection mechanism is that V-MOF-700 catalyzes cholesterol to generate hydrogen peroxide and further form hydroxyl radical (•OH), which can oxidize OPD to obtain oxidized OPD (oxOPD) with yellow fluorescence. The linear detection of cholesterol ranges of 2-70 μM and 70-160 μM with a lower detection limit of 0.38 μM (S/N = 3) are obtained. This method is used to detect cholesterol in human serum successfully. Especially, it can be applied to the rough quantification of membrane cholesterol in living tumor cells, indicating that it has the potential for clinical application.
Collapse
Affiliation(s)
- Ying Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wenhui Fang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ye Hu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiaqi Dang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shixian Xin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Min Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zengxi Li
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Hong Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China; Binzhou Institute of Technology, Binzhou 256601, China.
| |
Collapse
|
6
|
Ferrer JLM, Garcia RL. Antioxidant Systems, lncRNAs, and Tunneling Nanotubes in Cell Death Rescue from Cigarette Smoke Exposure. Cells 2022; 11:2277. [PMID: 35892574 PMCID: PMC9330437 DOI: 10.3390/cells11152277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Cigarette smoke is a rich source of carcinogens and reactive oxygen species (ROS) that can damage macromolecules including DNA. Repair systems can restore DNA integrity. Depending on the duration or intensity of stress signals, cells may utilize various survival and adaptive mechanisms. ROS levels are kept in check through redundant detoxification processes controlled largely by antioxidant systems. This review covers and expands on the mechanisms available to cigarette smoke-exposed cancer cells for restoring the redox balance. These include multiple layers of transcriptional control, each of which is posited to be activated upon reaching a particular stress threshold, among them the NRF2 pathway, the AP-1 and NF-kB pathways, and, finally, TP53, which triggers apoptosis if extreme toxicity is reached. The review also discusses long noncoding RNAs, which have been implicated recently in regulating oxidative stress-with roles in ROS detoxification, the inflammatory response, oxidative stress-induced apoptosis, and mitochondrial oxidative phosphorylation. Lastly, the emerging roles of tunneling nanotubes in providing additional mechanisms for metabolic rescue and the regulation of redox imbalance are considered, further highlighting the expanded redox reset arsenal available to cells.
Collapse
Affiliation(s)
| | - Reynaldo L. Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines;
| |
Collapse
|
7
|
Wang M, Xu W, Yu J, Liu Y, Ma H, Ji C, Zhang C, Xue J, Li R, Cui H. Astaxanthin From Haematococcus pluvialis Prevents High-Fat Diet-Induced Hepatic Steatosis and Oxidative Stress in Mice by Gut-Liver Axis Modulating Properties. Front Nutr 2022; 9:840648. [PMID: 35495929 PMCID: PMC9039660 DOI: 10.3389/fnut.2022.840648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Scope Evidence is mounting that astaxanthin (ATX), a xanthophyll carotenoid, used as a nutritional supplement to prevent chronic metabolic diseases. The present study aims to identify the potential function of ATX supplementation in preventing steatohepatitis and hepatic oxidative stress in diet-induced obese mice. Methods and Results In this study, ATX as dose of 0.25, 0.5, and 0.75% have orally administered to mice along with a high-fat diet (HFD) to investigate the role of ATX in regulating liver lipid metabolism and gut microbiota. The study showed that ATX dose-dependently reduces body weight, lipid droplet formation, hepatic triglycerides and ameliorated hepatic steatosis and oxidative stress. 0.75% ATX altered the levels of 34 lipid metabolites related to hepatic cholesterol and fatty acid metabolism which might be associated with downregulation of lipogenesis-related genes and upregulation of bile acid biosynthesis-related genes. The result also revealed that ATX alleviates HFD-induced gut microbiota dysbiosis by significantly inhibiting the growth of obesity-related Parabacteroides and Desulfovibrio while promoting the growth of Allobaculum and Akkermansia. Conclusion The study results suggested that dietary ATX may prevent the development of hepatic steatosis and oxidative stress with the risk of metabolic disease by gut-liver axis modulating properties.
Collapse
Affiliation(s)
- Meng Wang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Wenxin Xu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Jie Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Yingying Liu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Haotian Ma
- Health Science Center, College of Forensic Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Chunli Ji
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Chunhui Zhang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Jinai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China.,State Key Laboratory of Integrative Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Hongli Cui
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China.,State Key Laboratory of Integrative Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
8
|
Rosini E, Pollegioni L. Reactive oxygen species as a double-edged sword: The role of oxidative enzymes in antitumor therapy. Biofactors 2022; 48:384-399. [PMID: 34608689 DOI: 10.1002/biof.1789] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022]
Abstract
A number of approaches have been developed over the years to manage cancer, such as chemotherapy using low-molecular-mass molecules and radiotherapy. Here, enzymes can also find useful applications. Among them, oxidases have attracted attention because of their ability to produce reactive oxygen species (ROS, especially hydrogen peroxide) in tumors and potentially modulate the production of this cytotoxic compound when enzymes active on substrates present in low amounts are used, such as the d-amino acid oxidase and d-amino acid couple system. These treatments have been also developed for additional cancer treatment approaches, such as phototherapy, nutrient starvation, and metal-induced hydroxyl radical production. In addition, to improve tumor specificity and decrease undesired side effects, oxidases have been targeted by means of nanotechnologies and protein engineering (i.e., by designing chimeric proteins able to accumulate in the tumor). The most recent advances obtained by using six different oxidases (i.e., the FAD-containing enzymes glucose oxidase, d- and l-amino acid oxidases, cholesterol oxidase and xanthine oxidase, and the copper-containing amine oxidase) have been reported. Anticancer therapy based on oxidase-based ROS production has now reached maturity and can be applied in the clinic.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
9
|
Wójtowicz K, Czogalla A, Trombik T, Łukaszewicz M. Surfactin cyclic lipopeptides change the plasma membrane composition and lateral organization in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183730. [PMID: 34419486 DOI: 10.1016/j.bbamem.2021.183730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/10/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
The specific structure and composition of the cell plasma membrane (PM) is crucial for many cellular processes and can be targeted by various substances with potential medical applications. In this context, biosurfactants (BS) constitute a promising group of natural compounds that possess several biological functions, including anticancer activity. Despite the efficiency of BS, their mode of action had never been elucidated before. Here, we demonstrate the influence of cyclic lipopeptide surfactin (SU) on the PM of CHO-K1 cells. Both FLIM and svFCS experiments show that even a low concentration of SU causes significant changes in the membrane fluidity and dynamic molecular organization. Further, we demonstrate that SU causes a relevant dose-dependent reduction of cellular cholesterol by extracting it from the PM. Finally, we show that CHO-25RA cells characterized by increased cholesterol levels are more sensitive to SU treatment than CHO-K1 cells. We propose that sterols organizing the PM raft nanodomains, constitute a potential target for SU and other biosurfactants. In our opinion, the anticancer activity of biosurfactants is directly related with the higher cholesterol content found in many cancer cells.
