1
|
Rooney M, Duduskar SN, Ghait M, Reißing J, Stengel S, Reuken PA, Quickert S, Zipprich A, Bauer M, Russo AJ, Rathinam VA, Stallmach A, Rubio I, Bruns T. Type-I interferon shapes peritoneal immunity in cirrhosis and drives caspase-5-mediated progranulin release upon infection. J Hepatol 2024; 81:971-982. [PMID: 38936554 DOI: 10.1016/j.jhep.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND & AIMS Gut bacterial translocation contributes to immune dysfunction and spontaneous bacterial peritonitis (SBP) in cirrhosis. We hypothesized that exposure of peritoneal macrophages (PMs) to bacterial DNA results in type-I interferon (IFN) production, shaping subsequent immune responses, inflammasome activation, and the release of damage-associated molecular patterns (DAMPs). METHODS PMs from patients with cirrhosis were stimulated with E. coli single-stranded DNA (ssDNA), lipopolysaccharide and IFN, or infected with E. coli, S. aureus, and Group B streptococcus in vitro. Cytokine release, inflammasome activation, and DAMP release were quantified by quantitative-PCR, ELISA, western blots, and reporter cells employing primary PMs, monocytes, and caspase-deficient THP-1 macrophages. Serum progranulin concentration was correlated with transplant-free survival in 77 patients with SBP. RESULTS E. coli ssDNA induced strong type-I IFN activity in PMs and monocytes, priming them for enhanced lipopolysaccharide-mediated tumor necrosis factor production without inducing toll-like receptor 4 tolerance. During in vitro macrophage bacterial infection, type-I IFN release aligned with upregulated expression of IFN-regulatory factors (IRF)1/2 and guanylate binding proteins (GBP)2/5. PMs upregulated inflammasome-associated proteins and type-I IFN upon E. coli ssDNA exposure and released interleukin-1β upon bacterial infection. Proteomic screening in mouse macrophages revealed progranulin release as being caspase-11-dependent during E. coli infection. PMs and THP-1 macrophages released significant amounts of progranulin when infected with S. aureus or E. coli via gasdermin D in a type-I IFN- and caspase-5-dependent manner. During SBP, PMs upregulated IRF1, GBP2/5 and caspase-5 and higher serum progranulin concentrations were indicative of lower 90-day transplant-free survival after SBP. CONCLUSIONS Type-I IFN shapes peritoneal immune responses and regulates caspase-5-mediated progranulin release during SBP. IMPACT AND IMPLICATIONS Patients with cirrhosis exhibit impaired immune responses and increased susceptibility to bacterial infections. This study reveals that type-I interferon responses, triggered by pathogen-associated molecular patterns, are crucial in regulating macrophage activation and priming them for inflammatory responses. Additionally, we elucidate the mechanisms by which type-I interferons promote the release of progranulin from macrophages during spontaneous bacterial peritonitis. Our findings enhance understanding of how bacterial translocation affects immune responses, identify novel biomarkers for inflammasome activation during infections, and point to potential therapeutic targets.
Collapse
Affiliation(s)
- Michael Rooney
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Shivalee N Duduskar
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Mohamed Ghait
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Johanna Reißing
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Sven Stengel
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany; Department of Neuropediatrics, Jena University Hospital, 07747 Jena, Germany
| | - Philipp A Reuken
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Stefanie Quickert
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Michael Bauer
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Ashley J Russo
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Andreas Stallmach
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Ignacio Rubio
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
2
|
Resta SC, Guerra F, Talà A, Bucci C, Alifano P. Beyond Inflammation: Role of Pyroptosis Pathway Activation by Gram-Negative Bacteria and Their Outer Membrane Vesicles (OMVs) in the Interaction with the Host Cell. Cells 2024; 13:1758. [PMID: 39513865 PMCID: PMC11545737 DOI: 10.3390/cells13211758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Pyroptosis is a gasdermin-mediated pro-inflammatory programmed cell death that, during microbial infections, aims to restrict the spreading of bacteria. Nevertheless, excessive pyroptosis activation leads to inflammation levels that are detrimental to the host. Pathogen-associated molecular patterns (PAMPs) present in bacteria and outer membrane vesicles (OMVs) can trigger pyroptosis pathways in different cell types with different outcomes. Moreover, some pathogens have evolved virulence factors that directly interfere with pyroptosis pathways, like Yersinia pestis YopM and Shigella flexneri IpaH7.8. Other virulence factors, such as those of Neisseria meningitidis, Neisseria gonorrhoeae, Salmonella enterica, and Helicobacter pylori affect pyroptosis pathways indirectly with important differences between pathogenic and commensal species of the same family. These pathogens deserve special attention because of the increasing antimicrobial resistance of S. flexneri and N. gonorrhoeae, the high prevalence of S. enterica and H. pylori, and the life-threatening diseases caused by N. meningitidis and Y. pestis. While inflammation due to macrophage pyroptosis has been extensively addressed, the effects of activation of pyroptosis pathways on modulation of cell cytoskeleton and cell-cell junctions in epithelia and endothelia and on the bacterial crossing of epithelial and endothelial barriers have only been partly investigated. Another important point is the diverse consequences of pyroptosis pathways on calcium influx, like activation of calcium-dependent enzymes and mitochondria dysregulation. This review will discuss the pyroptotic pathways activated by Gram-negative bacteria and their OMVs, analyzing the differences between pathogens and commensal bacteria. Particular attention will also be paid to the experimental models adopted and the main results obtained in the different models. Finally, strategies adopted by pathogens to modulate these pathways will be discussed with a perspective on the use of pyroptosis inhibitors as adjuvants in the treatment of infections.
Collapse
Affiliation(s)
- Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Cecilia Bucci
- Department of Experimental Medicine (DiMeS), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy;
| | - Pietro Alifano
- Department of Experimental Medicine (DiMeS), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy;
| |
Collapse
|
3
|
Song R, He S, Wu Y, Tan S. Pyroptosis in sepsis induced organ dysfunction. Curr Res Transl Med 2024; 72:103419. [PMID: 38246070 DOI: 10.1016/j.retram.2023.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 01/23/2024]
Abstract
As an uncontrolled inflammatory response to infection, sepsis and sepsis induced organ dysfunction are great threats to the lives of septic patients. Unfortunately, the pathogenesis of sepsis is complex and multifactorial, which still needs to be elucidated. Pyroptosis is a newly discovered atypical form of inflammatory programmed cell death, which depends on the Caspase-1 dependent classical pathway or the non-classical Caspase-11 (mouse) or Caspase-4/5 (human) dependent pathway. Many studies have shown that pyroptosis is related to sepsis. The Gasdermin proteins are the key molecules in the membrane pores formation in pyroptosis. After cut by inflammatory caspase, the Gasdermin N-terminal fragments with perforation activity are released to cause pyroptosis. Pyroptosis is closely related to the occurrence and development of sepsis induced organ dysfunction. In this review, we summarized the molecular mechanism of pyroptosis, the key role of pyroptosis in sepsis and sepsis induced organ dysfunction, with the aim to bring new diagnostic biomarkers and potential therapeutic targets to improve sepsis clinical treatments.
Collapse
Affiliation(s)
- Ruoyu Song
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China.
| | - Shijun He
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China
| | - Yongbin Wu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China
| | - Sipin Tan
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China.
| |
Collapse
|
4
|
Tosi M, Coloretti I, Meschiari M, De Biasi S, Girardis M, Busani S. The Interplay between Antibiotics and the Host Immune Response in Sepsis: From Basic Mechanisms to Clinical Considerations: A Comprehensive Narrative Review. Antibiotics (Basel) 2024; 13:406. [PMID: 38786135 PMCID: PMC11117367 DOI: 10.3390/antibiotics13050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Sepsis poses a significant global health challenge due to immune system dysregulation. This narrative review explores the complex relationship between antibiotics and the immune system, aiming to clarify the involved mechanisms and their clinical impacts. From pre-clinical studies, antibiotics exhibit various immunomodulatory effects, including the regulation of pro-inflammatory cytokine production, interaction with Toll-Like Receptors, modulation of the P38/Pmk-1 Pathway, inhibition of Matrix Metalloproteinases, blockade of nitric oxide synthase, and regulation of caspase-induced apoptosis. Additionally, antibiotic-induced alterations to the microbiome are associated with changes in systemic immunity, affecting cellular and humoral responses. The adjunctive use of antibiotics in sepsis patients, particularly macrolides, has attracted attention due to their immune-regulatory effects. However, there are limited data comparing different types of macrolides. More robust evidence comes from studies on community-acquired pneumonia, especially in severe cases with a hyper-inflammatory response. While studies on septic shock have shown mixed results regarding mortality rates and immune response modulation, conflicting findings are also observed with macrolides in acute respiratory distress syndrome. In conclusion, there is a pressing need to tailor antibiotic therapy based on the patient's immune profile to optimize outcomes in sepsis management.
Collapse
Affiliation(s)
- Martina Tosi
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.T.); (I.C.); (M.G.)
| | - Irene Coloretti
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.T.); (I.C.); (M.G.)
| | | | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena, and Reggio Emilia, 41125 Modena, Italy;
| | - Massimo Girardis
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.T.); (I.C.); (M.G.)
| | - Stefano Busani
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.T.); (I.C.); (M.G.)
| |
Collapse
|
5
|
Ferreira FM, Gomes SV, Carvalho LCF, de Alcantara AC, da Cruz Castro ML, Perucci LO, Pio S, Talvani A, de Abreu Vieira PM, Calsavara AJC, Costa DC. Potential of piperine for neuroprotection in sepsis-associated encephalopathy. Life Sci 2024; 337:122353. [PMID: 38104862 DOI: 10.1016/j.lfs.2023.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
AIMS Sepsis-associated encephalopathy (SAE) is a common complication that increases mortality and leads to long-term cognitive impairment in sepsis survivors. However, no specific or effective therapy has been identified for this complication. Piperine is an alkaloid known for its anti-inflammatory, antioxidant, and neuroprotective properties, which are important characteristics for treatment of SAE. The objective of this study was to evaluate the neuroprotective effect of piperine on SAE in C57BL/6 mice that underwent cecum ligation and perforation surgery (CLP). MAIN METHODS C57BL/6 male mice were randomly assigned to groups that underwent SHAM surgery or CLP. Mice in the CLP group were treated with piperine at doses of 20 or 40 mg/kg for short- (5 days) or long-term (10 days) periods after CLP. KEY FINDINGS Our results revealed that untreated septic animals exhibited increased concentrations of IL-6, TNF, VEGF, MMP-9, TBARS, and NLRP3, and decreased levels of BDNF, sulfhydryl groups, and catalase in the short term. Additionally, the levels of carbonylated proteins and degenerated neuronal cells were increased at both time points. Furthermore, short-term and visuospatial memories were impaired. Piperine treatment reduced MMP-9 activity in the short term and decreased the levels of carbonylated proteins and degenerated neuronal cells in the long term. It also lowered IL-6 and TBARS levels at both time points evaluated. Moreover, piperine increased short-term catalase and long-term BDNF factor levels and improved memory at both time points. SIGNIFICANCE In conclusion, our data demonstrate that piperine exerts a neuroprotective effect on SAE in animals that have undergone CLP.
Collapse
Affiliation(s)
- Flavia Monteiro Ferreira
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Sttefany Viana Gomes
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Luana Cristina Faria Carvalho
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Ana Carolina de Alcantara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Maria Laura da Cruz Castro
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Luiza Oliveira Perucci
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Sirlaine Pio
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Paula Melo de Abreu Vieira
- Morphopathology Laboratory, Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Allan Jefferson Cruz Calsavara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Liu AB, Li SJ, Yu YY, Zhang JF, Ma L. Current insight on the mechanisms of programmed cell death in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2023; 11:1309719. [PMID: 38161332 PMCID: PMC10754983 DOI: 10.3389/fcell.2023.1309719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, leading to life-threatening organ dysfunction. It is a high-fatality condition associated with a complex interplay of immune and inflammatory responses that can cause severe harm to vital organs. Sepsis-induced myocardial injury (SIMI), as a severe complication of sepsis, significantly affects the prognosis of septic patients and shortens their survival time. For the sake of better administrating hospitalized patients with sepsis, it is necessary to understand the specific mechanisms of SIMI. To date, multiple studies have shown that programmed cell death (PCD) may play an essential role in myocardial injury in sepsis, offering new strategies and insights for the therapeutic aspects of SIMI. This review aims to elucidate the role of cardiomyocyte's programmed death in the pathophysiological mechanisms of SIMI, with a particular focus on the classical pathways, key molecules, and signaling transduction of PCD. It will explore the role of the cross-interaction between different patterns of PCD in SIMI, providing a new theoretical basis for multi-target treatments for SIMI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
7
|
Sharma AK, Ismail N. Non-Canonical Inflammasome Pathway: The Role of Cell Death and Inflammation in Ehrlichiosis. Cells 2023; 12:2597. [PMID: 37998332 PMCID: PMC10670716 DOI: 10.3390/cells12222597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Activating inflammatory caspases and releasing pro-inflammatory mediators are two essential functions of inflammasomes which are triggered in response to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). The canonical inflammasome pathway involves the activation of inflammasome and its downstream pathway via the adaptor ASC protein, which causes caspase 1 activation and, eventually, the cleavage of pro-IL-1b and pro-IL-18. The non-canonical inflammasome pathway is induced upon detecting cytosolic lipopolysaccharide (LPS) by NLRP3 inflammasome in Gram-negative bacteria. The activation of NLRP3 triggers the cleavage of murine caspase 11 (human caspase 4 or caspase 5), which results in the formation of pores (via gasdermin) to cause pyroptosis. Ehrlichia is an obligately intracellular bacterium which is responsible for causing human monocytic ehrlichiosis (HME), a potentially lethal disease similar to toxic shock syndrome and septic shock syndrome. Several studies have indicated that canonical and non-canonical inflammasome activation is a crucial pathogenic mechanism that induces dysregulated inflammation and host cellular death in the pathophysiology of HME. Mechanistically, the activation of canonical and non-canonical inflammasome pathways affected by virulent Ehrlichia infection is due to a block in autophagy. This review aims to explore the significance of non-canonical inflammasomes in ehrlichiosis, and how the pathways involving caspases (with the exception of caspase 1) contribute to the pathophysiology of severe and fatal ehrlichiosis. Improving our understanding of the non-canonical inflammatory pathway that cause cell death and inflammation in ehrlichiosis will help the advancement of innovative therapeutic, preventative, and diagnostic approaches to the treatment of ehrlichiosis.
Collapse
Affiliation(s)
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
8
|
Teymournejad O, Sharma AK, Abdelwahed M, Kader M, Ahmed I, Elkafas H, Ismail N. Hepatocyte-specific regulation of autophagy and inflammasome activation via MyD88 during lethal Ehrlichia infection. Front Immunol 2023; 14:1212167. [PMID: 38022511 PMCID: PMC10662044 DOI: 10.3389/fimmu.2023.1212167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Hepatocytes play a crucial role in host response to infection. Ehrlichia is an obligate intracellular bacterium that causes potentially life-threatening human monocytic ehrlichiosis (HME) characterized by an initial liver injury followed by sepsis and multi-organ failure. We previously showed that infection with highly virulent Ehrlichia japonica (E. japonica) induces liver damage and fatal ehrlichiosis in mice via deleterious MyD88-dependent activation of CASP11 and inhibition of autophagy in macrophage. While macrophages are major target cells for Ehrlichia, the role of hepatocytes (HCs) in ehrlichiosis remains unclear. We investigated here the role of MyD88 signaling in HCs during infection with E. japonica using primary cells from wild-type (WT) and MyD88-/- mice, along with pharmacologic inhibitors of MyD88 in a murine HC cell line. Similar to macrophages, MyD88 signaling in infected HCs led to deleterious CASP11 activation, cleavage of Gasdermin D, secretion of high mobility group box 1, IL-6 production, and inflammatory cell death, while controlling bacterial replication. Unlike macrophages, MyD88 signaling in Ehrlichia-infected HCs attenuated CASP1 activation but activated CASP3. Mechanistically, active CASP1/canonical inflammasome pathway negatively regulated the activation of CASP3 in infected MyD88-/- HCs. Further, MyD88 promoted autophagy induction in HCs, which was surprisingly associated with the activation of the mammalian target of rapamycin complex 1 (mTORC1), a known negative regulator of autophagy. Pharmacologic blocking mTORC1 activation in E. japonica-infected WT, but not infected MyD88-/- HCs, resulted in significant induction of autophagy, suggesting that MyD88 promotes autophagy during Ehrlichia infection not only in an mTORC1-indpenedent manner, but also abrogates mTORC1-mediated inhibition of autophagy in HCs. In conclusion, this study demonstrates that hepatocyte-specific regulation of autophagy and inflammasome pathway via MyD88 is distinct than MyD88 signaling in macrophages during fatal ehrlichiosis. Understanding hepatocyte-specific signaling is critical for the development of new therapeutics against liver-targeting pathogens such as Ehrlichia.
Collapse
Affiliation(s)
- Omid Teymournejad
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Mohammed Abdelwahed
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Hofstra School of Medicine, North Well Health, New York, NY, United States
| | - Muhamuda Kader
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ibrahim Ahmed
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Hoda Elkafas
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Priya A, Chandel S, Joon A, Ghosh S. Molecular mechanism of Enteroaggregative Escherichia coli induced apoptosis in cultured human intestinal epithelial cells. J Med Microbiol 2023; 72. [PMID: 37846959 DOI: 10.1099/jmm.0.001760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Background. Enteroaggregative Escherichia coli (EAEC) is an evolving etiological agent of acute and persistent diarrhoea worldwide. The previous study from our laboratory has reported the apoptosis-inducing activity of EAEC in human small intestinal and colonic epithelial cell lines. In the present investigation, we have explored the underlying mechanism of EAEC-induced apoptosis in human intestinal epithelial cell lines.Methods. INT-407 and HCT-15 cells were infected with EAEC-T8 and EAEC-pT8 (plasmid cured strain of EAEC-T8) separately. Cells cultured in the absence of bacteria served as a negative control in all the experiments. For the subsequent experiments, the molecular mechanism(s) of epithelial cell aposptosis was measured in EAEC infecting both the cell lines by flow cytometry, real-time PCR and Western blotting.Results and conclusions. EAEC was found to activate the intrinsic/mitochondrial apoptotic pathway in both the cell lines through upregulation of pro-apoptotic Bax and Bak, un-alteration/reduction in the level of anti-apoptotic Bcl-2 and Bcl-XL, decrease in mitochondrial transmembrane potential, accumulation of cytosolic cytochrome c leading to activation of procaspase-9 and procaspase-3, which ultimately resulted in DNA fragmentation and apoptosis. Further, an increased expression of Fas, activation of procaspase-8 and upregulation of pro-apoptotic Bid in the EAEC-infected cells indicated the involvement of extrinsic apoptotic pathway too in this process. Our finding has undoubtedly led to an increased understanding of EAEC pathogenesis, which may be helpful to develop an improved strategy to combat the infection.
Collapse
Affiliation(s)
- Anshu Priya
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Shipra Chandel
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Archana Joon
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Sujata Ghosh
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
10
|
Hobbs KF, Propp J, Vance NR, Kalenkiewicz A, Witkin KR, Ashley Spies M. Allosteric Tuning of Caspase-7: Establishing the Nexus of Structure and Catalytic Power. Chemistry 2023; 29:e202300872. [PMID: 37005499 PMCID: PMC11596327 DOI: 10.1002/chem.202300872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Caspase-7 (C7), a cysteine protease involved in apoptosis, is a valuable drug target for its role in human diseases (e. g., Parkinson's, Alzheimer's, sepsis). The C7 allosteric site has great potential for small-molecule targeting, but numerous drug discovery efforts have identified precious few allosteric inhibitors. Here we present the first selective, drug-like inhibitor of C7 along with several other improved inhibitors based on our previous fragment hit. We also provide a rational basis for the impact of allosteric binding on the C7 catalytic cycle by using an integrated approach including X-ray crystallography, stopped-flow kinetics, and molecular dynamics simulations. Our findings suggest allosteric binding disrupts C7 pre-acylation by neutralization of the catalytic dyad, displacement of substrate from the oxyanion hole, and altered dynamics of substrate binding loops. This work advances drug targeting efforts and bolsters our understanding of allosteric structure-activity relationships (ASARs).
Collapse
Affiliation(s)
- Kathryn F Hobbs
- Biochemistry and Molecular Biology Department, University of Iowa, 51 Newton Road, 4-403 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Jonah Propp
- Pharmaceutics and Experimental Therapeutics Department, Medicinal and Natural Products Chemistry Division, University of Iowa, 180 South Grand Avenue, Iowa City, IA, 52242, USA
| | - Nicholas R Vance
- Pharmaceutics and Experimental Therapeutics Department, Medicinal and Natural Products Chemistry Division, University of Iowa, 180 South Grand Avenue, Iowa City, IA, 52242, USA
| | - Andrew Kalenkiewicz
- Biochemistry and Molecular Biology Department, University of Iowa, 51 Newton Road, 4-403 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Katie R Witkin
- Pharmaceutics and Experimental Therapeutics Department, Medicinal and Natural Products Chemistry Division, University of Iowa, 180 South Grand Avenue, Iowa City, IA, 52242, USA
| | - M Ashley Spies
- Biochemistry and Molecular Biology Department, University of Iowa, 51 Newton Road, 4-403 Bowen Science Building, Iowa City, IA, 52242, USA
- Pharmaceutics and Experimental Therapeutics Department, Medicinal and Natural Products Chemistry Division, University of Iowa, 180 South Grand Avenue, Iowa City, IA, 52242, USA
| |
Collapse
|
11
|
Wang X, Xia Z, Wang H, Wang D, Sun T, Hossain E, Pang X, Liu Y. Cell-membrane-coated nanoparticles for the fight against pathogenic bacteria, toxins, and inflammatory cytokines associated with sepsis. Theranostics 2023; 13:3224-3244. [PMID: 37351162 PMCID: PMC10283065 DOI: 10.7150/thno.81520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/05/2023] [Indexed: 06/24/2023] Open
Abstract
Sepsis is the main cause of death in patients suffering from serious illness. Yet, there is still no specific treatment for sepsis, and management relies on infection control. Cell membrane-coated nanoparticles (MNPs) are a new class of biomimetic nanoparticles based on covering the surface of synthetic nanoparticles (NPs) with natural cell membranes. They retain the physicochemical properties of synthetic nanomaterials and inherit the specific properties of cellular membranes, showing excellent biological compatibility, enhanced biointerfacing capabilities, capacity to hold cellular functions and characteristics, immunological escape, and longer half-life when in circulation. Additionally, they prevent the decomposition of the encapsulated drug and active targeting. Over the years, studies on MNPs have multiplied and a breakthrough has been achieved for cancer therapy. Nevertheless, the use of "bio"-related approaches is still rare for treating sepsis. Herein, we discussed current state-of-the-art on MNPs for the treatment of bacterial sepsis by combining the pathophysiology and therapeutic benefits of sepsis, i.e., pathogenic bacteria, bacteria-producing toxins, and inflammatory cytokines produced in the dysregulated inflammatory response associated with sepsis.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Henan Key Laboratory of Pediatric Hematology and Oncology Medicine, Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zongping Xia
- Department of Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huaili Wang
- Henan Key Laboratory of Pediatric Hematology and Oncology Medicine, Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dao Wang
- Henan Key Laboratory of Pediatric Hematology and Oncology Medicine, Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tongwen Sun
- Department of Integrated ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Eamran Hossain
- Henan Key Laboratory of Pediatric Hematology and Oncology Medicine, Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Pang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yufeng Liu
- Henan Key Laboratory of Pediatric Hematology and Oncology Medicine, Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
12
|
Signals for Muscular Protein Turnover and Insulin Resistance in Critically Ill Patients: A Narrative Review. Nutrients 2023; 15:nu15051071. [PMID: 36904071 PMCID: PMC10005516 DOI: 10.3390/nu15051071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Sarcopenia in critically ill patients is a highly prevalent comorbidity. It is associated with a higher mortality rate, length of mechanical ventilation, and probability of being sent to a nursing home after the Intensive Care Unit (ICU). Despite the number of calories and proteins delivered, there is a complex network of signals of hormones and cytokines that affect muscle metabolism and its protein synthesis and breakdown in critically ill and chronic patients. To date, it is known that a higher number of proteins decreases mortality, but the exact amount needs to be clarified. This complex network of signals affects protein synthesis and breakdown. Some hormones regulate metabolism, such as insulin, insulin growth factor glucocorticoids, and growth hormone, whose secretion is affected by feeding states and inflammation. In addition, cytokines are involved, such as TNF-alpha and HIF-1. These hormones and cytokines have common pathways that activate muscle breakdown effectors, such as the ubiquitin-proteasome system, calpain, and caspase-3. These effectors are responsible for protein breakdown in muscles. Many trials have been conducted with hormones with different results but not with nutritional outcomes. This review examines the effect of hormones and cytokines on muscles. Knowing all the signals and pathways that affect protein synthesis and breakdown can be considered for future therapeutics.