Collapse
Affiliation(s)
- Karolina Wójtowicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Tomasz Trombik
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| | - Marcin Łukaszewicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| |
Collapse
|
10
|
Cytotoxic activity of cholesterol oxidase produced by Streptomyces sp. AKHSS against cancerous cell lines: mechanism of action in HeLa cells. World J Microbiol Biotechnol 2021; 37:141. [PMID: 34287712 DOI: 10.1007/s11274-021-03076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
Re-occurrence of cancer is the major drawback for the currently available anticancer therapies. Therefore, study of an efficient enzyme, cholesterol oxidase produced by various kinds of microbes especially obtained from unexplored marine actinobacterial species against human cancer cell lines and understanding its mechanism of action helps to identify an irreversible and potent anticancer agent. The cytotoxic potential of cholesterol oxidase produced by a marine Streptomyces sp. AKHSS against four different human cancer cell lines was demonstrated through MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Fluorescent confocal microscopy and flow cytometry based experiments were performed to understand the efficiency of the enzymatic action on HeLa cells. Further, the apoptotic related proteins were detected through western blotting. Interestingly, the enzyme exhibited potent cytotoxicity at very low concentrations (0.093-0.327 µM) against all the cells tested. Fluorescent confocal microscopy revealed the morphological variations induced by the enzyme on cancer cell lines such as the formation of lipid droplets and condensation of nuclei. The enzyme treated cell-free extracts of HeLa cells analyzed through gas chromatography mass spectrometry showed the depletion of membrane cholesterol and the presence of substituted enzyme oxidized product, cholest-4-ene-3-one. The enzyme had induced significant inhibitory effects on the cell viability such as cell cycle arrest (G1 phase), apoptosis and rise of reactive oxygen species as evident through flow cytometry. Besides, hyperpolarization of mitochondrial membrane, reduced rates of phosphorylation of pAkt and the expression of apoptotic death markers like Fas, Fas L, caspases (8 and 3) and PARP-1 were recorded in the enzyme treated HeLa cells. Thus, cholesterol oxidase purified from a marine Streptomyces sp. AKHSS exhibits potent cytotoxicity at very low concentrations against human cancer cell lines. All the ex vivo experiments portrayed the substantial inhibitory effect of the enzyme on HeLa cells suggesting that cholesterol oxidase of Streptomyces sp. AKHSS could be a prominent cancer chemotherapeutic agent.
Collapse
|
11
|
One Raft to Guide Them All, and in Axon Regeneration Inhibit Them. Int J Mol Sci 2021; 22:ijms22095009. [PMID: 34066896 PMCID: PMC8125918 DOI: 10.3390/ijms22095009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Central nervous system damage caused by traumatic injuries, iatrogenicity due to surgical interventions, stroke and neurodegenerative diseases is one of the most prevalent reasons for physical disability worldwide. During development, axons must elongate from the neuronal cell body to contact their precise target cell and establish functional connections. However, the capacity of the adult nervous system to restore its functionality after injury is limited. Given the inefficacy of the nervous system to heal and regenerate after damage, new therapies are under investigation to enhance axonal regeneration. Axon guidance cues and receptors, as well as the molecular machinery activated after nervous system damage, are organized into lipid raft microdomains, a term typically used to describe nanoscale membrane domains enriched in cholesterol and glycosphingolipids that act as signaling platforms for certain transmembrane proteins. Here, we systematically review the most recent findings that link the stability of lipid rafts and their composition with the capacity of axons to regenerate and rebuild functional neural circuits after damage.
Collapse
|
12
|
Mayengbam SS, Singh A, Pillai AD, Bhat MK. Influence of cholesterol on cancer progression and therapy. Transl Oncol 2021; 14:101043. [PMID: 33751965 PMCID: PMC8010885 DOI: 10.1016/j.tranon.2021.101043] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/24/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Abnormality in blood cholesterol level is significantly correlated with risk of different cancers. Majority of tumor tissue from cancer patient exhibits overexpression of LDLR and ACAT for supporting rapid cancer cell proliferation. Alteration of the cholesterol metabolism in cancer cells hampers therapeutic response. Targeting cholesterol metabolism for treatment of cancer with other conventional chemotherapeutic drugs appears to be beneficial.
Cholesterol is a fundamental molecule necessary for the maintenance of cell structure and is vital to various normal biological functions. It is a key factor in lifestyle-related diseases including obesity, diabetes, cardiovascular disease, and cancer. Owing to its altered serum chemistry status under pathological states, it is now being investigated to unravel the mechanism by which it triggers various health complications. Numerous clinical studies in cancer patients indicate an alteration in blood cholesterol level (either decreased or increased) in comparison to normal healthy individuals. This article elaborates on our understanding as to how cholesterol is being hijacked in the malignancy for the development, survival, stemness, progression, and metastasis of cancerous cells. Also, it provides a glimpse of how cholesterol derived entities, alters the signaling pathway towards their advantage. Moreover, deregulation of the cholesterol metabolism pathway has been often reported to hamper various treatment strategies in different cancer. In this context, attempts have been made to bring forth its relevance in being targeted, in pre-clinical and clinical studies for various treatment modalities. Thus, understanding the role of cholesterol and deciphering associated molecular mechanisms in cancer progression and therapy are of relevance towards improvement in the management of various cancers.