Collapse
|
13
|
Zhu C, Liang Y, Luo Y, Ma X. Role of pyroptosis in hemostasis activation in sepsis. Front Immunol 2023; 14:1114917. [PMID: 36756123 PMCID: PMC9899792 DOI: 10.3389/fimmu.2023.1114917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Sepsis is frequently associated with hemostasis activation and thrombus formation, and systematic hemostatic changes are associated with a higher risk of mortality. The key events underlying hemostasis activation during sepsis are the strong activation of innate immune pathways and the excessive inflammatory response triggered by invading pathogens. Pyroptosis is a proinflammatory form of programmed cell death, that defends against pathogens during sepsis. However, excessive pyroptosis can lead to a dysregulation of host immune responses and organ dysfunction. Recently, pyroptosis has been demonstrated to play a prominent role in hemostasis activation in sepsis. Several studies have demonstrated that pyroptosis participates in the release and coagulation activity of tissue factors. In addition, pyroptosis activates leukocytes, endothelial cells, platelets, which cooperate with the coagulation cascade, leading to hemostasis activation in sepsis. This review article attempts to interpret the molecular and cellular mechanisms of the hemostatic imbalance induced by pyroptosis during sepsis and discusses potential therapeutic strategies.
Collapse
Affiliation(s)
- Chengrui Zhu
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yingjian Liang
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yangtuo Luo
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Yangtuo Luo, ; Xiaochun Ma,
| | - Xiaochun Ma
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Yangtuo Luo, ; Xiaochun Ma,
| |
Collapse
|
14
|
Apoptosis Detection in Retinal Ganglion Cells Using Quantitative Changes in Multichannel Fluorescence Colocalization. BIOSENSORS 2022; 12:bios12090693. [PMID: 36140078 PMCID: PMC9496076 DOI: 10.3390/bios12090693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
KcapTR488 is a dual-fluorophore peptide sensor for the real-time reporting of programmed cell death by fluorescence imaging. KcapTR488 contains a nuclear localization sequence (NLS) conjugated with Texas Red, a caspase-cleavable sequence (DEVD), and a C-terminus conjugated to Alexa Fluor 488 (AF488). The synthesis and preliminary evaluation in cellulo of KcapTR488 for monitoring cell death by fluorescence imaging has been previously reported, but its utility in vivo has yet to be tested or validated. Herein, in vitro solution experiments verified the intramolecular fluorescence resonance energy transfer (FRET) between the two fluorophores and enabled a quantitative analysis of enzyme rates and selectivity. The sensor delivery kinetics in live rat models were quantified by ex vivo fluorescence microscopy. Studies in healthy control retinas demonstrated that KcapTR488 concentrated in the nucleus of retinal ganglion cells (RGC), with a strong colocalization of red and green fluorescence signals producing robust FRET signals, indicating an intact reporter. By contrast, using an acute but mild NMDA-induced retinal injury model, dual-color confocal ex vivo microscopy of cleaved KcapTR488 identified sensor activation as early as 2 h after injection. Quantitative changes in fluorescence colocalization were superior to changes in FRET for monitoring injury progression. Longitudinal monitoring revealed that the NLS-Texas Red fragment of the cleaved sensor moved out of the cell body, down the axon, and exited the retina, consistent with anterograde axonal transport. Thus, KcapTR488 may be a powerful tool to study RGC death pathways in live preclinical models of glaucoma.
Collapse
|
15
|
Yousof T, Sharma H, Austin RC, Fox-Robichaud AE. Stressing the endoplasmic reticulum response as a diagnostic tool for sepsis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:812. [PMID: 36034993 PMCID: PMC9403921 DOI: 10.21037/atm-22-3120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tamana Yousof
- Division of Nephrology, Department of Medicine, McMaster University, The Research Institute of St. Joseph's Hamilton and the Hamilton Centre for Kidney Research, Hamilton, ON, Canada
| | - Hitesh Sharma
- Division of Nephrology, Department of Medicine, McMaster University, The Research Institute of St. Joseph's Hamilton and the Hamilton Centre for Kidney Research, Hamilton, ON, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, McMaster University, The Research Institute of St. Joseph's Hamilton and the Hamilton Centre for Kidney Research, Hamilton, ON, Canada
| | - Alison E Fox-Robichaud
- Division of Critical Care, Department of Medicine, Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada
| |
Collapse
|
16
|
Reilly B, Tan C, Murao A, Nofi C, Jha A, Aziz M, Wang P. Necroptosis-Mediated eCIRP Release in Sepsis. J Inflamm Res 2022; 15:4047-4059. [PMID: 35873387 PMCID: PMC9304637 DOI: 10.2147/jir.s370615] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Extracellular cold-inducible RNA-binding protein (eCIRP) is an endogenous pro-inflammatory mediator that exacerbates injury in inflammation and sepsis. The mechanisms in which eCIRP is released have yet to be fully explored. Necroptosis is a programmed cell death that is dependent on the activation of mixed lineage kinase domain-like pseudo kinase (MLKL) which causes the release of damage-associated molecular patterns. We hypothesize that eCIRP is released through necroptosis and intensifies inflammation in sepsis. Methods RAW264.7 cells were treated with pan-caspase inhibitor z-VAD (15 μM) 1 h before stimulation with LPS (1 μg/mL). Necroptosis inhibitor, Necrostatin-1 (Nec-1) (10 μM) was added to the cells with LPS simultaneously. After 24 h of LPS stimulation, cytotoxicity was determined by LDH assay. eCIRP levels in the culture supernatants and phospho-MLKL (p-MLKL) from cell lysates were assessed by Western blot. p-MLKL interaction with the cell membrane was visualized by immunofluorescence. Sepsis was induced in C57BL/6 mice by cecal ligation and puncture (CLP). Mice were treated with Nec-1 (1 mg/kg) or DMSO. 20 h post-surgery, serum and peritoneal fluid levels of eCIRP, TNF-α and IL-6 were determined by ELISA. H&E staining of lung tissue sections was performed. Results We found that in RAW264.7 cells, LPS+z-VAD induces necroptosis as evidenced by an increase in p-MLKL levels and causes eCIRP release. Nec-1 reduces both p-MLKL activation and eCIRP release in LPS+z-VAD-treated RAW264.7 cells. Nec-1 also inhibits the release of eCIRP, TNF-α and IL-6 in the serum and peritoneal fluid in CLP-induced septic mice. We predicted a transient interaction between eCIRP and MLKL using a computational model, suggesting that eCIRP may exit the cell via the pores formed by p-MLKL. Conclusion Necroptosis is a novel mechanism of eCIRP release in sepsis. Targeting necroptosis may ameliorate inflammation and injury in sepsis by inhibiting eCIRP release.
Collapse
Affiliation(s)
- Bridgette Reilly
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chuyi Tan
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Colleen Nofi
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Alok Jha
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| |
Collapse
|
17
|
Ganini C, Montanaro M, Scimeca M, Palmieri G, Anemona L, Concetti L, Melino G, Bove P, Amelio I, Candi E, Mauriello A. No Time to Die: How Kidney Cancer Evades Cell Death. Int J Mol Sci 2022; 23:6198. [PMID: 35682876 PMCID: PMC9181490 DOI: 10.3390/ijms23116198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
The understanding of the pathogenesis of renal cell carcinoma led to the development of targeted therapies, which dramatically changed the overall survival rate. Nonetheless, despite innovative lines of therapy accessible to patients, the prognosis remains severe in most cases. Kidney cancer rarely shows mutations in the genes coding for proteins involved in programmed cell death, including p53. In this paper, we show that the molecular machinery responsible for different forms of cell death, such as apoptosis, ferroptosis, pyroptosis, and necroptosis, which are somehow impaired in kidney cancer to allow cancer cell growth and development, was reactivated by targeted pharmacological intervention. The aim of the present review was to summarize the modality of programmed cell death in the pathogenesis of renal cell carcinoma, showing in vitro and in vivo evidence of their potential role in controlling kidney cancer growth, and highlighting their possible therapeutic value.
Collapse
Affiliation(s)
- Carlo Ganini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Giampiero Palmieri
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Lucia Anemona
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Livia Concetti
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| |
Collapse
|
18
|
Wu Y, Li D, Wang H, Wan X. Protective Effect of Poria Cocos Polysaccharides on Fecal Peritonitis-Induced Sepsis in Mice Through Inhibition of Oxidative Stress, Inflammation, Apoptosis, and Reduction of Treg Cells. Front Microbiol 2022; 13:887949. [PMID: 35694296 PMCID: PMC9184799 DOI: 10.3389/fmicb.2022.887949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
This study was conducted to investigate the potential pharmacological effects of Poria cocos polysaccharides (PCPs) on fecal-induced peritonitis (FIP) mice. Consequently, the fecal peritonitis (FP)-induced septic mice with the higher levels of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), IL-1β, malondialdehyde (MDA), myeloperoxidase (MPO), histopathological lesion and bacterial burden, and lower levels of superoxide dismutase (SOD) and glutathione (GSH). Interestingly, PCP pre-treatment reduced inflammatory cytokines and oxidative stress in plasma and spleen and improved the resistance to FIP. Inflammatory infiltration and cell death in thymus or splenic tissue were alleviated with PCP pretreatment. Furthermore, Treg cells were moderated in the spleen with PCP pre-administration. In addition, PCP pretreatment downregulated Annexin-V in the thymus of FP-induced septic mice, and apoptosis of splenic cells was dose-dependent. In conclusion, PCPs have pharmacological and biological effects on FP-induced septic mice, and its molecular mechanism is related to antioxidative, anti-inflammation, anti-apoptosis, and the reduction of Treg activity in splenic cells.
Collapse
Affiliation(s)
- Yu Wu
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Anesthesiology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Dai Li
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Han Wang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaojian Wan
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Xiaojian Wan
| |
Collapse
|
19
|
Wen X, Xie B, Yuan S, Zhang J. The "Self-Sacrifice" of ImmuneCells in Sepsis. Front Immunol 2022; 13:833479. [PMID: 35572571 PMCID: PMC9099213 DOI: 10.3389/fimmu.2022.833479] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host’s malfunctioning response to infection. Due to its high mortality rate and medical cost, sepsis remains one of the world’s most intractable diseases. In the early stage of sepsis, the over-activated immune system and a cascade of inflammation are usually accompanied by immunosuppression. The core pathogenesis of sepsis is the maladjustment of the host’s innate and adaptive immune response. Many immune cells are involved in this process, including neutrophils, mononuclear/macrophages and lymphocytes. The immune cells recognize pathogens, devour pathogens and release cytokines to recruit or activate other cells in direct or indirect manner. Pyroptosis, immune cell-extracellular traps formation and autophagy are several novel forms of cell death that are different from apoptosis, which play essential roles in the progress of sepsis. Immune cells can initiate “self-sacrifice” through the above three forms of cell death to protect or kill pathogens. However, the exact roles and mechanisms of the self-sacrifice in the immune cells in sepsis are not fully elucidated. This paper mainly analyzes the self-sacrifice of several representative immune cells in the forms of pyroptosis, immune cell-extracellular traps formation and autophagy to reveal the specific roles they play in the occurrence and progression of sepsis, also to provide inspiration and references for further investigation of the roles and mechanisms of self-sacrifice of immune cells in the sepsis in the future, meanwhile, through this work, we hope to bring inspiration to clinical work.
Collapse
Affiliation(s)
- Xiaoyue Wen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Armandeh M, Bameri B, Samadi M, Heidari S, Foroumad R, Abdollahi M. A systematic review of nonclinical studies on the effect of curcumin in chemotherapy-induced cardiotoxicity. Curr Pharm Des 2022; 28:1843-1853. [PMID: 35570565 DOI: 10.2174/1381612828666220513125312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Various anticancer drugs are effective therapeutic agents for cancer treatment; however, they cause severe toxicity in body organs. Cardiotoxicity is one of the most critical side effects of these drugs. Based on various findings, turmeric extract has positive effects on cardiac cells. OBJECTIVE This study aims to evaluate how curcumin as the main component of turmeric may affect chemotherapy-induced cardiotoxicity. METHOD Database search was performed up to April 2021 using "curcumin OR turmeric OR Curcuma longa" and "chemotherapy-induced cardiac disease," including all their equivalents and similar terms. After screening the total articles obtained from the electronic databases, 25 relevant articles were included in this systematic review. RESULTS The studies demonstrate lower body weight and increased mortality rates due to doxorubicin administration. Besides, cancer therapeutic agents induced various morphological and biochemical abnormalities compared to the non-treated groups. Based on most of the obtained results, curcumin at nontoxic doses can protect the cardiac cells mainly through modulating antioxidant capacity, regulation of cell death, and anti-inflammatory effects. Nevertheless, according to a minority of findings, curcumin increases the susceptibility of the rat cardiomyoblast cell line (H9C2) to apoptosis triggered by doxorubicin. CONCLUSION According to most nonclinical studies, curcumin can have the potential of cardioprotective effects against cardiotoxicity induced by chemotherapy. However, based on limited, contradictory findings demonstrating the function of curcumin in potentiating doxorubicin-induced cardiotoxicity, well-designed studies are needed to evaluate the safety and effectiveness of treatment with new formulations of this compound during cancer therapy.
Collapse
Affiliation(s)
- Maryam Armandeh
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bameri
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Tehran University of Medical Sciences, Tehran, Iran
| | - Mahedeh Samadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shima Heidari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roham Foroumad
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Synthesis, Characterization, and In Vivo Study of Some Novel 3,4,5-Trimethoxybenzylidene-hydrazinecarbothioamides and Thiadiazoles as Anti-Apoptotic Caspase-3 Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072266. [PMID: 35408692 PMCID: PMC9040718 DOI: 10.3390/molecules27072266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
Abstract
The present study aims to discover novel derivatives as antiapoptotic agents and their protective effects against renal ischemia/reperfusion. Therefore, a series of new thiadiazole analogues 2a–g was designed and synthesized through cyclization of the corresponding opened hydrazinecarbothioamides 1a–g, followed by confirmation of the structure via spectroscopic tools (NMR, IR and mass spectra) and elemental analyses. The antiapoptotic activity showed alongside decreasing of tissue damage induced by I/R in the kidneys of rats using N-acetylcysteine (NAC) as an antiapoptotic reference. Most of the cyclized thiadiazoles are better antiapoptotic agents than their corresponding opened precursors. Particularly, compounds 2c and 2g were the most active antiapoptotic compounds with significant biomarkers. A preliminary mechanistic study was performed through caspase-3 inhibition. Compound 2c was selected along with its corresponding opened precursor 1c. An assay of cytochrome C revealed that there is an attenuation of cytochrome C level of about 5.5-fold, which was better than 1c with a level of 4.1-fold. In caspases-3, 8 and 9 assays, compound 2c showed more potency and selectivity toward caspase-3 and 9 compared with 1c. The renal histopathological investigation indicated normal renal tissue for most of the compounds, especially 2c and 2g, relative to the control. Finally, a molecular docking study was conducted at the caspase-3 active site to suggest possible binding modes.
Collapse
|
22
|
Andreu-Ballester JC, Arribas MA, Rico M, García-Ballesteros C, Galindo-Regal L, Sorando-Serra R, Albert L, Navarro A, López-Chuliá F, Peydró F, Cuéllar C. Changes of CD3+CD56+ γδ T cell number and apoptosis during hospital admission are related to mortality in septic patients. Clin Immunol 2022; 236:108956. [PMID: 35176483 DOI: 10.1016/j.clim.2022.108956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/29/2022]
Abstract
Immunoparalysis and apoptosis of T cells are serious problems for the evolution of septic patients. We aimed to relate changes in the number of αβ and γδ T cells during hospital stay to the poor evolution of sepsis. In this prospective study, we recruited a total of 92 septic patients from the Emergency and Intensive Care Departments of two Hospitals, according to the latest criteria for the definition and management of sepsis. According to the severity of the septic process, there was a progressive decrease in T cells, being much more intense in γδ T cells. This decrease recovered in surviving patients, but CD3+CD56+ γδ T cells continued to decreased during hospital stay in non-surviving patients. Apoptosis increased in sepsis. Cell death of CD3+CD56+ γδ T cells progressively increased according to the severity of sepsis, especially in non-surviving patients.
Collapse
Affiliation(s)
| | - M A Arribas
- Critical Care Department, Arnau de Vilanova University Hospital, Valencia, Spain
| | - M Rico
- Critical Care Department, Arnau de Vilanova University Hospital, Valencia, Spain.
| | - C García-Ballesteros
- Laboratory of Molecular Biology, Arnau de Vilanova University Hospital, Valencia, Spain.
| | - L Galindo-Regal
- Laboratory of Molecular Biology, Arnau de Vilanova University Hospital, Valencia, Spain
| | - R Sorando-Serra
- Emergency Department, Arnau de Vilanova University Hospital, Valencia, Spain
| | - L Albert
- Critical Care Department, Arnau de Vilanova University Hospital, Valencia, Spain
| | - A Navarro
- Critical Care Department, Arnau de Vilanova University Hospital, Valencia, Spain
| | - F López-Chuliá
- Hematology Department, Arnau de Vilanova University Hospital, Valencia, Spain.
| | - F Peydró
- Critical Care Department, Arnau de Vilanova University Hospital, Valencia, Spain
| | - C Cuéllar
- Microbiology and Parasitology Department, Complutense University, Madrid, Spain.
| |
Collapse
|
23
|
Li X, Xiao GY, Guo T, Song YJ, Li QM. Potential therapeutic role of pyroptosis mediated by the NLRP3 inflammasome in type 2 diabetes and its complications. Front Endocrinol (Lausanne) 2022; 13:986565. [PMID: 36387904 PMCID: PMC9646639 DOI: 10.3389/fendo.2022.986565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
As a new way of programmed cell death, pyroptosis plays a vital role in many diseases. In recent years, the relationship between pyroptosis and type 2 diabetes (T2D) has received increasing attention. Although the current treatment options for T2D are abundant, the occurrence and development of T2D appear to continue, and the poor prognosis and high mortality of patients with T2D remain a considerable burden in the global health system. Numerous studies have shown that pyroptosis mediated by the NLRP3 inflammasome can affect the progression of T2D and its complications; targeting the NLRP3 inflammasome has potential therapeutic effects. In this review, we described the molecular mechanism of pyroptosis more comprehensively, discussed the most updated progress of pyroptosis mediated by NLRP3 inflammasome in T2D and its complications, and listed some drugs and agents with potential anti-pyroptosis effects. Based on the available evidence, exploring more mechanisms of the NLRP3 inflammasome pathway may bring more options and benefits for preventing and treating T2D and drug development.
Collapse
|
24
|
Lee Y, Reilly B, Tan C, Wang P, Aziz M. Extracellular CIRP Induces Macrophage Extracellular Trap Formation Via Gasdermin D Activation. Front Immunol 2021; 12:780210. [PMID: 35003095 PMCID: PMC8732379 DOI: 10.3389/fimmu.2021.780210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023] Open
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern promoting inflammation and tissue injury. During bacterial or viral infection, macrophages release DNA decorated with nuclear and cytoplasmic proteins known as macrophage extracellular traps (METs). Gasdermin D (GSDMD) is a pore-forming protein that has been involved in extracellular trap formation in neutrophils. We hypothesized that eCIRP induces MET formation by activating GSDMD. Human monocytic cell line THP-1 cells were differentiated with phorbol 12-myristate 13-acetate (PMA) and treated with recombinant murine (rm) CIRP. The MET formation was detected by three methods: time-lapse fluorescence microscopy (video imaging), colorimetry, and ELISA. Cleaved forms of GSDMD, and caspase-1 were detected by Western blotting. Treatment of THP-1 cells with rmCIRP increased MET formation as revealed by SYTOX Orange Staining assay in a time- and dose-dependent manner. METs formed by rmCIRP stimulation were further confirmed by extracellular DNA, citrullinated histone H3, and myeloperoxidase. Treatment of THP-1 cells with rmCIRP significantly increased the cleaved forms of caspase-1 and GSDMD compared to PBS-treated cells. Treatment of macrophages with caspase-1, and GSDMD inhibitors z-VAD-fmk, and disulfiram, separately, significantly decreased rmCIRP-induced MET formation. We also confirmed rmCIRP-induced MET formation using primary cells murine peritoneal macrophages. These data clearly show that eCIRP serves as a novel inducer of MET formation through the activation of GSDMD and caspase-1.
Collapse
Affiliation(s)
- Yongchan Lee
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Bridgette Reilly
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Chuyi Tan
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
25
|
Afzali S, Doosti A, Heidari M, Babaei N, Keshavarz P, Nadem Z, Kahnamoei A. Effects of Staphylococcus aureus enterotoxin type A on inducing the apoptosis in cervical cancer cell line. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Irisin Protects Against LPS-Stressed Cardiac Damage Through Inhibiting Inflammation, Apoptosis, and Pyroptosis. Shock 2021; 56:1009-1018. [PMID: 34779800 DOI: 10.1097/shk.0000000000001775] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ABSTRACT Septic cardiac dysfunction remains a clinical problem due to its high morbidity and mortality. Uncontrolled cell death and excessive inflammatory response are closely related to sepsis-induced cardiac dysfunction. Irisin has been found to play cardioprotective roles in sepsis. However, there is enough uncertainty in the mechanism of irisin-mediated cardioprotection. We hypothesized that irisin may ameliorate myocardial dysfunction via reducing cardiac apoptosis, pyroptosis, and inflammation during LPS-induced sepsis. Mice were subjected to LPS with or without irisin treatment. After stimuli of LPS, the function of myocardium was distinctly impaired, which was closely related to increased level of apoptosis (decreased expression of Bcl-2 and elevated expression of Caspase-3 and Bax), pyroptosis (increased expression of Caspase1, NLR family pyrin domain containing 3 (NLRP3), and gasdermin D) and inflammatory mediators (increased level of IL-1β, TNF-α, and IL-6). This process is consistent with increased toll-like receptor 4 (TLR4)/nuclear factor-kappa B signal, apoptotic signal, and NLRP3-mediated pyroptotic signal. Activation of apoptosis and pyroptosis enhanced the expression of proinflammatory cytokines and further exacerbated septic myocardial damage. However, irisin can inhibit the expression of TLR4 and its downstream signaling molecules and also lower the level of apoptosis and pyroptosis. Besides, similar results were also found in vitro model of LPS-induced H9c2 cardiomyocyte injury. In general, irisin suppressed inflammation, apoptosis, and pyroptosis by blocking the TLR4 and NLRP3 inflammasome signalings to mitigate myocardial dysfunction in sepsis.