Collapse
Affiliation(s)
| | - Abhijeet Singh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Ajay D Pillai
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
13
|
Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among the many biological entities employed in the development of biosensors, enzymes have attracted the most attention. Nanotechnology has been fostering excellent prospects in the development of enzymatic biosensors, since enzyme immobilization onto conductive nanostructures can improve characteristics that are crucial in biosensor transduction, such as surface-to-volume ratio, signal response, selectivity, sensitivity, conductivity, and biocatalytic activity, among others. These and other advantages of nanomaterial-based enzymatic biosensors are discussed in this work via the compilation of several reports on their applications in different industrial segments. To provide detailed insights into the state of the art of this technology, all the relevant concepts around the topic are discussed, including the properties of enzymes, the mechanisms involved in their immobilization, and the application of different enzyme-derived biosensors and nanomaterials. Finally, there is a discussion around the pressing challenges in this technology, which will be useful for guiding the development of future research in the area.
Collapse
|
14
|
Shao J, Li J, Zhang XL, Wang G. Prognostic Significance of the Preoperative Controlled Nutritional Status Score in Lung Cancer Patients Undergoing Surgical Resection. Nutr Cancer 2020; 73:2211-2218. [PMID: 33319623 DOI: 10.1080/01635581.2020.1850814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jingjing Shao
- Key Laboratory of Cancer Research Center Nantong, Nantong Tumor Hospital, Nantong University, Nantong, China
| | - Jing Li
- Key Laboratory of Cancer Research Center Nantong, Nantong Tumor Hospital, Nantong University, Nantong, China
| | - Xun Lei Zhang
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong University, Nantong, China
| | - Gaoren Wang
- Department of Radiology, Nantong Tumor Hospital, Nantong University, Nantong, China
| |
Collapse
|
15
|
Wei W, Wang Y, Li M, Yang M. Water-soluble fraction of particulate matter <2.5 μm promoted lung epithelia cells apoptosis by regulating the expression of caveolin-1 and Krüppel-like factor 5. J Appl Toxicol 2020; 41:410-420. [PMID: 33090513 DOI: 10.1002/jat.4052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
Abstract
Ambient fine particulate matter of <2.5 μm (PM2.5) has been linked to morbidity and mortality from respiratory and cardiovascular diseases. Lung epithelial cells bear the brunt of PM2.5 exposure. In the present study, we found that exposure of A549 cells to the water-soluble fraction of PM2.5 (WS-PM2.5) promoted the expression and internalization of caveolin-1. Caveolin-1 knockdown restrained the endocytosis of WS-PM2.5. In addition, WS-PM2.5 accumulation in the cells induced the phosphorylation of serine/threonine protein kinase B (AKT) and nuclear factor κ-light-chain enhancer of activated B cells (NFκB), as well as the expression of Krüppel-like factor 5 (KLF5). Inhibiting activation of AKT and NFκB also partly reduced WS-PM2.5 concentration in cells, but KLF5 knockdown did not affect the intracellular accumulation of WS-PM2.5. KLF5 knockdown suppressed cytochrome P450 family 1 subfamily A member 1 (CYP1A1) expression and activated caspase 3. Luciferase reporter assay and chromatin immunoprecipitation assay showed that KLF5 positively regulated the transcription of KLF5. These results suggested that caveolin-1 was required for the endocytosis of WS-PM2.5. Intracellular accumulation of WS-PM2.5 activated AKT and NFκB, which facilitated WS-PM2.5 endocytosis. WS-PM2.5 accumulation also induced KLF5 expression, increasing the transcriptional expression of CYP1A1, which contributed to activate caspase 3.
Collapse
Affiliation(s)
- Wei Wei
- Shandong provincial Eco-environment Monitoring Center, Jinan, China
| | - Yuan Wang
- Department of Neurology, Shandong provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Min Li
- Department of Cardiology, Shandong provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Ming Yang
- Department of Ultrasound, Shandong provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
16
|
El-Naggar NEA, El-Shweihy NM. Identification of cholesterol-assimilating actinomycetes strain and application of statistical modeling approaches for improvement of cholesterol oxidase production by Streptomyces anulatus strain NEAE-94. BMC Microbiol 2020; 20:86. [PMID: 32276593 PMCID: PMC7149892 DOI: 10.1186/s12866-020-01775-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/30/2020] [Indexed: 03/20/2023] Open
Abstract
Background Cholesterol oxidase biosensors have been used to determine the level of cholesterol in different serum and food samples. Due to a wide range of industrial and clinical applications of microbial cholesterol oxidase, isolation and identification of a new microbial source (s) of cholesterol oxidase are very important. Results The local isolate Streptomyces sp. strain NEAE-94 is a promising source of cholesterol oxidase. It was identified based on cultural, morphological and physiological characteristics; in addition to the 16S rRNA sequence. The sequencing product had been deposited in the GenBank database under the accession number KC354803. Cholesterol oxidase production by Streptomyces anulatus strain NEAE-94 in shake flasks was optimized using surface response methodology. The different process parameters were first screened using a Plackett-Burman design and the parameters with significant effects on the production of cholesterol oxidase were identified. Out of the 15 factors screened, agitation speed, cholesterol and yeast extract concentrations had the most significant positive effects on the production of cholesterol oxidase. The optimal levels of these variables and the effects of their mutual interactions on cholesterol oxidase production were determined using Box-Behnken design. Cholesterol oxidase production by Streptomyces anulatus strain NEAE-94 was 11.03, 27.31 U/mL after Plackett-Burman Design and Box-Behnken design; respectively, with a fold of increase of 6.06 times compared to the production before applying the Plackett-Burman design (4.51 U/mL). Conclusions Maximum cholesterol oxidase activity was obtained at the following fermentation conditions: g/L (cholesterol 4, yeast extract 5, NaCl 0.5, K2HPO4 1, FeSO4.7H2O 0.01, MgSO4.7H2O 0.5), pH 7, inoculum size 4% (v/v), temperature 37°C, agitation speed of 150 rpm, medium volume 50 mL and incubation time 5 days.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technological Applications, (SRTA-City), Alexandria, Egypt.
| | - Nancy M El-Shweihy
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technological Applications, (SRTA-City), Alexandria, Egypt
| |
Collapse
|
17
|
|
18
|
Devi S, Sharma B, Kumar R, Singh Kanwar S. Purification, characterization, and biological cytotoxic activity of the extracellular cholesterol oxidase produced by Castellaniella sp. COX. J Basic Microbiol 2019; 60:253-267. [PMID: 31750957 DOI: 10.1002/jobm.201900365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/19/2023]
Abstract
A new bacterial strain producing extracellular cholesterol oxidase (ChOx) was isolated and identified as Castellaniella sp. COX. The ChOx was purified by salting-out and ion-exchange chromatography up to 10.4-fold, with a specific activity of 15 U/mg with a molecular mass of 59 kDa. The purified ChOx exhibited pH 8.0 and temperature 40°C for its optimum activity. The enzyme showed stability over a wide pH range and was most stable at pH value 7.0, and at pH 8.0, it retained almost 86% of its initial activity after 3 h of incubation at 37°C. The enzyme possessed a half-life of 8 h at 37°C, 7 h at 40°C, and 3 h at 50°C. A Lineweaver-Burk plot was calibrated to determine its Km (0.16 mM) and Vmax (18.7 μmol·mg-1 ·min-1 ). The ChOx activity was enhanced with Ca2+ , Mg2+ , and Mn2+ while it was inhibited by Hg2+ , Ba2+ , Fe2+ , Cu2+ , and Zn2+ ions. Organic solvents like acetone, n-butanol, toluene, dimethyl sulfoxide, chloroform, benzene, and methanol were well tolerated by the enzyme while iso-propanol and ethanol were found to enhance the activity of purified ChOx. ChOx induced cytotoxicity with an IC50 value of 1.78 and 1.88 U/ml against human RD and U87MG established cell lines, respectively, while broadly sparing the normal human cells.
Collapse
Affiliation(s)
- Sunita Devi
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh, India
| | - Bhupender Sharma
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh, India
| | - Rakesh Kumar
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh, India
| | - Shamsher Singh Kanwar
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh, India
| |
Collapse
|
19
|
Zhang Y, Zeng W, Jia F, Ye J, Zhao Y, Luo Q, Zhu Z, Wang F. Cisplatin‐induced alteration on membrane composition of A549 cells revealed by ToF‐SIMS. SURF INTERFACE ANAL 2019. [DOI: 10.1002/sia.6714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of Sciences Beijing China
| | - Wenjuan Zeng
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of Sciences Beijing China
| | - Feifei Jia
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of Sciences Beijing China
| | - Juan Ye
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of Sciences Beijing China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of Sciences Beijing China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Zihua Zhu
- Environmental Molecular Sciences LaboratoryPacific Northwest National Laboratory Richland Washington United States
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
20
|
Characterization and overproduction of cell-associated cholesterol oxidase ChoD from Streptomyces lavendulae YAKB-15. Sci Rep 2019; 9:11850. [PMID: 31413341 PMCID: PMC6694107 DOI: 10.1038/s41598-019-48132-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/25/2019] [Indexed: 11/30/2022] Open
Abstract
Cholesterol oxidases are important enzymes with a wide range of applications from basic research to industry. In this study, we have discovered and described the first cell-associated cholesterol oxidase, ChoD, from Streptomyces lavendulae YAKB-15. This strain is a naturally high producer of ChoD, but only produces ChoD in a complex medium containing whole yeast cells. For characterization of ChoD, we acquired a draft genome sequence of S. lavendulae YAKB-15 and identified a gene product containing a flavin adenine dinucleotide binding motif, which could be responsible for the ChoD activity. The enzymatic activity was confirmed in vitro with histidine tagged ChoD produced in Escherichia coli TOP10, which lead to the determination of basic kinetic parameters with Km 15.9 µM and kcat 10.4/s. The optimum temperature and pH was 65 °C and 5, respectively. In order to increase the efficiency of production, we then expressed the cholesterol oxidase, choD, gene heterologously in Streptomyces lividans TK24 and Streptomyces albus J1074 using two different expression systems. In S. albus J1074, the ChoD activity was comparable to the wild type S. lavendulae YAKB-15, but importantly allowed production of ChoD without the presence of yeast cells.
Collapse
|
21
|
Liu Z, Liu X, Liu S, Cao Q. Cholesterol promotes the migration and invasion of renal carcinoma cells by regulating the KLF5/miR-27a/FBXW7 pathway. Biochem Biophys Res Commun 2018; 502:69-75. [PMID: 29782853 DOI: 10.1016/j.bbrc.2018.05.122] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/01/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common and lethal subtype of renal cell carcinoma. Accumulation of cholesterol and cholesterol ester is a remarkable feature of ccRCC. However, the effect of cholesterol on ccRCC remains unknown. Out results showed that cholesterol treatment significantly promoted cells migration and invasion in ccRCC. Mechanism analysis indicated that cholesterol induced KLF5 expression. KLF5 positively regulated the transcription of miR-27a, increasing miR-27a expression. MiR-27a directly targeted FBXW7 by binding to its 3'UTR, reducing FBXW7 expression. FBXW7 silencing further increased the expression of KLF5 and miR-27a, and promoted cells migration and invasion. These results suggested that cholesterol accelerated ccRCC cells migration and invasion by regulating KLF5/miR-27a/FBXW7 axis.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, PR China
| | - Xiaowen Liu
- Department of Center Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Shuai Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, PR China
| | - Qingwei Cao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, PR China.