Collapse
|
27
|
Liang H, Huang Y, Gao Q. Role of non-canonical pyroptosis in sepsis and other inflammatory diseases. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1276-1284. [PMID: 34911863 PMCID: PMC10929856 DOI: 10.11817/j.issn.1672-7347.2021.210174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 11/03/2022]
Abstract
As a form of new programmed cell death, pyroptosis is divided into a canonical pyroptosis pathway and a non-canonical pyroptosis pathway. In recent years, it is reported that non-canonical pyroptosis is closely related to inflammatory reactions, which directly affects the occurrence, development, and outcome of sepsis, inflammatory bowel disease, respiratory disease, nerve system inflammatory disease, and other inflammatory diseases. When the cells were infected with Gram-negative bacteria or lipopolysaccharide (LPS), it can induce the activation of cysteinyl aspartate specific proteinase(caspase)-4/5/11 and directly bind to the cells to cleave gasdermin D (GSDM-D) into the active amino-terminus of GSDM-D. The amino-terminus of GSDM-D with membrane punching activity migrates to the cell membrane, triggering the rupture of the cell membrane, and the cell contents discharge, leading to the occurrence of non-canonical pyroptosis. After activation of caspase-11, it also promotes the canonical pyroptosis, activates and releases interleukin-1β and interleukin-18, which aggravated inflammation. Caspase-4/5/11, GSDM-D, Toll-like receptor 4 and high mobility group protein B1 are the key molecules of the non-canonical pyroptosis. Exploring the mechanisms of non-canonical pyroptosis and the related research progresses in inflammatory diseases intensively is of great significance for clinical prevention and treatment of the relevant diseases.
Collapse
Affiliation(s)
- Huan Liang
- Department of Physiology, Bengbu Medical College, Bengbu Anhui 233000.
- Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu Anhui 233000, China.
| | - Yuhui Huang
- Department of Physiology, Bengbu Medical College, Bengbu Anhui 233000
- Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu Anhui 233000, China
| | - Qin Gao
- Department of Physiology, Bengbu Medical College, Bengbu Anhui 233000.
- Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu Anhui 233000, China.
| |
Collapse
|
28
|
Wang P, Feng Z, Sang X, Chen W, Zhang X, Xiao J, Chen Y, Chen Q, Yang M, Su J. Kombucha ameliorates LPS-induced sepsis in a mouse model. Food Funct 2021; 12:10263-10280. [PMID: 34549751 DOI: 10.1039/d1fo01839f] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As a popular traditional fermented beverage, kombucha has been extensively studied for its health benefits. However, the science behind the anti-inflammatory effect of kombucha has not been well studied, and there is an urgent need to uncover the secrets of the anti-inflammatory properties of kombucha. Here, we investigate kombucha's protective effects against lipopolysaccharide (LPS)-induced sepsis and on the intestinal microecology in mice. The contents of reducing sugars, polyphenols, catechins, and organic acids in the kombucha group were identified using various methods. The results showed that the concentrations of acetic acid, gluconic acid, polyphenol, and glucuronic acid in the kombucha group were 55.70 ± 2.57 g L-1, 50.20 ± 1.92 g L-1, 2.36 ± 0.31, and 1.39 ± 0.22 g L-1, respectively. The result also demonstrated that kombucha effectively improves the survival rate from 0% to 40%, and increases the thermoregulation in LPS-treated mice, which showed decreased mobility and had lost their appetite for food. Furthermore, kombucha reduced the levels of tumor necrosis factor-α and interleukins (IL)-1β and IL-6, restored the levels of T cells and macrophages in LPS-challenged mice, alleviated the histopathological damage, and inhibited NF-κB signaling in mice with LPS-induced sepsis. We demonstrated that kombucha effectively prevents cellular immune function disorder in mice at the initial stage of sepsis and exerts an immunomodulatory effect. In addition, the effect of kombucha on the gut microbiota was investigated during sepsis. Kombucha supplementation altered the diversity of the gut microbiota and promoted the growth of butyrate-producing bacteria, which exert anti-inflammatory effects. Our results illustrate the potential of kombucha as a novel anti-inflammatory agent against the development of systemic inflammatory responses associated with sepsis.
Collapse
Affiliation(s)
- Penghui Wang
- College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China. .,College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Xiao Sang
- College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Wenzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China. .,College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Xiaoni Zhang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jianbin Xiao
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China. .,College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Minhe Yang
- College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China. .,College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| |
Collapse
|
29
|
Zheng X, Chen W, Gong F, Chen Y, Chen E. The Role and Mechanism of Pyroptosis and Potential Therapeutic Targets in Sepsis: A Review. Front Immunol 2021; 12:711939. [PMID: 34305952 PMCID: PMC8293747 DOI: 10.3389/fimmu.2021.711939] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/22/2021] [Indexed: 01/15/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Recently was been found that pyroptosis is a unique form of proinflammatory programmed death, that is different from apoptosis. A growing number of studies have investigated pyroptosis and its relationship with sepsis, including the mechanisms, role, and relevant targets of pyroptosis in sepsis. While moderate pyroptosis in sepsis can control pathogen infection, excessive pyroptosis can lead to a dysregulated host immune response and even organ dysfunction. This review provides an overview of the mechanisms and potential therapeutic targets underlying pyroptosis in sepsis identified in recent decades, looking forward to the future direction of treatment for sepsis.
Collapse
Affiliation(s)
| | | | | | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Alpinetin Attenuates Persistent Inflammation, Immune Suppression, and Catabolism Syndrome in a Septic Mouse Model. J Immunol Res 2021; 2021:9998517. [PMID: 34285925 PMCID: PMC8275435 DOI: 10.1155/2021/9998517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 06/19/2021] [Indexed: 12/21/2022] Open
Abstract
Patients who survive the acute phase of sepsis can progress to persistent inflammation, immunosuppression, and catabolism syndrome (PICS), which usually results in extended recovery periods and multiple complications. Alpinetin is a flavonoid isolated from Alpinia katsumadai Hayata that has been demonstrated to have anti-inflammatory, antibacterial, and antioxidant activities. The aim of this study was to investigate whether the administration of alpinetin could attenuate PICS in a septic mouse model. Mice were randomly divided into four groups: the (1) sham-operated group, (2) sham+alpinetin (1 mg/kg intravenously infused for once per day after sham operation), (3) cecal ligation and puncture (CLP), and (4) CLP+alpinetin (50 mg/kg intravenously infused for once per day after CLP). Eight days after sham operation or CLP surgery, mice were euthanized for subsequent examination. Alpinetin significantly improved the survival of septic mice. Also, it attenuated the CLP-induced persistent inflammation, immunosuppression, and catabolism syndrome. The level of plasma proinflammatory cytokines and apoptosis of T lymphocytes were obviously decreased by alpinetin as well. Moreover, oxidative stress in the organs was compelling lower in the alpinetin-treated CLP mice. In this clinically relevant model of sepsis, alpinetin ameliorates CLP-induced organ dysfunction and improves the likelihood of survival, possibly through suppressing the inflammatory response, oxidative stress, and apoptosis. These findings suggested that alpinetin could be a potential novel therapeutic approach to prevent sepsis-induced PICS.
Collapse
|
31
|
Han X, Xu T, Fang Q, Zhang H, Yue L, Hu G, Sun L. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol 2021; 44:102010. [PMID: 34082381 PMCID: PMC8182123 DOI: 10.1016/j.redox.2021.102010] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 01/04/2023] Open
Abstract
Activated microglia are an important type of innate immune cell in the brain, and they secrete inflammatory cytokines into the extracellular milieu, exert neurotoxicity to surrounding neurons and are involved in the pathogenesis of many brain disorders. Quercetin (Qu), a natural flavonoid, is known to have anti-inflammatory and antioxidant properties. Previous studies have shown that both increased reactive oxygen species (ROS) stress and decreased autophagy participate in the activation of microglial. In the current study, we showed that Qu significantly attenuated LPS-induced inflammatory factor production, cell proliferation and NF-κB activation of microglia. Importantly, Qu decreased the levels of NLR family, pyrin domain containing three (NLRP3) inflammasome and pyroptosis-related proteins, including NLRP3, active caspase-1, GSDMD N-terminus and cleaved IL-1β. Further study indicated that this anti-inflammatory effect of Qu was associated with mitophagy regulation. Importantly, Qu promoted mitophagy to enhance damaged mitochondrial elimination, which then reduced mtROS accumulation and alleviated NLRP3 inflammasome activation. Then, we confirmed that Qu treatment protected primary neurons against LPS-induced microglial toxicity and alleviated neurodegeneration in both depression and PD mouse models. Further IL-1β administration blunted these neuroprotective effects of Qu in vitro and in vivo. This work illustrated that Qu prevents neuronal injury via inhibition of mtROS-mediated NLRP3 inflammasome activation in microglia through promoting mitophagy, which provides a potential novel therapeutic strategy for neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Xiaojuan Han
- Department of Rheumatology and Immunology, Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Tianshu Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qijun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Huajun Zhang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lijun Yue
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
32
|
Gabarin RS, Li M, Zimmel PA, Marshall JC, Li Y, Zhang H. Intracellular and Extracellular Lipopolysaccharide Signaling in Sepsis: Avenues for Novel Therapeutic Strategies. J Innate Immun 2021; 13:323-332. [PMID: 34004605 PMCID: PMC8613564 DOI: 10.1159/000515740] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
Sepsis is defined as organ dysfunction due to a dysregulated systemic host response to infection. During gram-negative bacterial infection and other acute illness such as absorption from the gut infection, lipopolysaccharide (LPS) is a major mediator in sepsis. LPS is able to trigger inflammation through both intracellular and extracellular pathways. Classical interactions between LPS and host cells first involve LPS binding to LPS binding protein (LBP), a carrier. The LPS-LBP complex then binds to a receptor complex including the CD14, MD2, and toll-like receptor 4 (TLR4) proteins, initiating a signal cascade which triggers the secretion of pro-inflammatory cytokines. However, it has been established that LPS is also internalized by macrophages and endothelial cells through TLR4-independent pathways. Once internalized, LPS is able to bind to the cytosolic receptors caspases-4/5 in humans and the homologous caspase-11 in mice. Bound caspases-4/5 oligomerize and trigger the assembly of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome followed by the activation of inflammatory caspase-1 resulting in subsequent release of interleukin-1β. Caspases-4/5 also activate the perforin gasdermin D and purinergic receptor P2X7, inducing cell lysis and pyroptosis. Pyroptosis is a notable source of inflammation and damage to the lung endothelial barrier during sepsis. Thus, inhibition of caspases-4/5/1 or downstream effectors to block intracellular LPS signaling may be a promising therapeutic approach in adjunction with neutralizing extracellular LPS for treatment of sepsis.
Collapse
Affiliation(s)
- Ramy S Gabarin
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada
| | - Manshu Li
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada.,The State Key Laboratory of Respiratory Disease, and the 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Paige A Zimmel
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada
| | - John C Marshall
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yimin Li
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada.,The State Key Laboratory of Respiratory Disease, and the 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haibo Zhang
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada.,The State Key Laboratory of Respiratory Disease, and the 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 2021; 6:128. [PMID: 33776057 PMCID: PMC8005494 DOI: 10.1038/s41392-021-00507-5] [Citation(s) in RCA: 1281] [Impact Index Per Article: 320.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, pyroptosis has received more and more attention because of its association with innate immunity and disease. The research scope of pyroptosis has expanded with the discovery of the gasdermin family. A great deal of evidence shows that pyroptosis can affect the development of tumors. The relationship between pyroptosis and tumors is diverse in different tissues and genetic backgrounds. In this review, we provide basic knowledge of pyroptosis, explain the relationship between pyroptosis and tumors, and focus on the significance of pyroptosis in tumor treatment. In addition, we further summarize the possibility of pyroptosis as a potential tumor treatment strategy and describe the side effects of radiotherapy and chemotherapy caused by pyroptosis. In brief, pyroptosis is a double-edged sword for tumors. The rational use of this dual effect will help us further explore the formation and development of tumors, and provide ideas for patients to develop new drugs based on pyroptosis.
Collapse
Affiliation(s)
- Pian Yu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| |
Collapse
|
34
|
The necroptotic cell death pathway operates in megakaryocytes, but not in platelet synthesis. Cell Death Dis 2021; 12:133. [PMID: 33510145 PMCID: PMC7843594 DOI: 10.1038/s41419-021-03418-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Necroptosis is a pro-inflammatory cell death program executed by the terminal effector, mixed lineage kinase domain-like (MLKL). Previous studies suggested a role for the necroptotic machinery in platelets, where loss of MLKL or its upstream regulator, RIPK3 kinase, impacted thrombosis and haemostasis. However, it remains unknown whether necroptosis operates within megakaryocytes, the progenitors of platelets, and whether necroptotic cell death might contribute to or diminish platelet production. Here, we demonstrate that megakaryocytes possess a functional necroptosis signalling cascade. Necroptosis activation leads to phosphorylation of MLKL, loss of viability and cell swelling. Analyses at steady state and post antibody-mediated thrombocytopenia revealed that platelet production was normal in the absence of MLKL, however, platelet activation and haemostasis were impaired with prolonged tail re-bleeding times. We conclude that MLKL plays a role in regulating platelet function and haemostasis and that necroptosis signalling in megakaryocytes is dispensable for platelet production.
Collapse
|
35
|
Miliaraki M, Briassoulis P, Ilia S, Polonifi A, Mantzourani M, Briassouli E, Vardas K, Nanas S, Pistiki A, Theodorakopoulou M, Tavladaki T, Spanaki AM, Kondili E, Dimitriou H, Tsiodras S, Georgopoulos D, Armaganidis A, Daikos G, Briassoulis G. Survivin and caspases serum protein levels and survivin variants mRNA expression in sepsis. Sci Rep 2021; 11:1049. [PMID: 33441606 PMCID: PMC7806640 DOI: 10.1038/s41598-020-78208-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a dysregulated host response to infection related to devastating outcomes. Recently, interest has been shifted towards apoptotic and antiapoptotic pathobiology. Apoptosis is executed through the activation of caspases regulated by a number of antiapoptotic proteins, such as survivin. The survivin and caspases’ responses to sepsis have not yet been elucidated. This is a multicenter prospective observational study concerning patients with sepsis (n = 107) compared to patients with traumatic systemic inflammatory response syndrome (SIRS) (n = 75) and to healthy controls (n = 89). The expression of survivin was quantified through real-time quantitative polymerase chain reaction for the different survivin splice variants (wild type-WT, ΔEx3, 2B, 3B) in peripheral blood leukocytes. The apoptotic or antiapoptotic tendency was specified by measuring survivin-WT, caspase-3, and -9 serum protein concentrations through enzyme-linked immunosorbent assay. The survivin-WT, -2B, -ΔΕx3 mRNA, survivin protein, and caspases showed an escalated increase in SIRS and sepsis, whereas survivin-3B was repressed in sepsis (p < 0.05). Survivin correlated with IL-8 and caspase-9 (p < 0.01). For discriminating sepsis, caspase-9 achieved the best receiver operating characteristic curve (AUROC) of 0.95. In predicting mortality, caspase-9 and survivin protein achieved an AUROC of 0.70. In conclusion, specific apoptotic and antiapoptotic pathways might represent attractive targets for future research in sepsis.
Collapse
Affiliation(s)
- Marianna Miliaraki
- Pediatric Intensive Care Unit, Medical School, University of Crete, Heraklion, Crete, Greece.,Postgraduate Program "Emergencies and Intensive Care in Children Adolescents and Young Adults", Medical School, University of Crete, Heraklion, Crete, Greece
| | - Panagiotis Briassoulis
- Pediatric Intensive Care Unit, Medical School, University of Crete, Heraklion, Crete, Greece.,Postgraduate Program "Emergencies and Intensive Care in Children Adolescents and Young Adults", Medical School, University of Crete, Heraklion, Crete, Greece
| | - Stavroula Ilia
- Pediatric Intensive Care Unit, Medical School, University of Crete, Heraklion, Crete, Greece.,Postgraduate Program "Emergencies and Intensive Care in Children Adolescents and Young Adults", Medical School, University of Crete, Heraklion, Crete, Greece
| | - Aikaterini Polonifi
- First Department of Internal Medicine - Propaedeutic, National and Kapodistrian University of Athens, Athens, Greece
| | - Marina Mantzourani
- First Department of Internal Medicine - Propaedeutic, National and Kapodistrian University of Athens, Athens, Greece
| | - Efrossini Briassouli
- First Department of Internal Medicine - Propaedeutic, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Vardas
- First Critical Care Department, Evangelismos University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Serafim Nanas
- First Critical Care Department, Evangelismos University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Pistiki
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Theodorakopoulou
- 2nd Department of Critical Care, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theonymfi Tavladaki
- Pediatric Intensive Care Unit, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Anna Maria Spanaki
- Pediatric Intensive Care Unit, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Eumorfia Kondili
- Intensive Care Unit, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Helen Dimitriou
- Division of Mother and Child Health, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Apostolos Armaganidis
- 2nd Department of Critical Care, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Daikos
- First Department of Internal Medicine - Propaedeutic, National and Kapodistrian University of Athens, Athens, Greece
| | - George Briassoulis
- Pediatric Intensive Care Unit, Medical School, University of Crete, Heraklion, Crete, Greece. .,Postgraduate Program "Emergencies and Intensive Care in Children Adolescents and Young Adults", Medical School, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
36
|
Mallarpu CS, Ponnana M, Prasad S, Singarapu M, Kim J, Haririparsa N, Bratic N, Brar H, Chelluri LK, Madiraju C. Distinct cell death markers identified in critical care patient survivors diagnosed with sepsis. Immunol Lett 2021; 231:1-10. [PMID: 33406390 DOI: 10.1016/j.imlet.2020.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
Sepsis is an abnormal immune response to infection characterized by an overwhelming systemic inflammation and cell death. Non-apoptotic cell death pertaining to pyroptosis, necroptosis and autophagy contribute to sepsis pathogenesis apart from classical apoptotic cell death. The objective of the current study is to investigate the presence of molecular markers of relevance to apoptotic and non-apoptotic cell death in control healthy subjects and septic patient survivors. Sepsis survivors (N = 24) and healthy human volunteers (N = 16) [40 total subjects] were recruited into the study. Clinical intervention included antibiotic treatment regimen administered to patients upon clinical diagnosis of sepsis followed by blood draw 18-24 hr post-antibiotic dose. Serum samples analyzed by enzyme-linked immunosorbent assay (ELISA) and peripheral blood mononuclear cells (PBMCs) by flow cytometry analysis for identification of cell death markers. Cell death markers analyzed by ELISA and flow cytometry included caspase-1, caspase-3, MLKL, RIPK3, p62 and LC3B. Serum and peripheral blood mononuclear cells (PBMCs) of septic survivors and healthy controls analyzed for the presence of distinct cell death markers. Markers of relevance to apoptosis (caspase-3), pyroptosis (caspase-1), necroptosis (MLKL) and autophagy (p62 and LC3B) were compared between septic survivors and healthy controls. ELISA analysis suggested significant alterations in the serum levels of non-apoptotic cell death markers, caspase-1 and p62/SQSTM1, in septic survivors compared to healthy controls (p < 0.05). There was no significant difference in the serum levels of caspase-3 and MLKL between septic survivors and healthy control subjects (p> 0.05). Intracellular caspase-1 levels did not show any significant alterations between septic survivors and healthy control subjects (p > 0.05). Flow cytometry analysis suggested significant increase in the intracellular expression of caspase-3, MLKL and its associated kinase RIPK3, and p62/SQSTM1 (p < 0.05) in sepsis patient survivors when compared to healthy human subjects. The current observational study identified significantly elevated levels of non-apoptotic cell death markers in sepsis patients compared to healthy controls. Noteworthy observation is the significant modulation of non-apoptotic cell death markers in serum samples derived from septic survivors post-antibiotic administration compared to healthy control subjects. Preliminary results serve as a basis for further mechanistic investigations to elucidate the role of distinct cell death markers in the prediction of clinical outcomes in sepsis.
Collapse
Affiliation(s)
- Chandra Shekar Mallarpu
- Department of Transplant Immunology & Stem Cell Unit, Gleneagles Global Hospitals, Lakdi-ka-Pul, Hyderabad, 500 004, India
| | - Meenakshi Ponnana
- Department of Transplant Immunology & Stem Cell Unit, Gleneagles Global Hospitals, Lakdi-ka-Pul, Hyderabad, 500 004, India
| | - Sudhir Prasad
- Department of Transplant Immunology & Stem Cell Unit, Gleneagles Global Hospitals, Lakdi-ka-Pul, Hyderabad, 500 004, India
| | - Maneendra Singarapu
- Department of Transplant Immunology & Stem Cell Unit, Gleneagles Global Hospitals, Lakdi-ka-Pul, Hyderabad, 500 004, India
| | - Jean Kim
- Marshall B. Ketchum University, College of Pharmacy, 2575 Yorba Linda Blvd, Fullerton, CA, 92831, USA
| | - Neda Haririparsa
- Marshall B. Ketchum University, College of Pharmacy, 2575 Yorba Linda Blvd, Fullerton, CA, 92831, USA
| | - Nemanja Bratic
- Marshall B. Ketchum University, College of Pharmacy, 2575 Yorba Linda Blvd, Fullerton, CA, 92831, USA
| | - Harvinder Brar
- Marshall B. Ketchum University, College of Pharmacy, 2575 Yorba Linda Blvd, Fullerton, CA, 92831, USA
| | - Lakshmi Kiran Chelluri
- Department of Transplant Immunology & Stem Cell Unit, Gleneagles Global Hospitals, Lakdi-ka-Pul, Hyderabad, 500 004, India.
| | - Charitha Madiraju
- Marshall B. Ketchum University, College of Pharmacy, 2575 Yorba Linda Blvd, Fullerton, CA, 92831, USA.
| |
Collapse
|
37
|
Abstract
The poor success rate of treating patients with aggressive sepsis in SARS-CoV-2 infections has highlighted again the challenges of managing systemic inflammatory conditions. In this issue of JEM, Rodrigues et al. (https://doi.org/10.1084/jem.20201707) discuss the role of inflammasome activation in COVID-19 disease severity, opening new possibilities for therapeutic management of sepsis syndromes.