| |
Collapse
|
22
|
Kumar M, Irungbam K, Kataria M. Depletion of membrane cholesterol compromised caspase-8 imparts in autophagy induction and inhibition of cell migration in cancer cells. Cancer Cell Int 2018; 18:23. [PMID: 29467593 PMCID: PMC5819249 DOI: 10.1186/s12935-018-0520-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/12/2018] [Indexed: 01/08/2023] Open
Abstract
Background Cholesterol in lipid raft plays crucial role on cancer cell survival during metastasis of cancer cells. Cancer cells are reported to enrich cholesterol in lipid raft which make them more susceptible to cell death after cholesterol depletion than normal cells. Methyl-β-cyclodextrin (MβCD), an amphipathic polysaccharide known to deplete the membrane cholesterol, induces cell death selectively in cancer cells. Present work was designed to identify the major form of programmed cell death in membrane cholesterol depleted cancer cells (MDA-MB 231 and 4T1) and its impact on migration efficiency of cancer cells. Methods Membrane cholesterol alteration and morphological changes in 4T1 and MDA-MB 231 cancer cells by MβCD were measured by fluorescent microscopy. Cell death and cell proliferation were observed by PI, AO/EB and MTT assay respectively. Programme cell death was confirmed by flow cytometer. Caspase activation was assessed by MTT and PI after treatments with Z-VAD [OME]-FMK, mitomycin c and cycloheximide. Necroptosis, autophagy, pyroptosis and paraptosis were examined by cell proliferation assay and flow cytometry. Relative quantitation of mRNA of caspase-8, necroptosis and autophagy genes were performed. Migration efficiency of cancer cells were determined by wound healing assay. Results We found caspase independent cell death in cholesterol depleted MDA-MB 231 cells which was reduced by (3-MA) an autophagy inhibitor. Membrane cholesterol depletion neither induces necroptosis, paraptosis nor pyroptosis in MDA-MB 231 cells. Subsequent activation of caspase-8 after co-incubation of mitomycin c and cycloheximide separately, restored the cell viability in cholesterol depleted MDA-MB 231 cells. Down regulation of caspase-8 mRNA in cholesterol depleted cancer cells ensures that caspase-8 indirectly promotes the induction of autophagy. In another experiment we have demonstrated that membrane cholesterol depletion reduces the migration efficiency in cancer cells. Conclusion Together our experimental data suggests that membrane cholesterol is the crucial for the recruitment and activation of caspase-8 as well as its non-apoptotic functions in cancer cells. Enriched cholesterol in lipid raft of cancer cells may be regulating the cross talk between caspase-8 and autophagy machineries to promote their survival and migration. Therefore it can be explored to understand and address the issues of chemotherapeutic and drugs resistance.
Collapse
Affiliation(s)
- Mukesh Kumar
- Indian Veterinary Research Institute, Bareilly, India
| | | | - Meena Kataria
- Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
23
|
Extracellular cholesterol oxidase production by Streptomyces aegyptia, in vitro anticancer activities against rhabdomyosarcoma, breast cancer cell-lines and in vivo apoptosis. Sci Rep 2018; 8:2706. [PMID: 29426900 PMCID: PMC5807524 DOI: 10.1038/s41598-018-20786-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/24/2018] [Indexed: 11/08/2022] Open
Abstract
In recent years, microbial cholesterol oxidases have gained great attention due to its widespread use in medical applications for serum cholesterol determination. Streptomyces aegyptia strain NEAE-102 exhibited high level of extracellular cholesterol oxidase production using a minimum medium containing cholesterol as the sole source of carbon. Fifteen variables were screened using Plackett–Burman design for the enhanced cholesterol oxidase production. The most significant variables affecting enzyme production were further optimized by using the face-centered central composite design. The statistical optimization resulted in an overall 4.97-fold increase (15.631 UmL−1) in cholesterol oxidase production in the optimized medium as compared with the unoptimized medium before applying Plackett Burman design (3.1 UmL−1). The purified cholesterol oxidase was evaluated for its in vitro anticancer activities against five human cancer cell lines. The selectivity index values on rhabdomyosarcoma and breast cancer cell lines were 3.26 and 2.56; respectively. The in vivo anticancer activity of cholesterol oxidase was evaluated against Ehrlich solid tumor model. Compared with control mice, tumors growth was significantly inhibited in the mice injected with cholesterol oxidase alone, doxorubicin alone and cholesterol oxidase/doxorubicin combination by 60.97%, 72.99% and 97.04%; respectively. These results demonstrated that cholesterol oxidase can be used as a promising natural anticancer drug.
Collapse
|
24
|
Chernov KG, Neuvonen M, Brock I, Ikonen E, Verkhusha VV. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells. J Biol Chem 2017; 292:8811-8822. [PMID: 28391244 DOI: 10.1074/jbc.m116.761718] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/05/2017] [Indexed: 11/06/2022] Open
Abstract
Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells.
Collapse
Affiliation(s)
| | - Maarit Neuvonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.,Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland, and
| | - Ivonne Brock
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.,Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland, and
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland, .,Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland, and
| | - Vladislav V Verkhusha
- From the Department of Biochemistry and Developmental Biology and .,Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
25
|
Huang L, Chen Y, Weng LT, Leung M, Xing X, Fan Z, Wu H. Fast Single-Cell Patterning for Study of Drug-Induced Phenotypic Alterations of HeLa Cells Using Time-of-Flight Secondary Ion Mass Spectrometry. Anal Chem 2016; 88:12196-12203. [DOI: 10.1021/acs.analchem.6b03170] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lu Huang
- Department
of Chemistry, ‡Division of Biomedical Engineering, §Materials Characterization and Preparation
Facility, Department of Chemical and Biomolecular Engineering, and ∥Department of
Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yin Chen
- Department
of Chemistry, ‡Division of Biomedical Engineering, §Materials Characterization and Preparation
Facility, Department of Chemical and Biomolecular Engineering, and ∥Department of
Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Lu-Tao Weng
- Department
of Chemistry, ‡Division of Biomedical Engineering, §Materials Characterization and Preparation
Facility, Department of Chemical and Biomolecular Engineering, and ∥Department of
Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Mark Leung
- Department
of Chemistry, ‡Division of Biomedical Engineering, §Materials Characterization and Preparation
Facility, Department of Chemical and Biomolecular Engineering, and ∥Department of
Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaoxing Xing
- Department
of Chemistry, ‡Division of Biomedical Engineering, §Materials Characterization and Preparation
Facility, Department of Chemical and Biomolecular Engineering, and ∥Department of
Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhiyong Fan
- Department
of Chemistry, ‡Division of Biomedical Engineering, §Materials Characterization and Preparation
Facility, Department of Chemical and Biomolecular Engineering, and ∥Department of
Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongkai Wu
- Department
of Chemistry, ‡Division of Biomedical Engineering, §Materials Characterization and Preparation
Facility, Department of Chemical and Biomolecular Engineering, and ∥Department of
Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
26
|
Simvastatin attenuates macrophage-mediated gemcitabine resistance of pancreatic ductal adenocarcinoma by regulating the TGF-β1/Gfi-1 axis. Cancer Lett 2016; 385:65-74. [PMID: 27840243 DOI: 10.1016/j.canlet.2016.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an intrinsic resistance to almost all chemotherapeutic drugs, including gemcitabine. An abundance of tumor-associated macrophages (TAMs), which can promote the resistance of PDAC to gemcitabine, has been observed in the microenvironments of several tumors. In this study, we confirmed that incubation in TAM-conditioned medium (TAM-CM) reduces the gemcitabine-induced apoptosis of PDAC cells. Simvastatin attenuated the TAM-mediated resistance of PDAC cells to gemcitabine. Further investigation found that simvastatin reversed the TAM-mediated down-regulation of Gfi-1 and up-regulation of CTGF and HMGB1. Simvastatin induced Gfi-1 expression, which increased the sensitivity of PDAC cells to gemcitabine by decreasing TGF-β1 secretion by TAMs. A luciferase reporter assay and ChIP assay revealed that Gfi-1 directly repressed the transcription of CTGF and HMGB1. Simvastatin also reversed the effects of gemcitabine on the expression of TGF-β1 and Gfi-1 and reduced the resistance of PDAC to gemcitabine in vivo. These results provide the first evidence that simvastatin attenuates the TAM-mediated gemcitabine resistance of PDAC by blocking the TGF-β1/Gfi-1 axis. These findings suggest the TGF-β1/Gfi-1 axis as a novel therapeutic target for treating PDAC.
Collapse
|
27
|
Identification of CETP as a molecular target for estrogen positive breast cancer cell death by cholesterol depleting agents. Genes Cancer 2016; 7:309-322. [PMID: 28050232 PMCID: PMC5115172 DOI: 10.18632/genesandcancer.122] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cholesterol and its metabolites act as steroid hormone precursors, which promote estrogen receptor positive (ER+) breast cancer (BC) progression. Development of cholesterol targeting anticancer drugs has been hindered due to the lack of knowledge of viable molecular targets. Till now, Cholesteryl ester transfer protein (CETP) has been envisaged as a feasible molecular target in atherosclerosis, but for the first time, we show that CETP contributes to BC cell survival when challenged with cholesterol depleting agents. We show that MCF-7 CETP knockout BC cells pose less resistance towards cytotoxic compounds (Tamoxifen and Acetyl Plumbagin (AP)), and were more susceptible to intrinsic apoptosis. Analysis of differentially expressed genes using Ingenuity Pathway Analysis (IPA), in vivo tumor inhibition, and in vitro phenotypic responses to AP revealed a unique CETP-centric cholesterol pathway involved in sensitizing ER+ BC cells to intrinsic mitochondrial apoptosis. Furthermore, analysis of cell line, tissue and patient data available in publicly available databases linked elevated CETP expression to cancer, cancer relapse and overall poor survival. Overall, our findings highlight CETP as a pharmacologically relevant and unexploited cellular target in BC. The work also highlights AP as a promising chemical entity for preclinical investigations as a cholesterol depleting anticancer therapeutic agent.
Collapse
|
28
|
Han L, Liu B, Jiang L, Liu J, Han S. MicroRNA-497 downregulation contributes to cell proliferation, migration, and invasion of estrogen receptor alpha negative breast cancer by targeting estrogen-related receptor alpha. Tumour Biol 2016; 37:13205-13214. [PMID: 27456360 DOI: 10.1007/s13277-016-5200-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Metastasis has become the main challenge for treatment of estrogen receptor alpha (ERα) negative breast cancer. Here, we found a negative correlation between miR-497 and estrogen-related receptor alpha (ERRα), a nuclear receptor overexpressed in ERα negative breast cancer. Targeted inhibition of ERRα by si-RNA increased miR-497 expression while overexpression of ERRα inhibited miR-497 expression. Further investigation showed that miR-497 targeted ERRα by binding to the 3'UTR region of ERRα. Luciferase assay and ChIP assay confirmed that ERα directly regulated the transcription of miR-497, suggesting that loss of ERα lowered miR-497 level in ERα negative breast cancer. Further, overexpression of miR-497 not only inhibited ERRα expression but also reduced MIF level and MMP9 activity, which led to significant decreases in cell proliferation, migration, and invasion of ERα negative breast cancer. Taken together, our findings suggested that, in ERα negative breast cancer, the low level of ERα reduced miR-497 expression, which promoted ERRα expression that enhanced cell proliferation, migration, and invasion by increasing MIF expression and MMP9 activity.
Collapse
Affiliation(s)
- Li Han
- Department of Internal Medicine Oncology, Shandong Tumor Hospital and Institute, No.440 Ji Yan Road, Jinan, 250117, China.