Collapse
Affiliation(s)
- Clare Bryant
- Departments of Medicine and Veterinary Medicine, The University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Zhao S, Chen F, Yin Q, Wang D, Han W, Zhang Y. Reactive Oxygen Species Interact With NLRP3 Inflammasomes and Are Involved in the Inflammation of Sepsis: From Mechanism to Treatment of Progression. Front Physiol 2020; 11:571810. [PMID: 33324236 PMCID: PMC7723971 DOI: 10.3389/fphys.2020.571810] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past 10 years, the crisis of sepsis has remained a great challenge. According to data from 2016, the sepsis-related mortality rate remains high. In addition, sepsis consumes extensive medical resources in intensive care units, and anti-inflammatory agents fail to improve sepsis-associated hyperinflammation and symptoms of immunosuppression. The specific immune mechanism of sepsis remains to be elucidated. Reactive oxygen species (ROS) are triggered by energy metabolism and respiratory dysfunction in sepsis, which not only cause oxidative damage to tissues and organelles, but also directly and indirectly promote NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. NLRP3 inflammasomes enlarge the inflammatory response and trigger apoptosis of immune cells to exacerbate sepsis progression. Inhibiting the negative effects of ROS and NLRP3 inflammasomes therefore provides the possibility of reversing the excessive inflammation during sepsis. In this review, we describe the interaction of ROS and NLRP3 inflammasomes during sepsis, provide prevention strategies, and identify fields that need further study.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Fan Chen
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Qiliang Yin
- Department of Oncology, First Hospital of Jilin University, Changchun, China
| | - Dunwei Wang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Wei Han
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Yuan Zhang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
39
|
Wang X, Wang T, Sun L, Zhang H, Liu C, Zhang C, Yu L. B-vitamin supplementation ameliorates anxiety- and depression-like behavior induced by gestational urban PM 2.5 exposure through suppressing neuroinflammation in mice offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115146. [PMID: 32663728 DOI: 10.1016/j.envpol.2020.115146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/03/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
PM2.5 exposure is an emerging environmental concern and severe health insult closely related to psychological conditions such as anxiety and depression in adolescence. Adolescence is a critical period for neural system development characterized by continuous brain maturation, especially in the prefrontal cortex. The etiology of these adolescent conditions may derive from fetal origin, probably attributed to the adverse effects induced by intrauterine environmental exposure. Anxiety- and depression-like behavior can be induced by gestational exposure to PM2.5 in mice offspring which act as a useful model system. Recent studies show that B-vitamin may alleviate PM2.5-induced hippocampal neuroinflammation- and function-related spatial memory impairment in adolescent mice offspring. However, cortical damage and related neurobehavioral defects induced by gestational PM2.5 exposure, as well as the potential reversibility by interventions in mice offspring require to be elucidated. Here, we aimed to investigate whether B-vitamin would protect mice offspring from the adverse effects derived from gestational exposure to urban PM2.5 on cortical areas to which anxiety and depression are closely related. Pregnant mice were divided into three groups: control group (treated with PBS alone), model group (treated with both PM2.5 and PBS), and intervention group (treated with both PM2.5 and B-vitamin), respectively. The mice offspring were then applied to comprehensive neurobehavioral, ultrastructural, biochemical, and molecular biological analyses. Interestingly, we observed that gestational PM2.5 exposure led to neurobehavioral defects including anxiety- and depression-like behavior. In addition, neuroinflammation, oxidative damage, increased apoptosis, and caspase-1-mediated inflammasome activation in the prefrontal cortex were observed. Notably, both behavioral and molecular changes could be significantly alleviated by B-vitamin treatment. In summary, our results suggest that the anxiety- and depression-like behavior induced by gestational PM2.5 exposure in mice offspring can be ameliorated by B-vitamin supplementation, probably through the suppression of apoptosis, oxidative damage, neuroinflammation, and caspase-1-mediated inflammasome activation.
Collapse
Affiliation(s)
- Xia Wang
- School of Public Health, Weifang Medical University, Weifang, China
| | - Tingting Wang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Lijuan Sun
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Haoyun Zhang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Chong Liu
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Li Yu
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China.
| |
Collapse
|
40
|
El-Sheref EM, Aly AA, Alshammari MB, Brown AB, Abdel-Hafez SMN, Abdelzaher WY, Bräse S, Abdelhafez EMN. Design, Synthesis, Molecular Docking, Antiapoptotic and Caspase-3 Inhibition of New 1,2,3-Triazole/ Bis-2(1 H)-Quinolinone Hybrids. Molecules 2020; 25:E5057. [PMID: 33143331 PMCID: PMC7672604 DOI: 10.3390/molecules25215057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 12/29/2022] Open
Abstract
A series of novel 1,2,3-triazoles hybridized with two quinolin-2-ones, was designed and synthesized through click reactions. The structures of the synthesized compounds were elucidated by NMR, IR, and mass spectra in addition to elemental analysis. The synthesized compounds were assessed for their antiapoptotic activity in testis, as testicular torsion is the main cause of male infertility. This effect was studied in light of decreasing tissue damage induced by I/R in the testis of rats using N-acetylcysteine (NAC) as an antiapoptotic reference. Compounds 6a-c were the most active antiapoptotic hybrids with significant measurements for malondialdehyde (MDA) and total antioxidant capacity (TAC) and the apoptotic biomarkers (testicular testosterone, TNFα, and caspase-3) in comparison to the reference. A preliminary mechanistic study was performed to improve the antiapoptotic activity through caspase-3 inhibition. A compound assigned as 6-methoxy-4-(4-(((2-oxo-1,2-dihydroquinolin-4-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)quinolin-2(1H)-one (6c) was selected as a representative of the most active hybrids in comparison to NAC. Assay of cytochrome C for 6c revealed an attenuation of cytochrome C level about 3.54 fold, comparable to NAC (4.13 fold). In caspases-3,8,9 assays, 6c was found to exhibit more potency and selectivity toward caspase-3 than other caspases. The testicular histopathological investigation was carried out on all targeted compounds 6a-g, indicating a significant improvement in the spermatogenesis process for compounds 6a-c if compared to the reference relative to the control. Finally, molecular docking studies were done at the caspase-3 active site to suggest possible binding modes. Hence, it could conceivably be hypothesized that compounds 6a-c could be considered good lead candidate compounds as antiapoptotic agents.
Collapse
Affiliation(s)
- Essmat M. El-Sheref
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
| | - Mohammed B. Alshammari
- College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Alan B. Brown
- Florida Institute of Technology, 150 W University Blvd, Melbourne, FL 32901, USA;
| | | | | | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | | |
Collapse
|
41
|
Abstract
Coronavirus disease 2019 (COVID-19) is a life-threatening respiratory illness caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its clinical presentation can vary from the asymptomatic state to acute respiratory distress syndrome (ARDS) and multi-organ dysfunction. Due to our insufficient understanding of its pathophysiology and lack of effective treatment, the morbidity and mortality of severe COVID-19 patients are high. Patients with COVID-19 develop ARDS fueled by exaggerated neutrophil influx into the lungs and cytokine storm. B-1a cells represent a unique subpopulation of B lymphocytes critical for circulating natural antibodies, innate immunity, and immunoregulation. These cells spontaneously produce natural IgM, interleukin (IL)-10, and granulocyte-monocyte colony stimulating factor (GM-CSF). Natural IgM neutralizes viruses and opsonizes bacteria, IL-10 attenuates the cytokine storm, and GM-CSF induces IgM production by B-1a cells in an autocrine manner. Indeed, B-1a cells have been shown to ameliorate influenza virus infection, sepsis, and pneumonia, all of which are similar to COVID-19. The recent discovery of B-1a cells in humans further reinforces their potentially critical role in the immune response against SARS-CoV-2 and their anticipated translational applications against viral and microbial infections. Given that B-1a cells protect against ARDS via immunoglobulin production and the anti-COVID-19 effects of convalescent plasma treatment, we recommend that studies be conducted to further examine the role of B-1a cells in the pathogenesis of COVID-19 and explore their therapeutic potential to treat COVID-19 patients.
Collapse
|
42
|
Wei Z, Wang L, Tang C, Chen S, Wang Z, Wang Y, Bao J, Xie Y, Zhao W, Su B, Zhao C. Metal‐Phenolic Networks Nanoplatform to Mimic Antioxidant Defense System for Broad‐Spectrum Radical Eliminating and Endotoxemia Treatment. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202002234] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhiwei Wei
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Liya Wang
- Department of Nephrology West China Hospital Sichuan University Chengdu 610041 China
| | - Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Shengqiu Chen
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Zhoujun Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Yilin Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Jianxu Bao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Yi Xie
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering College of Chemical Engineering Sichuan University Chengdu 610065 China
- Department of Biomedical Engineering Faculty of Engineering National University of Singapore Singapore 117583 Singapore
| | - Weifeng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Baihai Su
- Department of Nephrology West China Hospital Sichuan University Chengdu 610041 China
| | - Changsheng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering College of Chemical Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
43
|
Li Z, Song Y, Yuan P, Guo W, Hu X, Xing W, Ao L, Tan Y, Wu X, Ao X, He X, Jiang D, Liang H, Xu X. Antibacterial Fusion Protein BPI21/LL-37 Modification Enhances the Therapeutic Efficacy of hUC-MSCs in Sepsis. Mol Ther 2020; 28:1806-1817. [PMID: 32445625 PMCID: PMC7403330 DOI: 10.1016/j.ymthe.2020.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/16/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Sepsis, which is characterized by multiple organ dysfunctions as a result of an unbalanced host-inflammatory response to pathogens, is potentially a life-threatening condition and a major cause of death in the intensive care units (ICUs). However, effective treatment or intervention to prevent sepsis-associated lethality is still lacking. Human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation has been shown to have potent immunomodulatory properties and improve tissue repair yet lacks direct antibacterial and endotoxin clearance activities. In this study, we engineered hUC-MSCs to express a broad-spectrum antibacterial fusion peptide containing BPI21 and LL-37 (named BPI21/LL-37) and confirmed that the BPI21/LL-37 modification did not affect the stemness and immunoregulatory capacities of hUC-MSCs but remarkably, enhanced its antibacterial and toxin-neutralizing activities in vitro. Furthermore, we showed that administration of BPI21/LL-37-engineered hUC-MSCs significantly reduces serum levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6, whereas increases that of IL-10 in cecal ligation and puncture (CLP)-induced sepsis mouse model. Administration of BPI21/LL-37-engineered hUC-MSCs significantly reduced systemic endotoxin (lipopolysaccharide [LPS]) levels and organ bacterial load, ameliorated damage to multiple organs, and improved survival. Taken together, our study demonstrates that BPI21/LL-37-engineered hUC-MSCs might offer a novel therapeutic strategy to prevent or treat sepsis via enhanced antimicrobial and anti-inflammatory properties to preserve organ functions better.
Collapse
Affiliation(s)
- Zhan Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Yuqing Song
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Department of Critical Care Medicine, Jinling Hospital, Nanjing 210000, PR China
| | - Peisong Yuan
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Wei Guo
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Xueting Hu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Wei Xing
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Luoquan Ao
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Yan Tan
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Xiaofeng Wu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Xiang Ao
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Xiao He
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Dongpo Jiang
- Department of Critical Care Medicine, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| | - Huaping Liang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| |
Collapse
|
44
|
Zhou M, Aziz M, Ochani M, Wang P. Correction of immunosuppression in aged septic rats by human ghrelin and growth hormone through the vagus nerve-dependent inhibition of TGF-β production. Mol Med 2020; 26:71. [PMID: 32677895 PMCID: PMC7364485 DOI: 10.1186/s10020-020-00195-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Co-administration of human ghrelin and growth hormone (GH) reverse immunosuppression in septic aged animals, but the mechanism remains elusive. Here, we hypothesize that ghrelin and GH co-treatment restores the immune response in aged septic rats by inhibiting the production of transforming growth factor-β (TGF-β), an immunoregulatory cytokine, through the vagus nerve. METHODS Male aged Fischer rats (22-23-month-old) were made septic by cecal ligation and puncture (CLP) with or without dissecting the vagus nerve (vagotomy). Human ghrelin and GH or vehicle (PBS) were administrated subcutaneously at 5 h post CLP. After 20 h of CLP, serum and spleens were harvested. RESULTS Serum TGF-β levels were increased in septic aged rats, while ghrelin and GH treatment significantly reduced its levels. Expression of TGF-β in the spleen was upregulated after sepsis, while ghrelin and GH treatment significantly inhibited its expression. TNF-α and IL-6 levels were significantly reduced after ex vivo LPS stimulation of splenocytes from rats that underwent CLP compared to sham rats; while these levels were significantly higher in splenocytes from ghrelin and GH-treated CLP rats compared to vehicle-treated CLP rats. Ghrelin and GH treatment reduced program death receptor-1 (PD-1) expression, increased human leukocyte antigen-DR (HLA-DR) expression, attenuated lymphopenia, and cleaved caspase-3 levels in the spleen of septic aged rats. Vagotomy diminished the beneficial effects of ghrelin and GH treatment in septic rats. In vitro, the addition of ghrelin, GH, or ghrelin and GH together had no effect on restoring immune response in splenocytes from CLP rats following LPS stimulation, indicating the requirement of the vagus nerve for ghrelin and GH's effect. CONCLUSIONS Ghrelin and GH attenuate immunosuppression in aged septic rats through the vagus nerve-dependent inhibition of TGF-β production.
Collapse
Affiliation(s)
- Mian Zhou
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York USA
| | - Mahendar Ochani
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York USA
- Departments of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York USA
| |
Collapse
|
45
|
Richendrfer HA, Levy MM, Elsaid KA, Schmidt TA, Zhang L, Cabezas R, Jay GD. Recombinant Human Proteoglycan-4 Mediates Interleukin-6 Response in Both Human and Mouse Endothelial Cells Induced Into a Sepsis Phenotype. Crit Care Explor 2020; 2:e0126. [PMID: 32695993 PMCID: PMC7314356 DOI: 10.1097/cce.0000000000000126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Sepsis is a leading cause of death in the United States. Putative targets to prevent systemic inflammatory response syndrome include antagonism of toll-like receptors 2 and 4 and CD44 receptors in vascular endothelial cells. Proteoglycan-4 is a mucinous glycoprotein that interacts with CD44 and toll-like receptor 4 resulting in a blockade of the NOD-like receptor pyrin domain-containing-3 pathway. We hypothesized that endothelial cells induced into a sepsis phenotype would have less interleukin-6 expression after recombinant human proteoglycan 4 treatment in vitro. DESIGN Enzyme-linked immunosorbent assay and reverse transcriptase-quantitative polymerase chain reaction to measure interleukin-6 protein and gene expression. SETTING Research laboratory. SUBJECTS Human umbilical vascular endothelial cells, human lung microvascular endothelial cells, and transgenic mouse (wild type) (Cd44 +/+/Prg4 +/+), Cd44 -/- (Cd44 tm1Hbg Prg4 +/+), Prg4 GT/GT (Cd44 +/+ Prg4 tm2Mawa/J), and double knockout (Cd44 tm1Hbg Prg4 tm2Mawa/J) lung microvascular endothelial cells. INTERVENTIONS Cells were treated with 100 or 250 ng/mL lipopolysaccharide-Escherichia coli K12 and subsequently treated with recombinant human proteoglycan 4 after 30 minutes. Interleukin-6 levels in conditioned media were measured via enzyme-linked immunosorbent assay and gene expression was measured via reverse transcriptase-quantitative polymerase chain reaction with ΔΔ-Ct analysis. Additionally, human umbilical vascular endothelial cells and human lung microvascular endothelial cells were treated with 1:10 diluted plasma from 15 patients with sepsis in culture media. After 30 minutes, either 50 or 100 µg/mL recombinant human proteoglycan 4 was administered. Interleukin-6 protein and gene expression were assayed. Proteoglycan 4 levels were also compared between control and sepsis patient plasma. MEASUREMENTS AND MAIN RESULTS Human umbilical vascular endothelial cell, human lung microvascular endothelial cell, and mouse lung microvascular endothelial cell treated with lipopolysaccharide had significantly increased interleukin-6 protein compared with controls. Recombinant human proteoglycan-4 significantly reduced interleukin-6 in human and mouse endothelial cells. Interleukin-6 gene expression was significantly increased after lipopolysaccharide treatment compared with controls. This response was reversed by 50 or 100 µg/mL recombinant human proteoglycan-4 in 80% of sepsis samples in human umbilical vascular endothelial cells and in 60-73% in human lung microvascular endothelial cells. In Cd44 -/- genotypes of the mouse lung microvascular endothelial cells, recombinant human proteoglycan-4 significantly reduced interleukin-6 protein levels after lipopolysaccharide treatment, indicating that Cd44 is not needed for recombinant human proteoglycan-4 to have an effect in a toll-like receptor 4 agonist inflammation model. Patient sepsis samples had higher plasma levels of native proteoglycan-4 than controls. INTERPRETATION AND CONCLUSIONS Recombinant human proteoglycan-4 is a potential adjunct therapy for sepsis patients and warrants future in vivo model studies.
Collapse
Affiliation(s)
- Holly A Richendrfer
- Department of Emergency Medicine, Warren Alpert School of Medicine, Brown University, Providence, RI
- Emergency Medicine Research Laboratory, Department of Emergency Medicine, Rhode Island Hospital, Providence, RI
| | - Mitchell M Levy
- Department of Medicine, Division of Pulmonary/Critical Care Medicine, Alpert Medical School at Brown University, Providence, RI
| | - Khaled A Elsaid
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT
| | - Ling Zhang
- Department of Emergency Medicine, Warren Alpert School of Medicine, Brown University, Providence, RI
- Emergency Medicine Research Laboratory, Department of Emergency Medicine, Rhode Island Hospital, Providence, RI
| | - Ralph Cabezas
- Department of Emergency Medicine, Warren Alpert School of Medicine, Brown University, Providence, RI
- Emergency Medicine Research Laboratory, Department of Emergency Medicine, Rhode Island Hospital, Providence, RI
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert School of Medicine, Brown University, Providence, RI
- Emergency Medicine Research Laboratory, Department of Emergency Medicine, Rhode Island Hospital, Providence, RI
| |
Collapse
|
46
|
Yan L, Liang J, Zhou Y, Huang J, Zhang T, Wang X, Yin H. Switch Off "Parallel Circuit": Insight of New Strategy of Simultaneously Suppressing Canonical and Noncanonical Inflammation Activation in Endotoxemic Mice. ACTA ACUST UNITED AC 2020; 4:e2000037. [PMID: 32419296 DOI: 10.1002/adbi.202000037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/29/2022]
Abstract
Sepsis is a life-threatening inflammatory disease with a high mortality rate and huge implicative costs. Lipopolysaccharide (LPS) from gram-negative bacteria activates toll-like receptor 4 (TLR4) and may trigger septic shock. However, potent TLR4 inhibitors TAK-242 and Eritoran have been terminated in phase III clinical trials because of inadequate efficacy. Inspired by the recently discovered intracellular, noncanonical LPS receptors, it is considered that TLR4-mediated canonical and caspase-mediated noncanonical inflammation can be seen as a "parallel circuit" to induce sepsis and endotoxemia. Logically, it is proposed that the dual inhibition of caspase-4/5/11 and TLR4 can be a potential novel strategy to develop new therapeutics for sepsis. To verify the strategy, two potential compounds are found: Luteolin and Diacerein with substantial antiinflammatory activity in vitro and in vivo. The results show that the survival rate of endotoxemic mice treated by these compounds is increased remarkably. LPS-induced organ damage is also prevented. Moreover, these compounds result in physical and mental recovery for endotoxemic mice. Notably, Luteolin exhibits better antiinflammatory activity than TAK-242 at comparable TLR4-inhibitory levels. These findings indicate that simultaneous inhibition of TLR4 and caspase-4/5/11 can be an anticipative strategy defeating sepsis and endotoxemia, which can be translated into significant medical and economic benefits.
Collapse
Affiliation(s)
- Lei Yan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100082, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100082, China.,Tsinghua University-Peking University Joint Center for Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100082, China
| | - Jiaqi Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100082, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100082, China.,Tsinghua University-Peking University Joint Center for Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100082, China
| | - Yi Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100082, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100082, China.,Tsinghua University-Peking University Joint Center for Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100082, China
| | - Jian Huang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100082, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100082, China.,Tsinghua University-Peking University Joint Center for Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100082, China
| | - Tianshu Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hang Yin
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100082, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100082, China.,Tsinghua University-Peking University Joint Center for Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100082, China
| |
Collapse
|
47
|
Ruan J, Wang S, Wang J. Mechanism and regulation of pyroptosis-mediated in cancer cell death. Chem Biol Interact 2020; 323:109052. [PMID: 32169591 DOI: 10.1016/j.cbi.2020.109052] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022]
Abstract
Pyroptosis, a form of programmed cell death, has garnered increasing attention as it relates to innate immunity and diseases. The discovery of caspase-1/3/4/5/8/11 function in sensing various challenges expands the spectrum of pyroptosis mediators and also reveals that pyroptosis is not cell type specific. Recent studies have identified that pyroptosis has become a new topic in cancer research because it may affect all stages of carcinogenesis. In this mini-review, we provided a primer on pyroptosis, discussed the induction of pyroptosis in cancer and its implications in cancer management. Moreover, its two important executioners, the gasdermin D (GSDMD) and gasdermin E (GSDME), the functions and mechanisms of them involved in the regulation of cancer therapy were focused on. Small molecules-mediated pyroptosis were found to effectively inhibit various tumor cells. In brief, the findings of pyroptosis-dependent cancer progression, new drugs and therapeutic targets may lead to a promising, novel therapeutic approach for cancer patients.
Collapse
Affiliation(s)
- Jianwei Ruan
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, China.
| | - Shijian Wang
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, China
| | - Jiabing Wang
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
48
|
Caspase-1-Dependent Pyroptosis of Peripheral Blood Mononuclear Cells Is Associated with the Severity and Mortality of Septic Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9152140. [PMID: 32258157 PMCID: PMC7066402 DOI: 10.1155/2020/9152140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Purpose Pyroptosis has been known to play a vital role in the inflammation process which was induced by infection, injury, or inflammatory disease. The present study was aimed at evaluating the percentage of peripheral blood mononuclear cell (PBMC) pyroptosis in septic patients and assessing the correlation of PBMC pyroptosis with the severity and the mortality of septic patients. Methods 128 trauma-induced patients with sepsis were enrolled in this prospective cohort study. Blood samples were collected, and PBMC pyroptosis was measured by flow cytometry within 24 hours after sepsis was diagnosed. Results Percentage of PBMC pyroptosis was positively correlated with the acute physiology and chronic health evaluation (APACHE) II score and sequential organ failure assessment (SOFA) score (all P < 0.01). The area under the curve (AUC) for the percentage of PBMC pyroptosis on a receiver operating characteristic curve was 0.79 (95% confidence interval (CI), 0.68–0.90). A Cox proportional hazard model identified an association between an increased percentage of PBMC pyroptosis (>14.17%) and increased risk of the 28-day mortality (hazard ratio = 1.234, 95% CI, 1.014–1.502). Conclusion The percentage of PBMC pyroptosis increases in septic patients, and the increased percentage of PBMC pyroptosis is associated with the severity of sepsis and the 28-day mortality of patients with sepsis.
Collapse
|
49
|
Aly AA, Sayed SM, Abdelhafez ESM, Abdelhafez SMN, Abdelzaher WY, Raslan MA, Ahmed AE, Thabet K, El-Reedy AA, Brown AB, Bräse S. New quinoline-2-one/pyrazole derivatives; design, synthesis, molecular docking, anti-apoptotic evaluation, and caspase-3 inhibition assay. Bioorg Chem 2020; 94:103348. [DOI: 10.1016/j.bioorg.2019.103348] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/13/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022]
|
50
|
Abstract
Sepsis is a dysregulated immune response to an infection that leads to organ dysfunction. Knowledge of the pathophysiology of organ failure in sepsis is crucial for optimizing the management and treatment of patients and for the development of potential new therapies. In clinical practice, six major organ systems - the cardiovascular (including the microcirculation), respiratory, renal, neurological, haematological and hepatic systems - can be assessed and monitored, whereas others, such as the gut, are less accessible. Over the past 2 decades, considerable amounts of new data have helped improve our understanding of sepsis pathophysiology, including the regulation of inflammatory pathways and the role played by immune suppression during sepsis. The effects of impaired cellular function, including mitochondrial dysfunction and altered cell death mechanisms, on the development of organ dysfunction are also being unravelled. Insights have been gained into interactions between key organs (such as the kidneys and the gut) and organ-organ crosstalk during sepsis. The important role of the microcirculation in sepsis is increasingly apparent, and new techniques have been developed that make it possible to visualize the microcirculation at the bedside, although these techniques are only research tools at present.
Collapse
Affiliation(s)
- Christophe Lelubre
- Laboratoire de Médecine Expérimentale (ULB 222 Unit), Université Libre de Bruxelles, CHU de Charleroi, A. Vésale Hospital, Montigny-Le-Tilleul, Belgium.,Department of Internal Medicine, CHU Charleroi - Hôpital Civil Marie Curie, Lodelinsart, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|