| | - Bo Liu
- Department of Internal Medicine Oncology, Shandong Tumor Hospital and Institute, No.440 Ji Yan Road, Jinan, 250117, China
| | - Lixi Jiang
- Department of Internal Medicine Oncology, Shandong Tumor Hospital and Institute, No.440 Ji Yan Road, Jinan, 250117, China
| | - Junyan Liu
- Department of Internal Medicine Oncology, Shandong Tumor Hospital and Institute, No.440 Ji Yan Road, Jinan, 250117, China
| | - Shumei Han
- Department of Internal Medicine Oncology, Shandong Tumor Hospital and Institute, No.440 Ji Yan Road, Jinan, 250117, China
| |
Collapse
|
29
|
Ma J, Fu G, Wu J, Han S, Zhang L, Yang M, Yu Y, Zhang M, Lin Y, Wang Y. 4-cholesten-3-one suppresses lung adenocarcinoma metastasis by regulating translocation of HMGB1, HIF1α and Caveolin-1. Cell Death Dis 2016; 7:e2372. [PMID: 27899819 PMCID: PMC5059879 DOI: 10.1038/cddis.2016.281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/15/2022]
Abstract
Metastasis is a great challenge in lung adenocarcinoma (ADC) therapy. Cholesterol has been implicated in ADC metastasis. 4-cholesten-3-one, as cholesterol metabolite and analog, can substitute membrane cholesterol and increase membrane fluidity. In this study, we explored the possibility that 4-cholesten-3-one inhibited ADC metastasis. Low-dose 4-cholesten-3-one significantly restrained ADC cells migration and invasion with little effects on cells viabilities. Further investigation showed that 4-cholesten-3-one promoted ROS generation, which transiently activated AMPKα1, increased HIF1α expression, reduced Bcl-2 expression and caused autophagy. AMPKα1 knockdown partly suppressed 4-cholesten-3-one-induced autophagy but, neither prevented 4-cholesten-3-one-induced upregulation of HIF1α or downregulation of Bcl-2. 4-cholesten-3-one-induced autophagy facilitated the release of HMGB1 from nuclei to cytoplasm, blocking nuclear translocation of HIF1α and activation of MMP2 and MMP9. Also, 4-cholesten-3-one induced time-dependent phosphorylation of caveolin-1, Akt and NF-κB. With increasing treatment time, 4-cholesten-3-one accelerated caveolin-1 internalization, but reduced the phosphorylation of Akt and NF-κB, and inhibited the expression of snail and twist. These data suggested that 4-cholesten-3-one could be a potential candidate for anti-metastasis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Jinben Ma
- Department of Anesthesiology, Shandong provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Guobin Fu
- Department of Oncology, Shandong provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Jing Wu
- Department of Anesthesiology, Shandong provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Shaoxian Han
- Department of thoracic surgery, Shandong chest Hospital, Jinan 250021, China
| | - Lishan Zhang
- Department of Hand and Foot Surgery, Shandong provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Ming Yang
- Department of Ultrasound, Shandong provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Yong Yu
- Department of Ultrasound, Shandong provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Yanliang Lin
- Department of Center Laboratory, Shandong provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Yibing Wang
- Department of burn and plastic surgery, Shandong provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| |
Collapse
|
30
|
Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A 2016; 113:E4966-75. [PMID: 27506793 DOI: 10.1073/pnas.1603244113] [Citation(s) in RCA: 1555] [Impact Index Per Article: 172.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is form of regulated nonapoptotic cell death that is involved in diverse disease contexts. Small molecules that inhibit glutathione peroxidase 4 (GPX4), a phospholipid peroxidase, cause lethal accumulation of lipid peroxides and induce ferroptotic cell death. Although ferroptosis has been suggested to involve accumulation of reactive oxygen species (ROS) in lipid environments, the mediators and substrates of ROS generation and the pharmacological mechanism of GPX4 inhibition that generates ROS in lipid environments are unknown. We report here the mechanism of lipid peroxidation during ferroptosis, which involves phosphorylase kinase G2 (PHKG2) regulation of iron availability to lipoxygenase enzymes, which in turn drive ferroptosis through peroxidation of polyunsaturated fatty acids (PUFAs) at the bis-allylic position; indeed, pretreating cells with PUFAs containing the heavy hydrogen isotope deuterium at the site of peroxidation (D-PUFA) prevented PUFA oxidation and blocked ferroptosis. We further found that ferroptosis inducers inhibit GPX4 by covalently targeting the active site selenocysteine, leading to accumulation of PUFA hydroperoxides. In summary, we found that PUFA oxidation by lipoxygenases via a PHKG2-dependent iron pool is necessary for ferroptosis and that the covalent inhibition of the catalytic selenocysteine in Gpx4 prevents elimination of PUFA hydroperoxides; these findings suggest new strategies for controlling ferroptosis in diverse contexts.
Collapse
|
31
|
Rustom A. The missing link: does tunnelling nanotube-based supercellularity provide a new understanding of chronic and lifestyle diseases? Open Biol 2016; 6:160057. [PMID: 27278648 PMCID: PMC4929939 DOI: 10.1098/rsob.160057] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022] Open
Abstract
Tunnelling nanotubes (TNTs) are increasingly recognized as central players in a multitude of cellular mechanisms and diseases. Although their existence and functions in animal organisms are still elusive, emerging evidence suggests that they are involved in developmental processes, tissue regeneration, viral infections or pathogen transfer, stem cell differentiation, immune responses as well as initiation and progression of neurodegenerative disorders and cancer (see Sisakhtnezhad & Khosravi 2015 Eur. J. Cell Biol. 94, 429-443. (doi:10.1016/j.ejcb.2015.06.010)). A broader field of vision, including their striking functional and structural resemblance with nanotube-mediated phenomena found throughout the phylogenetic tree, from plants down to bacteria, points to a universal, conserved and tightly regulated mechanism of cellular assemblies. Based on our initial definition of TNTs as open-ended channels mediating membrane continuity between connected cells (Rustom et al. 2004 Science 303, 1007-1010. (doi:10.1126/science.1093133)), it is suggested that animal tissues represent supercellular assemblies that-besides opening discrete communication pathways-balance diverse stress factors caused by pathological changes or fluctuating physiological and environmental conditions, such as oxidative stress or nutrient shortage. By combining current knowledge about nanotube formation, intercellular transfer and communication phenomena as well as associated molecular pathways, a model evolves, predicting that the linkage between reactive oxygen species, TNT-based supercellularity and the intercellular shuttling of materials will have significant impact on diverse body functions, such as cell survival, redox/metabolic homeostasis and mitochondrial heteroplasmy. It implies that TNTs are intimately linked to the physiological and pathological state of animal cells and represent a central joint element of diverse diseases, such as neurodegenerative disorders, diabetes or cancer.
Collapse
Affiliation(s)
- Amin Rustom
- Interdisciplinary Center for Neurosciences (IZN), Institute of Neurobiology, University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Lv W, Chen N, Lin Y, Ma H, Ruan Y, Li Z, Li X, Pan X, Tian X. Macrophage migration inhibitory factor promotes breast cancer metastasis via activation of HMGB1/TLR4/NF kappa B axis. Cancer Lett 2016; 375:245-255. [PMID: 26952810 DOI: 10.1016/j.canlet.2016.02.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/15/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is up-regulated in diverse solid tumors and acts as the critical link between immune response and tumorigenesis. In this study, we demonstrated that MIF overexpression promoted migration of breast cancer cells by elevating TLR4 expression. Further investigation evidenced that MIF induced ROS generation. MIF-induced ROS led to ERK phosphorylation, which facilitated HMGB1 release from the nucleus to the cytoplasm. MIF overexpression also induced caveolin-1 phosphorylation. Caveolin-1 phosphorylation contributed to HMGB1 secretion from the cytoplasm to the extracellular matrix. The extracellular HMGB1 activated TLR4 signaling including NF-κB phosphorylation, which was responsible for the transcription of Snail and Twist as well as MMP2 activation. Furthermore, MIF-induced caveolin-1-dependent HMGB1 secretion might control the recruitment of CD11b+ immune cells. Our data suggested that MIF affected the intrinsic properties of tumors and the host immune response in tumor microenvironment by regulating the TLR4/HMGB1 axis, leading to metastasis of breast cancer.
Collapse
Affiliation(s)
- Wei Lv
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Na Chen
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Yanliang Lin
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Hongyan Ma
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Yongwei Ruan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Zhiwei Li
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xungeng Li
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xingsong Tian
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.
| |
Collapse
|
33
|
Pluhackova K, Böckmann RA. Biomembranes in atomistic and coarse-grained simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015. [PMID: 26194872 DOI: 10.1088/0953-8984/27/32/323103] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The architecture of biological membranes is tightly coupled to the localization, organization, and function of membrane proteins. The organelle-specific distribution of lipids allows for the formation of functional microdomains (also called rafts) that facilitate the segregation and aggregation of membrane proteins and thus shape their function. Molecular dynamics simulations enable to directly access the formation, structure, and dynamics of membrane microdomains at the molecular scale and the specific interactions among lipids and proteins on timescales from picoseconds to microseconds. This review focuses on the latest developments of biomembrane force fields for both atomistic and coarse-grained molecular dynamics (MD) simulations, and the different levels of coarsening of biomolecular structures. It also briefly introduces scale-bridging methods applicable to biomembrane studies, and highlights selected recent applications.
Collapse
Affiliation(s)
- Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | | |
Collapse
|
34
|
Zhang Y, Duan G, Feng S. MicroRNA-301a modulates doxorubicin resistance in osteosarcoma cells by targeting AMP-activated protein kinase alpha 1. Biochem Biophys Res Commun 2015; 459:367-73. [PMID: 25727016 DOI: 10.1016/j.bbrc.2015.02.101] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/18/2015] [Indexed: 12/25/2022]
Abstract
MicroRNAs have been implicated in drug resistance of osteosarcoma (OS). MicroRNA-301a (miR-301a) is up-regulated and functions as an oncogene in various cancers. However, little is known about the role of miR-301a in drug resistance of OS cells. In this study, we found that doxorubicin induced time-dependent expression of miR-301a in OS cells. Meantime, doxorubicin promoted HMGCR expression and inhibited AMPKα1 expression, which was further facilitated by miR-301a overexpression. Luciferase reporter assay identified AMPKα1 as direct target gene of miR-301a. Notably, miR-301a reduced doxorubicin-induced cell apoptosis whereas anti-miR-301a enhanced apoptosis in OS cells, suggesting that up-regulation of miR-301a contributed to chemoresistance of OS cells. Consistently, our data showed that miR-301a and HMGCR were up-regulated in chemotherapy-resistant OS compared to those in control OS. Our findings suggested that miR-301a might be a potential biomarker for chemotherapy-resistant OS and a promising therapeutic target for overcoming drug resistance of OS.
Collapse
Affiliation(s)
- Yuanmin Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Department of Joint and Sports Medicine, Affiliated Hospital of Jining Medical College, Jining 272029, PR China
| | - Guoqing Duan
- Department of Joint and Sports Medicine, Affiliated Hospital of Jining Medical College, Jining 272029, PR China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, PR China.
| |
Collapse
|
35
|
Duan G, Ren C, Zhang Y, Feng S. MicroRNA-26b inhibits metastasis of osteosarcoma via targeting CTGF and Smad1. Tumour Biol 2015; 36:6201-9. [PMID: 25761878 DOI: 10.1007/s13277-015-3305-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022] Open
Abstract
Downregulation of miR-26b has been found in various cancers, but it has never been investigated in osteosarcoma. In this study, we demonstrated downregulation of miR-26b in osteosarcoma tissues, negatively correlated with the expression of connective tissue growth factor (CTGF) and Smad1. Luciferase reporter assay confirmed the interaction of miR-26b with the 3' untranslated regions (UTRs) of CTGF and Smad1. Transfection of miR-26b in osteosarcoma cells suppressed the expression of CTGF and Smad1, suggesting CTGF and Smad1 as direct targets of miR-26b. Overexpression of miR-26b inhibited the migration of osteosarcoma cells, which was reversed by overexpression of CTGF or Smad1. Knockdown of CTGF by small interfering RNA (siRNA) interference blocked the activation of Smad1, ERK1/2, and MMP2, which was opposite to the overexpression of CTGF. Differently, Smad1 did not significantly affect CTGF level, but mediated ERK1/2 phosphorylation and MMP2 activation. Furthermore, miR-26b inhibited lung metastasis of osteosarcoma in vivo. Our data indicated that downregulation of miR-26b in osteosarcoma elevated the levels of CTGF and Smad1, facilitating osteosarcoma metastasis.
Collapse
Affiliation(s)
- Guoqing Duan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | | | | | | |
Collapse
|